linux/drivers/net/ethernet/chelsio/cxgb4/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/skbuff.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/if_vlan.h>
  39#include <linux/ip.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/jiffies.h>
  42#include <linux/prefetch.h>
  43#include <linux/export.h>
  44#include <net/xfrm.h>
  45#include <net/ipv6.h>
  46#include <net/tcp.h>
  47#include <net/busy_poll.h>
  48#ifdef CONFIG_CHELSIO_T4_FCOE
  49#include <scsi/fc/fc_fcoe.h>
  50#endif /* CONFIG_CHELSIO_T4_FCOE */
  51#include "cxgb4.h"
  52#include "t4_regs.h"
  53#include "t4_values.h"
  54#include "t4_msg.h"
  55#include "t4fw_api.h"
  56#include "cxgb4_ptp.h"
  57#include "cxgb4_uld.h"
  58#include "cxgb4_tc_mqprio.h"
  59#include "sched.h"
  60
  61/*
  62 * Rx buffer size.  We use largish buffers if possible but settle for single
  63 * pages under memory shortage.
  64 */
  65#if PAGE_SHIFT >= 16
  66# define FL_PG_ORDER 0
  67#else
  68# define FL_PG_ORDER (16 - PAGE_SHIFT)
  69#endif
  70
  71/* RX_PULL_LEN should be <= RX_COPY_THRES */
  72#define RX_COPY_THRES    256
  73#define RX_PULL_LEN      128
  74
  75/*
  76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
  77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
  78 */
  79#define RX_PKT_SKB_LEN   512
  80
  81/*
  82 * Max number of Tx descriptors we clean up at a time.  Should be modest as
  83 * freeing skbs isn't cheap and it happens while holding locks.  We just need
  84 * to free packets faster than they arrive, we eventually catch up and keep
  85 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
  86 * also match the CIDX Flush Threshold.
  87 */
  88#define MAX_TX_RECLAIM 32
  89
  90/*
  91 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
  92 * allocating buffers isn't cheap either.
  93 */
  94#define MAX_RX_REFILL 16U
  95
  96/*
  97 * Period of the Rx queue check timer.  This timer is infrequent as it has
  98 * something to do only when the system experiences severe memory shortage.
  99 */
 100#define RX_QCHECK_PERIOD (HZ / 2)
 101
 102/*
 103 * Period of the Tx queue check timer.
 104 */
 105#define TX_QCHECK_PERIOD (HZ / 2)
 106
 107/*
 108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
 109 */
 110#define MAX_TIMER_TX_RECLAIM 100
 111
 112/*
 113 * Timer index used when backing off due to memory shortage.
 114 */
 115#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
 116
 117/*
 118 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 119 * for a full sized WR.
 120 */
 121#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
 122
 123/*
 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 125 * into a WR.
 126 */
 127#define MAX_IMM_TX_PKT_LEN 256
 128
 129/*
 130 * Max size of a WR sent through a control Tx queue.
 131 */
 132#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
 133
 134struct rx_sw_desc {                /* SW state per Rx descriptor */
 135        struct page *page;
 136        dma_addr_t dma_addr;
 137};
 138
 139/*
 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 141 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 142 * We could easily support more but there doesn't seem to be much need for
 143 * that ...
 144 */
 145#define FL_MTU_SMALL 1500
 146#define FL_MTU_LARGE 9000
 147
 148static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
 149                                          unsigned int mtu)
 150{
 151        struct sge *s = &adapter->sge;
 152
 153        return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
 154}
 155
 156#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
 157#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
 158
 159/*
 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 161 * these to specify the buffer size as an index into the SGE Free List Buffer
 162 * Size register array.  We also use bit 4, when the buffer has been unmapped
 163 * for DMA, but this is of course never sent to the hardware and is only used
 164 * to prevent double unmappings.  All of the above requires that the Free List
 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 166 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 167 * Free List Buffer alignment is 32 bytes, this works out for us ...
 168 */
 169enum {
 170        RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
 171        RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
 172        RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
 173
 174        /*
 175         * XXX We shouldn't depend on being able to use these indices.
 176         * XXX Especially when some other Master PF has initialized the
 177         * XXX adapter or we use the Firmware Configuration File.  We
 178         * XXX should really search through the Host Buffer Size register
 179         * XXX array for the appropriately sized buffer indices.
 180         */
 181        RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
 182        RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
 183
 184        RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
 185        RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
 186};
 187
 188static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
 189#define MIN_NAPI_WORK  1
 190
 191static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
 192{
 193        return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
 194}
 195
 196static inline bool is_buf_mapped(const struct rx_sw_desc *d)
 197{
 198        return !(d->dma_addr & RX_UNMAPPED_BUF);
 199}
 200
 201/**
 202 *      txq_avail - return the number of available slots in a Tx queue
 203 *      @q: the Tx queue
 204 *
 205 *      Returns the number of descriptors in a Tx queue available to write new
 206 *      packets.
 207 */
 208static inline unsigned int txq_avail(const struct sge_txq *q)
 209{
 210        return q->size - 1 - q->in_use;
 211}
 212
 213/**
 214 *      fl_cap - return the capacity of a free-buffer list
 215 *      @fl: the FL
 216 *
 217 *      Returns the capacity of a free-buffer list.  The capacity is less than
 218 *      the size because one descriptor needs to be left unpopulated, otherwise
 219 *      HW will think the FL is empty.
 220 */
 221static inline unsigned int fl_cap(const struct sge_fl *fl)
 222{
 223        return fl->size - 8;   /* 1 descriptor = 8 buffers */
 224}
 225
 226/**
 227 *      fl_starving - return whether a Free List is starving.
 228 *      @adapter: pointer to the adapter
 229 *      @fl: the Free List
 230 *
 231 *      Tests specified Free List to see whether the number of buffers
 232 *      available to the hardware has falled below our "starvation"
 233 *      threshold.
 234 */
 235static inline bool fl_starving(const struct adapter *adapter,
 236                               const struct sge_fl *fl)
 237{
 238        const struct sge *s = &adapter->sge;
 239
 240        return fl->avail - fl->pend_cred <= s->fl_starve_thres;
 241}
 242
 243int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
 244                  dma_addr_t *addr)
 245{
 246        const skb_frag_t *fp, *end;
 247        const struct skb_shared_info *si;
 248
 249        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 250        if (dma_mapping_error(dev, *addr))
 251                goto out_err;
 252
 253        si = skb_shinfo(skb);
 254        end = &si->frags[si->nr_frags];
 255
 256        for (fp = si->frags; fp < end; fp++) {
 257                *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 258                                           DMA_TO_DEVICE);
 259                if (dma_mapping_error(dev, *addr))
 260                        goto unwind;
 261        }
 262        return 0;
 263
 264unwind:
 265        while (fp-- > si->frags)
 266                dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 267
 268        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 269out_err:
 270        return -ENOMEM;
 271}
 272EXPORT_SYMBOL(cxgb4_map_skb);
 273
 274static void unmap_skb(struct device *dev, const struct sk_buff *skb,
 275                      const dma_addr_t *addr)
 276{
 277        const skb_frag_t *fp, *end;
 278        const struct skb_shared_info *si;
 279
 280        dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
 281
 282        si = skb_shinfo(skb);
 283        end = &si->frags[si->nr_frags];
 284        for (fp = si->frags; fp < end; fp++)
 285                dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
 286}
 287
 288#ifdef CONFIG_NEED_DMA_MAP_STATE
 289/**
 290 *      deferred_unmap_destructor - unmap a packet when it is freed
 291 *      @skb: the packet
 292 *
 293 *      This is the packet destructor used for Tx packets that need to remain
 294 *      mapped until they are freed rather than until their Tx descriptors are
 295 *      freed.
 296 */
 297static void deferred_unmap_destructor(struct sk_buff *skb)
 298{
 299        unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
 300}
 301#endif
 302
 303/**
 304 *      free_tx_desc - reclaims Tx descriptors and their buffers
 305 *      @adap: the adapter
 306 *      @q: the Tx queue to reclaim descriptors from
 307 *      @n: the number of descriptors to reclaim
 308 *      @unmap: whether the buffers should be unmapped for DMA
 309 *
 310 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 311 *      Tx buffers.  Called with the Tx queue lock held.
 312 */
 313void free_tx_desc(struct adapter *adap, struct sge_txq *q,
 314                  unsigned int n, bool unmap)
 315{
 316        unsigned int cidx = q->cidx;
 317        struct tx_sw_desc *d;
 318
 319        d = &q->sdesc[cidx];
 320        while (n--) {
 321                if (d->skb) {                       /* an SGL is present */
 322                        if (unmap && d->addr[0]) {
 323                                unmap_skb(adap->pdev_dev, d->skb, d->addr);
 324                                memset(d->addr, 0, sizeof(d->addr));
 325                        }
 326                        dev_consume_skb_any(d->skb);
 327                        d->skb = NULL;
 328                }
 329                ++d;
 330                if (++cidx == q->size) {
 331                        cidx = 0;
 332                        d = q->sdesc;
 333                }
 334        }
 335        q->cidx = cidx;
 336}
 337
 338/*
 339 * Return the number of reclaimable descriptors in a Tx queue.
 340 */
 341static inline int reclaimable(const struct sge_txq *q)
 342{
 343        int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
 344        hw_cidx -= q->cidx;
 345        return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
 346}
 347
 348/**
 349 *      reclaim_completed_tx - reclaims completed TX Descriptors
 350 *      @adap: the adapter
 351 *      @q: the Tx queue to reclaim completed descriptors from
 352 *      @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
 353 *      @unmap: whether the buffers should be unmapped for DMA
 354 *
 355 *      Reclaims Tx Descriptors that the SGE has indicated it has processed,
 356 *      and frees the associated buffers if possible.  If @max == -1, then
 357 *      we'll use a defaiult maximum.  Called with the TX Queue locked.
 358 */
 359static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 360                                       int maxreclaim, bool unmap)
 361{
 362        int reclaim = reclaimable(q);
 363
 364        if (reclaim) {
 365                /*
 366                 * Limit the amount of clean up work we do at a time to keep
 367                 * the Tx lock hold time O(1).
 368                 */
 369                if (maxreclaim < 0)
 370                        maxreclaim = MAX_TX_RECLAIM;
 371                if (reclaim > maxreclaim)
 372                        reclaim = maxreclaim;
 373
 374                free_tx_desc(adap, q, reclaim, unmap);
 375                q->in_use -= reclaim;
 376        }
 377
 378        return reclaim;
 379}
 380
 381/**
 382 *      cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
 383 *      @adap: the adapter
 384 *      @q: the Tx queue to reclaim completed descriptors from
 385 *      @unmap: whether the buffers should be unmapped for DMA
 386 *
 387 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 388 *      and frees the associated buffers if possible.  Called with the Tx
 389 *      queue locked.
 390 */
 391void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 392                                bool unmap)
 393{
 394        (void)reclaim_completed_tx(adap, q, -1, unmap);
 395}
 396EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
 397
 398static inline int get_buf_size(struct adapter *adapter,
 399                               const struct rx_sw_desc *d)
 400{
 401        struct sge *s = &adapter->sge;
 402        unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
 403        int buf_size;
 404
 405        switch (rx_buf_size_idx) {
 406        case RX_SMALL_PG_BUF:
 407                buf_size = PAGE_SIZE;
 408                break;
 409
 410        case RX_LARGE_PG_BUF:
 411                buf_size = PAGE_SIZE << s->fl_pg_order;
 412                break;
 413
 414        case RX_SMALL_MTU_BUF:
 415                buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
 416                break;
 417
 418        case RX_LARGE_MTU_BUF:
 419                buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
 420                break;
 421
 422        default:
 423                BUG();
 424        }
 425
 426        return buf_size;
 427}
 428
 429/**
 430 *      free_rx_bufs - free the Rx buffers on an SGE free list
 431 *      @adap: the adapter
 432 *      @q: the SGE free list to free buffers from
 433 *      @n: how many buffers to free
 434 *
 435 *      Release the next @n buffers on an SGE free-buffer Rx queue.   The
 436 *      buffers must be made inaccessible to HW before calling this function.
 437 */
 438static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
 439{
 440        while (n--) {
 441                struct rx_sw_desc *d = &q->sdesc[q->cidx];
 442
 443                if (is_buf_mapped(d))
 444                        dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 445                                       get_buf_size(adap, d),
 446                                       DMA_FROM_DEVICE);
 447                put_page(d->page);
 448                d->page = NULL;
 449                if (++q->cidx == q->size)
 450                        q->cidx = 0;
 451                q->avail--;
 452        }
 453}
 454
 455/**
 456 *      unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 457 *      @adap: the adapter
 458 *      @q: the SGE free list
 459 *
 460 *      Unmap the current buffer on an SGE free-buffer Rx queue.   The
 461 *      buffer must be made inaccessible to HW before calling this function.
 462 *
 463 *      This is similar to @free_rx_bufs above but does not free the buffer.
 464 *      Do note that the FL still loses any further access to the buffer.
 465 */
 466static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
 467{
 468        struct rx_sw_desc *d = &q->sdesc[q->cidx];
 469
 470        if (is_buf_mapped(d))
 471                dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 472                               get_buf_size(adap, d), DMA_FROM_DEVICE);
 473        d->page = NULL;
 474        if (++q->cidx == q->size)
 475                q->cidx = 0;
 476        q->avail--;
 477}
 478
 479static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 480{
 481        if (q->pend_cred >= 8) {
 482                u32 val = adap->params.arch.sge_fl_db;
 483
 484                if (is_t4(adap->params.chip))
 485                        val |= PIDX_V(q->pend_cred / 8);
 486                else
 487                        val |= PIDX_T5_V(q->pend_cred / 8);
 488
 489                /* Make sure all memory writes to the Free List queue are
 490                 * committed before we tell the hardware about them.
 491                 */
 492                wmb();
 493
 494                /* If we don't have access to the new User Doorbell (T5+), use
 495                 * the old doorbell mechanism; otherwise use the new BAR2
 496                 * mechanism.
 497                 */
 498                if (unlikely(q->bar2_addr == NULL)) {
 499                        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
 500                                     val | QID_V(q->cntxt_id));
 501                } else {
 502                        writel(val | QID_V(q->bar2_qid),
 503                               q->bar2_addr + SGE_UDB_KDOORBELL);
 504
 505                        /* This Write memory Barrier will force the write to
 506                         * the User Doorbell area to be flushed.
 507                         */
 508                        wmb();
 509                }
 510                q->pend_cred &= 7;
 511        }
 512}
 513
 514static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
 515                                  dma_addr_t mapping)
 516{
 517        sd->page = pg;
 518        sd->dma_addr = mapping;      /* includes size low bits */
 519}
 520
 521/**
 522 *      refill_fl - refill an SGE Rx buffer ring
 523 *      @adap: the adapter
 524 *      @q: the ring to refill
 525 *      @n: the number of new buffers to allocate
 526 *      @gfp: the gfp flags for the allocations
 527 *
 528 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 529 *      allocated with the supplied gfp flags.  The caller must assure that
 530 *      @n does not exceed the queue's capacity.  If afterwards the queue is
 531 *      found critically low mark it as starving in the bitmap of starving FLs.
 532 *
 533 *      Returns the number of buffers allocated.
 534 */
 535static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
 536                              gfp_t gfp)
 537{
 538        struct sge *s = &adap->sge;
 539        struct page *pg;
 540        dma_addr_t mapping;
 541        unsigned int cred = q->avail;
 542        __be64 *d = &q->desc[q->pidx];
 543        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 544        int node;
 545
 546#ifdef CONFIG_DEBUG_FS
 547        if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
 548                goto out;
 549#endif
 550
 551        gfp |= __GFP_NOWARN;
 552        node = dev_to_node(adap->pdev_dev);
 553
 554        if (s->fl_pg_order == 0)
 555                goto alloc_small_pages;
 556
 557        /*
 558         * Prefer large buffers
 559         */
 560        while (n) {
 561                pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
 562                if (unlikely(!pg)) {
 563                        q->large_alloc_failed++;
 564                        break;       /* fall back to single pages */
 565                }
 566
 567                mapping = dma_map_page(adap->pdev_dev, pg, 0,
 568                                       PAGE_SIZE << s->fl_pg_order,
 569                                       DMA_FROM_DEVICE);
 570                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 571                        __free_pages(pg, s->fl_pg_order);
 572                        q->mapping_err++;
 573                        goto out;   /* do not try small pages for this error */
 574                }
 575                mapping |= RX_LARGE_PG_BUF;
 576                *d++ = cpu_to_be64(mapping);
 577
 578                set_rx_sw_desc(sd, pg, mapping);
 579                sd++;
 580
 581                q->avail++;
 582                if (++q->pidx == q->size) {
 583                        q->pidx = 0;
 584                        sd = q->sdesc;
 585                        d = q->desc;
 586                }
 587                n--;
 588        }
 589
 590alloc_small_pages:
 591        while (n--) {
 592                pg = alloc_pages_node(node, gfp, 0);
 593                if (unlikely(!pg)) {
 594                        q->alloc_failed++;
 595                        break;
 596                }
 597
 598                mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
 599                                       DMA_FROM_DEVICE);
 600                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 601                        put_page(pg);
 602                        q->mapping_err++;
 603                        goto out;
 604                }
 605                *d++ = cpu_to_be64(mapping);
 606
 607                set_rx_sw_desc(sd, pg, mapping);
 608                sd++;
 609
 610                q->avail++;
 611                if (++q->pidx == q->size) {
 612                        q->pidx = 0;
 613                        sd = q->sdesc;
 614                        d = q->desc;
 615                }
 616        }
 617
 618out:    cred = q->avail - cred;
 619        q->pend_cred += cred;
 620        ring_fl_db(adap, q);
 621
 622        if (unlikely(fl_starving(adap, q))) {
 623                smp_wmb();
 624                q->low++;
 625                set_bit(q->cntxt_id - adap->sge.egr_start,
 626                        adap->sge.starving_fl);
 627        }
 628
 629        return cred;
 630}
 631
 632static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 633{
 634        refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 635                  GFP_ATOMIC);
 636}
 637
 638/**
 639 *      alloc_ring - allocate resources for an SGE descriptor ring
 640 *      @dev: the PCI device's core device
 641 *      @nelem: the number of descriptors
 642 *      @elem_size: the size of each descriptor
 643 *      @sw_size: the size of the SW state associated with each ring element
 644 *      @phys: the physical address of the allocated ring
 645 *      @metadata: address of the array holding the SW state for the ring
 646 *      @stat_size: extra space in HW ring for status information
 647 *      @node: preferred node for memory allocations
 648 *
 649 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 650 *      free buffer lists, or response queues.  Each SGE ring requires
 651 *      space for its HW descriptors plus, optionally, space for the SW state
 652 *      associated with each HW entry (the metadata).  The function returns
 653 *      three values: the virtual address for the HW ring (the return value
 654 *      of the function), the bus address of the HW ring, and the address
 655 *      of the SW ring.
 656 */
 657static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
 658                        size_t sw_size, dma_addr_t *phys, void *metadata,
 659                        size_t stat_size, int node)
 660{
 661        size_t len = nelem * elem_size + stat_size;
 662        void *s = NULL;
 663        void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
 664
 665        if (!p)
 666                return NULL;
 667        if (sw_size) {
 668                s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
 669
 670                if (!s) {
 671                        dma_free_coherent(dev, len, p, *phys);
 672                        return NULL;
 673                }
 674        }
 675        if (metadata)
 676                *(void **)metadata = s;
 677        return p;
 678}
 679
 680/**
 681 *      sgl_len - calculates the size of an SGL of the given capacity
 682 *      @n: the number of SGL entries
 683 *
 684 *      Calculates the number of flits needed for a scatter/gather list that
 685 *      can hold the given number of entries.
 686 */
 687static inline unsigned int sgl_len(unsigned int n)
 688{
 689        /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
 690         * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
 691         * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
 692         * repeated sequences of { Length[i], Length[i+1], Address[i],
 693         * Address[i+1] } (this ensures that all addresses are on 64-bit
 694         * boundaries).  If N is even, then Length[N+1] should be set to 0 and
 695         * Address[N+1] is omitted.
 696         *
 697         * The following calculation incorporates all of the above.  It's
 698         * somewhat hard to follow but, briefly: the "+2" accounts for the
 699         * first two flits which include the DSGL header, Length0 and
 700         * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
 701         * flits for every pair of the remaining N) +1 if (n-1) is odd; and
 702         * finally the "+((n-1)&1)" adds the one remaining flit needed if
 703         * (n-1) is odd ...
 704         */
 705        n--;
 706        return (3 * n) / 2 + (n & 1) + 2;
 707}
 708
 709/**
 710 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 711 *      @n: the number of flits
 712 *
 713 *      Returns the number of Tx descriptors needed for the supplied number
 714 *      of flits.
