linux/drivers/media/i2c/ccs/ccs-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/media/i2c/ccs/ccs-core.c
   4 *
   5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
   6 *
   7 * Copyright (C) 2020 Intel Corporation
   8 * Copyright (C) 2010--2012 Nokia Corporation
   9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
  10 *
  11 * Based on smiapp driver by Vimarsh Zutshi
  12 * Based on jt8ev1.c by Vimarsh Zutshi
  13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/device.h>
  19#include <linux/firmware.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/module.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/property.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/slab.h>
  26#include <linux/smiapp.h>
  27#include <linux/v4l2-mediabus.h>
  28#include <media/v4l2-fwnode.h>
  29#include <media/v4l2-device.h>
  30#include <uapi/linux/ccs.h>
  31
  32#include "ccs.h"
  33
  34#define CCS_ALIGN_DIM(dim, flags)       \
  35        ((flags) & V4L2_SEL_FLAG_GE     \
  36         ? ALIGN((dim), 2)              \
  37         : (dim) & ~1)
  38
  39static struct ccs_limit_offset {
  40        u16     lim;
  41        u16     info;
  42} ccs_limit_offsets[CCS_L_LAST + 1];
  43
  44/*
  45 * ccs_module_idents - supported camera modules
  46 */
  47static const struct ccs_module_ident ccs_module_idents[] = {
  48        CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
  49        CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
  50        CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
  51        CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
  52        CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
  53        CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
  54        CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
  55        CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
  56        CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
  57        CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
  58        CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
  59};
  60
  61#define CCS_DEVICE_FLAG_IS_SMIA         BIT(0)
  62
  63struct ccs_device {
  64        unsigned char flags;
  65};
  66
  67static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
  68
  69/*
  70 *
  71 * Dynamic Capability Identification
  72 *
  73 */
  74
  75static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
  76{
  77        switch (width) {
  78        case sizeof(u8):
  79                *(u8 *)ptr = val;
  80                break;
  81        case sizeof(u16):
  82                *(u16 *)ptr = val;
  83                break;
  84        case sizeof(u32):
  85                *(u32 *)ptr = val;
  86                break;
  87        }
  88}
  89
  90static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
  91                         unsigned int offset, void **__ptr)
  92{
  93        const struct ccs_limit *linfo;
  94
  95        if (WARN_ON(limit >= CCS_L_LAST))
  96                return -EINVAL;
  97
  98        linfo = &ccs_limits[ccs_limit_offsets[limit].info];
  99
 100        if (WARN_ON(!sensor->ccs_limits) ||
 101            WARN_ON(offset + ccs_reg_width(linfo->reg) >
 102                    ccs_limit_offsets[limit + 1].lim))
 103                return -EINVAL;
 104
 105        *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
 106
 107        return 0;
 108}
 109
 110void ccs_replace_limit(struct ccs_sensor *sensor,
 111                       unsigned int limit, unsigned int offset, u32 val)
 112{
 113        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 114        const struct ccs_limit *linfo;
 115        void *ptr;
 116        int ret;
 117
 118        ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
 119        if (ret)
 120                return;
 121
 122        linfo = &ccs_limits[ccs_limit_offsets[limit].info];
 123
 124        dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n",
 125                linfo->reg, linfo->name, offset, val, val);
 126
 127        ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
 128}
 129
 130u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
 131                  unsigned int offset)
 132{
 133        void *ptr;
 134        u32 val;
 135        int ret;
 136
 137        ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
 138        if (ret)
 139                return 0;
 140
 141        switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
 142        case sizeof(u8):
 143                val = *(u8 *)ptr;
 144                break;
 145        case sizeof(u16):
 146                val = *(u16 *)ptr;
 147                break;
 148        case sizeof(u32):
 149                val = *(u32 *)ptr;
 150                break;
 151        default:
 152                WARN_ON(1);
 153                return 0;
 154        }
 155
 156        return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
 157}
 158
 159static int ccs_read_all_limits(struct ccs_sensor *sensor)
 160{
 161        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 162        void *ptr, *alloc, *end;
 163        unsigned int i, l;
 164        int ret;
 165
 166        kfree(sensor->ccs_limits);
 167        sensor->ccs_limits = NULL;
 168
 169        alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
 170        if (!alloc)
 171                return -ENOMEM;
 172
 173        end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
 174
 175        for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
 176                u32 reg = ccs_limits[i].reg;
 177                unsigned int width = ccs_reg_width(reg);
 178                unsigned int j;
 179
 180                if (l == CCS_L_LAST) {
 181                        dev_err(&client->dev,
 182                                "internal error --- end of limit array\n");
 183                        ret = -EINVAL;
 184                        goto out_err;
 185                }
 186
 187                for (j = 0; j < ccs_limits[i].size / width;
 188                     j++, reg += width, ptr += width) {
 189                        u32 val;
 190
 191                        ret = ccs_read_addr_noconv(sensor, reg, &val);
 192                        if (ret)
 193                                goto out_err;
 194
 195                        if (ptr + width > end) {
 196                                dev_err(&client->dev,
 197                                        "internal error --- no room for regs\n");
 198                                ret = -EINVAL;
 199                                goto out_err;
 200                        }
 201
 202                        if (!val && j)
 203                                break;
 204
 205                        ccs_assign_limit(ptr, width, val);
 206
 207                        dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
 208                                reg, ccs_limits[i].name, val, val);
 209                }
 210
 211                if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
 212                        continue;
 213
 214                l++;
 215                ptr = alloc + ccs_limit_offsets[l].lim;
 216        }
 217
 218        if (l != CCS_L_LAST) {
 219                dev_err(&client->dev,
 220                        "internal error --- insufficient limits\n");
 221                ret = -EINVAL;
 222                goto out_err;
 223        }
 224
 225        sensor->ccs_limits = alloc;
 226
 227        if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
 228                ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
 229
 230        return 0;
 231
 232out_err:
 233        kfree(alloc);
 234
 235        return ret;
 236}
 237
 238static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
 239{
 240        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 241        u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
 242        unsigned int i;
 243        int pixel_count = 0;
 244        int line_count = 0;
 245
 246        fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
 247        fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
 248
 249        ncol_desc = (fmt_model_subtype
 250                     & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
 251                >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
 252        nrow_desc = fmt_model_subtype
 253                & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
 254
 255        dev_dbg(&client->dev, "format_model_type %s\n",
 256                fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
 257                ? "2 byte" :
 258                fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
 259                ? "4 byte" : "is simply bad");
 260
 261        dev_dbg(&client->dev, "%u column and %u row descriptors\n",
 262                ncol_desc, nrow_desc);
 263
 264        for (i = 0; i < ncol_desc + nrow_desc; i++) {
 265                u32 desc;
 266                u32 pixelcode;
 267                u32 pixels;
 268                char *which;
 269                char *what;
 270
 271                if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
 272                        desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
 273
 274                        pixelcode =
 275                                (desc
 276                                 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
 277                                >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
 278                        pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
 279                } else if (fmt_model_type
 280                           == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
 281                        desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
 282
 283                        pixelcode =
 284                                (desc
 285                                 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
 286                                >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
 287                        pixels = desc &
 288                                CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
 289                } else {
 290                        dev_dbg(&client->dev,
 291                                "invalid frame format model type %d\n",
 292                                fmt_model_type);
 293                        return -EINVAL;
 294                }
 295
 296                if (i < ncol_desc)
 297                        which = "columns";
 298                else
 299                        which = "rows";
 300
 301                switch (pixelcode) {
 302                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
 303                        what = "embedded";
 304                        break;
 305                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
 306                        what = "dummy";
 307                        break;
 308                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
 309                        what = "black";
 310                        break;
 311                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
 312                        what = "dark";
 313                        break;
 314                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
 315                        what = "visible";
 316                        break;
 317                default:
 318                        what = "invalid";
 319                        break;
 320                }
 321
 322                dev_dbg(&client->dev,
 323                        "%s pixels: %d %s (pixelcode %u)\n",
 324                        what, pixels, which, pixelcode);
 325
 326                if (i < ncol_desc) {
 327                        if (pixelcode ==
 328                            CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
 329                                sensor->visible_pixel_start = pixel_count;
 330                        pixel_count += pixels;
 331                        continue;
 332                }
 333
 334                /* Handle row descriptors */
 335                switch (pixelcode) {
 336                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
 337                        if (sensor->embedded_end)
 338                                break;
 339                        sensor->embedded_start = line_count;
 340                        sensor->embedded_end = line_count + pixels;
 341                        break;
 342                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
 343                        sensor->image_start = line_count;
 344                        break;
 345                }
 346                line_count += pixels;
 347        }
 348
 349        if (sensor->embedded_end > sensor->image_start) {
 350                dev_dbg(&client->dev,
 351                        "adjusting image start line to %u (was %u)\n",
 352                        sensor->embedded_end, sensor->image_start);
 353                sensor->image_start = sensor->embedded_end;
 354        }
 355
 356        dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
 357                sensor->embedded_start, sensor->embedded_end);
 358        dev_dbg(&client->dev, "image data starts at line %d\n",
 359                sensor->image_start);
 360
 361        return 0;
 362}
 363
 364static int ccs_pll_configure(struct ccs_sensor *sensor)
 365{
 366        struct ccs_pll *pll = &sensor->pll;
 367        int rval;
 368
 369        rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
 370        if (rval < 0)
 371                return rval;
 372
 373        rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
 374        if (rval < 0)
 375                return rval;
 376
 377        rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
 378        if (rval < 0)
 379                return rval;
 380
 381        rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
 382        if (rval < 0)
 383                return rval;
 384
 385        if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
 386              CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
 387                /* Lane op clock ratio does not apply here. */
 388                rval = ccs_write(sensor, REQUESTED_LINK_RATE,
 389                                 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
 390                                              1000000 / 256 / 256) *
 391                                 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
 392                                  sensor->pll.csi2.lanes : 1) <<
 393                                 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
 394                                  1 : 0));
 395                if (rval < 0)
 396                        return rval;
 397        }
 398
 399        if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
 400                return 0;
 401
 402        rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
 403        if (rval < 0)
 404                return rval;
 405
 406        rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
 407        if (rval < 0)
 408                return rval;
 409
 410        if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
 411                return 0;
 412
 413        rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
 414        if (rval < 0)
 415                return rval;
 416
 417        rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
 418                         pll->op_fr.pre_pll_clk_div);
 419        if (rval < 0)
 420                return rval;
 421
 422        return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
 423}
 424
 425static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
 426{
 427        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 428        struct ccs_pll_limits lim = {
 429                .vt_fr = {
 430                        .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
 431                        .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
 432                        .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
 433                        .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
 434                        .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
 435                        .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
 436                        .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
 437                        .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
 438                },
 439                .op_fr = {
 440                        .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
 441                        .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
 442                        .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
 443                        .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
 444                        .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
 445                        .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
 446                        .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
 447                        .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
 448                },
 449                .op_bk = {
 450                         .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
 451                         .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
 452                         .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
 453                         .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
 454                         .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
 455                         .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
 456                         .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
 457                         .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
 458                 },
 459                .vt_bk = {
 460                         .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
 461                         .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
 462                         .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
 463                         .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
 464                         .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
 465                         .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
 466                         .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
 467                         .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
 468                 },
 469                .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
 470                .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
 471        };
 472
 473        return ccs_pll_calculate(&client->dev, &lim, pll);
 474}
 475
 476static int ccs_pll_update(struct ccs_sensor *sensor)
 477{
 478        struct ccs_pll *pll = &sensor->pll;
 479        int rval;
 480
 481        pll->binning_horizontal = sensor->binning_horizontal;
 482        pll->binning_vertical = sensor->binning_vertical;
 483        pll->link_freq =
 484                sensor->link_freq->qmenu_int[sensor->link_freq->val];
 485        pll->scale_m = sensor->scale_m;
 486        pll->bits_per_pixel = sensor->csi_format->compressed;
 487
 488        rval = ccs_pll_try(sensor, pll);
 489        if (rval < 0)
 490                return rval;
 491
 492        __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
 493                                 pll->pixel_rate_pixel_array);
 494        __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
 495
 496        return 0;
 497}
 498
 499
 500/*
 501 *
 502 * V4L2 Controls handling
 503 *
 504 */
 505
 506static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
 507{
 508        struct v4l2_ctrl *ctrl = sensor->exposure;
 509        int max;
 510
 511        max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
 512                + sensor->vblank->val
 513                - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
 514
 515        __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
 516}
 517
 518/*
 519 * Order matters.
 520 *
 521 * 1. Bits-per-pixel, descending.
 522 * 2. Bits-per-pixel compressed, descending.
 523 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
 524 *    orders must be defined.