 715 */
 716static inline unsigned int flits_to_desc(unsigned int n)
 717{
 718        BUG_ON(n > SGE_MAX_WR_LEN / 8);
 719        return DIV_ROUND_UP(n, 8);
 720}
 721
 722/**
 723 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 724 *      @skb: the packet
 725 *      @chip_ver: chip version
 726 *
 727 *      Returns whether an Ethernet packet is small enough to fit as
 728 *      immediate data. Return value corresponds to headroom required.
 729 */
 730static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
 731{
 732        int hdrlen = 0;
 733
 734        if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
 735            chip_ver > CHELSIO_T5) {
 736                hdrlen = sizeof(struct cpl_tx_tnl_lso);
 737                hdrlen += sizeof(struct cpl_tx_pkt_core);
 738        } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
 739                return 0;
 740        } else {
 741                hdrlen = skb_shinfo(skb)->gso_size ?
 742                         sizeof(struct cpl_tx_pkt_lso_core) : 0;
 743                hdrlen += sizeof(struct cpl_tx_pkt);
 744        }
 745        if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
 746                return hdrlen;
 747        return 0;
 748}
 749
 750/**
 751 *      calc_tx_flits - calculate the number of flits for a packet Tx WR
 752 *      @skb: the packet
 753 *      @chip_ver: chip version
 754 *
 755 *      Returns the number of flits needed for a Tx WR for the given Ethernet
 756 *      packet, including the needed WR and CPL headers.
 757 */
 758static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
 759                                         unsigned int chip_ver)
 760{
 761        unsigned int flits;
 762        int hdrlen = is_eth_imm(skb, chip_ver);
 763
 764        /* If the skb is small enough, we can pump it out as a work request
 765         * with only immediate data.  In that case we just have to have the
 766         * TX Packet header plus the skb data in the Work Request.
 767         */
 768
 769        if (hdrlen)
 770                return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
 771
 772        /* Otherwise, we're going to have to construct a Scatter gather list
 773         * of the skb body and fragments.  We also include the flits necessary
 774         * for the TX Packet Work Request and CPL.  We always have a firmware
 775         * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 776         * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 777         * message or, if we're doing a Large Send Offload, an LSO CPL message
 778         * with an embedded TX Packet Write CPL message.
 779         */
 780        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 781        if (skb_shinfo(skb)->gso_size) {
 782                if (skb->encapsulation && chip_ver > CHELSIO_T5) {
 783                        hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
 784                                 sizeof(struct cpl_tx_tnl_lso);
 785                } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
 786                        u32 pkt_hdrlen;
 787
 788                        pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
 789                                                     skb_headlen(skb));
 790                        hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
 791                                 round_up(pkt_hdrlen, 16);
 792                } else {
 793                        hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
 794                                 sizeof(struct cpl_tx_pkt_lso_core);
 795                }
 796
 797                hdrlen += sizeof(struct cpl_tx_pkt_core);
 798                flits += (hdrlen / sizeof(__be64));
 799        } else {
 800                flits += (sizeof(struct fw_eth_tx_pkt_wr) +
 801                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 802        }
 803        return flits;
 804}
 805
 806/**
 807 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 808 *      @skb: the packet
 809 *      @chip_ver: chip version
 810 *
 811 *      Returns the number of Tx descriptors needed for the given Ethernet
 812 *      packet, including the needed WR and CPL headers.
 813 */
 814static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
 815                                         unsigned int chip_ver)
 816{
 817        return flits_to_desc(calc_tx_flits(skb, chip_ver));
 818}
 819
 820/**
 821 *      cxgb4_write_sgl - populate a scatter/gather list for a packet
 822 *      @skb: the packet
 823 *      @q: the Tx queue we are writing into
 824 *      @sgl: starting location for writing the SGL
 825 *      @end: points right after the end of the SGL
 826 *      @start: start offset into skb main-body data to include in the SGL
 827 *      @addr: the list of bus addresses for the SGL elements
 828 *
 829 *      Generates a gather list for the buffers that make up a packet.
 830 *      The caller must provide adequate space for the SGL that will be written.
 831 *      The SGL includes all of the packet's page fragments and the data in its
 832 *      main body except for the first @start bytes.  @sgl must be 16-byte
 833 *      aligned and within a Tx descriptor with available space.  @end points
 834 *      right after the end of the SGL but does not account for any potential
 835 *      wrap around, i.e., @end > @sgl.
 836 */
 837void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
 838                     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 839                     const dma_addr_t *addr)
 840{
 841        unsigned int i, len;
 842        struct ulptx_sge_pair *to;
 843        const struct skb_shared_info *si = skb_shinfo(skb);
 844        unsigned int nfrags = si->nr_frags;
 845        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 846
 847        len = skb_headlen(skb) - start;
 848        if (likely(len)) {
 849                sgl->len0 = htonl(len);
 850                sgl->addr0 = cpu_to_be64(addr[0] + start);
 851                nfrags++;
 852        } else {
 853                sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 854                sgl->addr0 = cpu_to_be64(addr[1]);
 855        }
 856
 857        sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 858                              ULPTX_NSGE_V(nfrags));
 859        if (likely(--nfrags == 0))
 860                return;
 861        /*
 862         * Most of the complexity below deals with the possibility we hit the
 863         * end of the queue in the middle of writing the SGL.  For this case
 864         * only we create the SGL in a temporary buffer and then copy it.
 865         */
 866        to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 867
 868        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 869                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 870                to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 871                to->addr[0] = cpu_to_be64(addr[i]);
 872                to->addr[1] = cpu_to_be64(addr[++i]);
 873        }
 874        if (nfrags) {
 875                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 876                to->len[1] = cpu_to_be32(0);
 877                to->addr[0] = cpu_to_be64(addr[i + 1]);
 878        }
 879        if (unlikely((u8 *)end > (u8 *)q->stat)) {
 880                unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 881
 882                if (likely(part0))
 883                        memcpy(sgl->sge, buf, part0);
 884                part1 = (u8 *)end - (u8 *)q->stat;
 885                memcpy(q->desc, (u8 *)buf + part0, part1);
 886                end = (void *)q->desc + part1;
 887        }
 888        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 889                *end = 0;
 890}
 891EXPORT_SYMBOL(cxgb4_write_sgl);
 892
 893/*      cxgb4_write_partial_sgl - populate SGL for partial packet
 894 *      @skb: the packet
 895 *      @q: the Tx queue we are writing into
 896 *      @sgl: starting location for writing the SGL
 897 *      @end: points right after the end of the SGL
 898 *      @addr: the list of bus addresses for the SGL elements
 899 *      @start: start offset in the SKB where partial data starts
 900 *      @len: length of data from @start to send out
 901 *
 902 *      This API will handle sending out partial data of a skb if required.
 903 *      Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
 904 *      and @len will decide how much data after @start offset to send out.
 905 */
 906void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
 907                             struct ulptx_sgl *sgl, u64 *end,
 908                             const dma_addr_t *addr, u32 start, u32 len)
 909{
 910        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
 911        u32 frag_size, skb_linear_data_len = skb_headlen(skb);
 912        struct skb_shared_info *si = skb_shinfo(skb);
 913        u8 i = 0, frag_idx = 0, nfrags = 0;
 914        skb_frag_t *frag;
 915
 916        /* Fill the first SGL either from linear data or from partial
 917         * frag based on @start.
 918         */
 919        if (unlikely(start < skb_linear_data_len)) {
 920                frag_size = min(len, skb_linear_data_len - start);
 921                sgl->len0 = htonl(frag_size);
 922                sgl->addr0 = cpu_to_be64(addr[0] + start);
 923                len -= frag_size;
 924                nfrags++;
 925        } else {
 926                start -= skb_linear_data_len;
 927                frag = &si->frags[frag_idx];
 928                frag_size = skb_frag_size(frag);
 929                /* find the first frag */
 930                while (start >= frag_size) {
 931                        start -= frag_size;
 932                        frag_idx++;
 933                        frag = &si->frags[frag_idx];
 934                        frag_size = skb_frag_size(frag);
 935                }
 936
 937                frag_size = min(len, skb_frag_size(frag) - start);
 938                sgl->len0 = cpu_to_be32(frag_size);
 939                sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
 940                len -= frag_size;
 941                nfrags++;
 942                frag_idx++;
 943        }
 944
 945        /* If the entire partial data fit in one SGL, then send it out
 946         * now.
 947         */
 948        if (!len)
 949                goto done;
 950
 951        /* Most of the complexity below deals with the possibility we hit the
 952         * end of the queue in the middle of writing the SGL.  For this case
 953         * only we create the SGL in a temporary buffer and then copy it.
 954         */
 955        to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 956
 957        /* If the skb couldn't fit in first SGL completely, fill the
 958         * rest of the frags in subsequent SGLs. Note that each SGL
 959         * pair can store 2 frags.
 960         */
 961        while (len) {
 962                frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
 963                to->len[i & 1] = cpu_to_be32(frag_size);
 964                to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
 965                if (i && (i & 1))
 966                        to++;
 967                nfrags++;
 968                frag_idx++;
 969                i++;
 970                len -= frag_size;
 971        }
 972
 973        /* If we ended in an odd boundary, then set the second SGL's
 974         * length in the pair to 0.
 975         */
 976        if (i & 1)
 977                to->len[1] = cpu_to_be32(0);
 978
 979        /* Copy from temporary buffer to Tx ring, in case we hit the
 980         * end of the queue in the middle of writing the SGL.
 981         */
 982        if (unlikely((u8 *)end > (u8 *)q->stat)) {
 983                u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 984
 985                if (likely(part0))
 986                        memcpy(sgl->sge, buf, part0);
 987                part1 = (u8 *)end - (u8 *)q->stat;
 988                memcpy(q->desc, (u8 *)buf + part0, part1);
 989                end = (void *)q->desc + part1;
 990        }
 991
 992        /* 0-pad to multiple of 16 */
 993        if ((uintptr_t)end & 8)
 994                *end = 0;
 995done:
 996        sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 997                        ULPTX_NSGE_V(nfrags));
 998}
 999EXPORT_SYMBOL(cxgb4_write_partial_sgl);
1000
1001/* This function copies 64 byte coalesced work request to
1002 * memory mapped BAR2 space. For coalesced WR SGE fetches
1003 * data from the FIFO instead of from Host.
1004 */
1005static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
1006{
1007        int count = 8;
1008
1009        while (count) {
1010                writeq(*src, dst);
1011                src++;
1012                dst++;
1013                count--;
1014        }
1015}
1016
1017/**
1018 *      cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1019 *      @adap: the adapter
1020 *      @q: the Tx queue
1021 *      @n: number of new descriptors to give to HW
1022 *
1023 *      Ring the doorbel for a Tx queue.
1024 */
1025inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1026{
1027        /* Make sure that all writes to the TX Descriptors are committed
1028         * before we tell the hardware about them.
1029         */
1030        wmb();
1031
1032        /* If we don't have access to the new User Doorbell (T5+), use the old
1033         * doorbell mechanism; otherwise use the new BAR2 mechanism.
1034         */
1035        if (unlikely(q->bar2_addr == NULL)) {
1036                u32 val = PIDX_V(n);
1037                unsigned long flags;
1038
1039                /* For T4 we need to participate in the Doorbell Recovery
1040                 * mechanism.
1041                 */
1042                spin_lock_irqsave(&q->db_lock, flags);
1043                if (!q->db_disabled)
1044                        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1045                                     QID_V(q->cntxt_id) | val);
1046                else
1047                        q->db_pidx_inc += n;
1048                q->db_pidx = q->pidx;
1049                spin_unlock_irqrestore(&q->db_lock, flags);
1050        } else {
1051                u32 val = PIDX_T5_V(n);
1052
1053                /* T4 and later chips share the same PIDX field offset within
1054                 * the doorbell, but T5 and later shrank the field in order to
1055                 * gain a bit for Doorbell Priority.  The field was absurdly
1056                 * large in the first place (14 bits) so we just use the T5
1057                 * and later limits and warn if a Queue ID is too large.
1058                 */
1059                WARN_ON(val & DBPRIO_F);
1060
1061                /* If we're only writing a single TX Descriptor and we can use
1062                 * Inferred QID registers, we can use the Write Combining
1063                 * Gather Buffer; otherwise we use the simple doorbell.
1064                 */
1065                if (n == 1 && q->bar2_qid == 0) {
1066                        int index = (q->pidx
1067                                     ? (q->pidx - 1)
1068                                     : (q->size - 1));
1069                        u64 *wr = (u64 *)&q->desc[index];
1070
1071                        cxgb_pio_copy((u64 __iomem *)
1072                                      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1073                                      wr);
1074                } else {
1075                        writel(val | QID_V(q->bar2_qid),
1076                               q->bar2_addr + SGE_UDB_KDOORBELL);
1077                }
1078
1079                /* This Write Memory Barrier will force the write to the User
1080                 * Doorbell area to be flushed.  This is needed to prevent
1081                 * writes on different CPUs for the same queue from hitting
1082                 * the adapter out of order.  This is required when some Work
1083                 * Requests take the Write Combine Gather Buffer path (user
1084                 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1085                 * take the traditional path where we simply increment the
1086                 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1087                 * hardware DMA read the actual Work Request.
1088                 */
1089                wmb();
1090        }
1091}
1092EXPORT_SYMBOL(cxgb4_ring_tx_db);
1093
1094/**
1095 *      cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1096 *      @skb: the packet
1097 *      @q: the Tx queue where the packet will be inlined
1098 *      @pos: starting position in the Tx queue where to inline the packet
1099 *
1100 *      Inline a packet's contents directly into Tx descriptors, starting at
1101 *      the given position within the Tx DMA ring.
1102 *      Most of the complexity of this operation is dealing with wrap arounds
1103 *      in the middle of the packet we want to inline.
1104 */
1105void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1106                         const struct sge_txq *q, void *pos)
1107{
1108        int left = (void *)q->stat - pos;
1109        u64 *p;
1110
1111        if (likely(skb->len <= left)) {
1112                if (likely(!skb->data_len))
1113                        skb_copy_from_linear_data(skb, pos, skb->len);
1114                else
1115                        skb_copy_bits(skb, 0, pos, skb->len);
1116                pos += skb->len;
1117        } else {
1118                skb_copy_bits(skb, 0, pos, left);
1119                skb_copy_bits(skb, left, q->desc, skb->len - left);
1120                pos = (void *)q->desc + (skb->len - left);
1121        }
1122
1123        /* 0-pad to multiple of 16 */
1124        p = PTR_ALIGN(pos, 8);
1125        if ((uintptr_t)p & 8)
1126                *p = 0;
1127}
1128EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1129
1130static void *inline_tx_skb_header(const struct sk_buff *skb,
1131                                  const struct sge_txq *q,  void *pos,
1132                                  int length)
1133{
1134        u64 *p;
1135        int left = (void *)q->stat - pos;
1136
1137        if (likely(length <= left)) {
1138                memcpy(pos, skb->data, length);
1139                pos += length;
1140        } else {
1141                memcpy(pos, skb->data, left);
1142                memcpy(q->desc, skb->data + left, length - left);
1143                pos = (void *)q->desc + (length - left);
1144        }
1145        /* 0-pad to multiple of 16 */
1146        p = PTR_ALIGN(pos, 8);
1147        if ((uintptr_t)p & 8) {
1148                *p = 0;
1149                return p + 1;
1150        }
1151        return p;
1152}
1153
1154/*
1155 * Figure out what HW csum a packet wants and return the appropriate control
1156 * bits.
1157 */
1158static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1159{
1160        int csum_type;
1161        bool inner_hdr_csum = false;
1162        u16 proto, ver;
1163
1164        if (skb->encapsulation &&
1165            (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1166                inner_hdr_csum = true;
1167
1168        if (inner_hdr_csum) {
1169                ver = inner_ip_hdr(skb)->version;
1170                proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1171                        inner_ipv6_hdr(skb)->nexthdr;
1172        } else {
1173                ver = ip_hdr(skb)->version;
1174                proto = (ver == 4) ? ip_hdr(skb)->protocol :
1175                        ipv6_hdr(skb)->nexthdr;
1176        }
1177
1178        if (ver == 4) {
1179                if (proto == IPPROTO_TCP)
1180                        csum_type = TX_CSUM_TCPIP;
1181                else if (proto == IPPROTO_UDP)
1182                        csum_type = TX_CSUM_UDPIP;
1183                else {
1184nocsum:                 /*
1185                         * unknown protocol, disable HW csum
1186                         * and hope a bad packet is detected
1187                         */
1188                        return TXPKT_L4CSUM_DIS_F;
1189                }
1190        } else {
1191                /*
1192                 * this doesn't work with extension headers
1193                 */
1194                if (proto == IPPROTO_TCP)
1195                        csum_type = TX_CSUM_TCPIP6;
1196                else if (proto == IPPROTO_UDP)
1197                        csum_type = TX_CSUM_UDPIP6;
1198                else
1199                        goto nocsum;
1200        }
1201
1202        if (likely(csum_type >= TX_CSUM_TCPIP)) {
1203                int eth_hdr_len, l4_len;
1204                u64 hdr_len;
1205
1206                if (inner_hdr_csum) {
1207                        /* This allows checksum offload for all encapsulated
1208                         * packets like GRE etc..
1209                         */
1210                        l4_len = skb_inner_network_header_len(skb);
1211                        eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1212                } else {
1213                        l4_len = skb_network_header_len(skb);
1214                        eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1215                }
1216                hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1217
1218                if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1219                        hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1220                else
1221                        hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1222                return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1223        } else {
1224                int start = skb_transport_offset(skb);
1225
1226                return TXPKT_CSUM_TYPE_V(csum_type) |
1227                        TXPKT_CSUM_START_V(start) |
1228                        TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1229        }
1230}
1231
1232static void eth_txq_stop(struct sge_eth_txq *q)
1233{
1234        netif_tx_stop_queue(q->txq);
1235        q->q.stops++;
1236}
1237
1238static inline void txq_advance(struct sge_txq *q, unsigned int n)
1239{
1240        q->in_use += n;
1241        q->pidx += n;
1242        if (q->pidx >= q->size)
1243                q->pidx -= q->size;
1244}
1245
1246#ifdef CONFIG_CHELSIO_T4_FCOE
1247static inline int
1248cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1249                  const struct port_info *pi, u64 *cntrl)
1250{
1251        const struct cxgb_fcoe *fcoe = &pi->fcoe;
1252
1253        if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1254                return 0;
1255
1256        if (skb->protocol != htons(ETH_P_FCOE))
1257                return 0;
1258
1259        skb_reset_mac_header(skb);
1260        skb->mac_len = sizeof(struct ethhdr);
1261
1262        skb_set_network_header(skb, skb->mac_len);
1263        skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1264
1265        if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1266                return -ENOTSUPP;
1267
1268        /* FC CRC offload */
1269        *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1270                     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1271                     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1272                     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1273                     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1274        return 0;
1275}
1276#endif /* CONFIG_CHELSIO_T4_FCOE */
1277
1278/* Returns tunnel type if hardware supports offloading of the same.
1279 * It is called only for T5 and onwards.
1280 */
1281enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1282{
1283        u8 l4_hdr = 0;
1284        enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1285        struct port_info *pi = netdev_priv(skb->dev);
1286        struct adapter *adapter = pi->adapter;
1287
1288        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1289            skb->inner_protocol != htons(ETH_P_TEB))
1290                return tnl_type;
1291
1292        switch (vlan_get_protocol(skb)) {
1293        case htons(ETH_P_IP):
1294                l4_hdr = ip_hdr(skb)->protocol;
1295                break;
1296        case htons(ETH_P_IPV6):
1297                l4_hdr = ipv6_hdr(skb)->nexthdr;
1298                break;
1299        default:
1300                return tnl_type;
1301        }
1302
1303        switch (l4_hdr) {
1304        case IPPROTO_UDP:
1305                if (adapter->vxlan_port == udp_hdr(skb)->dest)
1306                        tnl_type = TX_TNL_TYPE_VXLAN;
1307                else if (adapter->geneve_port == udp_hdr(skb)->dest)
1308                        tnl_type = TX_TNL_TYPE_GENEVE;
1309                break;
1310        default:
1311                return tnl_type;
1312        }
1313
1314        return tnl_type;
1315}
1316
1317static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1318                                   struct cpl_tx_tnl_lso *tnl_lso,
1319                                   enum cpl_tx_tnl_lso_type tnl_type)
1320{
1321        u32 val;
1322        int in_eth_xtra_len;
1323        int l3hdr_len = skb_network_header_len(skb);
1324        int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1325        const struct skb_shared_info *ssi = skb_shinfo(skb);
1326        bool v6 = (ip_hdr(skb)->version == 6);
1327
1328        val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1329              CPL_TX_TNL_LSO_FIRST_F |
1330              CPL_TX_TNL_LSO_LAST_F |
1331              (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1332              CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1333              CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1334              (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1335              CPL_TX_TNL_LSO_IPLENSETOUT_F |
1336              (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1337        tnl_lso->op_to_IpIdSplitOut = htonl(val);
1338
1339        tnl_lso->IpIdOffsetOut = 0;
1340
1341        /* Get the tunnel header length */
1342        val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1343        in_eth_xtra_len = skb_inner_network_header(skb) -
1344                          skb_inner_mac_header(skb) - ETH_HLEN;
1345
1346        switch (tnl_type) {
1347        case TX_TNL_TYPE_VXLAN:
1348        case TX_TNL_TYPE_GENEVE:
1349                tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1350                        htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1351                        CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1352                break;
1353        default:
1354                tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1355                break;
1356        }
1357
1358        tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1359                 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1360                       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1361
1362        tnl_lso->r1 = 0;
1363
1364        val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1365              CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1366              CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1367              CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1368        tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1369
1370        tnl_lso->IpIdOffset = htons(0);
1371
1372        tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1373        tnl_lso->TCPSeqOffset = htonl(0);
1374        tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1375}
1376
1377static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1378                                 struct cpl_tx_pkt_lso_core *lso)
1379{
1380        int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1381        int l3hdr_len = skb_network_header_len(skb);
1382        const struct skb_shared_info *ssi;
1383        bool ipv6 = false;
1384
1385        ssi = skb_shinfo(skb);
1386        if (ssi->gso_type & SKB_GSO_TCPV6)
1387                ipv6 = true;
1388
1389        lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1390                              LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1391                              LSO_IPV6_V(ipv6) |
1392                              LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1393                              LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1394                              LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1395        lso->ipid_ofst = htons(0);
1396        lso->mss = htons(ssi->gso_size);
1397        lso->seqno_offset = htonl(0);
1398        if (is_t4(adap->params.chip))
1399                lso->len = htonl(skb->len);
1400        else
1401                lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1402
1403        return (void *)(lso + 1);
1404}
1405
1406/**
1407 *      t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1408 *      @adap: the adapter
1409 *      @eq: the Ethernet TX Queue
1410 *      @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1411 *
1412 *      We're typically called here to update the state of an Ethernet TX
1413 *      Queue with respect to the hardware's progress in consuming the TX
1414 *      Work Requests that we've put on that Egress Queue.  This happens
1415 *      when we get Egress Queue Update messages and also prophylactically
1416 *      in regular timer-based Ethernet TX Queue maintenance.
1417 */
1418int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1419                                 int maxreclaim)
1420{
1421        unsigned int reclaimed, hw_cidx;
1422        struct sge_txq *q = &eq->q;
1423        int hw_in_use;
1424
1425        if (!q->in_use || !__netif_tx_trylock(eq->txq))
1426                return 0;
1427
1428        /* Reclaim pending completed TX Descriptors. */
1429        reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1430
1431        hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1432        hw_in_use = q->pidx - hw_cidx;
1433        if (hw_in_use < 0)
1434                hw_in_use += q->size;
1435
1436        /* If the TX Queue is currently stopped and there's now more than half
1437         * the queue available, restart it.  Otherwise bail out since the rest
1438         * of what we want do here is with the possibility of shipping any
1439         * currently buffered Coalesced TX Work Request.
1440         */
1441        if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1442                netif_tx_wake_queue(eq->txq);
1443                eq->q.restarts++;
1444        }
1445
1446        __netif_tx_unlock(eq->txq);
1447        return reclaimed;
1448}
1449
1450static inline int cxgb4_validate_skb(struct sk_buff *skb,
1451                                     struct net_device *dev,
1452                                     u32 min_pkt_len)
1453{
1454        u32 max_pkt_len;
1455
1456        /* The chip min packet length is 10 octets but some firmware
1457         * commands have a minimum packet length requirement. So, play
1458         * safe and reject anything shorter than @min_pkt_len.
1459         */
1460        if (unlikely(skb->len < min_pkt_len))
1461                return -EINVAL;
1462
1463        /* Discard the packet if the length is greater than mtu */
1464        max_pkt_len = ETH_HLEN + dev->mtu;
1465
1466        if (skb_vlan_tagged(skb))
1467                max_pkt_len += VLAN_HLEN;
1468
1469        if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1470                return -EINVAL;
1471
1472        return 0;
1473}
1474
1475static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1476                             u32 hdr_len)
1477{
1478        wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1479        wr->u.udpseg.ethlen = skb_network_offset(skb);
1480        wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1481        wr->u.udpseg.udplen = sizeof(struct udphdr);
1482        wr->u.udpseg.rtplen = 0;
1483        wr->u.udpseg.r4 = 0;
1484        if (skb_shinfo(skb)->gso_size)
1485                wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1486        else
1487                wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1488        wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1489        wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1490
1491        return (void *)(wr + 1);
1492}
1493
1494/**
1495 *      cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1496 *      @skb: the packet
1497 *      @dev: the egress net device
1498 *
1499 *      Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1500 */
1501static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1502{
1503        enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1504        bool ptp_enabled = is_ptp_enabled(skb, dev);
1505        unsigned int last_desc, flits, ndesc;
1506        u32 wr_mid, ctrl0, op, sgl_off = 0;
1507        const struct skb_shared_info *ssi;
1508        int len, qidx, credits, ret, left;
1509        struct tx_sw_desc *sgl_sdesc;
1510        struct fw_eth_tx_eo_wr *eowr;
1511        struct fw_eth_tx_pkt_wr *wr;
1512        struct cpl_tx_pkt_core *cpl;
1513        const struct port_info *pi;
1514        bool immediate = false;
1515        u64 cntrl, *end, *sgl;
1516        struct sge_eth_txq *q;
1517        unsigned int chip_ver;
1518        struct adapter *adap;
1519
1520        ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1521        if (ret)
1522                goto out_free;
1523
1524        pi = netdev_priv(dev);
1525        adap = pi->adapter;
1526        ssi = skb_shinfo(skb);
1527#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1528        if (xfrm_offload(skb) && !ssi->gso_size)
1529                return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1530#endif /* CHELSIO_IPSEC_INLINE */
1531
1532#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1533        if (cxgb4_is_ktls_skb(skb) &&
1534            (skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb))))
1535                return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1536#endif /* CHELSIO_TLS_DEVICE */
1537
1538        qidx = skb_get_queue_mapping(skb);
1539        if (ptp_enabled) {
1540                if (!(adap->ptp_tx_skb)) {
1541                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1542                        adap->ptp_tx_skb = skb_get(skb);
1543                } else {
1544                        goto out_free;
1545                }
1546                q = &adap->sge.ptptxq;
1547        } else {
1548                q = &adap->sge.ethtxq[qidx + pi->first_qset];
1549        }
1550        skb_tx_timestamp(skb);
1551
1552        reclaim_completed_tx(adap, &q->q, -1, true);
1553        cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1554
1555#ifdef CONFIG_CHELSIO_T4_FCOE
1556        ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1557        if (unlikely(ret == -EOPNOTSUPP))
1558                goto out_free;
1559#endif /* CONFIG_CHELSIO_T4_FCOE */
1560
1561        chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1562        flits = calc_tx_flits(skb, chip_ver);
1563        ndesc = flits_to_desc(flits);
1564        credits = txq_avail(&q->q) - ndesc;
1565
1566        if (unlikely(credits < 0)) {
1567                eth_txq_stop(q);
1568                dev_err(adap->pdev_dev,
1569                        "%s: Tx ring %u full while queue awake!\n",
1570                        dev->name, qidx);
1571                return NETDEV_TX_BUSY;
1572        }
1573
1574        if (is_eth_imm(skb, chip_ver))
1575                immediate = true;
1576
1577        if (skb->encapsulation && chip_ver > CHELSIO_T5)
1578                tnl_type = cxgb_encap_offload_supported(skb);
1579
1580        last_desc = q->q.pidx + ndesc - 1;
1581        if (last_desc >= q->q.size)
1582                last_desc -= q->q.size;
1583        sgl_sdesc = &q->q.sdesc[last_desc];
1584
1585        if (!immediate &&
1586            unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1587                memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1588                q->mapping_err++;
1589                goto out_free;
1590        }
1591
1592        wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1593        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1594                /* After we're done injecting the Work Request for this
1595                 * packet, we'll be below our "stop threshold" so stop the TX
1596                 * Queue now and schedule a request for an SGE Egress Queue
1597                 * Update message. The queue will get started later on when
1598                 * the firmware processes this Work Request and sends us an
1599                 * Egress Queue Status Update message indicating that space
1600                 * has opened up.
1601                 */
1602                eth_txq_stop(q);
1603                if (chip_ver > CHELSIO_T5)
1604                        wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1605        }
1606
1607        wr = (void *)&q->q.desc[q->q.pidx];
1608        eowr = (void *)&q->q.desc[q->q.pidx];
1609        wr->equiq_to_len16 = htonl(wr_mid);
1610        wr->r3 = cpu_to_be64(0);
1611        if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1612                end = (u64 *)eowr + flits;
1613        else
1614                end = (u64 *)wr + flits;
1615
1616        len = immediate ? skb->len : 0;
1617        len += sizeof(*cpl);
1618        if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1619                struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1620                struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1621
1622                if (tnl_type)
1623                        len += sizeof(*tnl_lso);
1624                else
1625                        len += sizeof(*lso);
1626
1627                wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1628                                       FW_WR_IMMDLEN_V(len));
1629                if (tnl_type) {
1630                        struct iphdr *iph = ip_hdr(skb);
1631
1632                        t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1633                        cpl = (void *)(tnl_lso + 1);
1634                        /* Driver is expected to compute partial checksum that
1635                         * does not include the IP Total Length.
1636                         */
1637                        if (iph->version == 4) {
1638                                iph->check = 0;
1639                                iph->tot_len = 0;
1640                                iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1641                        }
1642                        if (skb->ip_summed == CHECKSUM_PARTIAL)
1643                                cntrl = hwcsum(adap->params.chip, skb);
1644                } else {
1645                        cpl = write_tso_wr(adap, skb, lso);
1646                        cntrl = hwcsum(adap->params.chip, skb);
1647                }
1648                sgl = (u64 *)(cpl + 1); /* sgl start here */
1649                q->tso++;
1650                q->tx_cso += ssi->gso_segs;
1651        } else if (ssi->gso_size) {
1652                u64 *start;
1653                u32 hdrlen;
1654
1655                hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1656                len += hdrlen;
1657                wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1658                                             FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1659                cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1660                cntrl = hwcsum(adap->params.chip, skb);
1661
1662                start = (u64 *)(cpl + 1);
1663                sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1664                                                  hdrlen);
1665                if (unlikely(start > sgl)) {
1666                        left = (u8 *)end - (u8 *)q->q.stat;
1667                        end = (void *)q->q.desc + left;
1668                }
1669                sgl_off = hdrlen;
1670                q->uso++;
1671                q->tx_cso += ssi->gso_segs;
1672        } else {
1673                if (ptp_enabled)
1674                        op = FW_PTP_TX_PKT_WR;
1675                else
1676                        op = FW_ETH_TX_PKT_WR;
1677                wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1678                                       FW_WR_IMMDLEN_V(len));
1679                cpl = (void *)(wr + 1);
1680                sgl = (u64 *)(cpl + 1);
1681                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1682                        cntrl = hwcsum(adap->params.chip, skb) |
1683                                TXPKT_IPCSUM_DIS_F;
1684                        q->tx_cso++;
1685                }
1686        }
1687
1688        if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1689                /* If current position is already at the end of the
1690                 * txq, reset the current to point to start of the queue
1691                 * and update the end ptr as well.
1692                 */
1693                left = (u8 *)end - (u8 *)q->q.stat;
1694                end = (void *)q->q.desc + left;
1695                sgl = (void *)q->q.desc;
1696        }
1697
1698        if (skb_vlan_tag_present(skb)) {
1699                q->vlan_ins++;
1700                cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1701#ifdef CONFIG_CHELSIO_T4_FCOE
1702                if (skb->protocol == htons(ETH_P_FCOE))
1703                        cntrl |= TXPKT_VLAN_V(
1704                                 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1705#endif /* CONFIG_CHELSIO_T4_FCOE */
1706        }
1707
1708        ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1709                TXPKT_PF_V(adap->pf);
1710        if (ptp_enabled)
1711                ctrl0 |= TXPKT_TSTAMP_F;
1712#ifdef CONFIG_CHELSIO_T4_DCB
1713        if (is_t4(adap->params.chip))
1714                ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1715        else
1716                ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1717#endif
1718        cpl->ctrl0 = htonl(ctrl0);
1719        cpl->pack = htons(0);
1720        cpl->len = htons(skb->len);
1721        cpl->ctrl1 = cpu_to_be64(cntrl);
1722
1723        if (immediate) {
1724                cxgb4_inline_tx_skb(skb, &q->q, sgl);
1725                dev_consume_skb_any(skb);
1726        } else {
1727                cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1728                                sgl_sdesc->addr);
1729                skb_orphan(skb);
1730                sgl_sdesc->skb = skb;
1731        }
1732
1733        txq_advance(&q->q, ndesc);
1734
1735        cxgb4_ring_tx_db(adap, &q->q, ndesc);
1736        return NETDEV_TX_OK;
1737
1738out_free:
1739        dev_kfree_skb_any(skb);
1740        return NETDEV_TX_OK;
1741}
1742
1743/* Constants ... */
1744enum {
1745        /* Egress Queue sizes, producer and consumer indices are all in units
1746         * of Egress Context Units bytes.  Note that as far as the hardware is
1747         * concerned, the free list is an Egress Queue (the host produces free
1748         * buffers which the hardware consumes) and free list entries are
1749         * 64-bit PCI DMA addresses.
1750         */
1751        EQ_UNIT = SGE_EQ_IDXSIZE,
1752        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1753        TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1754
1755        T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1756                               sizeof(struct cpl_tx_pkt_lso_core) +
1757                               sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1758};
1759
1760/**
1761 *      t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1762 *      @skb: the packet
1763 *
1764 *      Returns whether an Ethernet packet is small enough to fit completely as
1765 *      immediate data.
1766 */
1767static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1768{
1769        /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1770         * which does not accommodate immediate data.  We could dike out all
1771         * of the support code for immediate data but that would tie our hands
1772         * too much if we ever want to enhace the firmware.  It would also
1773         * create more differences between the PF and VF Drivers.
1774         */
1775        return false;
1776}
1777
1778/**
1779 *      t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1780 *      @skb: the packet
1781 *
1782 *      Returns the number of flits needed for a TX Work Request for the
1783 *      given Ethernet packet, including the needed WR and CPL headers.
1784 */
1785static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1786{
1787        unsigned int flits;
1788
1789        /* If the skb is small enough, we can pump it out as a work request
1790         * with only immediate data.  In that case we just have to have the
1791         * TX Packet header plus the skb data in the Work Request.
1792         */
1793        if (t4vf_is_eth_imm(skb))
1794                return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1795                                    sizeof(__be64));
1796
1797        /* Otherwise, we're going to have to construct a Scatter gather list
1798         * of the skb body and fragments.  We also include the flits necessary
1799         * for the TX Packet Work Request and CPL.  We always have a firmware
1800         * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1801         * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1802         * message or, if we're doing a Large Send Offload, an LSO CPL message
1803         * with an embedded TX Packet Write CPL message.
1804         */
1805        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1806        if (skb_shinfo(skb)->gso_size)
1807                flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1808                          sizeof(struct cpl_tx_pkt_lso_core) +
1809                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1810        else
1811                flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1812                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1813        return flits;
1814}
1815
1816/**
1817 *      cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1818 *      @skb: the packet
1819 *      @dev: the egress net device
1820 *
1821 *      Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1822 */
1823static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1824                                     struct net_device *dev)
1825{
1826        unsigned int last_desc, flits, ndesc;
1827        const struct skb_shared_info *ssi;
1828        struct fw_eth_tx_pkt_vm_wr *wr;
1829        struct tx_sw_desc *sgl_sdesc;
1830        struct cpl_tx_pkt_core *cpl;
1831        const struct port_info *pi;
1832        struct sge_eth_txq *txq;
1833        struct adapter *adapter;
1834        int qidx, credits, ret;
1835        size_t fw_hdr_copy_len;
1836        unsigned int chip_ver;
1837        u64 cntrl, *end;
1838        u32 wr_mid;
1839
1840        /* The chip minimum packet length is 10 octets but the firmware
1841         * command that we are using requires that we copy the Ethernet header
1842         * (including the VLAN tag) into the header so we reject anything
1843         * smaller than that ...
1844         */
1845        BUILD_BUG_ON(sizeof(wr->firmware) !=
1846                     (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1847                      sizeof(wr->ethtype) + sizeof(wr->vlantci)));
1848        fw_hdr_copy_len = sizeof(wr->firmware);
1849        ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1850        if (ret)
1851                goto out_free;
1852
1853        /* Figure out which TX Queue we're going to use. */
1854        pi = netdev_priv(dev);
1855        adapter = pi->adapter;
1856        qidx = skb_get_queue_mapping(skb);
1857        WARN_ON(qidx >= pi->nqsets);
1858        txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1859
1860        /* Take this opportunity to reclaim any TX Descriptors whose DMA
1861         * transfers have completed.
1862         */
1863        reclaim_completed_tx(adapter, &txq->q, -1, true);
1864
1865        /* Calculate the number of flits and TX Descriptors we're going to
1866         * need along with how many TX Descriptors will be left over after
1867         * we inject our Work Request.
1868         */
1869        flits = t4vf_calc_tx_flits(skb);
1870        ndesc = flits_to_desc(flits);
1871        credits = txq_avail(&txq->q) - ndesc;
1872
1873        if (unlikely(credits < 0)) {
1874                /* Not enough room for this packet's Work Request.  Stop the
1875                 * TX Queue and return a "busy" condition.  The queue will get
1876                 * started later on when the firmware informs us that space
1877                 * has opened up.
1878                 */
1879                eth_txq_stop(txq);
1880                dev_err(adapter->pdev_dev,
1881                        "%s: TX ring %u full while queue awake!\n",
1882                        dev->name, qidx);
1883                return NETDEV_TX_BUSY;
1884        }
1885
1886        last_desc = txq->q.pidx + ndesc - 1;
1887        if (last_desc >= txq->q.size)
1888                last_desc -= txq->q.size;
1889        sgl_sdesc = &txq->q.sdesc[last_desc];
1890
1891        if (!t4vf_is_eth_imm(skb) &&
1892            unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1893                                   sgl_sdesc->addr) < 0)) {
1894                /* We need to map the skb into PCI DMA space (because it can't
1895                 * be in-lined directly into the Work Request) and the mapping
1896                 * operation failed.  Record the error and drop the packet.
1897                 */
1898                memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1899                txq->mapping_err++;
1900                goto out_free;
1901        }
1902
1903        chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1904        wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1905        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1906                /* After we're done injecting the Work Request for this
1907                 * packet, we'll be below our "stop threshold" so stop the TX
1908                 * Queue now and schedule a request for an SGE Egress Queue
1909                 * Update message.  The queue will get started later on when
1910                 * the firmware processes this Work Request and sends us an
1911                 * Egress Queue Status Update message indicating that space
1912                 * has opened up.
1913                 */
1914                eth_txq_stop(txq);
1915                if (chip_ver > CHELSIO_T5)
1916                        wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1917        }
1918
1919        /* Start filling in our Work Request.  Note that we do _not_ handle
1920         * the WR Header wrapping around the TX Descriptor Ring.  If our
1921         * maximum header size ever exceeds one TX Descriptor, we'll need to
1922         * do something else here.
1923         */
1924        WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1925        wr = (void *)&txq->q.desc[txq->q.pidx];
1926        wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1927        wr->r3[0] = cpu_to_be32(0);
1928        wr->r3[1] = cpu_to_be32(0);
1929        skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1930        end = (u64 *)wr + flits;
1931
1932        /* If this is a Large Send Offload packet we'll put in an LSO CPL
1933         * message with an encapsulated TX Packet CPL message.  Otherwise we
1934         * just use a TX Packet CPL message.
1935         */
1936        ssi = skb_shinfo(skb);
1937        if (ssi->gso_size) {
1938                struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1939                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1940                int l3hdr_len = skb_network_header_len(skb);
1941                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1942
1943                wr->op_immdlen =
1944                        cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1945                                    FW_WR_IMMDLEN_V(sizeof(*lso) +
1946                                                    sizeof(*cpl)));
1947                 /* Fill in the LSO CPL message. */
1948                lso->lso_ctrl =
1949                        cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1950                                    LSO_FIRST_SLICE_F |
1951                                    LSO_LAST_SLICE_F |
1952                                    LSO_IPV6_V(v6) |
1953                                    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1954                                    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1955                                    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1956                lso->ipid_ofst = cpu_to_be16(0);
1957                lso->mss = cpu_to_be16(ssi->gso_size);
1958                lso->seqno_offset = cpu_to_be32(0);
1959                if (is_t4(adapter->params.chip))
1960                        lso->len = cpu_to_be32(skb->len);
1961                else
1962                        lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1963
1964                /* Set up TX Packet CPL pointer, control word and perform
1965                 * accounting.