 525 */
 526static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
 527        { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
 528        { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
 529        { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
 530        { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
 531        { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
 532        { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
 533        { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
 534        { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
 535        { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
 536        { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
 537        { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
 538        { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
 539        { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
 540        { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
 541        { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
 542        { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
 543        { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
 544        { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
 545        { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
 546        { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
 547        { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
 548        { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
 549        { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
 550        { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
 551};
 552
 553static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
 554
 555#define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
 556                                 - (unsigned long)ccs_csi_data_formats) \
 557                                / sizeof(*ccs_csi_data_formats))
 558
 559static u32 ccs_pixel_order(struct ccs_sensor *sensor)
 560{
 561        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 562        int flip = 0;
 563
 564        if (sensor->hflip) {
 565                if (sensor->hflip->val)
 566                        flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
 567
 568                if (sensor->vflip->val)
 569                        flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
 570        }
 571
 572        flip ^= sensor->hvflip_inv_mask;
 573
 574        dev_dbg(&client->dev, "flip %d\n", flip);
 575        return sensor->default_pixel_order ^ flip;
 576}
 577
 578static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
 579{
 580        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 581        unsigned int csi_format_idx =
 582                to_csi_format_idx(sensor->csi_format) & ~3;
 583        unsigned int internal_csi_format_idx =
 584                to_csi_format_idx(sensor->internal_csi_format) & ~3;
 585        unsigned int pixel_order = ccs_pixel_order(sensor);
 586
 587        if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
 588                         pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
 589                return;
 590
 591        sensor->mbus_frame_fmts =
 592                sensor->default_mbus_frame_fmts << pixel_order;
 593        sensor->csi_format =
 594                &ccs_csi_data_formats[csi_format_idx + pixel_order];
 595        sensor->internal_csi_format =
 596                &ccs_csi_data_formats[internal_csi_format_idx
 597                                         + pixel_order];
 598
 599        dev_dbg(&client->dev, "new pixel order %s\n",
 600                pixel_order_str[pixel_order]);
 601}
 602
 603static const char * const ccs_test_patterns[] = {
 604        "Disabled",
 605        "Solid Colour",
 606        "Eight Vertical Colour Bars",
 607        "Colour Bars With Fade to Grey",
 608        "Pseudorandom Sequence (PN9)",
 609};
 610
 611static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
 612{
 613        struct ccs_sensor *sensor =
 614                container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
 615                        ->sensor;
 616        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 617        int pm_status;
 618        u32 orient = 0;
 619        unsigned int i;
 620        int exposure;
 621        int rval;
 622
 623        switch (ctrl->id) {
 624        case V4L2_CID_HFLIP:
 625        case V4L2_CID_VFLIP:
 626                if (sensor->streaming)
 627                        return -EBUSY;
 628
 629                if (sensor->hflip->val)
 630                        orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
 631
 632                if (sensor->vflip->val)
 633                        orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
 634
 635                orient ^= sensor->hvflip_inv_mask;
 636
 637                ccs_update_mbus_formats(sensor);
 638
 639                break;
 640        case V4L2_CID_VBLANK:
 641                exposure = sensor->exposure->val;
 642
 643                __ccs_update_exposure_limits(sensor);
 644
 645                if (exposure > sensor->exposure->maximum) {
 646                        sensor->exposure->val = sensor->exposure->maximum;
 647                        rval = ccs_set_ctrl(sensor->exposure);
 648                        if (rval < 0)
 649                                return rval;
 650                }
 651
 652                break;
 653        case V4L2_CID_LINK_FREQ:
 654                if (sensor->streaming)
 655                        return -EBUSY;
 656
 657                rval = ccs_pll_update(sensor);
 658                if (rval)
 659                        return rval;
 660
 661                return 0;
 662        case V4L2_CID_TEST_PATTERN:
 663                for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
 664                        v4l2_ctrl_activate(
 665                                sensor->test_data[i],
 666                                ctrl->val ==
 667                                V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
 668
 669                break;
 670        }
 671
 672        pm_status = pm_runtime_get_if_active(&client->dev, true);
 673        if (!pm_status)
 674                return 0;
 675
 676        switch (ctrl->id) {
 677        case V4L2_CID_ANALOGUE_GAIN:
 678                rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
 679
 680                break;
 681
 682        case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
 683                rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
 684
 685                break;
 686
 687        case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
 688                rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
 689                                 ctrl->val);
 690
 691                break;
 692
 693        case V4L2_CID_DIGITAL_GAIN:
 694                if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
 695                    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
 696                        rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
 697                                         ctrl->val);
 698                        break;
 699                }
 700
 701                rval = ccs_write_addr(sensor,
 702                                      SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
 703                                      ctrl->val);
 704                if (rval)
 705                        break;
 706
 707                rval = ccs_write_addr(sensor,
 708                                      SMIAPP_REG_U16_DIGITAL_GAIN_RED,
 709                                      ctrl->val);
 710                if (rval)
 711                        break;
 712
 713                rval = ccs_write_addr(sensor,
 714                                      SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
 715                                      ctrl->val);
 716                if (rval)
 717                        break;
 718
 719                rval = ccs_write_addr(sensor,
 720                                      SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
 721                                      ctrl->val);
 722
 723                break;
 724        case V4L2_CID_EXPOSURE:
 725                rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
 726
 727                break;
 728        case V4L2_CID_HFLIP:
 729        case V4L2_CID_VFLIP:
 730                rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
 731
 732                break;
 733        case V4L2_CID_VBLANK:
 734                rval = ccs_write(sensor, FRAME_LENGTH_LINES,
 735                                 sensor->pixel_array->crop[
 736                                         CCS_PA_PAD_SRC].height
 737                                 + ctrl->val);
 738
 739                break;
 740        case V4L2_CID_HBLANK:
 741                rval = ccs_write(sensor, LINE_LENGTH_PCK,
 742                                 sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
 743                                 + ctrl->val);
 744
 745                break;
 746        case V4L2_CID_TEST_PATTERN:
 747                rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
 748
 749                break;
 750        case V4L2_CID_TEST_PATTERN_RED:
 751                rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
 752
 753                break;
 754        case V4L2_CID_TEST_PATTERN_GREENR:
 755                rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
 756
 757                break;
 758        case V4L2_CID_TEST_PATTERN_BLUE:
 759                rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
 760
 761                break;
 762        case V4L2_CID_TEST_PATTERN_GREENB:
 763                rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
 764
 765                break;
 766        case V4L2_CID_CCS_SHADING_CORRECTION:
 767                rval = ccs_write(sensor, SHADING_CORRECTION_EN,
 768                                 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
 769                                 0);
 770
 771                if (!rval && sensor->luminance_level)
 772                        v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
 773
 774                break;
 775        case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
 776                rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
 777
 778                break;
 779        case V4L2_CID_PIXEL_RATE:
 780                /* For v4l2_ctrl_s_ctrl_int64() used internally. */
 781                rval = 0;
 782
 783                break;
 784        default:
 785                rval = -EINVAL;
 786        }
 787
 788        if (pm_status > 0) {
 789                pm_runtime_mark_last_busy(&client->dev);
 790                pm_runtime_put_autosuspend(&client->dev);
 791        }
 792
 793        return rval;
 794}
 795
 796static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
 797        .s_ctrl = ccs_set_ctrl,
 798};
 799
 800static int ccs_init_controls(struct ccs_sensor *sensor)
 801{
 802        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 803        int rval;
 804
 805        rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17);
 806        if (rval)
 807                return rval;
 808
 809        sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
 810
 811        switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
 812        case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
 813                struct {
 814                        const char *name;
 815                        u32 id;
 816                        s32 value;
 817                } const gain_ctrls[] = {
 818                        { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
 819                          CCS_LIM(sensor, ANALOG_GAIN_M0), },
 820                        { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
 821                          CCS_LIM(sensor, ANALOG_GAIN_C0), },
 822                        { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
 823                          CCS_LIM(sensor, ANALOG_GAIN_M1), },
 824                        { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
 825                          CCS_LIM(sensor, ANALOG_GAIN_C1), },
 826                };
 827                struct v4l2_ctrl_config ctrl_cfg = {
 828                        .type = V4L2_CTRL_TYPE_INTEGER,
 829                        .ops = &ccs_ctrl_ops,
 830                        .flags = V4L2_CTRL_FLAG_READ_ONLY,
 831                        .step = 1,
 832                };
 833                unsigned int i;
 834
 835                for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
 836                        ctrl_cfg.name = gain_ctrls[i].name;
 837                        ctrl_cfg.id = gain_ctrls[i].id;
 838                        ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
 839                                gain_ctrls[i].value;
 840
 841                        v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 842                                             &ctrl_cfg, NULL);
 843                }
 844
 845                v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
 846                                  &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
 847                                  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
 848                                  CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
 849                                  max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
 850                                      1U),
 851                                  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
 852        }
 853                break;
 854
 855        case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
 856                struct {
 857                        const char *name;
 858                        u32 id;
 859                        u16 min, max, step;
 860                } const gain_ctrls[] = {
 861                        {
 862                                "Analogue Linear Gain",
 863                                V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
 864                                CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
 865                                CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
 866                                max(CCS_LIM(sensor,
 867                                            ANALOG_LINEAR_GAIN_STEP_SIZE),
 868                                    1U),
 869                        },
 870                        {
 871                                "Analogue Exponential Gain",
 872                                V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
 873                                CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
 874                                CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
 875                                max(CCS_LIM(sensor,
 876                                            ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
 877                                    1U),
 878                        },
 879                };
 880                struct v4l2_ctrl_config ctrl_cfg = {
 881                        .type = V4L2_CTRL_TYPE_INTEGER,
 882                        .ops = &ccs_ctrl_ops,
 883                };
 884                unsigned int i;
 885
 886                for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
 887                        ctrl_cfg.name = gain_ctrls[i].name;
 888                        ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
 889                        ctrl_cfg.max = gain_ctrls[i].max;
 890                        ctrl_cfg.step = gain_ctrls[i].step;
 891                        ctrl_cfg.id = gain_ctrls[i].id;
 892
 893                        v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 894                                             &ctrl_cfg, NULL);
 895                }
 896        }
 897        }
 898
 899        if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
 900            (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
 901             CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
 902                const struct v4l2_ctrl_config ctrl_cfg = {
 903                        .name = "Shading Correction",
 904                        .type = V4L2_CTRL_TYPE_BOOLEAN,
 905                        .id = V4L2_CID_CCS_SHADING_CORRECTION,
 906                        .ops = &ccs_ctrl_ops,
 907                        .max = 1,
 908                        .step = 1,
 909                };
 910
 911                v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 912                                     &ctrl_cfg, NULL);
 913        }
 914
 915        if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
 916            CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
 917                const struct v4l2_ctrl_config ctrl_cfg = {
 918                        .name = "Luminance Correction Level",
 919                        .type = V4L2_CTRL_TYPE_BOOLEAN,
 920                        .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
 921                        .ops = &ccs_ctrl_ops,
 922                        .max = 255,
 923                        .step = 1,
 924                        .def = 128,
 925                };
 926
 927                sensor->luminance_level =
 928                        v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 929                                             &ctrl_cfg, NULL);
 930        }
 931
 932        if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
 933            CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
 934            CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
 935            SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
 936                v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
 937                                  &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
 938                                  CCS_LIM(sensor, DIGITAL_GAIN_MIN),
 939                                  CCS_LIM(sensor, DIGITAL_GAIN_MAX),
 940                                  max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
 941                                      1U),
 942                                  0x100);
 943
 944        /* Exposure limits will be updated soon, use just something here. */
 945        sensor->exposure = v4l2_ctrl_new_std(
 946                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 947                V4L2_CID_EXPOSURE, 0, 0, 1, 0);
 948
 949        sensor->hflip = v4l2_ctrl_new_std(
 950                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 951                V4L2_CID_HFLIP, 0, 1, 1, 0);
 952        sensor->vflip = v4l2_ctrl_new_std(
 953                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 954                V4L2_CID_VFLIP, 0, 1, 1, 0);
 955
 956        sensor->vblank = v4l2_ctrl_new_std(
 957                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 958                V4L2_CID_VBLANK, 0, 1, 1, 0);
 959
 960        if (sensor->vblank)
 961                sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 962
 963        sensor->hblank = v4l2_ctrl_new_std(
 964                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 965                V4L2_CID_HBLANK, 0, 1, 1, 0);
 966
 967        if (sensor->hblank)
 968                sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 969
 970        sensor->pixel_rate_parray = v4l2_ctrl_new_std(
 971                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 972                V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
 973
 974        v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
 975                                     &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
 976                                     ARRAY_SIZE(ccs_test_patterns) - 1,
 977                                     0, 0, ccs_test_patterns);
 978
 979        if (sensor->pixel_array->ctrl_handler.error) {
 980                dev_err(&client->dev,
 981                        "pixel array controls initialization failed (%d)\n",
 982                        sensor->pixel_array->ctrl_handler.error);
 983                return sensor->pixel_array->ctrl_handler.error;
 984        }
 985
 986        sensor->pixel_array->sd.ctrl_handler =
 987                &sensor->pixel_array->ctrl_handler;
 988
 989        v4l2_ctrl_cluster(2, &sensor->hflip);
 990
 991        rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
 992        if (rval)
 993                return rval;
 994
 995        sensor->src->ctrl_handler.lock = &sensor->mutex;
 996
 997        sensor->pixel_rate_csi = v4l2_ctrl_new_std(
 998                &sensor->src->ctrl_handler, &ccs_ctrl_ops,
 999                V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1000
1001        if (sensor->src->ctrl_handler.error) {
1002                dev_err(&client->dev,
1003                        "src controls initialization failed (%d)\n",
1004                        sensor->src->ctrl_handler.error);
1005                return sensor->src->ctrl_handler.error;
1006        }
1007
1008        sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1009
1010        return 0;
1011}
1012
1013/*
1014 * For controls that require information on available media bus codes
1015 * and linke frequencies.