1966                 */
1967                cpl = (void *)(lso + 1);
1968
1969                if (chip_ver <= CHELSIO_T5)
1970                        cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1971                else
1972                        cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1973
1974                cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1975                                           TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1976                         TXPKT_IPHDR_LEN_V(l3hdr_len);
1977                txq->tso++;
1978                txq->tx_cso += ssi->gso_segs;
1979        } else {
1980                int len;
1981
1982                len = (t4vf_is_eth_imm(skb)
1983                       ? skb->len + sizeof(*cpl)
1984                       : sizeof(*cpl));
1985                wr->op_immdlen =
1986                        cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1987                                    FW_WR_IMMDLEN_V(len));
1988
1989                /* Set up TX Packet CPL pointer, control word and perform
1990                 * accounting.
1991                 */
1992                cpl = (void *)(wr + 1);
1993                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1994                        cntrl = hwcsum(adapter->params.chip, skb) |
1995                                TXPKT_IPCSUM_DIS_F;
1996                        txq->tx_cso++;
1997                } else {
1998                        cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1999                }
2000        }
2001
2002        /* If there's a VLAN tag present, add that to the list of things to
2003         * do in this Work Request.
2004         */
2005        if (skb_vlan_tag_present(skb)) {
2006                txq->vlan_ins++;
2007                cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2008        }
2009
2010         /* Fill in the TX Packet CPL message header. */
2011        cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2012                                 TXPKT_INTF_V(pi->port_id) |
2013                                 TXPKT_PF_V(0));
2014        cpl->pack = cpu_to_be16(0);
2015        cpl->len = cpu_to_be16(skb->len);
2016        cpl->ctrl1 = cpu_to_be64(cntrl);
2017
2018        /* Fill in the body of the TX Packet CPL message with either in-lined
2019         * data or a Scatter/Gather List.
2020         */
2021        if (t4vf_is_eth_imm(skb)) {
2022                /* In-line the packet's data and free the skb since we don't
2023                 * need it any longer.
2024                 */
2025                cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2026                dev_consume_skb_any(skb);
2027        } else {
2028                /* Write the skb's Scatter/Gather list into the TX Packet CPL
2029                 * message and retain a pointer to the skb so we can free it
2030                 * later when its DMA completes.  (We store the skb pointer
2031                 * in the Software Descriptor corresponding to the last TX
2032                 * Descriptor used by the Work Request.)
2033                 *
2034                 * The retained skb will be freed when the corresponding TX
2035                 * Descriptors are reclaimed after their DMAs complete.
2036                 * However, this could take quite a while since, in general,
2037                 * the hardware is set up to be lazy about sending DMA
2038                 * completion notifications to us and we mostly perform TX
2039                 * reclaims in the transmit routine.
2040                 *
2041                 * This is good for performamce but means that we rely on new
2042                 * TX packets arriving to run the destructors of completed
2043                 * packets, which open up space in their sockets' send queues.
2044                 * Sometimes we do not get such new packets causing TX to
2045                 * stall.  A single UDP transmitter is a good example of this
2046                 * situation.  We have a clean up timer that periodically
2047                 * reclaims completed packets but it doesn't run often enough
2048                 * (nor do we want it to) to prevent lengthy stalls.  A
2049                 * solution to this problem is to run the destructor early,
2050                 * after the packet is queued but before it's DMAd.  A con is
2051                 * that we lie to socket memory accounting, but the amount of
2052                 * extra memory is reasonable (limited by the number of TX
2053                 * descriptors), the packets do actually get freed quickly by
2054                 * new packets almost always, and for protocols like TCP that
2055                 * wait for acks to really free up the data the extra memory
2056                 * is even less.  On the positive side we run the destructors
2057                 * on the sending CPU rather than on a potentially different
2058                 * completing CPU, usually a good thing.
2059                 *
2060                 * Run the destructor before telling the DMA engine about the
2061                 * packet to make sure it doesn't complete and get freed
2062                 * prematurely.
2063                 */
2064                struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2065                struct sge_txq *tq = &txq->q;
2066
2067                /* If the Work Request header was an exact multiple of our TX
2068                 * Descriptor length, then it's possible that the starting SGL
2069                 * pointer lines up exactly with the end of our TX Descriptor
2070                 * ring.  If that's the case, wrap around to the beginning
2071                 * here ...
2072                 */
2073                if (unlikely((void *)sgl == (void *)tq->stat)) {
2074                        sgl = (void *)tq->desc;
2075                        end = (void *)((void *)tq->desc +
2076                                       ((void *)end - (void *)tq->stat));
2077                }
2078
2079                cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2080                skb_orphan(skb);
2081                sgl_sdesc->skb = skb;
2082        }
2083
2084        /* Advance our internal TX Queue state, tell the hardware about
2085         * the new TX descriptors and return success.
2086         */
2087        txq_advance(&txq->q, ndesc);
2088
2089        cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2090        return NETDEV_TX_OK;
2091
2092out_free:
2093        /* An error of some sort happened.  Free the TX skb and tell the
2094         * OS that we've "dealt" with the packet ...
2095         */
2096        dev_kfree_skb_any(skb);
2097        return NETDEV_TX_OK;
2098}
2099
2100/**
2101 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2102 * @q: the SGE control Tx queue
2103 *
2104 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2105 * for Tx queues that send only immediate data (presently just
2106 * the control queues) and      thus do not have any sk_buffs to release.
2107 */
2108static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2109{
2110        int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2111        int reclaim = hw_cidx - q->cidx;
2112
2113        if (reclaim < 0)
2114                reclaim += q->size;
2115
2116        q->in_use -= reclaim;
2117        q->cidx = hw_cidx;
2118}
2119
2120static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2121{
2122        u32 val = *idx + n;
2123
2124        if (val >= max)
2125                val -= max;
2126
2127        *idx = val;
2128}
2129
2130void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2131                              struct sge_eosw_txq *eosw_txq, u32 ndesc)
2132{
2133        struct tx_sw_desc *d;
2134
2135        d = &eosw_txq->desc[eosw_txq->last_cidx];
2136        while (ndesc--) {
2137                if (d->skb) {
2138                        if (d->addr[0]) {
2139                                unmap_skb(adap->pdev_dev, d->skb, d->addr);
2140                                memset(d->addr, 0, sizeof(d->addr));
2141                        }
2142                        dev_consume_skb_any(d->skb);
2143                        d->skb = NULL;
2144                }
2145                eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2146                                       eosw_txq->ndesc);
2147                d = &eosw_txq->desc[eosw_txq->last_cidx];
2148        }
2149}
2150
2151static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2152{
2153        eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2154        eosw_txq->inuse += n;
2155}
2156
2157static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2158                                   struct sk_buff *skb)
2159{
2160        if (eosw_txq->inuse == eosw_txq->ndesc)
2161                return -ENOMEM;
2162
2163        eosw_txq->desc[eosw_txq->pidx].skb = skb;
2164        return 0;
2165}
2166
2167static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2168{
2169        return eosw_txq->desc[eosw_txq->last_pidx].skb;
2170}
2171
2172static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2173                                       struct sk_buff *skb, u32 hdr_len)
2174{
2175        u8 flits, nsgl = 0;
2176        u32 wrlen;
2177
2178        wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2179        if (skb_shinfo(skb)->gso_size &&
2180            !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2181                wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2182
2183        wrlen += roundup(hdr_len, 16);
2184
2185        /* Packet headers + WR + CPLs */
2186        flits = DIV_ROUND_UP(wrlen, 8);
2187
2188        if (skb_shinfo(skb)->nr_frags > 0) {
2189                if (skb_headlen(skb) - hdr_len)
2190                        nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2191                else
2192                        nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2193        } else if (skb->len - hdr_len) {
2194                nsgl = sgl_len(1);
2195        }
2196
2197        return flits + nsgl;
2198}
2199
2200static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2201                         struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2202                         u32 hdr_len, u32 wrlen)
2203{
2204        const struct skb_shared_info *ssi = skb_shinfo(skb);
2205        struct cpl_tx_pkt_core *cpl;
2206        u32 immd_len, wrlen16;
2207        bool compl = false;
2208        u8 ver, proto;
2209
2210        ver = ip_hdr(skb)->version;
2211        proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2212
2213        wrlen16 = DIV_ROUND_UP(wrlen, 16);
2214        immd_len = sizeof(struct cpl_tx_pkt_core);
2215        if (skb_shinfo(skb)->gso_size &&
2216            !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2217                immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2218        immd_len += hdr_len;
2219
2220        if (!eosw_txq->ncompl ||
2221            (eosw_txq->last_compl + wrlen16) >=
2222            (adap->params.ofldq_wr_cred / 2)) {
2223                compl = true;
2224                eosw_txq->ncompl++;
2225                eosw_txq->last_compl = 0;
2226        }
2227
2228        wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2229                                     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2230                                     FW_WR_COMPL_V(compl));
2231        wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2232                                         FW_WR_FLOWID_V(eosw_txq->hwtid));
2233        wr->r3 = 0;
2234        if (proto == IPPROTO_UDP) {
2235                cpl = write_eo_udp_wr(skb, wr, hdr_len);
2236        } else {
2237                wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2238                wr->u.tcpseg.ethlen = skb_network_offset(skb);
2239                wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2240                wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2241                wr->u.tcpseg.tsclk_tsoff = 0;
2242                wr->u.tcpseg.r4 = 0;
2243                wr->u.tcpseg.r5 = 0;
2244                wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2245
2246                if (ssi->gso_size) {
2247                        struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2248
2249                        wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2250                        cpl = write_tso_wr(adap, skb, lso);
2251                } else {
2252                        wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2253                        cpl = (void *)(wr + 1);
2254                }
2255        }
2256
2257        eosw_txq->cred -= wrlen16;
2258        eosw_txq->last_compl += wrlen16;
2259        return cpl;
2260}
2261
2262static int ethofld_hard_xmit(struct net_device *dev,
2263                             struct sge_eosw_txq *eosw_txq)
2264{
2265        struct port_info *pi = netdev2pinfo(dev);
2266        struct adapter *adap = netdev2adap(dev);
2267        u32 wrlen, wrlen16, hdr_len, data_len;
2268        enum sge_eosw_state next_state;
2269        u64 cntrl, *start, *end, *sgl;
2270        struct sge_eohw_txq *eohw_txq;
2271        struct cpl_tx_pkt_core *cpl;
2272        struct fw_eth_tx_eo_wr *wr;
2273        bool skip_eotx_wr = false;
2274        struct tx_sw_desc *d;
2275        struct sk_buff *skb;
2276        int left, ret = 0;
2277        u8 flits, ndesc;
2278
2279        eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2280        spin_lock(&eohw_txq->lock);
2281        reclaim_completed_tx_imm(&eohw_txq->q);
2282
2283        d = &eosw_txq->desc[eosw_txq->last_pidx];
2284        skb = d->skb;
2285        skb_tx_timestamp(skb);
2286
2287        wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2288        if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2289                     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2290                hdr_len = skb->len;
2291                data_len = 0;
2292                flits = DIV_ROUND_UP(hdr_len, 8);
2293                if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2294                        next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2295                else
2296                        next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2297                skip_eotx_wr = true;
2298        } else {
2299                hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2300                data_len = skb->len - hdr_len;
2301                flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2302        }
2303        ndesc = flits_to_desc(flits);
2304        wrlen = flits * 8;
2305        wrlen16 = DIV_ROUND_UP(wrlen, 16);
2306
2307        left = txq_avail(&eohw_txq->q) - ndesc;
2308
2309        /* If there are no descriptors left in hardware queues or no
2310         * CPL credits left in software queues, then wait for them
2311         * to come back and retry again. Note that we always request
2312         * for credits update via interrupt for every half credits
2313         * consumed. So, the interrupt will eventually restore the
2314         * credits and invoke the Tx path again.
2315         */
2316        if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2317                ret = -ENOMEM;
2318                goto out_unlock;
2319        }
2320
2321        if (unlikely(skip_eotx_wr)) {
2322                start = (u64 *)wr;
2323                eosw_txq->state = next_state;
2324                eosw_txq->cred -= wrlen16;
2325                eosw_txq->ncompl++;
2326                eosw_txq->last_compl = 0;
2327                goto write_wr_headers;
2328        }
2329
2330        cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2331        cntrl = hwcsum(adap->params.chip, skb);
2332        if (skb_vlan_tag_present(skb))
2333                cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2334
2335        cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2336                                 TXPKT_INTF_V(pi->tx_chan) |
2337                                 TXPKT_PF_V(adap->pf));
2338        cpl->pack = 0;
2339        cpl->len = cpu_to_be16(skb->len);
2340        cpl->ctrl1 = cpu_to_be64(cntrl);
2341
2342        start = (u64 *)(cpl + 1);
2343
2344write_wr_headers:
2345        sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2346                                          hdr_len);
2347        if (data_len) {
2348                ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2349                if (unlikely(ret)) {
2350                        memset(d->addr, 0, sizeof(d->addr));
2351                        eohw_txq->mapping_err++;
2352                        goto out_unlock;
2353                }
2354
2355                end = (u64 *)wr + flits;
2356                if (unlikely(start > sgl)) {
2357                        left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2358                        end = (void *)eohw_txq->q.desc + left;
2359                }
2360
2361                if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2362                        /* If current position is already at the end of the
2363                         * txq, reset the current to point to start of the queue
2364                         * and update the end ptr as well.
2365                         */
2366                        left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2367
2368                        end = (void *)eohw_txq->q.desc + left;
2369                        sgl = (void *)eohw_txq->q.desc;
2370                }
2371
2372                cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2373                                d->addr);
2374        }
2375
2376        if (skb_shinfo(skb)->gso_size) {
2377                if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2378                        eohw_txq->uso++;
2379                else
2380                        eohw_txq->tso++;
2381                eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2382        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2383                eohw_txq->tx_cso++;
2384        }
2385
2386        if (skb_vlan_tag_present(skb))
2387                eohw_txq->vlan_ins++;
2388
2389        txq_advance(&eohw_txq->q, ndesc);
2390        cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2391        eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2392
2393out_unlock:
2394        spin_unlock(&eohw_txq->lock);
2395        return ret;
2396}
2397
2398static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2399{
2400        struct sk_buff *skb;
2401        int pktcount, ret;
2402
2403        switch (eosw_txq->state) {
2404        case CXGB4_EO_STATE_ACTIVE:
2405        case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2406        case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2407                pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2408                if (pktcount < 0)
2409                        pktcount += eosw_txq->ndesc;
2410                break;
2411        case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2412        case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2413        case CXGB4_EO_STATE_CLOSED:
2414        default:
2415                return;
2416        }
2417
2418        while (pktcount--) {
2419                skb = eosw_txq_peek(eosw_txq);
2420                if (!skb) {
2421                        eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2422                                               eosw_txq->ndesc);
2423                        continue;
2424                }
2425
2426                ret = ethofld_hard_xmit(dev, eosw_txq);
2427                if (ret)
2428                        break;
2429        }
2430}
2431
2432static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2433                                      struct net_device *dev)
2434{
2435        struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2436        struct port_info *pi = netdev2pinfo(dev);
2437        struct adapter *adap = netdev2adap(dev);
2438        struct sge_eosw_txq *eosw_txq;
2439        u32 qid;
2440        int ret;
2441
2442        ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2443        if (ret)
2444                goto out_free;
2445
2446        tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2447        qid = skb_get_queue_mapping(skb) - pi->nqsets;
2448        eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2449        spin_lock_bh(&eosw_txq->lock);
2450        if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2451                goto out_unlock;
2452
2453        ret = eosw_txq_enqueue(eosw_txq, skb);
2454        if (ret)
2455                goto out_unlock;
2456
2457        /* SKB is queued for processing until credits are available.
2458         * So, call the destructor now and we'll free the skb later
2459         * after it has been successfully transmitted.
2460         */
2461        skb_orphan(skb);
2462
2463        eosw_txq_advance(eosw_txq, 1);
2464        ethofld_xmit(dev, eosw_txq);
2465        spin_unlock_bh(&eosw_txq->lock);
2466        return NETDEV_TX_OK;
2467
2468out_unlock:
2469        spin_unlock_bh(&eosw_txq->lock);
2470out_free:
2471        dev_kfree_skb_any(skb);
2472        return NETDEV_TX_OK;
2473}
2474
2475netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2476{
2477        struct port_info *pi = netdev_priv(dev);
2478        u16 qid = skb_get_queue_mapping(skb);
2479
2480        if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2481                return cxgb4_vf_eth_xmit(skb, dev);
2482
2483        if (unlikely(qid >= pi->nqsets))
2484                return cxgb4_ethofld_xmit(skb, dev);
2485
2486        if (is_ptp_enabled(skb, dev)) {
2487                struct adapter *adap = netdev2adap(dev);
2488                netdev_tx_t ret;
2489
2490                spin_lock(&adap->ptp_lock);
2491                ret = cxgb4_eth_xmit(skb, dev);
2492                spin_unlock(&adap->ptp_lock);
2493                return ret;
2494        }
2495
2496        return cxgb4_eth_xmit(skb, dev);
2497}
2498
2499static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2500{
2501        int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2502        int pidx = eosw_txq->pidx;
2503        struct sk_buff *skb;
2504
2505        if (!pktcount)
2506                return;
2507
2508        if (pktcount < 0)
2509                pktcount += eosw_txq->ndesc;
2510
2511        while (pktcount--) {
2512                pidx--;
2513                if (pidx < 0)
2514                        pidx += eosw_txq->ndesc;
2515
2516                skb = eosw_txq->desc[pidx].skb;
2517                if (skb) {
2518                        dev_consume_skb_any(skb);
2519                        eosw_txq->desc[pidx].skb = NULL;
2520                        eosw_txq->inuse--;
2521                }
2522        }
2523
2524        eosw_txq->pidx = eosw_txq->last_pidx + 1;
2525}
2526
2527/**
2528 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2529 * @dev: netdevice
2530 * @eotid: ETHOFLD tid to bind/unbind
2531 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2532 *
2533 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2534 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2535 * a traffic class.
2536 */
2537int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2538{
2539        struct port_info *pi = netdev2pinfo(dev);
2540        struct adapter *adap = netdev2adap(dev);
2541        enum sge_eosw_state next_state;
2542        struct sge_eosw_txq *eosw_txq;
2543        u32 len, len16, nparams = 6;
2544        struct fw_flowc_wr *flowc;
2545        struct eotid_entry *entry;
2546        struct sge_ofld_rxq *rxq;
2547        struct sk_buff *skb;
2548        int ret = 0;
2549
2550        len = struct_size(flowc, mnemval, nparams);
2551        len16 = DIV_ROUND_UP(len, 16);
2552
2553        entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2554        if (!entry)
2555                return -ENOMEM;
2556
2557        eosw_txq = (struct sge_eosw_txq *)entry->data;
2558        if (!eosw_txq)
2559                return -ENOMEM;
2560
2561        if (!(adap->flags & CXGB4_FW_OK)) {
2562                /* Don't stall caller when access to FW is lost */
2563                complete(&eosw_txq->completion);
2564                return -EIO;
2565        }
2566
2567        skb = alloc_skb(len, GFP_KERNEL);
2568        if (!skb)
2569                return -ENOMEM;
2570
2571        spin_lock_bh(&eosw_txq->lock);
2572        if (tc != FW_SCHED_CLS_NONE) {
2573                if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2574                        goto out_free_skb;
2575
2576                next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2577        } else {
2578                if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2579                        goto out_free_skb;
2580
2581                next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2582        }
2583
2584        flowc = __skb_put(skb, len);
2585        memset(flowc, 0, len);
2586
2587        rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2588        flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2589                                          FW_WR_FLOWID_V(eosw_txq->hwtid));
2590        flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2591                                           FW_FLOWC_WR_NPARAMS_V(nparams) |
2592                                           FW_WR_COMPL_V(1));
2593        flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2594        flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2595        flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2596        flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2597        flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2598        flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2599        flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2600        flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2601        flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2602        flowc->mnemval[4].val = cpu_to_be32(tc);
2603        flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2604        flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2605                                            FW_FLOWC_MNEM_EOSTATE_CLOSING :
2606                                            FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2607
2608        /* Free up any pending skbs to ensure there's room for
2609         * termination FLOWC.
2610         */
2611        if (tc == FW_SCHED_CLS_NONE)
2612                eosw_txq_flush_pending_skbs(eosw_txq);
2613
2614        ret = eosw_txq_enqueue(eosw_txq, skb);
2615        if (ret)
2616                goto out_free_skb;
2617
2618        eosw_txq->state = next_state;
2619        eosw_txq->flowc_idx = eosw_txq->pidx;
2620        eosw_txq_advance(eosw_txq, 1);
2621        ethofld_xmit(dev, eosw_txq);
2622
2623        spin_unlock_bh(&eosw_txq->lock);
2624        return 0;
2625
2626out_free_skb:
2627        dev_consume_skb_any(skb);
2628        spin_unlock_bh(&eosw_txq->lock);
2629        return ret;
2630}
2631
2632/**
2633 *      is_imm - check whether a packet can be sent as immediate data
2634 *      @skb: the packet
2635 *
2636 *      Returns true if a packet can be sent as a WR with immediate data.
2637 */
2638static inline int is_imm(const struct sk_buff *skb)
2639{
2640        return skb->len <= MAX_CTRL_WR_LEN;
2641}
2642
2643/**
2644 *      ctrlq_check_stop - check if a control queue is full and should stop
2645 *      @q: the queue
2646 *      @wr: most recent WR written to the queue
2647 *
2648 *      Check if a control queue has become full and should be stopped.
2649 *      We clean up control queue descriptors very lazily, only when we are out.
2650 *      If the queue is still full after reclaiming any completed descriptors
2651 *      we suspend it and have the last WR wake it up.
2652 */
2653static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2654{
2655        reclaim_completed_tx_imm(&q->q);
2656        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2657                wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2658                q->q.stops++;
2659                q->full = 1;
2660        }
2661}
2662
2663#define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2664
2665int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2666{
2667        struct port_info *pi = netdev_priv(netdev);
2668        struct adapter *adap = pi->adapter;
2669        struct cxgb4_ethtool_lb_test *lb;
2670        int ret, i = 0, pkt_len, credits;
2671        struct fw_eth_tx_pkt_wr *wr;
2672        struct cpl_tx_pkt_core *cpl;
2673        u32 ctrl0, ndesc, flits;
2674        struct sge_eth_txq *q;
2675        u8 *sgl;
2676
2677        pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2678
2679        flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2680                             sizeof(__be64));
2681        ndesc = flits_to_desc(flits);
2682
2683        lb = &pi->ethtool_lb;
2684        lb->loopback = 1;
2685
2686        q = &adap->sge.ethtxq[pi->first_qset];
2687        __netif_tx_lock(q->txq, smp_processor_id());
2688
2689        reclaim_completed_tx(adap, &q->q, -1, true);
2690        credits = txq_avail(&q->q) - ndesc;
2691        if (unlikely(credits < 0)) {
2692                __netif_tx_unlock(q->txq);
2693                return -ENOMEM;
2694        }
2695
2696        wr = (void *)&q->q.desc[q->q.pidx];
2697        memset(wr, 0, sizeof(struct tx_desc));
2698
2699        wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2700                               FW_WR_IMMDLEN_V(pkt_len +
2701                               sizeof(*cpl)));
2702        wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2703        wr->r3 = cpu_to_be64(0);
2704
2705        cpl = (void *)(wr + 1);
2706        sgl = (u8 *)(cpl + 1);
2707
2708        ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2709                TXPKT_INTF_V(pi->tx_chan + 4);
2710
2711        cpl->ctrl0 = htonl(ctrl0);
2712        cpl->pack = htons(0);
2713        cpl->len = htons(pkt_len);
2714        cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2715
2716        eth_broadcast_addr(sgl);
2717        i += ETH_ALEN;
2718        ether_addr_copy(&sgl[i], netdev->dev_addr);
2719        i += ETH_ALEN;
2720
2721        snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2722                 CXGB4_SELFTEST_LB_STR);
2723
2724        init_completion(&lb->completion);
2725        txq_advance(&q->q, ndesc);
2726        cxgb4_ring_tx_db(adap, &q->q, ndesc);
2727        __netif_tx_unlock(q->txq);
2728
2729        /* wait for the pkt to return */
2730        ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2731        if (!ret)
2732                ret = -ETIMEDOUT;
2733        else
2734                ret = lb->result;
2735
2736        lb->loopback = 0;
2737
2738        return ret;
2739}
2740
2741/**
2742 *      ctrl_xmit - send a packet through an SGE control Tx queue
2743 *      @q: the control queue
2744 *      @skb: the packet
2745 *
2746 *      Send a packet through an SGE control Tx queue.  Packets sent through
2747 *      a control queue must fit entirely as immediate data.
2748 */
2749static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2750{
2751        unsigned int ndesc;
2752        struct fw_wr_hdr *wr;
2753
2754        if (unlikely(!is_imm(skb))) {
2755                WARN_ON(1);
2756                dev_kfree_skb(skb);
2757                return NET_XMIT_DROP;
2758        }
2759
2760        ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2761        spin_lock(&q->sendq.lock);
2762
2763        if (unlikely(q->full)) {
2764                skb->priority = ndesc;                  /* save for restart */
2765                __skb_queue_tail(&q->sendq, skb);
2766                spin_unlock(&q->sendq.lock);
2767                return NET_XMIT_CN;
2768        }
2769
2770        wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2771        cxgb4_inline_tx_skb(skb, &q->q, wr);
2772
2773        txq_advance(&q->q, ndesc);
2774        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2775                ctrlq_check_stop(q, wr);
2776
2777        cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2778        spin_unlock(&q->sendq.lock);
2779
2780        kfree_skb(skb);
2781        return NET_XMIT_SUCCESS;
2782}
2783
2784/**
2785 *      restart_ctrlq - restart a suspended control queue
2786 *      @t: pointer to the tasklet associated with this handler
2787 *
2788 *      Resumes transmission on a suspended Tx control queue.
2789 */
2790static void restart_ctrlq(struct tasklet_struct *t)
2791{
2792        struct sk_buff *skb;
2793        unsigned int written = 0;
2794        struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2795
2796        spin_lock(&q->sendq.lock);
2797        reclaim_completed_tx_imm(&q->q);
2798        BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2799
2800        while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2801                struct fw_wr_hdr *wr;
2802                unsigned int ndesc = skb->priority;     /* previously saved */
2803
2804                written += ndesc;
2805                /* Write descriptors and free skbs outside the lock to limit
2806                 * wait times.  q->full is still set so new skbs will be queued.
2807                 */
2808                wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2809                txq_advance(&q->q, ndesc);
2810                spin_unlock(&q->sendq.lock);
2811
2812                cxgb4_inline_tx_skb(skb, &q->q, wr);
2813                kfree_skb(skb);
2814
2815                if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2816                        unsigned long old = q->q.stops;
2817
2818                        ctrlq_check_stop(q, wr);
2819                        if (q->q.stops != old) {          /* suspended anew */
2820                                spin_lock(&q->sendq.lock);
2821                                goto ringdb;
2822                        }
2823                }
2824                if (written > 16) {
2825                        cxgb4_ring_tx_db(q->adap, &q->q, written);
2826                        written = 0;
2827                }
2828                spin_lock(&q->sendq.lock);
2829        }
2830        q->full = 0;
2831ringdb:
2832        if (written)
2833                cxgb4_ring_tx_db(q->adap, &q->q, written);
2834        spin_unlock(&q->sendq.lock);
2835}
2836
2837/**
2838 *      t4_mgmt_tx - send a management message
2839 *      @adap: the adapter
2840 *      @skb: the packet containing the management message
2841 *
2842 *      Send a management message through control queue 0.
2843 */
2844int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2845{
2846        int ret;
2847
2848        local_bh_disable();
2849        ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2850        local_bh_enable();
2851        return ret;
2852}
2853
2854/**
2855 *      is_ofld_imm - check whether a packet can be sent as immediate data
2856 *      @skb: the packet
2857 *
2858 *      Returns true if a packet can be sent as an offload WR with immediate
2859 *      data.
2860 *      FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
2861 *      However, FW_ULPTX_WR commands have a 256 byte immediate only
2862 *      payload limit.
2863 */
2864static inline int is_ofld_imm(const struct sk_buff *skb)
2865{
2866        struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2867        unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2868
2869        if (unlikely(opcode == FW_ULPTX_WR))
2870                return skb->len <= MAX_IMM_ULPTX_WR_LEN;
2871        else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2872                return skb->len <= SGE_MAX_WR_LEN;
2873        else
2874                return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
2875}
2876
2877/**
2878 *      calc_tx_flits_ofld - calculate # of flits for an offload packet
2879 *      @skb: the packet
2880 *
2881 *      Returns the number of flits needed for the given offload packet.
2882 *      These packets are already fully constructed and no additional headers
2883 *      will be added.
2884 */
2885static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2886{
2887        unsigned int flits, cnt;
2888
2889        if (is_ofld_imm(skb))
2890                return DIV_ROUND_UP(skb->len, 8);
2891
2892        flits = skb_transport_offset(skb) / 8U;   /* headers */
2893        cnt = skb_shinfo(skb)->nr_frags;
2894        if (skb_tail_pointer(skb) != skb_transport_header(skb))
2895                cnt++;
2896        return flits + sgl_len(cnt);
2897}
2898
2899/**
2900 *      txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2901 *      @q: the queue to stop
2902 *
2903 *      Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2904 *      inability to map packets.  A periodic timer attempts to restart
2905 *      queues so marked.
2906 */
2907static void txq_stop_maperr(struct sge_uld_txq *q)
2908{
2909        q->mapping_err++;
2910        q->q.stops++;
2911        set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2912                q->adap->sge.txq_maperr);
2913}
2914
2915/**
2916 *      ofldtxq_stop - stop an offload Tx queue that has become full
2917 *      @q: the queue to stop
2918 *      @wr: the Work Request causing the queue to become full
2919 *
2920 *      Stops an offload Tx queue that has become full and modifies the packet
2921 *      being written to request a wakeup.
2922 */
2923static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2924{
2925        wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2926        q->q.stops++;
2927        q->full = 1;
2928}
2929
2930/**
2931 *      service_ofldq - service/restart a suspended offload queue
2932 *      @q: the offload queue
2933 *
2934 *      Services an offload Tx queue by moving packets from its Pending Send
2935 *      Queue to the Hardware TX ring.  The function starts and ends with the
2936 *      Send Queue locked, but drops the lock while putting the skb at the
2937 *      head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2938 *      allows more skbs to be added to the Send Queue by other threads.
2939 *      The packet being processed at the head of the Pending Send Queue is
2940 *      left on the queue in case we experience DMA Mapping errors, etc.
2941 *      and need to give up and restart later.
2942 *
2943 *      service_ofldq() can be thought of as a task which opportunistically
2944 *      uses other threads execution contexts.  We use the Offload Queue
2945 *      boolean "service_ofldq_running" to make sure that only one instance
2946 *      is ever running at a time ...
2947 */
2948static void service_ofldq(struct sge_uld_txq *q)
2949        __must_hold(&q->sendq.lock)
2950{
2951        u64 *pos, *before, *end;
2952        int credits;
2953        struct sk_buff *skb;
2954        struct sge_txq *txq;
2955        unsigned int left;
2956        unsigned int written = 0;
2957        unsigned int flits, ndesc;
2958
2959        /* If another thread is currently in service_ofldq() processing the
2960         * Pending Send Queue then there's nothing to do. Otherwise, flag
2961         * that we're doing the work and continue.  Examining/modifying
2962         * the Offload Queue boolean "service_ofldq_running" must be done
2963         * while holding the Pending Send Queue Lock.
2964         */
2965        if (q->service_ofldq_running)
2966                return;
2967        q->service_ofldq_running = true;
2968
2969        while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2970                /* We drop the lock while we're working with the skb at the
2971                 * head of the Pending Send Queue.  This allows more skbs to
2972                 * be added to the Pending Send Queue while we're working on
2973                 * this one.  We don't need to lock to guard the TX Ring
2974                 * updates because only one thread of execution is ever
2975                 * allowed into service_ofldq() at a time.
2976                 */
2977                spin_unlock(&q->sendq.lock);
2978
2979                cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2980
2981                flits = skb->priority;                /* previously saved */
2982                ndesc = flits_to_desc(flits);
2983                credits = txq_avail(&q->q) - ndesc;
2984                BUG_ON(credits < 0);
2985                if (unlikely(credits < TXQ_STOP_THRES))
2986                        ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2987
2988                pos = (u64 *)&q->q.desc[q->q.pidx];
2989                if (is_ofld_imm(skb))
2990                        cxgb4_inline_tx_skb(skb, &q->q, pos);
2991                else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2992                                       (dma_addr_t *)skb->head)) {
2993                        txq_stop_maperr(q);
2994                        spin_lock(&q->sendq.lock);
2995                        break;
2996                } else {
2997                        int last_desc, hdr_len = skb_transport_offset(skb);
2998
2999                        /* The WR headers  may not fit within one descriptor.
3000                         * So we need to deal with wrap-around here.
3001                         */
3002                        before = (u64 *)pos;
3003                        end = (u64 *)pos + flits;
3004                        txq = &q->q;
3005                        pos = (void *)inline_tx_skb_header(skb, &q->q,
3006                                                           (void *)pos,
3007                                                           hdr_len);
3008                        if (before > (u64 *)pos) {
3009                                left = (u8 *)end - (u8 *)txq->stat;
3010                                end = (void *)txq->desc + left;
3011                        }
3012
3013                        /* If current position is already at the end of the
3014                         * ofld queue, reset the current to point to
3015                         * start of the queue and update the end ptr as well.
3016                         */
3017                        if (pos == (u64 *)txq->stat) {
3018                                left = (u8 *)end - (u8 *)txq->stat;
3019                                end = (void *)txq->desc + left;
3020                                pos = (void *)txq->desc;
3021                        }
3022
3023                        cxgb4_write_sgl(skb, &q->q, (void *)pos,
3024                                        end, hdr_len,
3025                                        (dma_addr_t *)skb->head);
3026#ifdef CONFIG_NEED_DMA_MAP_STATE
3027                        skb->dev = q->adap->port[0];
3028                        skb->destructor = deferred_unmap_destructor;
3029#endif
3030                        last_desc = q->q.pidx + ndesc - 1;
3031                        if (last_desc >= q->q.size)
3032                                last_desc -= q->q.size;
3033                        q->q.sdesc[last_desc].skb = skb;
3034                }
3035
3036                txq_advance(&q->q, ndesc);
3037                written += ndesc;
3038                if (unlikely(written > 32)) {
3039                        cxgb4_ring_tx_db(q->adap, &q->q, written);
3040                        written = 0;
3041                }
3042
3043                /* Reacquire the Pending Send Queue Lock so we can unlink the
3044                 * skb we've just successfully transferred to the TX Ring and
3045                 * loop for the next skb which may be at the head of the
3046                 * Pending Send Queue.
3047                 */
3048                spin_lock(&q->sendq.lock);
3049                __skb_unlink(skb, &q->sendq);
3050                if (is_ofld_imm(skb))
3051                        kfree_skb(skb);
3052        }
3053        if (likely(written))
3054                cxgb4_ring_tx_db(q->adap, &q->q, written);
3055
3056        /*Indicate that no thread is processing the Pending Send Queue
3057         * currently.
3058         */
3059        q->service_ofldq_running = false;
3060}
3061
3062/**
3063 *      ofld_xmit - send a packet through an offload queue
3064 *      @q: the Tx offload queue
3065 *      @skb: the packet
3066 *
3067 *      Send an offload packet through an SGE offload queue.
3068 */
3069static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3070{
3071        skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
3072        spin_lock(&q->sendq.lock);
3073
3074        /* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
3075         * that results in this new skb being the only one on the queue, start
3076         * servicing it.  If there are other skbs already on the list, then
3077         * either the queue is currently being processed or it's been stopped
3078         * for some reason and it'll be restarted at a later time.  Restart
3079         * paths are triggered by events like experiencing a DMA Mapping Error
3080         * or filling the Hardware TX Ring.
3081         */
3082        __skb_queue_tail(&q->sendq, skb);
3083        if (q->sendq.qlen == 1)
3084                service_ofldq(q);
3085
3086        spin_unlock(&q->sendq.lock);
3087        return NET_XMIT_SUCCESS;
3088}
3089
3090/**
3091 *      restart_ofldq - restart a suspended offload queue
3092 *      @t: pointer to the tasklet associated with this handler
3093 *
3094 *      Resumes transmission on a suspended Tx offload queue.
3095 */
3096static void restart_ofldq(struct tasklet_struct *t)
3097{
3098        struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3099
3100        spin_lock(&q->sendq.lock);
3101        q->full = 0;            /* the queue actually is completely empty now */
3102        service_ofldq(q);
3103        spin_unlock(&q->sendq.lock);
3104}
3105
3106/**
3107 *      skb_txq - return the Tx queue an offload packet should use
3108 *      @skb: the packet
3109 *
3110 *      Returns the Tx queue an offload packet should use as indicated by bits
3111 *      1-15 in the packet's queue_mapping.
3112 */
3113static inline unsigned int skb_txq(const struct sk_buff *skb)
3114{
3115        return skb->queue_mapping >> 1;
3116}
3117
3118/**
3119 *      is_ctrl_pkt - return whether an offload packet is a control packet
3120 *      @skb: the packet
3121 *
3122 *      Returns whether an offload packet should use an OFLD or a CTRL
3123 *      Tx queue as indicated by bit 0 in the packet's queue_mapping.
3124 */
3125static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3126{
3127        return skb->queue_mapping & 1;
3128}
3129
3130static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3131                           unsigned int tx_uld_type)
3132{
3133        struct sge_uld_txq_info *txq_info;
3134        struct sge_uld_txq *txq;
3135        unsigned int idx = skb_txq(skb);
3136
3137        if (unlikely(is_ctrl_pkt(skb))) {
3138                /* Single ctrl queue is a requirement for LE workaround path */
3139                if (adap->tids.nsftids)
3140                        idx = 0;
3141                return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3142        }
3143
3144        txq_info = adap->sge.uld_txq_info[tx_uld_type];
3145        if (unlikely(!txq_info)) {
3146                WARN_ON(true);
3147                kfree_skb(skb);
3148                return NET_XMIT_DROP;
3149        }
3150
3151        txq = &txq_info->uldtxq[idx];
3152        return ofld_xmit(txq, skb);
3153}
3154
3155/**
3156 *      t4_ofld_send - send an offload packet
3157 *      @adap: the adapter
3158 *      @skb: the packet
3159 *
3160 *      Sends an offload packet.  We use the packet queue_mapping to select the
3161 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
3162 *      should be sent as regular or control, bits 1-15 select the queue.
3163 */
3164int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3165{
3166        int ret;
3167
3168        local_bh_disable();
3169        ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3170        local_bh_enable();
3171        return ret;
3172}
3173
3174/**
3175 *      cxgb4_ofld_send - send an offload packet
3176 *      @dev: the net device
3177 *      @skb: the packet
3178 *
3179 *      Sends an offload packet.  This is an exported version of @t4_ofld_send,
3180 *      intended for ULDs.
3181 */
3182int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3183{
3184        return t4_ofld_send(netdev2adap(dev), skb);
3185}
3186EXPORT_SYMBOL(cxgb4_ofld_send);
3187
3188static void *inline_tx_header(const void *src,
3189                              const struct sge_txq *q,
3190                              void *pos, int length)
3191{
3192        int left = (void *)q->stat - pos;
3193        u64 *p;
3194
3195        if (likely(length <= left)) {
3196                memcpy(pos, src, length);
3197                pos += length;
3198        } else {
3199                memcpy(pos, src, left);
3200                memcpy(q->desc, src + left, length - left);
3201                pos = (void *)q->desc + (length - left);
3202        }
3203        /* 0-pad to multiple of 16 */
3204        p = PTR_ALIGN(pos, 8);
3205        if ((uintptr_t)p & 8) {
3206                *p = 0;
3207                return p + 1;
3208        }
3209        return p;
3210}
3211
3212/**
3213 *      ofld_xmit_direct - copy a WR into offload queue
3214 *      @q: the Tx offload queue
3215 *      @src: location of WR
3216 *      @len: WR length
3217 *
3218 *      Copy an immediate WR into an uncontended SGE offload queue.
3219 */
3220static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3221                            unsigned int len)
3222{
3223        unsigned int ndesc;
3224        int credits;
3225        u64 *pos;
3226
3227        /* Use the lower limit as the cut-off */
3228        if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3229                WARN_ON(1);
3230                return NET_XMIT_DROP;
3231        }
3232
3233        /* Don't return NET_XMIT_CN here as the current
3234         * implementation doesn't queue the request
3235         * using an skb when the following conditions not met
3236         */
3237        if (!spin_trylock(&q->sendq.lock))
3238                return NET_XMIT_DROP;
3239
3240        if (q->full || !skb_queue_empty(&q->sendq) ||
3241            q->service_ofldq_running) {
3242                spin_unlock(&q->sendq.lock);
3243                return NET_XMIT_DROP;
3244        }
3245        ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3246        credits = txq_avail(&q->q) - ndesc;
3247        pos = (u64 *)&q->q.desc[q->q.pidx];
3248
3249        /* ofldtxq_stop modifies WR header in-situ */
3250        inline_tx_header(src, &q->q, pos, len);
3251        if (unlikely(credits < TXQ_STOP_THRES))
3252                ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3253        txq_advance(&q->q, ndesc);
3254        cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3255
3256        spin_unlock(&q->sendq.lock);
3257        return NET_XMIT_SUCCESS;
3258}
3259
3260int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3261                       const void *src, unsigned int len)
3262{
3263        struct sge_uld_txq_info *txq_info;
3264        struct sge_uld_txq *txq;
3265        struct adapter *adap;
3266        int ret;
3267
3268        adap = netdev2adap(dev);
3269
3270        local_bh_disable();
3271        txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3272        if (unlikely(!txq_info)) {
3273                WARN_ON(true);
3274                local_bh_enable();
3275                return NET_XMIT_DROP;
3276        }
3277        txq = &txq_info->uldtxq[idx];
3278
3279        ret = ofld_xmit_direct(txq, src, len);
3280        local_bh_enable();
3281        return net_xmit_eval(ret);
3282}
3283EXPORT_SYMBOL(cxgb4_immdata_send);
3284
3285/**
3286 *      t4_crypto_send - send crypto packet
3287 *      @adap: the adapter
3288 *      @skb: the packet
3289 *
3290 *      Sends crypto packet.  We use the packet queue_mapping to select the
3291 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
3292 *      should be sent as regular or control, bits 1-15 select the queue.