1016 */
1017static int ccs_init_late_controls(struct ccs_sensor *sensor)
1018{
1019        unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1020                sensor->csi_format->compressed - sensor->compressed_min_bpp];
1021        unsigned int i;
1022
1023        for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1024                int max_value = (1 << sensor->csi_format->width) - 1;
1025
1026                sensor->test_data[i] = v4l2_ctrl_new_std(
1027                                &sensor->pixel_array->ctrl_handler,
1028                                &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1029                                0, max_value, 1, max_value);
1030        }
1031
1032        sensor->link_freq = v4l2_ctrl_new_int_menu(
1033                &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1034                V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1035                __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1036
1037        return sensor->src->ctrl_handler.error;
1038}
1039
1040static void ccs_free_controls(struct ccs_sensor *sensor)
1041{
1042        unsigned int i;
1043
1044        for (i = 0; i < sensor->ssds_used; i++)
1045                v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1046}
1047
1048static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1049{
1050        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1051        struct ccs_pll *pll = &sensor->pll;
1052        u8 compressed_max_bpp = 0;
1053        unsigned int type, n;
1054        unsigned int i, pixel_order;
1055        int rval;
1056
1057        type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1058
1059        dev_dbg(&client->dev, "data_format_model_type %d\n", type);
1060
1061        rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1062        if (rval)
1063                return rval;
1064
1065        if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1066                dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
1067                return -EINVAL;
1068        }
1069
1070        dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
1071                pixel_order_str[pixel_order]);
1072
1073        switch (type) {
1074        case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1075                n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1076                break;
1077        case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1078                n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1079                break;
1080        default:
1081                return -EINVAL;
1082        }
1083
1084        sensor->default_pixel_order = pixel_order;
1085        sensor->mbus_frame_fmts = 0;
1086
1087        for (i = 0; i < n; i++) {
1088                unsigned int fmt, j;
1089
1090                fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1091
1092                dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1093                        i, fmt >> 8, (u8)fmt);
1094
1095                for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1096                        const struct ccs_csi_data_format *f =
1097                                &ccs_csi_data_formats[j];
1098
1099                        if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1100                                continue;
1101
1102                        if (f->width != fmt >>
1103                            CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1104                            f->compressed !=
1105                            (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1106                                continue;
1107
1108                        dev_dbg(&client->dev, "jolly good! %d\n", j);
1109
1110                        sensor->default_mbus_frame_fmts |= 1 << j;
1111                }
1112        }
1113
1114        /* Figure out which BPP values can be used with which formats. */
1115        pll->binning_horizontal = 1;
1116        pll->binning_vertical = 1;
1117        pll->scale_m = sensor->scale_m;
1118
1119        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1120                sensor->compressed_min_bpp =
1121                        min(ccs_csi_data_formats[i].compressed,
1122                            sensor->compressed_min_bpp);
1123                compressed_max_bpp =
1124                        max(ccs_csi_data_formats[i].compressed,
1125                            compressed_max_bpp);
1126        }
1127
1128        sensor->valid_link_freqs = devm_kcalloc(
1129                &client->dev,
1130                compressed_max_bpp - sensor->compressed_min_bpp + 1,
1131                sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1132        if (!sensor->valid_link_freqs)
1133                return -ENOMEM;
1134
1135        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1136                const struct ccs_csi_data_format *f =
1137                        &ccs_csi_data_formats[i];
1138                unsigned long *valid_link_freqs =
1139                        &sensor->valid_link_freqs[
1140                                f->compressed - sensor->compressed_min_bpp];
1141                unsigned int j;
1142
1143                if (!(sensor->default_mbus_frame_fmts & 1 << i))
1144                        continue;
1145
1146                pll->bits_per_pixel = f->compressed;
1147
1148                for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1149                        pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1150
1151                        rval = ccs_pll_try(sensor, pll);
1152                        dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1153                                pll->link_freq, pll->bits_per_pixel,
1154                                rval ? "not ok" : "ok");
1155                        if (rval)
1156                                continue;
1157
1158                        set_bit(j, valid_link_freqs);
1159                }
1160
1161                if (!*valid_link_freqs) {
1162                        dev_info(&client->dev,
1163                                 "no valid link frequencies for %u bpp\n",
1164                                 f->compressed);
1165                        sensor->default_mbus_frame_fmts &= ~BIT(i);
1166                        continue;
1167                }
1168
1169                if (!sensor->csi_format
1170                    || f->width > sensor->csi_format->width
1171                    || (f->width == sensor->csi_format->width
1172                        && f->compressed > sensor->csi_format->compressed)) {
1173                        sensor->csi_format = f;
1174                        sensor->internal_csi_format = f;
1175                }
1176        }
1177
1178        if (!sensor->csi_format) {
1179                dev_err(&client->dev, "no supported mbus code found\n");
1180                return -EINVAL;
1181        }
1182
1183        ccs_update_mbus_formats(sensor);
1184
1185        return 0;
1186}
1187
1188static void ccs_update_blanking(struct ccs_sensor *sensor)
1189{
1190        struct v4l2_ctrl *vblank = sensor->vblank;
1191        struct v4l2_ctrl *hblank = sensor->hblank;
1192        u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1193        int min, max;
1194
1195        if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1196                min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1197                max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1198                min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1199                max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1200                min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1201        } else {
1202                min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1203                max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1204                min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1205                max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1206                min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1207        }
1208
1209        min = max_t(int,
1210                    CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1211                    min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
1212        max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
1213
1214        __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1215
1216        min = max_t(int,
1217                    min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
1218                    min_lbp);
1219        max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
1220
1221        __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1222
1223        __ccs_update_exposure_limits(sensor);
1224}
1225
1226static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1227{
1228        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1229        int rval;
1230
1231        rval = ccs_pll_update(sensor);
1232        if (rval < 0)
1233                return rval;
1234
1235        /* Output from pixel array, including blanking */
1236        ccs_update_blanking(sensor);
1237
1238        dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1239        dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1240
1241        dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1242                sensor->pll.pixel_rate_pixel_array /
1243                ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
1244                  + sensor->hblank->val) *
1245                 (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
1246                  + sensor->vblank->val) / 100));
1247
1248        return 0;
1249}
1250
1251/*
1252 *
1253 * SMIA++ NVM handling
1254 *
1255 */
1256
1257static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1258                             u8 *status)
1259{
1260        unsigned int i;
1261        int rval;
1262        u32 s;
1263
1264        *status = 0;
1265
1266        rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1267        if (rval)
1268                return rval;
1269
1270        rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1271                         CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1272        if (rval)
1273                return rval;
1274
1275        rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1276        if (rval)
1277                return rval;
1278
1279        if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1280                *status = s;
1281                return -ENODATA;
1282        }
1283
1284        if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1285            CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1286                for (i = 1000; i > 0; i--) {
1287                        if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1288                                break;
1289
1290                        rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1291                        if (rval)
1292                                return rval;
1293                }
1294
1295                if (!i)
1296                        return -ETIMEDOUT;
1297        }
1298
1299        for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1300                u32 v;
1301
1302                rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1303                if (rval)
1304                        return rval;
1305
1306                *nvm++ = v;
1307        }
1308
1309        return 0;
1310}
1311
1312static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1313                        size_t nvm_size)
1314{
1315        u8 status = 0;
1316        u32 p;
1317        int rval = 0, rval2;
1318
1319        for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1320                     && !rval; p++) {
1321                rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1322                nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1323        }
1324
1325        if (rval == -ENODATA &&
1326            status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1327                rval = 0;
1328
1329        rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1330        if (rval < 0)
1331                return rval;
1332        else
1333                return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1334}
1335
1336/*
1337 *
1338 * SMIA++ CCI address control
1339 *
1340 */
1341static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1342{
1343        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1344        int rval;
1345        u32 val;
1346
1347        client->addr = sensor->hwcfg.i2c_addr_dfl;
1348
1349        rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1350                         sensor->hwcfg.i2c_addr_alt << 1);
1351        if (rval)
1352                return rval;
1353
1354        client->addr = sensor->hwcfg.i2c_addr_alt;
1355
1356        /* verify addr change went ok */
1357        rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1358        if (rval)
1359                return rval;
1360
1361        if (val != sensor->hwcfg.i2c_addr_alt << 1)
1362                return -ENODEV;
1363
1364        return 0;
1365}
1366
1367/*
1368 *
1369 * SMIA++ Mode Control
1370 *
1371 */
1372static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1373{
1374        struct ccs_flash_strobe_parms *strobe_setup;
1375        unsigned int ext_freq = sensor->hwcfg.ext_clk;
1376        u32 tmp;
1377        u32 strobe_adjustment;
1378        u32 strobe_width_high_rs;
1379        int rval;
1380
1381        strobe_setup = sensor->hwcfg.strobe_setup;
1382
1383        /*
1384         * How to calculate registers related to strobe length. Please
1385         * do not change, or if you do at least know what you're
1386         * doing. :-)
1387         *
1388         * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1389         *
1390         * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1391         *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1392         *
1393         * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1394         * flash_strobe_adjustment E N, [1 - 0xff]
1395         *
1396         * The formula above is written as below to keep it on one
1397         * line:
1398         *
1399         * l / 10^6 = w / e * a
1400         *
1401         * Let's mark w * a by x:
1402         *
1403         * x = w * a
1404         *
1405         * Thus, we get:
1406         *
1407         * x = l * e / 10^6
1408         *
1409         * The strobe width must be at least as long as requested,
1410         * thus rounding upwards is needed.
1411         *
1412         * x = (l * e + 10^6 - 1) / 10^6
1413         * -----------------------------
1414         *
1415         * Maximum possible accuracy is wanted at all times. Thus keep
1416         * a as small as possible.
1417         *
1418         * Calculate a, assuming maximum w, with rounding upwards:
1419         *
1420         * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1421         * -------------------------------------
1422         *
1423         * Thus, we also get w, with that a, with rounding upwards:
1424         *
1425         * w = (x + a - 1) / a
1426         * -------------------
1427         *
1428         * To get limits:
1429         *
1430         * x E [1, (2^16 - 1) * (2^8 - 1)]
1431         *
1432         * Substituting maximum x to the original formula (with rounding),
1433         * the maximum l is thus
1434         *
1435         * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1436         *
1437         * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1438         * --------------------------------------------------
1439         *
1440         * flash_strobe_length must be clamped between 1 and
1441         * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1442         *
1443         * Then,
1444         *
1445         * flash_strobe_adjustment = ((flash_strobe_length *
1446         *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1447         *
1448         * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1449         *      EXTCLK freq + 10^6 - 1) / 10^6 +
1450         *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1451         */
1452        tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1453                      1000000 + 1, ext_freq);
1454        strobe_setup->strobe_width_high_us =
1455                clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1456
1457        tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1458                        1000000 - 1), 1000000ULL);
1459        strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1460        strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1461                                strobe_adjustment;
1462
1463        rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1464        if (rval < 0)
1465                goto out;
1466
1467        rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1468        if (rval < 0)
1469                goto out;
1470
1471        rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1472                         strobe_width_high_rs);
1473        if (rval < 0)
1474                goto out;
1475
1476        rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1477                         strobe_setup->strobe_delay);
1478        if (rval < 0)
1479                goto out;
1480
1481        rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1482                         strobe_setup->stobe_start_point);
1483        if (rval < 0)
1484                goto out;
1485
1486        rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1487
1488out:
1489        sensor->hwcfg.strobe_setup->trigger = 0;
1490
1491        return rval;
1492}
1493
1494/* -----------------------------------------------------------------------------
1495 * Power management
1496 */
1497
1498static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1499{
1500        int rval;
1501
1502        rval = ccs_write_data_regs(sensor,
1503                                   sensor->sdata.sensor_manufacturer_regs,
1504                                   sensor->sdata.num_sensor_manufacturer_regs);
1505        if (rval)
1506                return rval;
1507
1508        return ccs_write_data_regs(sensor,
1509                                   sensor->mdata.module_manufacturer_regs,
1510                                   sensor->mdata.num_module_manufacturer_regs);
1511}
1512
1513static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1514{
1515        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1516        u8 val;
1517
1518        if (!sensor->ccs_limits)
1519                return 0;
1520
1521        if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1522            CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1523                val = CCS_PHY_CTRL_AUTO;
1524        } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1525                   CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1526                val = CCS_PHY_CTRL_UI;
1527        } else {
1528                dev_err(&client->dev, "manual PHY control not supported\n");
1529                return -EINVAL;
1530        }
1531
1532        return ccs_write(sensor, PHY_CTRL, val);
1533}
1534
1535static int ccs_power_on(struct device *dev)
1536{
1537        struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1538        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1539        /*
1540         * The sub-device related to the I2C device is always the
1541         * source one, i.e. ssds[0].
1542         */
1543        struct ccs_sensor *sensor =
1544                container_of(ssd, struct ccs_sensor, ssds[0]);
1545        const struct ccs_device *ccsdev = device_get_match_data(dev);
1546        int rval;
1547
1548        rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1549                                     sensor->regulators);
1550        if (rval) {
1551                dev_err(dev, "failed to enable vana regulator\n");
1552                return rval;
1553        }
1554
1555        if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1556                unsigned int sleep;
1557
1558                rval = clk_prepare_enable(sensor->ext_clk);
1559                if (rval < 0) {
1560                        dev_dbg(dev, "failed to enable xclk\n");
1561                        goto out_xclk_fail;
1562                }
1563
1564                gpiod_set_value(sensor->reset, 0);
1565                gpiod_set_value(sensor->xshutdown, 1);
1566
1567                if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1568                        sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1569                else
1570                        sleep = 5000;
1571
1572                usleep_range(sleep, sleep);
1573        }
1574
1575        /*
1576         * Failures to respond to the address change command have been noticed.