3293 */
3294static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3295{
3296        int ret;
3297
3298        local_bh_disable();
3299        ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3300        local_bh_enable();
3301        return ret;
3302}
3303
3304/**
3305 *      cxgb4_crypto_send - send crypto packet
3306 *      @dev: the net device
3307 *      @skb: the packet
3308 *
3309 *      Sends crypto packet.  This is an exported version of @t4_crypto_send,
3310 *      intended for ULDs.
3311 */
3312int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3313{
3314        return t4_crypto_send(netdev2adap(dev), skb);
3315}
3316EXPORT_SYMBOL(cxgb4_crypto_send);
3317
3318static inline void copy_frags(struct sk_buff *skb,
3319                              const struct pkt_gl *gl, unsigned int offset)
3320{
3321        int i;
3322
3323        /* usually there's just one frag */
3324        __skb_fill_page_desc(skb, 0, gl->frags[0].page,
3325                             gl->frags[0].offset + offset,
3326                             gl->frags[0].size - offset);
3327        skb_shinfo(skb)->nr_frags = gl->nfrags;
3328        for (i = 1; i < gl->nfrags; i++)
3329                __skb_fill_page_desc(skb, i, gl->frags[i].page,
3330                                     gl->frags[i].offset,
3331                                     gl->frags[i].size);
3332
3333        /* get a reference to the last page, we don't own it */
3334        get_page(gl->frags[gl->nfrags - 1].page);
3335}
3336
3337/**
3338 *      cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3339 *      @gl: the gather list
3340 *      @skb_len: size of sk_buff main body if it carries fragments
3341 *      @pull_len: amount of data to move to the sk_buff's main body
3342 *
3343 *      Builds an sk_buff from the given packet gather list.  Returns the
3344 *      sk_buff or %NULL if sk_buff allocation failed.
3345 */
3346struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3347                                   unsigned int skb_len, unsigned int pull_len)
3348{
3349        struct sk_buff *skb;
3350
3351        /*
3352         * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3353         * size, which is expected since buffers are at least PAGE_SIZEd.
3354         * In this case packets up to RX_COPY_THRES have only one fragment.
3355         */
3356        if (gl->tot_len <= RX_COPY_THRES) {
3357                skb = dev_alloc_skb(gl->tot_len);
3358                if (unlikely(!skb))
3359                        goto out;
3360                __skb_put(skb, gl->tot_len);
3361                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3362        } else {
3363                skb = dev_alloc_skb(skb_len);
3364                if (unlikely(!skb))
3365                        goto out;
3366                __skb_put(skb, pull_len);
3367                skb_copy_to_linear_data(skb, gl->va, pull_len);
3368
3369                copy_frags(skb, gl, pull_len);
3370                skb->len = gl->tot_len;
3371                skb->data_len = skb->len - pull_len;
3372                skb->truesize += skb->data_len;
3373        }
3374out:    return skb;
3375}
3376EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3377
3378/**
3379 *      t4_pktgl_free - free a packet gather list
3380 *      @gl: the gather list
3381 *
3382 *      Releases the pages of a packet gather list.  We do not own the last
3383 *      page on the list and do not free it.
3384 */
3385static void t4_pktgl_free(const struct pkt_gl *gl)
3386{
3387        int n;
3388        const struct page_frag *p;
3389
3390        for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3391                put_page(p->page);
3392}
3393
3394/*
3395 * Process an MPS trace packet.  Give it an unused protocol number so it won't
3396 * be delivered to anyone and send it to the stack for capture.
3397 */
3398static noinline int handle_trace_pkt(struct adapter *adap,
3399                                     const struct pkt_gl *gl)
3400{
3401        struct sk_buff *skb;
3402
3403        skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3404        if (unlikely(!skb)) {
3405                t4_pktgl_free(gl);
3406                return 0;
3407        }
3408
3409        if (is_t4(adap->params.chip))
3410                __skb_pull(skb, sizeof(struct cpl_trace_pkt));
3411        else
3412                __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3413
3414        skb_reset_mac_header(skb);
3415        skb->protocol = htons(0xffff);
3416        skb->dev = adap->port[0];
3417        netif_receive_skb(skb);
3418        return 0;
3419}
3420
3421/**
3422 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3423 * @adap: the adapter
3424 * @hwtstamps: time stamp structure to update
3425 * @sgetstamp: 60bit iqe timestamp
3426 *
3427 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3428 * which is in Core Clock ticks into ktime_t and assign it
3429 **/
3430static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3431                                     struct skb_shared_hwtstamps *hwtstamps,
3432                                     u64 sgetstamp)
3433{
3434        u64 ns;
3435        u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3436
3437        ns = div_u64(tmp, adap->params.vpd.cclk);
3438
3439        memset(hwtstamps, 0, sizeof(*hwtstamps));
3440        hwtstamps->hwtstamp = ns_to_ktime(ns);
3441}
3442
3443static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3444                   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3445{
3446        struct adapter *adapter = rxq->rspq.adap;
3447        struct sge *s = &adapter->sge;
3448        struct port_info *pi;
3449        int ret;
3450        struct sk_buff *skb;
3451
3452        skb = napi_get_frags(&rxq->rspq.napi);
3453        if (unlikely(!skb)) {
3454                t4_pktgl_free(gl);
3455                rxq->stats.rx_drops++;
3456                return;
3457        }
3458
3459        copy_frags(skb, gl, s->pktshift);
3460        if (tnl_hdr_len)
3461                skb->csum_level = 1;
3462        skb->len = gl->tot_len - s->pktshift;
3463        skb->data_len = skb->len;
3464        skb->truesize += skb->data_len;
3465        skb->ip_summed = CHECKSUM_UNNECESSARY;
3466        skb_record_rx_queue(skb, rxq->rspq.idx);
3467        pi = netdev_priv(skb->dev);
3468        if (pi->rxtstamp)
3469                cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3470                                         gl->sgetstamp);
3471        if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3472                skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3473                             PKT_HASH_TYPE_L3);
3474
3475        if (unlikely(pkt->vlan_ex)) {
3476                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3477                rxq->stats.vlan_ex++;
3478        }
3479        ret = napi_gro_frags(&rxq->rspq.napi);
3480        if (ret == GRO_HELD)
3481                rxq->stats.lro_pkts++;
3482        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3483                rxq->stats.lro_merged++;
3484        rxq->stats.pkts++;
3485        rxq->stats.rx_cso++;
3486}
3487
3488enum {
3489        RX_NON_PTP_PKT = 0,
3490        RX_PTP_PKT_SUC = 1,
3491        RX_PTP_PKT_ERR = 2
3492};
3493
3494/**
3495 *     t4_systim_to_hwstamp - read hardware time stamp
3496 *     @adapter: the adapter
3497 *     @skb: the packet
3498 *
3499 *     Read Time Stamp from MPS packet and insert in skb which
3500 *     is forwarded to PTP application
3501 */
3502static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3503                                         struct sk_buff *skb)
3504{
3505        struct skb_shared_hwtstamps *hwtstamps;
3506        struct cpl_rx_mps_pkt *cpl = NULL;
3507        unsigned char *data;
3508        int offset;
3509
3510        cpl = (struct cpl_rx_mps_pkt *)skb->data;
3511        if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3512             X_CPL_RX_MPS_PKT_TYPE_PTP))
3513                return RX_PTP_PKT_ERR;
3514
3515        data = skb->data + sizeof(*cpl);
3516        skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3517        offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3518        if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3519                return RX_PTP_PKT_ERR;
3520
3521        hwtstamps = skb_hwtstamps(skb);
3522        memset(hwtstamps, 0, sizeof(*hwtstamps));
3523        hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3524
3525        return RX_PTP_PKT_SUC;
3526}
3527
3528/**
3529 *     t4_rx_hststamp - Recv PTP Event Message
3530 *     @adapter: the adapter
3531 *     @rsp: the response queue descriptor holding the RX_PKT message
3532 *     @rxq: the response queue holding the RX_PKT message
3533 *     @skb: the packet
3534 *
3535 *     PTP enabled and MPS packet, read HW timestamp
3536 */
3537static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3538                          struct sge_eth_rxq *rxq, struct sk_buff *skb)
3539{
3540        int ret;
3541
3542        if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3543                     !is_t4(adapter->params.chip))) {
3544                ret = t4_systim_to_hwstamp(adapter, skb);
3545                if (ret == RX_PTP_PKT_ERR) {
3546                        kfree_skb(skb);
3547                        rxq->stats.rx_drops++;
3548                }
3549                return ret;
3550        }
3551        return RX_NON_PTP_PKT;
3552}
3553
3554/**
3555 *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3556 *      @adapter: the adapter
3557 *      @skb: the packet
3558 *      @dev: the ingress net device
3559 *
3560 *      Read hardware timestamp for the loopback PTP Tx event message
3561 */
3562static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3563                          struct net_device *dev)
3564{
3565        struct port_info *pi = netdev_priv(dev);
3566
3567        if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3568                cxgb4_ptp_read_hwstamp(adapter, pi);
3569                kfree_skb(skb);
3570                return 0;
3571        }
3572        return 1;
3573}
3574
3575/**
3576 *      t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3577 *      @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3578 *      @rsp: Response Entry pointer into Response Queue
3579 *      @gl: Gather List pointer
3580 *
3581 *      For adapters which support the SGE Doorbell Queue Timer facility,
3582 *      we configure the Ethernet TX Queues to send CIDX Updates to the
3583 *      Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3584 *      messages.  This adds a small load to PCIe Link RX bandwidth and,
3585 *      potentially, higher CPU Interrupt load, but allows us to respond
3586 *      much more quickly to the CIDX Updates.  This is important for
3587 *      Upper Layer Software which isn't willing to have a large amount
3588 *      of TX Data outstanding before receiving DMA Completions.
3589 */
3590static void t4_tx_completion_handler(struct sge_rspq *rspq,
3591                                     const __be64 *rsp,
3592                                     const struct pkt_gl *gl)
3593{
3594        u8 opcode = ((const struct rss_header *)rsp)->opcode;
3595        struct port_info *pi = netdev_priv(rspq->netdev);
3596        struct adapter *adapter = rspq->adap;
3597        struct sge *s = &adapter->sge;
3598        struct sge_eth_txq *txq;
3599
3600        /* skip RSS header */
3601        rsp++;
3602
3603        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3604         */
3605        if (unlikely(opcode == CPL_FW4_MSG &&
3606                     ((const struct cpl_fw4_msg *)rsp)->type ==
3607                                                        FW_TYPE_RSSCPL)) {
3608                rsp++;
3609                opcode = ((const struct rss_header *)rsp)->opcode;
3610                rsp++;
3611        }
3612
3613        if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3614                pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3615                        __func__, opcode);
3616                return;
3617        }
3618
3619        txq = &s->ethtxq[pi->first_qset + rspq->idx];
3620
3621        /* We've got the Hardware Consumer Index Update in the Egress Update
3622         * message. These Egress Update messages will be our sole CIDX Updates
3623         * we get since we don't want to chew up PCIe bandwidth for both Ingress
3624         * Messages and Status Page writes.  However, The code which manages
3625         * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3626         * stored in the Status Page at the end of the TX Queue.  It's easiest
3627         * to simply copy the CIDX Update value from the Egress Update message
3628         * to the Status Page.  Also note that no Endian issues need to be
3629         * considered here since both are Big Endian and we're just copying
3630         * bytes consistently ...
3631         */
3632        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3633                struct cpl_sge_egr_update *egr;
3634
3635                egr = (struct cpl_sge_egr_update *)rsp;
3636                WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3637        }
3638
3639        t4_sge_eth_txq_egress_update(adapter, txq, -1);
3640}
3641
3642static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3643{
3644        struct adapter *adap = pi->adapter;
3645        struct cxgb4_ethtool_lb_test *lb;
3646        struct sge *s = &adap->sge;
3647        struct net_device *netdev;
3648        u8 *data;
3649        int i;
3650
3651        netdev = adap->port[pi->port_id];
3652        lb = &pi->ethtool_lb;
3653        data = si->va + s->pktshift;
3654
3655        i = ETH_ALEN;
3656        if (!ether_addr_equal(data + i, netdev->dev_addr))
3657                return -1;
3658
3659        i += ETH_ALEN;
3660        if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3661                lb->result = -EIO;
3662
3663        complete(&lb->completion);
3664        return 0;
3665}
3666
3667/**
3668 *      t4_ethrx_handler - process an ingress ethernet packet
3669 *      @q: the response queue that received the packet
3670 *      @rsp: the response queue descriptor holding the RX_PKT message
3671 *      @si: the gather list of packet fragments
3672 *
3673 *      Process an ingress ethernet packet and deliver it to the stack.
3674 */
3675int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3676                     const struct pkt_gl *si)
3677{
3678        bool csum_ok;
3679        struct sk_buff *skb;
3680        const struct cpl_rx_pkt *pkt;
3681        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3682        struct adapter *adapter = q->adap;
3683        struct sge *s = &q->adap->sge;
3684        int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3685                            CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3686        u16 err_vec, tnl_hdr_len = 0;
3687        struct port_info *pi;
3688        int ret = 0;
3689
3690        pi = netdev_priv(q->netdev);
3691        /* If we're looking at TX Queue CIDX Update, handle that separately
3692         * and return.
3693         */
3694        if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3695                     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3696                t4_tx_completion_handler(q, rsp, si);
3697                return 0;
3698        }
3699
3700        if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3701                return handle_trace_pkt(q->adap, si);
3702
3703        pkt = (const struct cpl_rx_pkt *)rsp;
3704        /* Compressed error vector is enabled for T6 only */
3705        if (q->adap->params.tp.rx_pkt_encap) {
3706                err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3707                tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3708        } else {
3709                err_vec = be16_to_cpu(pkt->err_vec);
3710        }
3711
3712        csum_ok = pkt->csum_calc && !err_vec &&
3713                  (q->netdev->features & NETIF_F_RXCSUM);
3714
3715        if (err_vec)
3716                rxq->stats.bad_rx_pkts++;
3717
3718        if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3719                ret = cxgb4_validate_lb_pkt(pi, si);
3720                if (!ret)
3721                        return 0;
3722        }
3723
3724        if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3725             tnl_hdr_len) &&
3726            (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3727                do_gro(rxq, si, pkt, tnl_hdr_len);
3728                return 0;
3729        }
3730
3731        skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3732        if (unlikely(!skb)) {
3733                t4_pktgl_free(si);
3734                rxq->stats.rx_drops++;
3735                return 0;
3736        }
3737
3738        /* Handle PTP Event Rx packet */
3739        if (unlikely(pi->ptp_enable)) {
3740                ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3741                if (ret == RX_PTP_PKT_ERR)
3742                        return 0;
3743        }
3744        if (likely(!ret))
3745                __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3746
3747        /* Handle the PTP Event Tx Loopback packet */
3748        if (unlikely(pi->ptp_enable && !ret &&
3749                     (pkt->l2info & htonl(RXF_UDP_F)) &&
3750                     cxgb4_ptp_is_ptp_rx(skb))) {
3751                if (!t4_tx_hststamp(adapter, skb, q->netdev))
3752                        return 0;
3753        }
3754
3755        skb->protocol = eth_type_trans(skb, q->netdev);
3756        skb_record_rx_queue(skb, q->idx);
3757        if (skb->dev->features & NETIF_F_RXHASH)
3758                skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3759                             PKT_HASH_TYPE_L3);
3760
3761        rxq->stats.pkts++;
3762
3763        if (pi->rxtstamp)
3764                cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3765                                         si->sgetstamp);
3766        if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3767                if (!pkt->ip_frag) {
3768                        skb->ip_summed = CHECKSUM_UNNECESSARY;
3769                        rxq->stats.rx_cso++;
3770                } else if (pkt->l2info & htonl(RXF_IP_F)) {
3771                        __sum16 c = (__force __sum16)pkt->csum;
3772                        skb->csum = csum_unfold(c);
3773
3774                        if (tnl_hdr_len) {
3775                                skb->ip_summed = CHECKSUM_UNNECESSARY;
3776                                skb->csum_level = 1;
3777                        } else {
3778                                skb->ip_summed = CHECKSUM_COMPLETE;
3779                        }
3780                        rxq->stats.rx_cso++;
3781                }
3782        } else {
3783                skb_checksum_none_assert(skb);
3784#ifdef CONFIG_CHELSIO_T4_FCOE
3785#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3786                          RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3787
3788                if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3789                        if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3790                            (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3791                                if (q->adap->params.tp.rx_pkt_encap)
3792                                        csum_ok = err_vec &
3793                                                  T6_COMPR_RXERR_SUM_F;
3794                                else
3795                                        csum_ok = err_vec & RXERR_CSUM_F;
3796                                if (!csum_ok)
3797                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
3798                        }
3799                }
3800
3801#undef CPL_RX_PKT_FLAGS
3802#endif /* CONFIG_CHELSIO_T4_FCOE */
3803        }
3804
3805        if (unlikely(pkt->vlan_ex)) {
3806                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3807                rxq->stats.vlan_ex++;
3808        }
3809        skb_mark_napi_id(skb, &q->napi);
3810        netif_receive_skb(skb);
3811        return 0;
3812}
3813
3814/**
3815 *      restore_rx_bufs - put back a packet's Rx buffers
3816 *      @si: the packet gather list
3817 *      @q: the SGE free list
3818 *      @frags: number of FL buffers to restore
3819 *
3820 *      Puts back on an FL the Rx buffers associated with @si.  The buffers
3821 *      have already been unmapped and are left unmapped, we mark them so to
3822 *      prevent further unmapping attempts.
3823 *
3824 *      This function undoes a series of @unmap_rx_buf calls when we find out
3825 *      that the current packet can't be processed right away afterall and we
3826 *      need to come back to it later.  This is a very rare event and there's
3827 *      no effort to make this particularly efficient.
3828 */
3829static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3830                            int frags)
3831{
3832        struct rx_sw_desc *d;
3833
3834        while (frags--) {
3835                if (q->cidx == 0)
3836                        q->cidx = q->size - 1;
3837                else
3838                        q->cidx--;
3839                d = &q->sdesc[q->cidx];
3840                d->page = si->frags[frags].page;
3841                d->dma_addr |= RX_UNMAPPED_BUF;
3842                q->avail++;
3843        }
3844}
3845
3846/**
3847 *      is_new_response - check if a response is newly written
3848 *      @r: the response descriptor
3849 *      @q: the response queue
3850 *
3851 *      Returns true if a response descriptor contains a yet unprocessed
3852 *      response.
3853 */
3854static inline bool is_new_response(const struct rsp_ctrl *r,
3855                                   const struct sge_rspq *q)
3856{
3857        return (r->type_gen >> RSPD_GEN_S) == q->gen;
3858}
3859
3860/**
3861 *      rspq_next - advance to the next entry in a response queue
3862 *      @q: the queue
3863 *
3864 *      Updates the state of a response queue to advance it to the next entry.
3865 */
3866static inline void rspq_next(struct sge_rspq *q)
3867{
3868        q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3869        if (unlikely(++q->cidx == q->size)) {
3870                q->cidx = 0;
3871                q->gen ^= 1;
3872                q->cur_desc = q->desc;
3873        }
3874}
3875
3876/**
3877 *      process_responses - process responses from an SGE response queue
3878 *      @q: the ingress queue to process
3879 *      @budget: how many responses can be processed in this round
3880 *
3881 *      Process responses from an SGE response queue up to the supplied budget.
3882 *      Responses include received packets as well as control messages from FW
3883 *      or HW.
3884 *
3885 *      Additionally choose the interrupt holdoff time for the next interrupt
3886 *      on this queue.  If the system is under memory shortage use a fairly
3887 *      long delay to help recovery.