1577         * Those failures seem to be caused by the sensor requiring a longer
1578         * boot time than advertised. An additional 10ms delay seems to work
1579         * around the issue, but the SMIA++ I2C write retry hack makes the delay
1580         * unnecessary. The failures need to be investigated to find a proper
1581         * fix, and a delay will likely need to be added here if the I2C write
1582         * retry hack is reverted before the root cause of the boot time issue
1583         * is found.
1584         */
1585
1586        if (!sensor->reset && !sensor->xshutdown) {
1587                u8 retry = 100;
1588                u32 reset;
1589
1590                rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1591                if (rval < 0) {
1592                        dev_err(dev, "software reset failed\n");
1593                        goto out_cci_addr_fail;
1594                }
1595
1596                do {
1597                        rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1598                        reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1599                        if (reset)
1600                                break;
1601
1602                        usleep_range(1000, 2000);
1603                } while (--retry);
1604
1605                if (!reset)
1606                        return -EIO;
1607        }
1608
1609        if (sensor->hwcfg.i2c_addr_alt) {
1610                rval = ccs_change_cci_addr(sensor);
1611                if (rval) {
1612                        dev_err(dev, "cci address change error\n");
1613                        goto out_cci_addr_fail;
1614                }
1615        }
1616
1617        rval = ccs_write(sensor, COMPRESSION_MODE,
1618                         CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1619        if (rval) {
1620                dev_err(dev, "compression mode set failed\n");
1621                goto out_cci_addr_fail;
1622        }
1623
1624        rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1625                         sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1626        if (rval) {
1627                dev_err(dev, "extclk frequency set failed\n");
1628                goto out_cci_addr_fail;
1629        }
1630
1631        rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1632        if (rval) {
1633                dev_err(dev, "csi lane mode set failed\n");
1634                goto out_cci_addr_fail;
1635        }
1636
1637        rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1638                         CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1639        if (rval) {
1640                dev_err(dev, "fast standby set failed\n");
1641                goto out_cci_addr_fail;
1642        }
1643
1644        rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1645                         sensor->hwcfg.csi_signalling_mode);
1646        if (rval) {
1647                dev_err(dev, "csi signalling mode set failed\n");
1648                goto out_cci_addr_fail;
1649        }
1650
1651        rval = ccs_update_phy_ctrl(sensor);
1652        if (rval < 0)
1653                goto out_cci_addr_fail;
1654
1655        rval = ccs_write_msr_regs(sensor);
1656        if (rval)
1657                goto out_cci_addr_fail;
1658
1659        rval = ccs_call_quirk(sensor, post_poweron);
1660        if (rval) {
1661                dev_err(dev, "post_poweron quirks failed\n");
1662                goto out_cci_addr_fail;
1663        }
1664
1665        return 0;
1666
1667out_cci_addr_fail:
1668        gpiod_set_value(sensor->reset, 1);
1669        gpiod_set_value(sensor->xshutdown, 0);
1670        clk_disable_unprepare(sensor->ext_clk);
1671
1672out_xclk_fail:
1673        regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1674                               sensor->regulators);
1675
1676        return rval;
1677}
1678
1679static int ccs_power_off(struct device *dev)
1680{
1681        struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1682        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1683        struct ccs_sensor *sensor =
1684                container_of(ssd, struct ccs_sensor, ssds[0]);
1685
1686        /*
1687         * Currently power/clock to lens are enable/disabled separately
1688         * but they are essentially the same signals. So if the sensor is
1689         * powered off while the lens is powered on the sensor does not
1690         * really see a power off and next time the cci address change
1691         * will fail. So do a soft reset explicitly here.
1692         */
1693        if (sensor->hwcfg.i2c_addr_alt)
1694                ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1695
1696        gpiod_set_value(sensor->reset, 1);
1697        gpiod_set_value(sensor->xshutdown, 0);
1698        clk_disable_unprepare(sensor->ext_clk);
1699        usleep_range(5000, 5000);
1700        regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1701                               sensor->regulators);
1702        sensor->streaming = false;
1703
1704        return 0;
1705}
1706
1707/* -----------------------------------------------------------------------------
1708 * Video stream management
1709 */
1710
1711static int ccs_start_streaming(struct ccs_sensor *sensor)
1712{
1713        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1714        unsigned int binning_mode;
1715        int rval;
1716
1717        mutex_lock(&sensor->mutex);
1718
1719        rval = ccs_write(sensor, CSI_DATA_FORMAT,
1720                         (sensor->csi_format->width << 8) |
1721                         sensor->csi_format->compressed);
1722        if (rval)
1723                goto out;
1724
1725        /* Binning configuration */
1726        if (sensor->binning_horizontal == 1 &&
1727            sensor->binning_vertical == 1) {
1728                binning_mode = 0;
1729        } else {
1730                u8 binning_type =
1731                        (sensor->binning_horizontal << 4)
1732                        | sensor->binning_vertical;
1733
1734                rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1735                if (rval < 0)
1736                        goto out;
1737
1738                binning_mode = 1;
1739        }
1740        rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1741        if (rval < 0)
1742                goto out;
1743
1744        /* Set up PLL */
1745        rval = ccs_pll_configure(sensor);
1746        if (rval)
1747                goto out;
1748
1749        /* Analog crop start coordinates */
1750        rval = ccs_write(sensor, X_ADDR_START,
1751                         sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
1752        if (rval < 0)
1753                goto out;
1754
1755        rval = ccs_write(sensor, Y_ADDR_START,
1756                         sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
1757        if (rval < 0)
1758                goto out;
1759
1760        /* Analog crop end coordinates */
1761        rval = ccs_write(
1762                sensor, X_ADDR_END,
1763                sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
1764                + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
1765        if (rval < 0)
1766                goto out;
1767
1768        rval = ccs_write(
1769                sensor, Y_ADDR_END,
1770                sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
1771                + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
1772        if (rval < 0)
1773                goto out;
1774
1775        /*
1776         * Output from pixel array, including blanking, is set using
1777         * controls below. No need to set here.
1778         */
1779
1780        /* Digital crop */
1781        if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1782            == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1783                rval = ccs_write(
1784                        sensor, DIGITAL_CROP_X_OFFSET,
1785                        sensor->scaler->crop[CCS_PAD_SINK].left);
1786                if (rval < 0)
1787                        goto out;
1788
1789                rval = ccs_write(
1790                        sensor, DIGITAL_CROP_Y_OFFSET,
1791                        sensor->scaler->crop[CCS_PAD_SINK].top);
1792                if (rval < 0)
1793                        goto out;
1794
1795                rval = ccs_write(
1796                        sensor, DIGITAL_CROP_IMAGE_WIDTH,
1797                        sensor->scaler->crop[CCS_PAD_SINK].width);
1798                if (rval < 0)
1799                        goto out;
1800
1801                rval = ccs_write(
1802                        sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1803                        sensor->scaler->crop[CCS_PAD_SINK].height);
1804                if (rval < 0)
1805                        goto out;
1806        }
1807
1808        /* Scaling */
1809        if (CCS_LIM(sensor, SCALING_CAPABILITY)
1810            != CCS_SCALING_CAPABILITY_NONE) {
1811                rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1812                if (rval < 0)
1813                        goto out;
1814
1815                rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1816                if (rval < 0)
1817                        goto out;
1818        }
1819
1820        /* Output size from sensor */
1821        rval = ccs_write(sensor, X_OUTPUT_SIZE,
1822                         sensor->src->crop[CCS_PAD_SRC].width);
1823        if (rval < 0)
1824                goto out;
1825        rval = ccs_write(sensor, Y_OUTPUT_SIZE,
1826                         sensor->src->crop[CCS_PAD_SRC].height);
1827        if (rval < 0)
1828                goto out;
1829
1830        if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1831            (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1832             SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1833            sensor->hwcfg.strobe_setup != NULL &&
1834            sensor->hwcfg.strobe_setup->trigger != 0) {
1835                rval = ccs_setup_flash_strobe(sensor);
1836                if (rval)
1837                        goto out;
1838        }
1839
1840        rval = ccs_call_quirk(sensor, pre_streamon);
1841        if (rval) {
1842                dev_err(&client->dev, "pre_streamon quirks failed\n");
1843                goto out;
1844        }
1845
1846        rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1847
1848out:
1849        mutex_unlock(&sensor->mutex);
1850
1851        return rval;
1852}
1853
1854static int ccs_stop_streaming(struct ccs_sensor *sensor)
1855{
1856        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1857        int rval;
1858
1859        mutex_lock(&sensor->mutex);
1860        rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1861        if (rval)
1862                goto out;
1863
1864        rval = ccs_call_quirk(sensor, post_streamoff);
1865        if (rval)
1866                dev_err(&client->dev, "post_streamoff quirks failed\n");
1867
1868out:
1869        mutex_unlock(&sensor->mutex);
1870        return rval;
1871}
1872
1873/* -----------------------------------------------------------------------------
1874 * V4L2 subdev video operations
1875 */
1876
1877static int ccs_pm_get_init(struct ccs_sensor *sensor)
1878{
1879        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1880        int rval;
1881
1882        /*
1883         * It can't use pm_runtime_resume_and_get() here, as the driver
1884         * relies at the returned value to detect if the device was already
1885         * active or not.
1886         */
1887        rval = pm_runtime_get_sync(&client->dev);
1888        if (rval < 0)
1889                goto error;
1890
1891        /* Device was already active, so don't set controls */
1892        if (rval == 1)
1893                return 0;
1894
1895        /* Restore V4L2 controls to the previously suspended device */
1896        rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1897        if (rval)
1898                goto error;
1899
1900        rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1901        if (rval)
1902                goto error;
1903
1904        /* Keep PM runtime usage_count incremented on success */
1905        return 0;
1906error:
1907        pm_runtime_put(&client->dev);
1908        return rval;
1909}
1910
1911static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1912{
1913        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1914        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1915        int rval;
1916
1917        if (sensor->streaming == enable)
1918                return 0;
1919
1920        if (!enable) {
1921                ccs_stop_streaming(sensor);
1922                sensor->streaming = false;
1923                pm_runtime_mark_last_busy(&client->dev);
1924                pm_runtime_put_autosuspend(&client->dev);
1925
1926                return 0;
1927        }
1928
1929        rval = ccs_pm_get_init(sensor);
1930        if (rval)
1931                return rval;
1932
1933        sensor->streaming = true;
1934
1935        rval = ccs_start_streaming(sensor);
1936        if (rval < 0) {
1937                sensor->streaming = false;
1938                pm_runtime_mark_last_busy(&client->dev);
1939                pm_runtime_put_autosuspend(&client->dev);
1940        }
1941
1942        return rval;
1943}
1944
1945static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1946{
1947        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1948        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1949        int rval;
1950
1951        if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1952                switch (sensor->hwcfg.csi_signalling_mode) {
1953                case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1954                        if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1955                              CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1956                                return -EACCES;
1957                        break;
1958                case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1959                        if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1960                              CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1961                                return -EACCES;
1962                        break;
1963                default:
1964                        return -EACCES;
1965                }
1966        }
1967
1968        rval = ccs_pm_get_init(sensor);
1969        if (rval)
1970                return rval;
1971
1972        if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1973                rval = ccs_write(sensor, MANUAL_LP_CTRL,
1974                                 CCS_MANUAL_LP_CTRL_ENABLE);
1975                if (rval)
1976                        pm_runtime_put(&client->dev);
1977        }
1978
1979        return rval;
1980}
1981
1982static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1983{
1984        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1985        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1986
1987        return pm_runtime_put(&client->dev);
1988}
1989
1990static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1991                              struct v4l2_subdev_state *sd_state,
1992                              struct v4l2_subdev_mbus_code_enum *code)
1993{
1994        struct i2c_client *client = v4l2_get_subdevdata(subdev);
1995        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1996        unsigned int i;
1997        int idx = -1;
1998        int rval = -EINVAL;
1999
2000        mutex_lock(&sensor->mutex);
2001
2002        dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
2003                subdev->name, code->pad, code->index);
2004
2005        if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
2006                if (code->index)
2007                        goto out;
2008
2009                code->code = sensor->internal_csi_format->code;
2010                rval = 0;
2011                goto out;
2012        }
2013
2014        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2015                if (sensor->mbus_frame_fmts & (1 << i))
2016                        idx++;
2017
2018                if (idx == code->index) {
2019                        code->code = ccs_csi_data_formats[i].code;
2020                        dev_err(&client->dev, "found index %d, i %d, code %x\n",
2021                                code->index, i, code->code);
2022                        rval = 0;
2023                        break;
2024                }
2025        }
2026
2027out:
2028        mutex_unlock(&sensor->mutex);
2029
2030        return rval;
2031}
2032
2033static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2034{
2035        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2036
2037        if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2038                return sensor->csi_format->code;
2039        else
2040                return sensor->internal_csi_format->code;
2041}
2042
2043static int __ccs_get_format(struct v4l2_subdev *subdev,
2044                            struct v4l2_subdev_state *sd_state,
2045                            struct v4l2_subdev_format *fmt)
2046{
2047        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2048
2049        if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
2050                fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state,
2051                                                          fmt->pad);
2052        } else {
2053                struct v4l2_rect *r;
2054
2055                if (fmt->pad == ssd->source_pad)
2056                        r = &ssd->crop[ssd->source_pad];
2057                else
2058                        r = &ssd->sink_fmt;
2059
2060                fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2061                fmt->format.width = r->width;
2062                fmt->format.height = r->height;
2063                fmt->format.field = V4L2_FIELD_NONE;
2064        }
2065
2066        return 0;
2067}
2068
2069static int ccs_get_format(struct v4l2_subdev *subdev,
2070                          struct v4l2_subdev_state *sd_state,
2071                          struct v4l2_subdev_format *fmt)
2072{
2073        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2074        int rval;
2075
2076        mutex_lock(&sensor->mutex);
2077        rval = __ccs_get_format(subdev, sd_state, fmt);
2078        mutex_unlock(&sensor->mutex);
2079
2080        return rval;
2081}
2082
2083static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2084                                 struct v4l2_subdev_state *sd_state,
2085                                 struct v4l2_rect **crops,
2086                                 struct v4l2_rect **comps, int which)
2087{
2088        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2089        unsigned int i;
2090
2091        if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2092                if (crops)
2093                        for (i = 0; i < subdev->entity.num_pads; i++)
2094                                crops[i] = &ssd->crop[i];
2095                if (comps)
2096                        *comps = &ssd->compose;
2097        } else {
2098                if (crops) {
2099                        for (i = 0; i < subdev->entity.num_pads; i++)
2100                                crops[i] = v4l2_subdev_get_try_crop(subdev,
2101                                                                    sd_state,
2102                                                                    i);
2103                }
2104                if (comps)
2105                        *comps = v4l2_subdev_get_try_compose(subdev, sd_state,
2106                                                             CCS_PAD_SINK);
2107        }
2108}
2109
2110/* Changes require propagation only on sink pad. */
2111static void ccs_propagate(struct v4l2_subdev *subdev,
2112                          struct v4l2_subdev_state *sd_state, int which,
2113                          int target)
2114{
2115        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2116        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2117        struct v4l2_rect *comp, *crops[CCS_PADS];
2118
2119        ccs_get_crop_compose(subdev, sd_state, crops, &comp, which);
2120
2121        switch (target) {
2122        case V4L2_SEL_TGT_CROP:
2123                comp->width = crops[CCS_PAD_SINK]->width;
2124                comp->height = crops[CCS_PAD_SINK]->height;
2125                if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2126                        if (ssd == sensor->scaler) {
2127                                sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2128                                sensor->scaling_mode =
2129                                        CCS_SCALING_MODE_NO_SCALING;
2130                        } else if (ssd == sensor->binner) {
2131                                sensor->binning_horizontal = 1;
2132                                sensor->binning_vertical = 1;
2133                        }
2134                }
2135                fallthrough;
2136        case V4L2_SEL_TGT_COMPOSE:
2137                *crops[CCS_PAD_SRC] = *comp;
2138                break;
2139        default:
2140                WARN_ON_ONCE(1);
2141        }
2142}
2143
2144static const struct ccs_csi_data_format
2145*ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2146{
2147        unsigned int i;
2148
2149        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2150                if (sensor->mbus_frame_fmts & (1 << i) &&
2151                    ccs_csi_data_formats[i].code == code)
2152                        return &ccs_csi_data_formats[i];
2153        }
2154
2155        return sensor->csi_format;
2156}
2157
2158static int ccs_set_format_source(struct v4l2_subdev *subdev,
2159                                 struct v4l2_subdev_state *sd_state,
2160                                 struct v4l2_subdev_format *fmt)
2161{
2162        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2163        const struct ccs_csi_data_format *csi_format,
2164                *old_csi_format = sensor->csi_format;
2165        unsigned long *valid_link_freqs;
2166        u32 code = fmt->format.code;
2167        unsigned int i;
2168        int rval;
2169
2170        rval = __ccs_get_format(subdev, sd_state, fmt);
2171        if (rval)
2172                return rval;
2173
2174        /*
2175         * Media bus code is changeable on src subdev's source pad. On
2176         * other source pads we just get format here.
2177         */
2178        if (subdev != &sensor->src->sd)
2179                return 0;
2180
2181        csi_format = ccs_validate_csi_data_format(sensor, code);
2182
2183        fmt->format.code = csi_format->code;
2184
2185        if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2186                return 0;
2187
2188        sensor->csi_format = csi_format;
2189
2190        if (csi_format->width != old_csi_format->width)
2191                for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2192                        __v4l2_ctrl_modify_range(
2193                                sensor->test_data[i], 0,
2194                                (1 << csi_format->width) - 1, 1, 0);
2195
2196        if (csi_format->compressed == old_csi_format->compressed)
2197                return 0;
2198
2199        valid_link_freqs =
2200                &sensor->valid_link_freqs[sensor->csi_format->compressed
2201                                          - sensor->compressed_min_bpp];
2202
2203        __v4l2_ctrl_modify_range(
2204                sensor->link_freq, 0,
2205                __fls(*valid_link_freqs), ~*valid_link_freqs,
2206                __ffs(*valid_link_freqs));
2207
2208        return ccs_pll_update(sensor);
2209}
2210
2211static int ccs_set_format(struct v4l2_subdev *subdev,
2212                          struct v4l2_subdev_state *sd_state,
2213                          struct v4l2_subdev_format *fmt)
2214{
2215        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2216        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2217        struct v4l2_rect *crops[CCS_PADS];
2218
2219        mutex_lock(&sensor->mutex);
2220
2221        if (fmt->pad == ssd->source_pad) {
2222                int rval;
2223
2224                rval = ccs_set_format_source(subdev, sd_state, fmt);
2225
2226                mutex_unlock(&sensor->mutex);
2227
2228                return rval;
2229        }
2230
2231        /* Sink pad. Width and height are changeable here. */
2232        fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2233        fmt->format.width &= ~1;
2234        fmt->format.height &= ~1;
2235        fmt->format.field = V4L2_FIELD_NONE;
2236
2237        fmt->format.width =
2238                clamp(fmt->format.width,
2239                      CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2240                      CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2241        fmt->format.height =
2242                clamp(fmt->format.height,
2243                      CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2244                      CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2245
2246        ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which);
2247
2248        crops[ssd->sink_pad]->left = 0;
2249        crops[ssd->sink_pad]->top = 0;
2250        crops[ssd->sink_pad]->width = fmt->format.width;
2251        crops[ssd->sink_pad]->height = fmt->format.height;
2252        if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2253                ssd->sink_fmt = *crops[ssd->sink_pad];
2254        ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2255
2256        mutex_unlock(&sensor->mutex);
2257
2258        return 0;
2259}
2260
2261/*
2262 * Calculate goodness of scaled image size compared to expected image
2263 * size and flags provided.
2264 */
2265#define SCALING_GOODNESS                100000
2266#define SCALING_GOODNESS_EXTREME        100000000
2267static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2268                            int h, int ask_h, u32 flags)
2269{
2270        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2271        struct i2c_client *client = v4l2_get_subdevdata(subdev);
2272        int val = 0;
2273
2274        w &= ~1;
2275        ask_w &= ~1;
2276        h &= ~1;
2277        ask_h &= ~1;
2278
2279        if (flags & V4L2_SEL_FLAG_GE) {
2280                if (w < ask_w)
2281                        val -= SCALING_GOODNESS;
2282                if (h < ask_h)
2283                        val -= SCALING_GOODNESS;
2284        }
2285
2286        if (flags & V4L2_SEL_FLAG_LE) {
2287                if (w > ask_w)
2288                        val -= SCALING_GOODNESS;
2289                if (h > ask_h)
2290                        val -= SCALING_GOODNESS;
2291        }
2292
2293        val -= abs(w - ask_w);
2294        val -= abs(h - ask_h);
2295
2296        if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2297                val -= SCALING_GOODNESS_EXTREME;
2298
2299        dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2300                w, ask_w, h, ask_h, val);
2301
2302        return val;
2303}
2304
2305static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2306                                   struct v4l2_subdev_state *sd_state,
2307                                   struct v4l2_subdev_selection *sel,
2308                                   struct v4l2_rect **crops,
2309                                   struct v4l2_rect *comp)
2310{
2311        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2312        unsigned int i;
2313        unsigned int binh = 1, binv = 1;
2314        int best = scaling_goodness(
2315                subdev,
2316                crops[CCS_PAD_SINK]->width, sel->r.width,
2317                crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2318
2319        for (i = 0; i < sensor->nbinning_subtypes; i++) {
2320                int this = scaling_goodness(
2321                        subdev,
2322                        crops[CCS_PAD_SINK]->width
2323                        / sensor->binning_subtypes[i].horizontal,
2324                        sel->r.width,
2325                        crops[CCS_PAD_SINK]->height
2326                        / sensor->binning_subtypes[i].vertical,
2327                        sel->r.height, sel->flags);
2328
2329                if (this > best) {
2330                        binh = sensor->binning_subtypes[i].horizontal;
2331                        binv = sensor->binning_subtypes[i].vertical;
2332                        best = this;
2333                }
2334        }
2335        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2336                sensor->binning_vertical = binv;
2337                sensor->binning_horizontal = binh;
2338        }
2339
2340        sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2341        sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2342}
2343
2344/*
2345 * Calculate best scaling ratio and mode for given output resolution.
2346 *
2347 * Try all of these: horizontal ratio, vertical ratio and smallest
2348 * size possible (horizontally).
2349 *
2350 * Also try whether horizontal scaler or full scaler gives a better
2351 * result.