3888 */
3889static int process_responses(struct sge_rspq *q, int budget)
3890{
3891        int ret, rsp_type;
3892        int budget_left = budget;
3893        const struct rsp_ctrl *rc;
3894        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3895        struct adapter *adapter = q->adap;
3896        struct sge *s = &adapter->sge;
3897
3898        while (likely(budget_left)) {
3899                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3900                if (!is_new_response(rc, q)) {
3901                        if (q->flush_handler)
3902                                q->flush_handler(q);
3903                        break;
3904                }
3905
3906                dma_rmb();
3907                rsp_type = RSPD_TYPE_G(rc->type_gen);
3908                if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3909                        struct page_frag *fp;
3910                        struct pkt_gl si;
3911                        const struct rx_sw_desc *rsd;
3912                        u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3913
3914                        if (len & RSPD_NEWBUF_F) {
3915                                if (likely(q->offset > 0)) {
3916                                        free_rx_bufs(q->adap, &rxq->fl, 1);
3917                                        q->offset = 0;
3918                                }
3919                                len = RSPD_LEN_G(len);
3920                        }
3921                        si.tot_len = len;
3922
3923                        /* gather packet fragments */
3924                        for (frags = 0, fp = si.frags; ; frags++, fp++) {
3925                                rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3926                                bufsz = get_buf_size(adapter, rsd);
3927                                fp->page = rsd->page;
3928                                fp->offset = q->offset;
3929                                fp->size = min(bufsz, len);
3930                                len -= fp->size;
3931                                if (!len)
3932                                        break;
3933                                unmap_rx_buf(q->adap, &rxq->fl);
3934                        }
3935
3936                        si.sgetstamp = SGE_TIMESTAMP_G(
3937                                        be64_to_cpu(rc->last_flit));
3938                        /*
3939                         * Last buffer remains mapped so explicitly make it
3940                         * coherent for CPU access.
3941                         */
3942                        dma_sync_single_for_cpu(q->adap->pdev_dev,
3943                                                get_buf_addr(rsd),
3944                                                fp->size, DMA_FROM_DEVICE);
3945
3946                        si.va = page_address(si.frags[0].page) +
3947                                si.frags[0].offset;
3948                        prefetch(si.va);
3949
3950                        si.nfrags = frags + 1;
3951                        ret = q->handler(q, q->cur_desc, &si);
3952                        if (likely(ret == 0))
3953                                q->offset += ALIGN(fp->size, s->fl_align);
3954                        else
3955                                restore_rx_bufs(&si, &rxq->fl, frags);
3956                } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3957                        ret = q->handler(q, q->cur_desc, NULL);
3958                } else {
3959                        ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3960                }
3961
3962                if (unlikely(ret)) {
3963                        /* couldn't process descriptor, back off for recovery */
3964                        q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3965                        break;
3966                }
3967
3968                rspq_next(q);
3969                budget_left--;
3970        }
3971
3972        if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3973                __refill_fl(q->adap, &rxq->fl);
3974        return budget - budget_left;
3975}
3976
3977/**
3978 *      napi_rx_handler - the NAPI handler for Rx processing
3979 *      @napi: the napi instance
3980 *      @budget: how many packets we can process in this round
3981 *
3982 *      Handler for new data events when using NAPI.  This does not need any
3983 *      locking or protection from interrupts as data interrupts are off at
3984 *      this point and other adapter interrupts do not interfere (the latter
3985 *      in not a concern at all with MSI-X as non-data interrupts then have
3986 *      a separate handler).
3987 */
3988static int napi_rx_handler(struct napi_struct *napi, int budget)
3989{
3990        unsigned int params;
3991        struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3992        int work_done;
3993        u32 val;
3994
3995        work_done = process_responses(q, budget);
3996        if (likely(work_done < budget)) {
3997                int timer_index;
3998
3999                napi_complete_done(napi, work_done);
4000                timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
4001
4002                if (q->adaptive_rx) {
4003                        if (work_done > max(timer_pkt_quota[timer_index],
4004                                            MIN_NAPI_WORK))
4005                                timer_index = (timer_index + 1);
4006                        else
4007                                timer_index = timer_index - 1;
4008
4009                        timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
4010                        q->next_intr_params =
4011                                        QINTR_TIMER_IDX_V(timer_index) |
4012                                        QINTR_CNT_EN_V(0);
4013                        params = q->next_intr_params;
4014                } else {
4015                        params = q->next_intr_params;
4016                        q->next_intr_params = q->intr_params;
4017                }
4018        } else
4019                params = QINTR_TIMER_IDX_V(7);
4020
4021        val = CIDXINC_V(work_done) | SEINTARM_V(params);
4022
4023        /* If we don't have access to the new User GTS (T5+), use the old
4024         * doorbell mechanism; otherwise use the new BAR2 mechanism.
4025         */
4026        if (unlikely(q->bar2_addr == NULL)) {
4027                t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
4028                             val | INGRESSQID_V((u32)q->cntxt_id));
4029        } else {
4030                writel(val | INGRESSQID_V(q->bar2_qid),
4031                       q->bar2_addr + SGE_UDB_GTS);
4032                wmb();
4033        }
4034        return work_done;
4035}
4036
4037void cxgb4_ethofld_restart(struct tasklet_struct *t)
4038{
4039        struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4040                                                     qresume_tsk);
4041        int pktcount;
4042
4043        spin_lock(&eosw_txq->lock);
4044        pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4045        if (pktcount < 0)
4046                pktcount += eosw_txq->ndesc;
4047
4048        if (pktcount) {
4049                cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4050                                         eosw_txq, pktcount);
4051                eosw_txq->inuse -= pktcount;
4052        }
4053
4054        /* There may be some packets waiting for completions. So,
4055         * attempt to send these packets now.
4056         */
4057        ethofld_xmit(eosw_txq->netdev, eosw_txq);
4058        spin_unlock(&eosw_txq->lock);
4059}
4060
4061/* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4062 * @q: the response queue that received the packet
4063 * @rsp: the response queue descriptor holding the CPL message
4064 * @si: the gather list of packet fragments
4065 *
4066 * Process a ETHOFLD Tx completion. Increment the cidx here, but
4067 * free up the descriptors in a tasklet later.
4068 */
4069int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4070                             const struct pkt_gl *si)
4071{
4072        u8 opcode = ((const struct rss_header *)rsp)->opcode;
4073
4074        /* skip RSS header */
4075        rsp++;
4076
4077        if (opcode == CPL_FW4_ACK) {
4078                const struct cpl_fw4_ack *cpl;
4079                struct sge_eosw_txq *eosw_txq;
4080                struct eotid_entry *entry;
4081                struct sk_buff *skb;
4082                u32 hdr_len, eotid;
4083                u8 flits, wrlen16;
4084                int credits;
4085
4086                cpl = (const struct cpl_fw4_ack *)rsp;
4087                eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4088                        q->adap->tids.eotid_base;
4089                entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4090                if (!entry)
4091                        goto out_done;
4092
4093                eosw_txq = (struct sge_eosw_txq *)entry->data;
4094                if (!eosw_txq)
4095                        goto out_done;
4096
4097                spin_lock(&eosw_txq->lock);
4098                credits = cpl->credits;
4099                while (credits > 0) {
4100                        skb = eosw_txq->desc[eosw_txq->cidx].skb;
4101                        if (!skb)
4102                                break;
4103
4104                        if (unlikely((eosw_txq->state ==
4105                                      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4106                                      eosw_txq->state ==
4107                                      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4108                                     eosw_txq->cidx == eosw_txq->flowc_idx)) {
4109                                flits = DIV_ROUND_UP(skb->len, 8);
4110                                if (eosw_txq->state ==
4111                                    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4112                                        eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4113                                else
4114                                        eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4115                                complete(&eosw_txq->completion);
4116                        } else {
4117                                hdr_len = eth_get_headlen(eosw_txq->netdev,
4118                                                          skb->data,
4119                                                          skb_headlen(skb));
4120                                flits = ethofld_calc_tx_flits(q->adap, skb,
4121                                                              hdr_len);
4122                        }
4123                        eosw_txq_advance_index(&eosw_txq->cidx, 1,
4124                                               eosw_txq->ndesc);
4125                        wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4126                        credits -= wrlen16;
4127                }
4128
4129                eosw_txq->cred += cpl->credits;
4130                eosw_txq->ncompl--;
4131
4132                spin_unlock(&eosw_txq->lock);
4133
4134                /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4135                 * if there were packets waiting for completion.
4136                 */
4137                tasklet_schedule(&eosw_txq->qresume_tsk);
4138        }
4139
4140out_done:
4141        return 0;
4142}
4143
4144/*
4145 * The MSI-X interrupt handler for an SGE response queue.
4146 */
4147irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4148{
4149        struct sge_rspq *q = cookie;
4150
4151        napi_schedule(&q->napi);
4152        return IRQ_HANDLED;
4153}
4154
4155/*
4156 * Process the indirect interrupt entries in the interrupt queue and kick off
4157 * NAPI for each queue that has generated an entry.
4158 */
4159static unsigned int process_intrq(struct adapter *adap)
4160{
4161        unsigned int credits;
4162        const struct rsp_ctrl *rc;
4163        struct sge_rspq *q = &adap->sge.intrq;
4164        u32 val;
4165
4166        spin_lock(&adap->sge.intrq_lock);
4167        for (credits = 0; ; credits++) {
4168                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4169                if (!is_new_response(rc, q))
4170                        break;
4171
4172                dma_rmb();
4173                if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4174                        unsigned int qid = ntohl(rc->pldbuflen_qid);
4175
4176                        qid -= adap->sge.ingr_start;
4177                        napi_schedule(&adap->sge.ingr_map[qid]->napi);
4178                }
4179
4180                rspq_next(q);
4181        }
4182
4183        val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4184
4185        /* If we don't have access to the new User GTS (T5+), use the old
4186         * doorbell mechanism; otherwise use the new BAR2 mechanism.
4187         */
4188        if (unlikely(q->bar2_addr == NULL)) {
4189                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4190                             val | INGRESSQID_V(q->cntxt_id));
4191        } else {
4192                writel(val | INGRESSQID_V(q->bar2_qid),
4193                       q->bar2_addr + SGE_UDB_GTS);
4194                wmb();
4195        }
4196        spin_unlock(&adap->sge.intrq_lock);
4197        return credits;
4198}
4199
4200/*
4201 * The MSI interrupt handler, which handles data events from SGE response queues
4202 * as well as error and other async events as they all use the same MSI vector.
4203 */
4204static irqreturn_t t4_intr_msi(int irq, void *cookie)
4205{
4206        struct adapter *adap = cookie;
4207
4208        if (adap->flags & CXGB4_MASTER_PF)
4209                t4_slow_intr_handler(adap);
4210        process_intrq(adap);
4211        return IRQ_HANDLED;
4212}
4213
4214/*
4215 * Interrupt handler for legacy INTx interrupts.
4216 * Handles data events from SGE response queues as well as error and other
4217 * async events as they all use the same interrupt line.
4218 */
4219static irqreturn_t t4_intr_intx(int irq, void *cookie)
4220{
4221        struct adapter *adap = cookie;
4222
4223        t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4224        if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4225            process_intrq(adap))
4226                return IRQ_HANDLED;
4227        return IRQ_NONE;             /* probably shared interrupt */
4228}
4229
4230/**
4231 *      t4_intr_handler - select the top-level interrupt handler
4232 *      @adap: the adapter
4233 *
4234 *      Selects the top-level interrupt handler based on the type of interrupts
4235 *      (MSI-X, MSI, or INTx).
4236 */
4237irq_handler_t t4_intr_handler(struct adapter *adap)
4238{
4239        if (adap->flags & CXGB4_USING_MSIX)
4240                return t4_sge_intr_msix;
4241        if (adap->flags & CXGB4_USING_MSI)
4242                return t4_intr_msi;
4243        return t4_intr_intx;
4244}
4245
4246static void sge_rx_timer_cb(struct timer_list *t)
4247{
4248        unsigned long m;
4249        unsigned int i;
4250        struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4251        struct sge *s = &adap->sge;
4252
4253        for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4254                for (m = s->starving_fl[i]; m; m &= m - 1) {
4255                        struct sge_eth_rxq *rxq;
4256                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4257                        struct sge_fl *fl = s->egr_map[id];
4258
4259                        clear_bit(id, s->starving_fl);
4260                        smp_mb__after_atomic();
4261
4262                        if (fl_starving(adap, fl)) {
4263                                rxq = container_of(fl, struct sge_eth_rxq, fl);
4264                                if (napi_reschedule(&rxq->rspq.napi))
4265                                        fl->starving++;
4266                                else
4267                                        set_bit(id, s->starving_fl);
4268                        }
4269                }
4270        /* The remainder of the SGE RX Timer Callback routine is dedicated to
4271         * global Master PF activities like checking for chip ingress stalls,
4272         * etc.
4273         */
4274        if (!(adap->flags & CXGB4_MASTER_PF))
4275                goto done;
4276
4277        t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4278
4279done:
4280        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4281}
4282
4283static void sge_tx_timer_cb(struct timer_list *t)
4284{
4285        struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4286        struct sge *s = &adap->sge;
4287        unsigned long m, period;
4288        unsigned int i, budget;
4289
4290        for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4291                for (m = s->txq_maperr[i]; m; m &= m - 1) {
4292                        unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4293                        struct sge_uld_txq *txq = s->egr_map[id];
4294
4295                        clear_bit(id, s->txq_maperr);
4296                        tasklet_schedule(&txq->qresume_tsk);
4297                }
4298
4299        if (!is_t4(adap->params.chip)) {
4300                struct sge_eth_txq *q = &s->ptptxq;
4301                int avail;
4302
4303                spin_lock(&adap->ptp_lock);
4304                avail = reclaimable(&q->q);
4305
4306                if (avail) {
4307                        free_tx_desc(adap, &q->q, avail, false);
4308                        q->q.in_use -= avail;
4309                }
4310                spin_unlock(&adap->ptp_lock);
4311        }
4312
4313        budget = MAX_TIMER_TX_RECLAIM;
4314        i = s->ethtxq_rover;
4315        do {
4316                budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4317                                                       budget);
4318                if (!budget)
4319                        break;
4320
4321                if (++i >= s->ethqsets)
4322                        i = 0;
4323        } while (i != s->ethtxq_rover);
4324        s->ethtxq_rover = i;
4325
4326        if (budget == 0) {
4327                /* If we found too many reclaimable packets schedule a timer
4328                 * in the near future to continue where we left off.
4329                 */
4330                period = 2;
4331        } else {
4332                /* We reclaimed all reclaimable TX Descriptors, so reschedule
4333                 * at the normal period.
4334                 */
4335                period = TX_QCHECK_PERIOD;
4336        }
4337
4338        mod_timer(&s->tx_timer, jiffies + period);
4339}
4340
4341/**
4342 *      bar2_address - return the BAR2 address for an SGE Queue's Registers
4343 *      @adapter: the adapter
4344 *      @qid: the SGE Queue ID
4345 *      @qtype: the SGE Queue Type (Egress or Ingress)
4346 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4347 *
4348 *      Returns the BAR2 address for the SGE Queue Registers associated with
4349 *      @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4350 *      returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4351 *      Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4352 *      Registers are supported (e.g. the Write Combining Doorbell Buffer).
4353 */
4354static void __iomem *bar2_address(struct adapter *adapter,
4355                                  unsigned int qid,
4356                                  enum t4_bar2_qtype qtype,
4357                                  unsigned int *pbar2_qid)
4358{
4359        u64 bar2_qoffset;
4360        int ret;
4361
4362        ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4363                                &bar2_qoffset, pbar2_qid);
4364        if (ret)
4365                return NULL;
4366
4367        return adapter->bar2 + bar2_qoffset;
4368}
4369
4370/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4371 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4372 */
4373int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4374                     struct net_device *dev, int intr_idx,
4375                     struct sge_fl *fl, rspq_handler_t hnd,
4376                     rspq_flush_handler_t flush_hnd, int cong)
4377{
4378        int ret, flsz = 0;
4379        struct fw_iq_cmd c;
4380        struct sge *s = &adap->sge;
4381        struct port_info *pi = netdev_priv(dev);
4382        int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4383
4384        /* Size needs to be multiple of 16, including status entry. */
4385        iq->size = roundup(iq->size, 16);
4386
4387        iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4388                              &iq->phys_addr, NULL, 0,
4389                              dev_to_node(adap->pdev_dev));
4390        if (!iq->desc)
4391                return -ENOMEM;
4392
4393        memset(&c, 0, sizeof(c));
4394        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4395                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4396                            FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4397        c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4398                                 FW_LEN16(c));
4399        c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4400                FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4401                FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4402                FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4403                FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4404                                                        -intr_idx - 1));
4405        c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4406                FW_IQ_CMD_IQGTSMODE_F |
4407                FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4408                FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4409        c.iqsize = htons(iq->size);
4410        c.iqaddr = cpu_to_be64(iq->phys_addr);
4411        if (cong >= 0)
4412                c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4413                                FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4414                                                        :  FW_IQ_IQTYPE_OFLD));
4415
4416        if (fl) {
4417                unsigned int chip_ver =
4418                        CHELSIO_CHIP_VERSION(adap->params.chip);
4419
4420                /* Allocate the ring for the hardware free list (with space
4421                 * for its status page) along with the associated software
4422                 * descriptor ring.  The free list size needs to be a multiple
4423                 * of the Egress Queue Unit and at least 2 Egress Units larger
4424                 * than the SGE's Egress Congrestion Threshold
4425                 * (fl_starve_thres - 1).
4426                 */
4427                if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4428                        fl->size = s->fl_starve_thres - 1 + 2 * 8;
4429                fl->size = roundup(fl->size, 8);
4430                fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4431                                      sizeof(struct rx_sw_desc), &fl->addr,
4432                                      &fl->sdesc, s->stat_len,
4433                                      dev_to_node(adap->pdev_dev));
4434                if (!fl->desc)
4435                        goto fl_nomem;
4436
4437                flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4438                c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4439                                             FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4440                                             FW_IQ_CMD_FL0DATARO_V(relaxed) |
4441                                             FW_IQ_CMD_FL0PADEN_F);
4442                if (cong >= 0)
4443                        c.iqns_to_fl0congen |=
4444                                htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4445                                      FW_IQ_CMD_FL0CONGCIF_F |
4446                                      FW_IQ_CMD_FL0CONGEN_F);
4447                /* In T6, for egress queue type FL there is internal overhead
4448                 * of 16B for header going into FLM module.  Hence the maximum
4449                 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4450                 * doesn't coalesce fetch requests if more than 64 bytes of
4451                 * Free List pointers are provided, so we use a 128-byte Fetch
4452                 * Burst Minimum there (T6 implements coalescing so we can use
4453                 * the smaller 64-byte value there).
4454                 */
4455                c.fl0dcaen_to_fl0cidxfthresh =
4456                        htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4457                                                   FETCHBURSTMIN_128B_X :
4458                                                   FETCHBURSTMIN_64B_T6_X) |
4459                              FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4460                                                   FETCHBURSTMAX_512B_X :
4461                                                   FETCHBURSTMAX_256B_X));
4462                c.fl0size = htons(flsz);
4463                c.fl0addr = cpu_to_be64(fl->addr);
4464        }
4465
4466        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4467        if (ret)
4468                goto err;
4469
4470        netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4471        iq->cur_desc = iq->desc;
4472        iq->cidx = 0;
4473        iq->gen = 1;
4474        iq->next_intr_params = iq->intr_params;
4475        iq->cntxt_id = ntohs(c.iqid);
4476        iq->abs_id = ntohs(c.physiqid);
4477        iq->bar2_addr = bar2_address(adap,
4478                                     iq->cntxt_id,
4479                                     T4_BAR2_QTYPE_INGRESS,
4480                                     &iq->bar2_qid);
4481        iq->size--;                           /* subtract status entry */
4482        iq->netdev = dev;
4483        iq->handler = hnd;
4484        iq->flush_handler = flush_hnd;
4485
4486        memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4487        skb_queue_head_init(&iq->lro_mgr.lroq);
4488
4489        /* set offset to -1 to distinguish ingress queues without FL */
4490        iq->offset = fl ? 0 : -1;
4491
4492        adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4493
4494        if (fl) {
4495                fl->cntxt_id = ntohs(c.fl0id);
4496                fl->avail = fl->pend_cred = 0;
4497                fl->pidx = fl->cidx = 0;
4498                fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4499                adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4500
4501                /* Note, we must initialize the BAR2 Free List User Doorbell
4502                 * information before refilling the Free List!
4503                 */
4504                fl->bar2_addr = bar2_address(adap,
4505                                             fl->cntxt_id,
4506                                             T4_BAR2_QTYPE_EGRESS,
4507                                             &fl->bar2_qid);
4508                refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4509        }
4510
4511        /* For T5 and later we attempt to set up the Congestion Manager values
4512         * of the new RX Ethernet Queue.  This should really be handled by
4513         * firmware because it's more complex than any host driver wants to
4514         * get involved with and it's different per chip and this is almost
4515         * certainly wrong.  Firmware would be wrong as well, but it would be
4516         * a lot easier to fix in one place ...  For now we do something very
4517         * simple (and hopefully less wrong).