2352 */
2353static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2354                                   struct v4l2_subdev_state *sd_state,
2355                                   struct v4l2_subdev_selection *sel,
2356                                   struct v4l2_rect **crops,
2357                                   struct v4l2_rect *comp)
2358{
2359        struct i2c_client *client = v4l2_get_subdevdata(subdev);
2360        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2361        u32 min, max, a, b, max_m;
2362        u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2363        int mode = CCS_SCALING_MODE_HORIZONTAL;
2364        u32 try[4];
2365        u32 ntry = 0;
2366        unsigned int i;
2367        int best = INT_MIN;
2368
2369        sel->r.width = min_t(unsigned int, sel->r.width,
2370                             crops[CCS_PAD_SINK]->width);
2371        sel->r.height = min_t(unsigned int, sel->r.height,
2372                              crops[CCS_PAD_SINK]->height);
2373
2374        a = crops[CCS_PAD_SINK]->width
2375                * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2376        b = crops[CCS_PAD_SINK]->height
2377                * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2378        max_m = crops[CCS_PAD_SINK]->width
2379                * CCS_LIM(sensor, SCALER_N_MIN)
2380                / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2381
2382        a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2383                  CCS_LIM(sensor, SCALER_M_MAX));
2384        b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2385                  CCS_LIM(sensor, SCALER_M_MAX));
2386        max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2387                      CCS_LIM(sensor, SCALER_M_MAX));
2388
2389        dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
2390
2391        min = min(max_m, min(a, b));
2392        max = min(max_m, max(a, b));
2393
2394        try[ntry] = min;
2395        ntry++;
2396        if (min != max) {
2397                try[ntry] = max;
2398                ntry++;
2399        }
2400        if (max != max_m) {
2401                try[ntry] = min + 1;
2402                ntry++;
2403                if (min != max) {
2404                        try[ntry] = max + 1;
2405                        ntry++;
2406                }
2407        }
2408
2409        for (i = 0; i < ntry; i++) {
2410                int this = scaling_goodness(
2411                        subdev,
2412                        crops[CCS_PAD_SINK]->width
2413                        / try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2414                        sel->r.width,
2415                        crops[CCS_PAD_SINK]->height,
2416                        sel->r.height,
2417                        sel->flags);
2418
2419                dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2420
2421                if (this > best) {
2422                        scale_m = try[i];
2423                        mode = CCS_SCALING_MODE_HORIZONTAL;
2424                        best = this;
2425                }
2426
2427                if (CCS_LIM(sensor, SCALING_CAPABILITY)
2428                    == CCS_SCALING_CAPABILITY_HORIZONTAL)
2429                        continue;
2430
2431                this = scaling_goodness(
2432                        subdev, crops[CCS_PAD_SINK]->width
2433                        / try[i]
2434                        * CCS_LIM(sensor, SCALER_N_MIN),
2435                        sel->r.width,
2436                        crops[CCS_PAD_SINK]->height
2437                        / try[i]
2438                        * CCS_LIM(sensor, SCALER_N_MIN),
2439                        sel->r.height,
2440                        sel->flags);
2441
2442                if (this > best) {
2443                        scale_m = try[i];
2444                        mode = SMIAPP_SCALING_MODE_BOTH;
2445                        best = this;
2446                }
2447        }
2448
2449        sel->r.width =
2450                (crops[CCS_PAD_SINK]->width
2451                 / scale_m
2452                 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2453        if (mode == SMIAPP_SCALING_MODE_BOTH)
2454                sel->r.height =
2455                        (crops[CCS_PAD_SINK]->height
2456                         / scale_m
2457                         * CCS_LIM(sensor, SCALER_N_MIN))
2458                        & ~1;
2459        else
2460                sel->r.height = crops[CCS_PAD_SINK]->height;
2461
2462        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2463                sensor->scale_m = scale_m;
2464                sensor->scaling_mode = mode;
2465        }
2466}
2467/* We're only called on source pads. This function sets scaling. */
2468static int ccs_set_compose(struct v4l2_subdev *subdev,
2469                           struct v4l2_subdev_state *sd_state,
2470                           struct v4l2_subdev_selection *sel)
2471{
2472        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2473        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2474        struct v4l2_rect *comp, *crops[CCS_PADS];
2475
2476        ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2477
2478        sel->r.top = 0;
2479        sel->r.left = 0;
2480
2481        if (ssd == sensor->binner)
2482                ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2483        else
2484                ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2485
2486        *comp = sel->r;
2487        ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2488
2489        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2490                return ccs_pll_blanking_update(sensor);
2491
2492        return 0;
2493}
2494
2495static int __ccs_sel_supported(struct v4l2_subdev *subdev,
2496                               struct v4l2_subdev_selection *sel)
2497{
2498        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2499        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2500
2501        /* We only implement crop in three places. */
2502        switch (sel->target) {
2503        case V4L2_SEL_TGT_CROP:
2504        case V4L2_SEL_TGT_CROP_BOUNDS:
2505                if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2506                        return 0;
2507                if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2508                        return 0;
2509                if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2510                    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2511                    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2512                        return 0;
2513                return -EINVAL;
2514        case V4L2_SEL_TGT_NATIVE_SIZE:
2515                if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2516                        return 0;
2517                return -EINVAL;
2518        case V4L2_SEL_TGT_COMPOSE:
2519        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2520                if (sel->pad == ssd->source_pad)
2521                        return -EINVAL;
2522                if (ssd == sensor->binner)
2523                        return 0;
2524                if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2525                    != CCS_SCALING_CAPABILITY_NONE)
2526                        return 0;
2527                fallthrough;
2528        default:
2529                return -EINVAL;
2530        }
2531}
2532
2533static int ccs_set_crop(struct v4l2_subdev *subdev,
2534                        struct v4l2_subdev_state *sd_state,
2535                        struct v4l2_subdev_selection *sel)
2536{
2537        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2538        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2539        struct v4l2_rect *src_size, *crops[CCS_PADS];
2540        struct v4l2_rect _r;
2541
2542        ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which);
2543
2544        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2545                if (sel->pad == ssd->sink_pad)
2546                        src_size = &ssd->sink_fmt;
2547                else
2548                        src_size = &ssd->compose;
2549        } else {
2550                if (sel->pad == ssd->sink_pad) {
2551                        _r.left = 0;
2552                        _r.top = 0;
2553                        _r.width = v4l2_subdev_get_try_format(subdev,
2554                                                              sd_state,
2555                                                              sel->pad)
2556                                ->width;
2557                        _r.height = v4l2_subdev_get_try_format(subdev,
2558                                                               sd_state,
2559                                                               sel->pad)
2560                                ->height;
2561                        src_size = &_r;
2562                } else {
2563                        src_size = v4l2_subdev_get_try_compose(
2564                                subdev, sd_state, ssd->sink_pad);
2565                }
2566        }
2567
2568        if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2569                sel->r.left = 0;
2570                sel->r.top = 0;
2571        }
2572
2573        sel->r.width = min(sel->r.width, src_size->width);
2574        sel->r.height = min(sel->r.height, src_size->height);
2575
2576        sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2577        sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2578
2579        *crops[sel->pad] = sel->r;
2580
2581        if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2582                ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2583
2584        return 0;
2585}
2586
2587static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2588{
2589        r->top = 0;
2590        r->left = 0;
2591        r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2592        r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2593}
2594
2595static int __ccs_get_selection(struct v4l2_subdev *subdev,
2596                               struct v4l2_subdev_state *sd_state,
2597                               struct v4l2_subdev_selection *sel)
2598{
2599        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2600        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2601        struct v4l2_rect *comp, *crops[CCS_PADS];
2602        struct v4l2_rect sink_fmt;
2603        int ret;
2604
2605        ret = __ccs_sel_supported(subdev, sel);
2606        if (ret)
2607                return ret;
2608
2609        ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2610
2611        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2612                sink_fmt = ssd->sink_fmt;
2613        } else {
2614                struct v4l2_mbus_framefmt *fmt =
2615                        v4l2_subdev_get_try_format(subdev, sd_state,
2616                                                   ssd->sink_pad);
2617
2618                sink_fmt.left = 0;
2619                sink_fmt.top = 0;
2620                sink_fmt.width = fmt->width;
2621                sink_fmt.height = fmt->height;
2622        }
2623
2624        switch (sel->target) {
2625        case V4L2_SEL_TGT_CROP_BOUNDS:
2626        case V4L2_SEL_TGT_NATIVE_SIZE:
2627                if (ssd == sensor->pixel_array)
2628                        ccs_get_native_size(ssd, &sel->r);
2629                else if (sel->pad == ssd->sink_pad)
2630                        sel->r = sink_fmt;
2631                else
2632                        sel->r = *comp;
2633                break;
2634        case V4L2_SEL_TGT_CROP:
2635        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2636                sel->r = *crops[sel->pad];
2637                break;
2638        case V4L2_SEL_TGT_COMPOSE:
2639                sel->r = *comp;
2640                break;
2641        }
2642
2643        return 0;
2644}
2645
2646static int ccs_get_selection(struct v4l2_subdev *subdev,
2647                             struct v4l2_subdev_state *sd_state,
2648                             struct v4l2_subdev_selection *sel)
2649{
2650        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2651        int rval;
2652
2653        mutex_lock(&sensor->mutex);
2654        rval = __ccs_get_selection(subdev, sd_state, sel);
2655        mutex_unlock(&sensor->mutex);
2656
2657        return rval;
2658}
2659
2660static int ccs_set_selection(struct v4l2_subdev *subdev,
2661                             struct v4l2_subdev_state *sd_state,
2662                             struct v4l2_subdev_selection *sel)
2663{
2664        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2665        int ret;
2666
2667        ret = __ccs_sel_supported(subdev, sel);
2668        if (ret)
2669                return ret;
2670
2671        mutex_lock(&sensor->mutex);
2672
2673        sel->r.left = max(0, sel->r.left & ~1);
2674        sel->r.top = max(0, sel->r.top & ~1);
2675        sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2676        sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
2677
2678        sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2679                             sel->r.width);
2680        sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2681                              sel->r.height);
2682
2683        switch (sel->target) {
2684        case V4L2_SEL_TGT_CROP:
2685                ret = ccs_set_crop(subdev, sd_state, sel);
2686                break;
2687        case V4L2_SEL_TGT_COMPOSE:
2688                ret = ccs_set_compose(subdev, sd_state, sel);
2689                break;
2690        default:
2691                ret = -EINVAL;
2692        }
2693
2694        mutex_unlock(&sensor->mutex);
2695        return ret;
2696}
2697
2698static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2699{
2700        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2701
2702        *frames = sensor->frame_skip;
2703        return 0;
2704}
2705
2706static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2707{
2708        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2709
2710        *lines = sensor->image_start;
2711
2712        return 0;
2713}
2714
2715/* -----------------------------------------------------------------------------
2716 * sysfs attributes
2717 */
2718
2719static ssize_t
2720nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2721{
2722        struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2723        struct i2c_client *client = v4l2_get_subdevdata(subdev);
2724        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2725        int rval;
2726
2727        if (!sensor->dev_init_done)
2728                return -EBUSY;
2729
2730        rval = ccs_pm_get_init(sensor);
2731        if (rval < 0)
2732                return -ENODEV;
2733
2734        rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2735        if (rval < 0) {
2736                pm_runtime_put(&client->dev);
2737                dev_err(&client->dev, "nvm read failed\n");
2738                return -ENODEV;
2739        }
2740
2741        pm_runtime_mark_last_busy(&client->dev);
2742        pm_runtime_put_autosuspend(&client->dev);
2743
2744        /*
2745         * NVM is still way below a PAGE_SIZE, so we can safely
2746         * assume this for now.
2747         */
2748        return rval;
2749}
2750static DEVICE_ATTR_RO(nvm);
2751
2752static ssize_t
2753ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2754{
2755        struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2756        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2757        struct ccs_module_info *minfo = &sensor->minfo;
2758
2759        if (minfo->mipi_manufacturer_id)
2760                return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
2761                                    minfo->mipi_manufacturer_id, minfo->model_id,
2762                                    minfo->revision_number) + 1;
2763        else
2764                return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
2765                                    minfo->smia_manufacturer_id, minfo->model_id,
2766                                    minfo->revision_number) + 1;
2767}
2768static DEVICE_ATTR_RO(ident);
2769
2770/* -----------------------------------------------------------------------------
2771 * V4L2 subdev core operations
2772 */
2773
2774static int ccs_identify_module(struct ccs_sensor *sensor)
2775{
2776        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2777        struct ccs_module_info *minfo = &sensor->minfo;
2778        unsigned int i;
2779        u32 rev;
2780        int rval = 0;
2781
2782        /* Module info */
2783        rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2784                        &minfo->mipi_manufacturer_id);
2785        if (!rval && !minfo->mipi_manufacturer_id)
2786                rval = ccs_read_addr_8only(sensor,
2787                                           SMIAPP_REG_U8_MANUFACTURER_ID,
2788                                           &minfo->smia_manufacturer_id);
2789        if (!rval)
2790                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
2791                                           &minfo->model_id);
2792        if (!rval)
2793                rval = ccs_read_addr_8only(sensor,
2794                                           CCS_R_MODULE_REVISION_NUMBER_MAJOR,
2795                                           &rev);
2796        if (!rval) {
2797                rval = ccs_read_addr_8only(sensor,
2798                                           CCS_R_MODULE_REVISION_NUMBER_MINOR,
2799                                           &minfo->revision_number);
2800                minfo->revision_number |= rev << 8;
2801        }
2802        if (!rval)
2803                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
2804                                           &minfo->module_year);
2805        if (!rval)
2806                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
2807                                           &minfo->module_month);
2808        if (!rval)
2809                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
2810                                           &minfo->module_day);
2811
2812        /* Sensor info */
2813        if (!rval)
2814                rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2815                                &minfo->sensor_mipi_manufacturer_id);
2816        if (!rval && !minfo->sensor_mipi_manufacturer_id)
2817                rval = ccs_read_addr_8only(sensor,
2818                                           CCS_R_SENSOR_MANUFACTURER_ID,
2819                                           &minfo->sensor_smia_manufacturer_id);
2820        if (!rval)
2821                rval = ccs_read_addr_8only(sensor,
2822                                           CCS_R_SENSOR_MODEL_ID,
2823                                           &minfo->sensor_model_id);
2824        if (!rval)
2825                rval = ccs_read_addr_8only(sensor,
2826                                           CCS_R_SENSOR_REVISION_NUMBER,
2827                                           &minfo->sensor_revision_number);
2828        if (!rval)
2829                rval = ccs_read_addr_8only(sensor,
2830                                           CCS_R_SENSOR_FIRMWARE_VERSION,
2831                                           &minfo->sensor_firmware_version);
2832
2833        /* SMIA */
2834        if (!rval)
2835                rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2836        if (!rval && !minfo->ccs_version)
2837                rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2838                                           &minfo->smia_version);
2839        if (!rval && !minfo->ccs_version)
2840                rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2841                                           &minfo->smiapp_version);
2842
2843        if (rval) {
2844                dev_err(&client->dev, "sensor detection failed\n");
2845                return -ENODEV;
2846        }
2847
2848        if (minfo->mipi_manufacturer_id)
2849                dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2850                        minfo->mipi_manufacturer_id, minfo->model_id);
2851        else
2852                dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2853                        minfo->smia_manufacturer_id, minfo->model_id);
2854
2855        dev_dbg(&client->dev,
2856                "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2857                minfo->revision_number, minfo->module_year, minfo->module_month,
2858                minfo->module_day);
2859
2860        if (minfo->sensor_mipi_manufacturer_id)
2861                dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2862                        minfo->sensor_mipi_manufacturer_id,
2863                        minfo->sensor_model_id);
2864        else
2865                dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2866                        minfo->sensor_smia_manufacturer_id,
2867                        minfo->sensor_model_id);
2868
2869        dev_dbg(&client->dev,
2870                "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2871                minfo->sensor_revision_number, minfo->sensor_firmware_version);
2872
2873        if (minfo->ccs_version) {
2874                dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2875                        (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2876                        >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2877                        (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2878                minfo->name = CCS_NAME;
2879        } else {
2880                dev_dbg(&client->dev,
2881                        "smia version %2.2d smiapp version %2.2d\n",
2882                        minfo->smia_version, minfo->smiapp_version);
2883                minfo->name = SMIAPP_NAME;
2884        }
2885
2886        /*
2887         * Some modules have bad data in the lvalues below. Hope the
2888         * rvalues have better stuff. The lvalues are module
2889         * parameters whereas the rvalues are sensor parameters.
2890         */
2891        if (minfo->sensor_smia_manufacturer_id &&
2892            !minfo->smia_manufacturer_id && !minfo->model_id) {
2893                minfo->smia_manufacturer_id =
2894                        minfo->sensor_smia_manufacturer_id;
2895                minfo->model_id = minfo->sensor_model_id;
2896                minfo->revision_number = minfo->sensor_revision_number;
2897        }
2898
2899        for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2900                if (ccs_module_idents[i].mipi_manufacturer_id &&
2901                    ccs_module_idents[i].mipi_manufacturer_id
2902                    != minfo->mipi_manufacturer_id)
2903                        continue;
2904                if (ccs_module_idents[i].smia_manufacturer_id &&
2905                    ccs_module_idents[i].smia_manufacturer_id
2906                    != minfo->smia_manufacturer_id)
2907                        continue;
2908                if (ccs_module_idents[i].model_id != minfo->model_id)
2909                        continue;
2910                if (ccs_module_idents[i].flags
2911                    & CCS_MODULE_IDENT_FLAG_REV_LE) {
2912                        if (ccs_module_idents[i].revision_number_major
2913                            < (minfo->revision_number >> 8))
2914                                continue;
2915                } else {
2916                        if (ccs_module_idents[i].revision_number_major
2917                            != (minfo->revision_number >> 8))
2918                                continue;
2919                }
2920
2921                minfo->name = ccs_module_idents[i].name;
2922                minfo->quirk = ccs_module_idents[i].quirk;
2923                break;
2924        }
2925
2926        if (i >= ARRAY_SIZE(ccs_module_idents))
2927                dev_warn(&client->dev,
2928                         "no quirks for this module; let's hope it's fully compliant\n");
2929
2930        dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2931
2932        return 0;
2933}
2934
2935static const struct v4l2_subdev_ops ccs_ops;
2936static const struct v4l2_subdev_internal_ops ccs_internal_ops;
2937static const struct media_entity_operations ccs_entity_ops;
2938
2939static int ccs_register_subdev(struct ccs_sensor *sensor,
2940                               struct ccs_subdev *ssd,
2941                               struct ccs_subdev *sink_ssd,
2942                               u16 source_pad, u16 sink_pad, u32 link_flags)
2943{
2944        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2945        int rval;
2946
2947        if (!sink_ssd)
2948                return 0;
2949
2950        rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2951        if (rval) {
2952                dev_err(&client->dev, "media_entity_pads_init failed\n");
2953                return rval;
2954        }
2955
2956        rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2957        if (rval) {
2958                dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2959                return rval;
2960        }
2961
2962        rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2963                                     &sink_ssd->sd.entity, sink_pad,
2964                                     link_flags);
2965        if (rval) {
2966                dev_err(&client->dev, "media_create_pad_link failed\n");
2967                v4l2_device_unregister_subdev(&ssd->sd);
2968                return rval;
2969        }
2970
2971        return 0;
2972}
2973
2974static void ccs_unregistered(struct v4l2_subdev *subdev)
2975{
2976        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2977        unsigned int i;
2978
2979        for (i = 1; i < sensor->ssds_used; i++)
2980                v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2981}
2982
2983static int ccs_registered(struct v4l2_subdev *subdev)
2984{
2985        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2986        int rval;
2987
2988        if (sensor->scaler) {
2989                rval = ccs_register_subdev(sensor, sensor->binner,
2990                                           sensor->scaler,
2991                                           CCS_PAD_SRC, CCS_PAD_SINK,
2992                                           MEDIA_LNK_FL_ENABLED |
2993                                           MEDIA_LNK_FL_IMMUTABLE);
2994                if (rval < 0)
2995                        return rval;
2996        }
2997
2998        rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
2999                                   CCS_PA_PAD_SRC, CCS_PAD_SINK,
3000                                   MEDIA_LNK_FL_ENABLED |
3001                                   MEDIA_LNK_FL_IMMUTABLE);
3002        if (rval)
3003                goto out_err;
3004
3005        return 0;
3006
3007out_err:
3008        ccs_unregistered(subdev);
3009
3010        return rval;
3011}
3012
3013static void ccs_cleanup(struct ccs_sensor *sensor)
3014{
3015        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3016
3017        device_remove_file(&client->dev, &dev_attr_nvm);
3018        device_remove_file(&client->dev, &dev_attr_ident);
3019
3020        ccs_free_controls(sensor);
3021}
3022
3023static void ccs_create_subdev(struct ccs_sensor *sensor,
3024                              struct ccs_subdev *ssd, const char *name,
3025                              unsigned short num_pads, u32 function)
3026{
3027        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3028
3029        if (!ssd)
3030                return;
3031
3032        if (ssd != sensor->src)
3033                v4l2_subdev_init(&ssd->sd, &ccs_ops);
3034
3035        ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3036        ssd->sd.entity.function = function;
3037        ssd->sensor = sensor;
3038
3039        ssd->npads = num_pads;
3040        ssd->source_pad = num_pads - 1;
3041
3042        v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
3043
3044        ccs_get_native_size(ssd, &ssd->sink_fmt);
3045
3046        ssd->compose.width = ssd->sink_fmt.width;
3047        ssd->compose.height = ssd->sink_fmt.height;
3048        ssd->crop[ssd->source_pad] = ssd->compose;
3049        ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3050        if (ssd != sensor->pixel_array) {
3051                ssd->crop[ssd->sink_pad] = ssd->compose;
3052                ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
3053        }
3054
3055        ssd->sd.entity.ops = &ccs_entity_ops;
3056
3057        if (ssd == sensor->src)
3058                return;
3059
3060        ssd->sd.internal_ops = &ccs_internal_ops;
3061        ssd->sd.owner = THIS_MODULE;
3062        ssd->sd.dev = &client->dev;
3063        v4l2_set_subdevdata(&ssd->sd, client);
3064}
3065
3066static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
3067{
3068        struct ccs_subdev *ssd = to_ccs_subdev(sd);
3069        struct ccs_sensor *sensor = ssd->sensor;
3070        unsigned int i;
3071
3072        mutex_lock(&sensor->mutex);
3073
3074        for (i = 0; i < ssd->npads; i++) {
3075                struct v4l2_mbus_framefmt *try_fmt =
3076                        v4l2_subdev_get_try_format(sd, fh->state, i);
3077                struct v4l2_rect *try_crop =
3078                        v4l2_subdev_get_try_crop(sd, fh->state, i);
3079                struct v4l2_rect *try_comp;
3080
3081                ccs_get_native_size(ssd, try_crop);
3082
3083                try_fmt->width = try_crop->width;
3084                try_fmt->height = try_crop->height;
3085                try_fmt->code = sensor->internal_csi_format->code;
3086                try_fmt->field = V4L2_FIELD_NONE;
3087
3088                if (ssd != sensor->pixel_array)
3089                        continue;
3090
3091                try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i);
3092                *try_comp = *try_crop;
3093        }
3094
3095        mutex_unlock(&sensor->mutex);
3096
3097        return 0;
3098}
3099
3100static const struct v4l2_subdev_video_ops ccs_video_ops = {
3101        .s_stream = ccs_set_stream,
3102        .pre_streamon = ccs_pre_streamon,
3103        .post_streamoff = ccs_post_streamoff,
3104};
3105
3106static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3107        .enum_mbus_code = ccs_enum_mbus_code,
3108        .get_fmt = ccs_get_format,
3109        .set_fmt = ccs_set_format,
3110        .get_selection = ccs_get_selection,
3111        .set_selection = ccs_set_selection,
3112};
3113
3114static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3115        .g_skip_frames = ccs_get_skip_frames,
3116        .g_skip_top_lines = ccs_get_skip_top_lines,
3117};
3118
3119static const struct v4l2_subdev_ops ccs_ops = {
3120        .video = &ccs_video_ops,
3121        .pad = &ccs_pad_ops,
3122        .sensor = &ccs_sensor_ops,
3123};
3124
3125static const struct media_entity_operations ccs_entity_ops = {
3126        .link_validate = v4l2_subdev_link_validate,
3127};
3128
3129static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3130        .registered = ccs_registered,
3131        .unregistered = ccs_unregistered,
3132        .open = ccs_open,
3133};
3134
3135static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
3136        .open = ccs_open,
3137};
3138
3139/* -----------------------------------------------------------------------------
3140 * I2C Driver
3141 */
3142
3143static int __maybe_unused ccs_suspend(struct device *dev)
3144{
3145        struct i2c_client *client = to_i2c_client(dev);
3146        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3147        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3148        bool streaming = sensor->streaming;
3149        int rval;
3150
3151        rval = pm_runtime_resume_and_get(dev);
3152        if (rval < 0)
3153                return rval;
3154
3155        if (sensor->streaming)
3156                ccs_stop_streaming(sensor);
3157
3158        /* save state for resume */
3159        sensor->streaming = streaming;
3160
3161        return 0;
3162}
3163
3164static int __maybe_unused ccs_resume(struct device *dev)
3165{
3166        struct i2c_client *client = to_i2c_client(dev);
3167        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3168        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3169        int rval = 0;
3170
3171        pm_runtime_put(dev);
3172
3173        if (sensor->streaming)
3174                rval = ccs_start_streaming(sensor);
3175
3176        return rval;
3177}
3178
3179static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3180{
3181        struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3182        struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3183        struct fwnode_handle *ep;
3184        struct fwnode_handle *fwnode = dev_fwnode(dev);
3185        u32 rotation;
3186        int i;
3187        int rval;
3188
3189        ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3190                                             FWNODE_GRAPH_ENDPOINT_NEXT);
3191        if (!ep)
3192                return -ENODEV;
3193
3194        /*
3195         * Note that we do need to rely on detecting the bus type between CSI-2
3196         * D-PHY and CCP2 as the old bindings did not require it.
3197         */
3198        rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3199        if (rval)
3200                goto out_err;
3201
3202        switch (bus_cfg.bus_type) {
3203        case V4L2_MBUS_CSI2_DPHY:
3204                hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3205                hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3206                break;
3207        case V4L2_MBUS_CSI2_CPHY:
3208                hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3209                hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3210                break;
3211        case V4L2_MBUS_CSI1:
3212        case V4L2_MBUS_CCP2:
3213                hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3214                SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3215                SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3216                hwcfg->lanes = 1;
3217                break;
3218        default:
3219                dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3220                rval = -EINVAL;
3221                goto out_err;
3222        }
3223
3224        dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
3225
3226        rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
3227        if (!rval) {
3228                switch (rotation) {
3229                case 180:
3230                        hwcfg->module_board_orient =
3231                                CCS_MODULE_BOARD_ORIENT_180;
3232                        fallthrough;
3233                case 0:
3234                        break;
3235                default:
3236                        dev_err(dev, "invalid rotation %u\n", rotation);
3237                        rval = -EINVAL;
3238                        goto out_err;
3239                }
3240        }
3241
3242        rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3243                                        &hwcfg->ext_clk);
3244        if (rval)
3245                dev_info(dev, "can't get clock-frequency\n");
3246
3247        dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
3248                hwcfg->csi_signalling_mode);
3249
3250        if (!bus_cfg.nr_of_link_frequencies) {
3251                dev_warn(dev, "no link frequencies defined\n");
3252                rval = -EINVAL;
3253                goto out_err;
3254        }
3255
3256        hwcfg->op_sys_clock = devm_kcalloc(
3257                dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3258                sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3259        if (!hwcfg->op_sys_clock) {
3260                rval = -ENOMEM;
3261                goto out_err;
3262        }
3263
3264        for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3265                hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3266                dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
3267        }
3268
3269        v4l2_fwnode_endpoint_free(&bus_cfg);
3270        fwnode_handle_put(ep);
3271
3272        return 0;
3273
3274out_err:
3275        v4l2_fwnode_endpoint_free(&bus_cfg);
3276        fwnode_handle_put(ep);
3277
3278        return rval;
3279}
3280
3281static int ccs_probe(struct i2c_client *client)
3282{
3283        struct ccs_sensor *sensor;
3284        const struct firmware *fw;
3285        char filename[40];
3286        unsigned int i;
3287        int rval;
3288
3289        sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3290        if (sensor == NULL)
3291                return -ENOMEM;
3292
3293        rval = ccs_get_hwconfig(sensor, &client->dev);
3294        if (rval)
3295                return rval;
3296
3297        sensor->src = &sensor->ssds[sensor->ssds_used];
3298
3299        v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3300        sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3301
3302        sensor->regulators = devm_kcalloc(&client->dev,
3303                                          ARRAY_SIZE(ccs_regulators),
3304                                          sizeof(*sensor->regulators),
3305                                          GFP_KERNEL);
3306        if (!sensor->regulators)
3307                return -ENOMEM;
3308
3309        for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3310                sensor->regulators[i].supply = ccs_regulators[i];
3311
3312        rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3313                                       sensor->regulators);
3314        if (rval) {
3315                dev_err(&client->dev, "could not get regulators\n");
3316                return rval;
3317        }
3318
3319        sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3320        if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3321                dev_info(&client->dev, "no clock defined, continuing...\n");
3322                sensor->ext_clk = NULL;
3323        } else if (IS_ERR(sensor->ext_clk)) {
3324                dev_err(&client->dev, "could not get clock (%ld)\n",
3325                        PTR_ERR(sensor->ext_clk));
3326                return -EPROBE_DEFER;
3327        }
3328
3329        if (sensor->ext_clk) {
3330                if (sensor->hwcfg.ext_clk) {
3331                        unsigned long rate;
3332
3333                        rval = clk_set_rate(sensor->ext_clk,
3334                                            sensor->hwcfg.ext_clk);
3335                        if (rval < 0) {
3336                                dev_err(&client->dev,
3337                                        "unable to set clock freq to %u\n",
3338                                        sensor->hwcfg.ext_clk);
3339                                return rval;
3340                        }
3341
3342                        rate = clk_get_rate(sensor->ext_clk);
3343                        if (rate != sensor->hwcfg.ext_clk) {
3344                                dev_err(&client->dev,
3345                                        "can't set clock freq, asked for %u but got %lu\n",
3346                                        sensor->hwcfg.ext_clk, rate);
3347                                return -EINVAL;
3348                        }
3349                } else {
3350                        sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3351                        dev_dbg(&client->dev, "obtained clock freq %u\n",
3352                                sensor->hwcfg.ext_clk);
3353                }
3354        } else if (sensor->hwcfg.ext_clk) {
3355                dev_dbg(&client->dev, "assuming clock freq %u\n",
3356                        sensor->hwcfg.ext_clk);
3357        } else {
3358                dev_err(&client->dev, "unable to obtain clock freq\n");
3359                return -EINVAL;
3360        }
3361
3362        if (!sensor->hwcfg.ext_clk) {
3363                dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3364                return -EINVAL;
3365        }
3366
3367        sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3368                                                GPIOD_OUT_HIGH);
3369        if (IS_ERR(sensor->reset))
3370                return PTR_ERR(sensor->reset);
3371        /* Support old users that may have used "xshutdown" property. */
3372        if (!sensor->reset)
3373                sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3374                                                            "xshutdown",
3375                                                            GPIOD_OUT_LOW);
3376        if (IS_ERR(sensor->xshutdown))
3377                return PTR_ERR(sensor->xshutdown);
3378
3379        rval = ccs_power_on(&client->dev);
3380        if (rval < 0)
3381                return rval;
3382
3383        mutex_init(&sensor->mutex);
3384
3385        rval = ccs_identify_module(sensor);
3386        if (rval) {
3387                rval = -ENODEV;
3388                goto out_power_off;
3389        }
3390
3391        rval = snprintf(filename, sizeof(filename),
3392                        "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw",
3393                        sensor->minfo.sensor_mipi_manufacturer_id,
3394                        sensor->minfo.sensor_model_id,
3395                        sensor->minfo.sensor_revision_number);
3396        if (rval >= sizeof(filename)) {
3397                rval = -ENOMEM;
3398                goto out_power_off;
3399        }
3400
3401        rval = request_firmware(&fw, filename, &client->dev);
3402        if (!rval) {
3403                ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3404                               true);
3405                release_firmware(fw);
3406        }
3407
3408        rval = snprintf(filename, sizeof(filename),
3409                        "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw",
3410                        sensor->minfo.mipi_manufacturer_id,
3411                        sensor->minfo.model_id,
3412                        sensor->minfo.revision_number);
3413        if (rval >= sizeof(filename)) {
3414                rval = -ENOMEM;
3415                goto out_release_sdata;
3416        }
3417
3418        rval = request_firmware(&fw, filename, &client->dev);
3419        if (!rval) {
3420                ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev,
3421                               true);
3422                release_firmware(fw);
3423        }
3424
3425        rval = ccs_read_all_limits(sensor);
3426        if (rval)
3427                goto out_release_mdata;
3428
3429        rval = ccs_read_frame_fmt(sensor);
3430        if (rval) {
3431                rval = -ENODEV;
3432                goto out_free_ccs_limits;
3433        }
3434
3435        rval = ccs_update_phy_ctrl(sensor);
3436        if (rval < 0)
3437                goto out_free_ccs_limits;
3438
3439        /*
3440         * Handle Sensor Module orientation on the board.