4518         */
4519        if (!is_t4(adap->params.chip) && cong >= 0) {
4520                u32 param, val, ch_map = 0;
4521                int i;
4522                u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4523
4524                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4525                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4526                         FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4527                if (cong == 0) {
4528                        val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4529                } else {
4530                        val =
4531                            CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4532                        for (i = 0; i < 4; i++) {
4533                                if (cong & (1 << i))
4534                                        ch_map |= 1 << (i << cng_ch_bits_log);
4535                        }
4536                        val |= CONMCTXT_CNGCHMAP_V(ch_map);
4537                }
4538                ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4539                                    &param, &val);
4540                if (ret)
4541                        dev_warn(adap->pdev_dev, "Failed to set Congestion"
4542                                 " Manager Context for Ingress Queue %d: %d\n",
4543                                 iq->cntxt_id, -ret);
4544        }
4545
4546        return 0;
4547
4548fl_nomem:
4549        ret = -ENOMEM;
4550err:
4551        if (iq->desc) {
4552                dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4553                                  iq->desc, iq->phys_addr);
4554                iq->desc = NULL;
4555        }
4556        if (fl && fl->desc) {
4557                kfree(fl->sdesc);
4558                fl->sdesc = NULL;
4559                dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4560                                  fl->desc, fl->addr);
4561                fl->desc = NULL;
4562        }
4563        return ret;
4564}
4565
4566static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4567{
4568        q->cntxt_id = id;
4569        q->bar2_addr = bar2_address(adap,
4570                                    q->cntxt_id,
4571                                    T4_BAR2_QTYPE_EGRESS,
4572                                    &q->bar2_qid);
4573        q->in_use = 0;
4574        q->cidx = q->pidx = 0;
4575        q->stops = q->restarts = 0;
4576        q->stat = (void *)&q->desc[q->size];
4577        spin_lock_init(&q->db_lock);
4578        adap->sge.egr_map[id - adap->sge.egr_start] = q;
4579}
4580
4581/**
4582 *      t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4583 *      @adap: the adapter
4584 *      @txq: the SGE Ethernet TX Queue to initialize
4585 *      @dev: the Linux Network Device
4586 *      @netdevq: the corresponding Linux TX Queue
4587 *      @iqid: the Ingress Queue to which to deliver CIDX Update messages
4588 *      @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4589 */
4590int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4591                         struct net_device *dev, struct netdev_queue *netdevq,
4592                         unsigned int iqid, u8 dbqt)
4593{
4594        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4595        struct port_info *pi = netdev_priv(dev);
4596        struct sge *s = &adap->sge;
4597        struct fw_eq_eth_cmd c;
4598        int ret, nentries;
4599
4600        /* Add status entries */
4601        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4602
4603        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4604                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4605                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4606                        netdev_queue_numa_node_read(netdevq));
4607        if (!txq->q.desc)
4608                return -ENOMEM;
4609
4610        memset(&c, 0, sizeof(c));
4611        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4612                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4613                            FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4614                            FW_EQ_ETH_CMD_VFN_V(0));
4615        c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4616                                 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4617
4618        /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4619         * mechanism, we use Ingress Queue messages for Hardware Consumer
4620         * Index Updates on the TX Queue.  Otherwise we have the Hardware
4621         * write the CIDX Updates into the Status Page at the end of the
4622         * TX Queue.
4623         */
4624        c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
4625                                      FW_EQ_ETH_CMD_AUTOEQUIQE_F :
4626                                      FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
4627                                     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4628
4629        c.fetchszm_to_iqid =
4630                htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
4631                                                 HOSTFCMODE_INGRESS_QUEUE_X :
4632                                                 HOSTFCMODE_STATUS_PAGE_X) |
4633                      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4634                      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4635
4636        /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4637        c.dcaen_to_eqsize =
4638                htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4639                                            ? FETCHBURSTMIN_64B_X
4640                                            : FETCHBURSTMIN_64B_T6_X) |
4641                      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4642                      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4643                      FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
4644                      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4645
4646        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4647
4648        /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4649         * currently configured Timer Index.  THis can be changed later via an
4650         * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4651         * Doorbell Queue mode is currently automatically enabled in the
4652         * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4653         */
4654        if (dbqt)
4655                c.timeren_timerix =
4656                        cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4657                                    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4658
4659        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4660        if (ret) {
4661                kfree(txq->q.sdesc);
4662                txq->q.sdesc = NULL;
4663                dma_free_coherent(adap->pdev_dev,
4664                                  nentries * sizeof(struct tx_desc),
4665                                  txq->q.desc, txq->q.phys_addr);
4666                txq->q.desc = NULL;
4667                return ret;
4668        }
4669
4670        txq->q.q_type = CXGB4_TXQ_ETH;
4671        init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4672        txq->txq = netdevq;
4673        txq->tso = 0;
4674        txq->uso = 0;
4675        txq->tx_cso = 0;
4676        txq->vlan_ins = 0;
4677        txq->mapping_err = 0;
4678        txq->dbqt = dbqt;
4679
4680        return 0;
4681}
4682
4683int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4684                          struct net_device *dev, unsigned int iqid,
4685                          unsigned int cmplqid)
4686{
4687        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4688        struct port_info *pi = netdev_priv(dev);
4689        struct sge *s = &adap->sge;
4690        struct fw_eq_ctrl_cmd c;
4691        int ret, nentries;
4692
4693        /* Add status entries */
4694        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4695
4696        txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4697                                 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4698                                 NULL, 0, dev_to_node(adap->pdev_dev));
4699        if (!txq->q.desc)
4700                return -ENOMEM;
4701
4702        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4703                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4704                            FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4705                            FW_EQ_CTRL_CMD_VFN_V(0));
4706        c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4707                                 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4708        c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4709        c.physeqid_pkd = htonl(0);
4710        c.fetchszm_to_iqid =
4711                htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4712                      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4713                      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4714        c.dcaen_to_eqsize =
4715                htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4716                                             ? FETCHBURSTMIN_64B_X
4717                                             : FETCHBURSTMIN_64B_T6_X) |
4718                      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4719                      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4720                      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4721        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4722
4723        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4724        if (ret) {
4725                dma_free_coherent(adap->pdev_dev,
4726                                  nentries * sizeof(struct tx_desc),
4727                                  txq->q.desc, txq->q.phys_addr);
4728                txq->q.desc = NULL;
4729                return ret;
4730        }
4731
4732        txq->q.q_type = CXGB4_TXQ_CTRL;
4733        init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4734        txq->adap = adap;
4735        skb_queue_head_init(&txq->sendq);
4736        tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4737        txq->full = 0;
4738        return 0;
4739}
4740
4741int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4742                        unsigned int cmplqid)
4743{
4744        u32 param, val;
4745
4746        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4747                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4748                 FW_PARAMS_PARAM_YZ_V(eqid));
4749        val = cmplqid;
4750        return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4751}
4752
4753static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4754                                 struct net_device *dev, u32 cmd, u32 iqid)
4755{
4756        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4757        struct port_info *pi = netdev_priv(dev);
4758        struct sge *s = &adap->sge;
4759        struct fw_eq_ofld_cmd c;
4760        u32 fb_min, nentries;
4761        int ret;
4762
4763        /* Add status entries */
4764        nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4765        q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4766                             sizeof(struct tx_sw_desc), &q->phys_addr,
4767                             &q->sdesc, s->stat_len, NUMA_NO_NODE);
4768        if (!q->desc)
4769                return -ENOMEM;
4770
4771        if (chip_ver <= CHELSIO_T5)
4772                fb_min = FETCHBURSTMIN_64B_X;
4773        else
4774                fb_min = FETCHBURSTMIN_64B_T6_X;
4775
4776        memset(&c, 0, sizeof(c));
4777        c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4778                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4779                            FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4780                            FW_EQ_OFLD_CMD_VFN_V(0));
4781        c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4782                                 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4783        c.fetchszm_to_iqid =
4784                htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4785                      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4786                      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4787        c.dcaen_to_eqsize =
4788                htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4789                      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4790                      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4791                      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4792        c.eqaddr = cpu_to_be64(q->phys_addr);
4793
4794        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4795        if (ret) {
4796                kfree(q->sdesc);
4797                q->sdesc = NULL;
4798                dma_free_coherent(adap->pdev_dev,
4799                                  nentries * sizeof(struct tx_desc),
4800                                  q->desc, q->phys_addr);
4801                q->desc = NULL;
4802                return ret;
4803        }
4804
4805        init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4806        return 0;
4807}
4808
4809int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4810                         struct net_device *dev, unsigned int iqid,
4811                         unsigned int uld_type)
4812{
4813        u32 cmd = FW_EQ_OFLD_CMD;
4814        int ret;
4815
4816        if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4817                cmd = FW_EQ_CTRL_CMD;
4818
4819        ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4820        if (ret)
4821                return ret;
4822
4823        txq->q.q_type = CXGB4_TXQ_ULD;
4824        txq->adap = adap;
4825        skb_queue_head_init(&txq->sendq);
4826        tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4827        txq->full = 0;
4828        txq->mapping_err = 0;
4829        return 0;
4830}
4831
4832int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4833                             struct net_device *dev, u32 iqid)
4834{
4835        int ret;
4836
4837        ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4838        if (ret)
4839                return ret;
4840
4841        txq->q.q_type = CXGB4_TXQ_ULD;
4842        spin_lock_init(&txq->lock);
4843        txq->adap = adap;
4844        txq->tso = 0;
4845        txq->uso = 0;
4846        txq->tx_cso = 0;
4847        txq->vlan_ins = 0;
4848        txq->mapping_err = 0;
4849        return 0;
4850}
4851
4852void free_txq(struct adapter *adap, struct sge_txq *q)
4853{
4854        struct sge *s = &adap->sge;
4855
4856        dma_free_coherent(adap->pdev_dev,
4857                          q->size * sizeof(struct tx_desc) + s->stat_len,
4858                          q->desc, q->phys_addr);
4859        q->cntxt_id = 0;
4860        q->sdesc = NULL;
4861        q->desc = NULL;
4862}
4863
4864void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4865                  struct sge_fl *fl)
4866{
4867        struct sge *s = &adap->sge;
4868        unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4869
4870        adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4871        t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4872                   rq->cntxt_id, fl_id, 0xffff);
4873        dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4874                          rq->desc, rq->phys_addr);
4875        netif_napi_del(&rq->napi);
4876        rq->netdev = NULL;
4877        rq->cntxt_id = rq->abs_id = 0;
4878        rq->desc = NULL;
4879
4880        if (fl) {
4881                free_rx_bufs(adap, fl, fl->avail);
4882                dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4883                                  fl->desc, fl->addr);
4884                kfree(fl->sdesc);
4885                fl->sdesc = NULL;
4886                fl->cntxt_id = 0;
4887                fl->desc = NULL;
4888        }
4889}
4890
4891/**
4892 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4893 *      @adap: the adapter
4894 *      @n: number of queues
4895 *      @q: pointer to first queue
4896 *
4897 *      Release the resources of a consecutive block of offload Rx queues.
4898 */
4899void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4900{
4901        for ( ; n; n--, q++)
4902                if (q->rspq.desc)
4903                        free_rspq_fl(adap, &q->rspq,
4904                                     q->fl.size ? &q->fl : NULL);
4905}
4906
4907void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4908{
4909        if (txq->q.desc) {
4910                t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4911                                txq->q.cntxt_id);
4912                free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4913                kfree(txq->q.sdesc);
4914                free_txq(adap, &txq->q);
4915        }
4916}
4917
4918/**
4919 *      t4_free_sge_resources - free SGE resources
4920 *      @adap: the adapter
4921 *
4922 *      Frees resources used by the SGE queue sets.
4923 */
4924void t4_free_sge_resources(struct adapter *adap)
4925{
4926        int i;
4927        struct sge_eth_rxq *eq;
4928        struct sge_eth_txq *etq;
4929
4930        /* stop all Rx queues in order to start them draining */
4931        for (i = 0; i < adap->sge.ethqsets; i++) {
4932                eq = &adap->sge.ethrxq[i];
4933                if (eq->rspq.desc)
4934                        t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4935                                   FW_IQ_TYPE_FL_INT_CAP,
4936                                   eq->rspq.cntxt_id,
4937                                   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4938                                   0xffff);
4939        }
4940
4941        /* clean up Ethernet Tx/Rx queues */
4942        for (i = 0; i < adap->sge.ethqsets; i++) {
4943                eq = &adap->sge.ethrxq[i];
4944                if (eq->rspq.desc)
4945                        free_rspq_fl(adap, &eq->rspq,
4946                                     eq->fl.size ? &eq->fl : NULL);
4947                if (eq->msix) {
4948                        cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4949                        eq->msix = NULL;
4950                }
4951
4952                etq = &adap->sge.ethtxq[i];
4953                if (etq->q.desc) {
4954                        t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4955                                       etq->q.cntxt_id);
4956                        __netif_tx_lock_bh(etq->txq);
4957                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4958                        __netif_tx_unlock_bh(etq->txq);
4959                        kfree(etq->q.sdesc);
4960                        free_txq(adap, &etq->q);
4961                }
4962        }
4963
4964        /* clean up control Tx queues */
4965        for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4966                struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4967
4968                if (cq->q.desc) {
4969                        tasklet_kill(&cq->qresume_tsk);
4970                        t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4971                                        cq->q.cntxt_id);
4972                        __skb_queue_purge(&cq->sendq);
4973                        free_txq(adap, &cq->q);
4974                }
4975        }
4976
4977        if (adap->sge.fw_evtq.desc) {
4978                free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4979                if (adap->sge.fwevtq_msix_idx >= 0)
4980                        cxgb4_free_msix_idx_in_bmap(adap,
4981                                                    adap->sge.fwevtq_msix_idx);
4982        }
4983
4984        if (adap->sge.nd_msix_idx >= 0)
4985                cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4986
4987        if (adap->sge.intrq.desc)
4988                free_rspq_fl(adap, &adap->sge.intrq, NULL);
4989
4990        if (!is_t4(adap->params.chip)) {
4991                etq = &adap->sge.ptptxq;
4992                if (etq->q.desc) {
4993                        t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4994                                       etq->q.cntxt_id);
4995                        spin_lock_bh(&adap->ptp_lock);
4996                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4997                        spin_unlock_bh(&adap->ptp_lock);
4998                        kfree(etq->q.sdesc);
4999                        free_txq(adap, &etq->q);
5000                }
5001        }
5002
5003        /* clear the reverse egress queue map */
5004        memset(adap->sge.egr_map, 0,
5005               adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
5006}
5007
5008void t4_sge_start(struct adapter *adap)
5009{
5010        adap->sge.ethtxq_rover = 0;
5011        mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
5012        mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
5013}
5014
5015/**
5016 *      t4_sge_stop - disable SGE operation
5017 *      @adap: the adapter
5018 *
5019 *      Stop tasklets and timers associated with the DMA engine.  Note that
5020 *      this is effective only if measures have been taken to disable any HW
5021 *      events that may restart them.
5022 */
5023void t4_sge_stop(struct adapter *adap)
5024{
5025        int i;
5026        struct sge *s = &adap->sge;
5027
5028        if (s->rx_timer.function)
5029                del_timer_sync(&s->rx_timer);
5030        if (s->tx_timer.function)
5031                del_timer_sync(&s->tx_timer);
5032
5033        if (is_offload(adap)) {
5034                struct sge_uld_txq_info *txq_info;
5035
5036                txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
5037                if (txq_info) {
5038                        struct sge_uld_txq *txq = txq_info->uldtxq;
5039
5040                        for_each_ofldtxq(&adap->sge, i) {
5041                                if (txq->q.desc)
5042                                        tasklet_kill(&txq->qresume_tsk);
5043                        }
5044                }
5045        }
5046
5047        if (is_pci_uld(adap)) {
5048                struct sge_uld_txq_info *txq_info;
5049
5050                txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5051                if (txq_info) {
5052                        struct sge_uld_txq *txq = txq_info->uldtxq;
5053
5054                        for_each_ofldtxq(&adap->sge, i) {
5055                                if (txq->q.desc)
5056                                        tasklet_kill(&txq->qresume_tsk);
5057                        }
5058                }
5059        }
5060
5061        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5062                struct sge_ctrl_txq *cq = &s->ctrlq[i];
5063
5064                if (cq->q.desc)
5065                        tasklet_kill(&cq->qresume_tsk);
5066        }
5067}
5068
5069/**
5070 *      t4_sge_init_soft - grab core SGE values needed by SGE code
5071 *      @adap: the adapter
5072 *
5073 *      We need to grab the SGE operating parameters that we need to have
5074 *      in order to do our job and make sure we can live with them.
5075 */
5076
5077static int t4_sge_init_soft(struct adapter *adap)
5078{
5079        struct sge *s = &adap->sge;
5080        u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5081        u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5082        u32 ingress_rx_threshold;
5083
5084        /*
5085         * Verify that CPL messages are going to the Ingress Queue for
5086         * process_responses() and that only packet data is going to the
5087         * Free Lists.
5088         */
5089        if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5090            RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5091                dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5092                return -EINVAL;
5093        }
5094
5095        /*
5096         * Validate the Host Buffer Register Array indices that we want to
5097         * use ...
5098         *
5099         * XXX Note that we should really read through the Host Buffer Size
5100         * XXX register array and find the indices of the Buffer Sizes which
5101         * XXX meet our needs!
5102         */
5103        #define READ_FL_BUF(x) \
5104                t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5105
5106        fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5107        fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5108        fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5109        fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5110
5111        /* We only bother using the Large Page logic if the Large Page Buffer
5112         * is larger than our Page Size Buffer.
5113         */
5114        if (fl_large_pg <= fl_small_pg)
5115                fl_large_pg = 0;
5116
5117        #undef READ_FL_BUF
5118
5119        /* The Page Size Buffer must be exactly equal to our Page Size and the
5120         * Large Page Size Buffer should be 0 (per above) or a power of 2.
5121         */
5122        if (fl_small_pg != PAGE_SIZE ||
5123            (fl_large_pg & (fl_large_pg-1)) != 0) {
5124                dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5125                        fl_small_pg, fl_large_pg);
5126                return -EINVAL;
5127        }
5128        if (fl_large_pg)
5129                s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5130
5131        if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5132            fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5133                dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5134                        fl_small_mtu, fl_large_mtu);
5135                return -EINVAL;
5136        }
5137
5138        /*
5139         * Retrieve our RX interrupt holdoff timer values and counter
5140         * threshold values from the SGE parameters.
5141         */
5142        timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5143        timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5144        timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5145        s->timer_val[0] = core_ticks_to_us(adap,
5146                TIMERVALUE0_G(timer_value_0_and_1));
5147        s->timer_val[1] = core_ticks_to_us(adap,
5148                TIMERVALUE1_G(timer_value_0_and_1));
5149        s->timer_val[2] = core_ticks_to_us(adap,
5150                TIMERVALUE2_G(timer_value_2_and_3));
5151        s->timer_val[3] = core_ticks_to_us(adap,
5152                TIMERVALUE3_G(timer_value_2_and_3));
5153        s->timer_val[4] = core_ticks_to_us(adap,
5154                TIMERVALUE4_G(timer_value_4_and_5));
5155        s->timer_val[5] = core_ticks_to_us(adap,
5156                TIMERVALUE5_G(timer_value_4_and_5));
5157
5158        ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5159        s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5160        s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5161        s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5162        s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5163
5164        return 0;
5165}
5166
5167/**
5168 *     t4_sge_init - initialize SGE
5169 *     @adap: the adapter
5170 *
5171 *     Perform low-level SGE code initialization needed every time after a
5172 *     chip reset.
5173 */
5174int t4_sge_init(struct adapter *adap)
5175{
5176        struct sge *s = &adap->sge;
5177        u32 sge_control, sge_conm_ctrl;
5178        int ret, egress_threshold;
5179
5180        /*
5181         * Ingress Padding Boundary and Egress Status Page Size are set up by
5182         * t4_fixup_host_params().
5183         */
5184        sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5185        s->pktshift = PKTSHIFT_G(sge_control);
5186        s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5187
5188        s->fl_align = t4_fl_pkt_align(adap);
5189        ret = t4_sge_init_soft(adap);
5190        if (ret < 0)
5191                return ret;
5192
5193        /*
5194         * A FL with <= fl_starve_thres buffers is starving and a periodic
5195         * timer will attempt to refill it.  This needs to be larger than the
5196         * SGE's Egress Congestion Threshold.  If it isn't, then we can get
5197         * stuck waiting for new packets while the SGE is waiting for us to
5198         * give it more Free List entries.  (Note that the SGE's Egress
5199         * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5200         * there was only a single field to control this.  For T5 there's the
5201         * original field which now only applies to Unpacked Mode Free List
5202         * buffers and a new field which only applies to Packed Mode Free List
5203         * buffers.
5204         */
5205        sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5206        switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5207        case CHELSIO_T4:
5208                egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5209                break;
5210        case CHELSIO_T5:
5211                egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5212                break;
5213        case CHELSIO_T6:
5214                egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5215                break;
5216        default:
5217                dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5218                        CHELSIO_CHIP_VERSION(adap->params.chip));
5219                return -EINVAL;
5220        }
5221        s->fl_starve_thres = 2*egress_threshold + 1;
5222
5223        t4_idma_monitor_init(adap, &s->idma_monitor);
5224
5225        /* Set up timers used for recuring callbacks to process RX and TX
5226         * administrative tasks.
5227         */
5228        timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5229        timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5230
5231        spin_lock_init(&s->intrq_lock);
5232
5233        return 0;
5234}
5235