3441         *
3442         * The application of H-FLIP and V-FLIP on the sensor is modified by
3443         * the sensor orientation on the board.
3444         *
3445         * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
3446         * both H-FLIP and V-FLIP for normal operation which also implies
3447         * that a set/unset operation for user space HFLIP and VFLIP v4l2
3448         * controls will need to be internally inverted.
3449         *
3450         * Rotation also changes the bayer pattern.
3451         */
3452        if (sensor->hwcfg.module_board_orient ==
3453            CCS_MODULE_BOARD_ORIENT_180)
3454                sensor->hvflip_inv_mask =
3455                        CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR |
3456                        CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
3457
3458        rval = ccs_call_quirk(sensor, limits);
3459        if (rval) {
3460                dev_err(&client->dev, "limits quirks failed\n");
3461                goto out_free_ccs_limits;
3462        }
3463
3464        if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3465                sensor->nbinning_subtypes =
3466                        min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3467                              CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3468
3469                for (i = 0; i < sensor->nbinning_subtypes; i++) {
3470                        sensor->binning_subtypes[i].horizontal =
3471                                CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3472                                CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3473                        sensor->binning_subtypes[i].vertical =
3474                                CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3475                                CCS_BINNING_SUB_TYPE_ROW_MASK;
3476
3477                        dev_dbg(&client->dev, "binning %xx%x\n",
3478                                sensor->binning_subtypes[i].horizontal,
3479                                sensor->binning_subtypes[i].vertical);
3480                }
3481        }
3482        sensor->binning_horizontal = 1;
3483        sensor->binning_vertical = 1;
3484
3485        if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3486                dev_err(&client->dev, "sysfs ident entry creation failed\n");
3487                rval = -ENOENT;
3488                goto out_free_ccs_limits;
3489        }
3490
3491        if (sensor->minfo.smiapp_version &&
3492            CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3493            CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3494                if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3495                        dev_err(&client->dev, "sysfs nvm entry failed\n");
3496                        rval = -EBUSY;
3497                        goto out_cleanup;
3498                }
3499        }
3500
3501        if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3502            !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3503            !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3504            !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3505                /* No OP clock branch */
3506                sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3507        } else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3508                   != CCS_SCALING_CAPABILITY_NONE ||
3509                   CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3510                   == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3511                /* We have a scaler or digital crop. */
3512                sensor->scaler = &sensor->ssds[sensor->ssds_used];
3513                sensor->ssds_used++;
3514        }
3515        sensor->binner = &sensor->ssds[sensor->ssds_used];
3516        sensor->ssds_used++;
3517        sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3518        sensor->ssds_used++;
3519
3520        sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3521
3522        /* prepare PLL configuration input values */
3523        sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3524        sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3525        if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3526            CCS_CLOCK_CALCULATION_LANE_SPEED) {
3527                sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3528                if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3529                    CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3530                        sensor->pll.vt_lanes =
3531                                CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3532                        sensor->pll.op_lanes =
3533                                CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3534                        sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3535                } else {
3536                        sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3537                        sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3538                }
3539        }
3540        if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3541            CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3542                sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3543        if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3544            CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3545                sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3546        if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3547            CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3548                sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3549        if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3550            CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3551                sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3552                                     CCS_PLL_FLAG_FIFO_OVERRATING;
3553        if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3554            CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3555                if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3556                    CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3557                        u32 v;
3558
3559                        /* Use sensor default in PLL mode selection */
3560                        rval = ccs_read(sensor, PLL_MODE, &v);
3561                        if (rval)
3562                                goto out_cleanup;
3563
3564                        if (v == CCS_PLL_MODE_DUAL)
3565                                sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3566                } else {
3567                        sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3568                }
3569                if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3570                    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3571                        sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3572                if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3573                    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3574                        sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3575        }
3576        sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3577        sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3578        sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3579
3580        ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
3581                          MEDIA_ENT_F_PROC_VIDEO_SCALER);
3582        ccs_create_subdev(sensor, sensor->binner, " binner", 2,
3583                          MEDIA_ENT_F_PROC_VIDEO_SCALER);
3584        ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3585                          MEDIA_ENT_F_CAM_SENSOR);
3586
3587        rval = ccs_init_controls(sensor);
3588        if (rval < 0)
3589                goto out_cleanup;
3590
3591        rval = ccs_call_quirk(sensor, init);
3592        if (rval)
3593                goto out_cleanup;
3594
3595        rval = ccs_get_mbus_formats(sensor);
3596        if (rval) {
3597                rval = -ENODEV;
3598                goto out_cleanup;
3599        }
3600
3601        rval = ccs_init_late_controls(sensor);
3602        if (rval) {
3603                rval = -ENODEV;
3604                goto out_cleanup;
3605        }
3606
3607        mutex_lock(&sensor->mutex);
3608        rval = ccs_pll_blanking_update(sensor);
3609        mutex_unlock(&sensor->mutex);
3610        if (rval) {
3611                dev_err(&client->dev, "update mode failed\n");
3612                goto out_cleanup;
3613        }
3614
3615        sensor->streaming = false;
3616        sensor->dev_init_done = true;
3617
3618        rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3619                                 sensor->src->pads);
3620        if (rval < 0)
3621                goto out_media_entity_cleanup;
3622
3623        rval = ccs_write_msr_regs(sensor);
3624        if (rval)
3625                goto out_media_entity_cleanup;
3626
3627        pm_runtime_set_active(&client->dev);
3628        pm_runtime_get_noresume(&client->dev);
3629        pm_runtime_enable(&client->dev);
3630
3631        rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3632        if (rval < 0)
3633                goto out_disable_runtime_pm;
3634
3635        pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3636        pm_runtime_use_autosuspend(&client->dev);
3637        pm_runtime_put_autosuspend(&client->dev);
3638
3639        return 0;
3640
3641out_disable_runtime_pm:
3642        pm_runtime_put_noidle(&client->dev);
3643        pm_runtime_disable(&client->dev);
3644
3645out_media_entity_cleanup:
3646        media_entity_cleanup(&sensor->src->sd.entity);
3647
3648out_cleanup:
3649        ccs_cleanup(sensor);
3650
3651out_release_mdata:
3652        kvfree(sensor->mdata.backing);
3653
3654out_release_sdata:
3655        kvfree(sensor->sdata.backing);
3656
3657out_free_ccs_limits:
3658        kfree(sensor->ccs_limits);
3659
3660out_power_off:
3661        ccs_power_off(&client->dev);
3662        mutex_destroy(&sensor->mutex);
3663
3664        return rval;
3665}
3666
3667static int ccs_remove(struct i2c_client *client)
3668{
3669        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3670        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3671        unsigned int i;
3672
3673        v4l2_async_unregister_subdev(subdev);
3674
3675        pm_runtime_disable(&client->dev);
3676        if (!pm_runtime_status_suspended(&client->dev))
3677                ccs_power_off(&client->dev);
3678        pm_runtime_set_suspended(&client->dev);
3679
3680        for (i = 0; i < sensor->ssds_used; i++) {
3681                v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3682                media_entity_cleanup(&sensor->ssds[i].sd.entity);
3683        }
3684        ccs_cleanup(sensor);
3685        mutex_destroy(&sensor->mutex);
3686        kfree(sensor->ccs_limits);
3687        kvfree(sensor->sdata.backing);
3688        kvfree(sensor->mdata.backing);
3689
3690        return 0;
3691}
3692
3693static const struct ccs_device smia_device = {
3694        .flags = CCS_DEVICE_FLAG_IS_SMIA,
3695};
3696
3697static const struct ccs_device ccs_device = {};
3698
3699static const struct acpi_device_id ccs_acpi_table[] = {
3700        { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3701        { },
3702};
3703MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3704
3705static const struct of_device_id ccs_of_table[] = {
3706        { .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3707        { .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3708        { .compatible = "mipi-ccs", .data = &ccs_device },
3709        { .compatible = "nokia,smia", .data = &smia_device },
3710        { },
3711};
3712MODULE_DEVICE_TABLE(of, ccs_of_table);
3713
3714static const struct dev_pm_ops ccs_pm_ops = {
3715        SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
3716        SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3717};
3718
3719static struct i2c_driver ccs_i2c_driver = {
3720        .driver = {
3721                .acpi_match_table = ccs_acpi_table,
3722                .of_match_table = ccs_of_table,
3723                .name = CCS_NAME,
3724                .pm = &ccs_pm_ops,
3725        },
3726        .probe_new = ccs_probe,
3727        .remove = ccs_remove,
3728};
3729
3730static int ccs_module_init(void)
3731{
3732        unsigned int i, l;
3733
3734        for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3735                if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3736                        ccs_limit_offsets[l + 1].lim =
3737                                ALIGN(ccs_limit_offsets[l].lim +
3738                                      ccs_limits[i].size,
3739                                      ccs_reg_width(ccs_limits[i + 1].reg));
3740                        ccs_limit_offsets[l].info = i;
3741                        l++;
3742                } else {
3743                        ccs_limit_offsets[l].lim += ccs_limits[i].size;
3744                }
3745        }
3746
3747        if (WARN_ON(ccs_limits[i].size))
3748                return -EINVAL;
3749
3750        if (WARN_ON(l != CCS_L_LAST))
3751                return -EINVAL;
3752
3753        return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3754}
3755
3756static void ccs_module_cleanup(void)
3757{
3758        i2c_del_driver(&ccs_i2c_driver);
3759}
3760
3761module_init(ccs_module_init);
3762module_exit(ccs_module_cleanup);
3763
3764MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3765MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3766MODULE_LICENSE("GPL v2");
3767MODULE_ALIAS("smiapp");
3768