linux/drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/module.h>
  39#include <linux/moduleparam.h>
  40#include <linux/init.h>
  41#include <linux/pci.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/netdevice.h>
  44#include <linux/etherdevice.h>
  45#include <linux/debugfs.h>
  46#include <linux/ethtool.h>
  47#include <linux/mdio.h>
  48
  49#include "t4vf_common.h"
  50#include "t4vf_defs.h"
  51
  52#include "../cxgb4/t4_regs.h"
  53#include "../cxgb4/t4_msg.h"
  54
  55/*
  56 * Generic information about the driver.
  57 */
  58#define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
  59
  60/*
  61 * Module Parameters.
  62 * ==================
  63 */
  64
  65/*
  66 * Default ethtool "message level" for adapters.
  67 */
  68#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  69                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  70                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  71
  72/*
  73 * The driver uses the best interrupt scheme available on a platform in the
  74 * order MSI-X then MSI.  This parameter determines which of these schemes the
  75 * driver may consider as follows:
  76 *
  77 *     msi = 2: choose from among MSI-X and MSI
  78 *     msi = 1: only consider MSI interrupts
  79 *
  80 * Note that unlike the Physical Function driver, this Virtual Function driver
  81 * does _not_ support legacy INTx interrupts (this limitation is mandated by
  82 * the PCI-E SR-IOV standard).
  83 */
  84#define MSI_MSIX        2
  85#define MSI_MSI         1
  86#define MSI_DEFAULT     MSI_MSIX
  87
  88static int msi = MSI_DEFAULT;
  89
  90module_param(msi, int, 0644);
  91MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
  92
  93/*
  94 * Fundamental constants.
  95 * ======================
  96 */
  97
  98enum {
  99        MAX_TXQ_ENTRIES         = 16384,
 100        MAX_RSPQ_ENTRIES        = 16384,
 101        MAX_RX_BUFFERS          = 16384,
 102
 103        MIN_TXQ_ENTRIES         = 32,
 104        MIN_RSPQ_ENTRIES        = 128,
 105        MIN_FL_ENTRIES          = 16,
 106
 107        /*
 108         * For purposes of manipulating the Free List size we need to
 109         * recognize that Free Lists are actually Egress Queues (the host
 110         * produces free buffers which the hardware consumes), Egress Queues
 111         * indices are all in units of Egress Context Units bytes, and free
 112         * list entries are 64-bit PCI DMA addresses.  And since the state of
 113         * the Producer Index == the Consumer Index implies an EMPTY list, we
 114         * always have at least one Egress Unit's worth of Free List entries
 115         * unused.  See sge.c for more details ...
 116         */
 117        EQ_UNIT = SGE_EQ_IDXSIZE,
 118        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 119        MIN_FL_RESID = FL_PER_EQ_UNIT,
 120};
 121
 122/*
 123 * Global driver state.
 124 * ====================
 125 */
 126
 127static struct dentry *cxgb4vf_debugfs_root;
 128
 129/*
 130 * OS "Callback" functions.
 131 * ========================
 132 */
 133
 134/*
 135 * The link status has changed on the indicated "port" (Virtual Interface).
 136 */
 137void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
 138{
 139        struct net_device *dev = adapter->port[pidx];
 140
 141        /*
 142         * If the port is disabled or the current recorded "link up"
 143         * status matches the new status, just return.
 144         */
 145        if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
 146                return;
 147
 148        /*
 149         * Tell the OS that the link status has changed and print a short
 150         * informative message on the console about the event.
 151         */
 152        if (link_ok) {
 153                const char *s;
 154                const char *fc;
 155                const struct port_info *pi = netdev_priv(dev);
 156
 157                netif_carrier_on(dev);
 158
 159                switch (pi->link_cfg.speed) {
 160                case 100:
 161                        s = "100Mbps";
 162                        break;
 163                case 1000:
 164                        s = "1Gbps";
 165                        break;
 166                case 10000:
 167                        s = "10Gbps";
 168                        break;
 169                case 25000:
 170                        s = "25Gbps";
 171                        break;
 172                case 40000:
 173                        s = "40Gbps";
 174                        break;
 175                case 100000:
 176                        s = "100Gbps";
 177                        break;
 178
 179                default:
 180                        s = "unknown";
 181                        break;
 182                }
 183
 184                switch ((int)pi->link_cfg.fc) {
 185                case PAUSE_RX:
 186                        fc = "RX";
 187                        break;
 188
 189                case PAUSE_TX:
 190                        fc = "TX";
 191                        break;
 192
 193                case PAUSE_RX | PAUSE_TX:
 194                        fc = "RX/TX";
 195                        break;
 196
 197                default:
 198                        fc = "no";
 199                        break;
 200                }
 201
 202                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
 203        } else {
 204                netif_carrier_off(dev);
 205                netdev_info(dev, "link down\n");
 206        }
 207}
 208
 209/*
 210 * THe port module type has changed on the indicated "port" (Virtual
 211 * Interface).
 212 */
 213void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
 214{
 215        static const char * const mod_str[] = {
 216                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 217        };
 218        const struct net_device *dev = adapter->port[pidx];
 219        const struct port_info *pi = netdev_priv(dev);
 220
 221        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 222                dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
 223                         dev->name);
 224        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 225                dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
 226                         dev->name, mod_str[pi->mod_type]);
 227        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 228                dev_info(adapter->pdev_dev, "%s: unsupported optical port "
 229                         "module inserted\n", dev->name);
 230        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 231                dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
 232                         "forcing TWINAX\n", dev->name);
 233        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 234                dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
 235                         dev->name);
 236        else
 237                dev_info(adapter->pdev_dev, "%s: unknown module type %d "
 238                         "inserted\n", dev->name, pi->mod_type);
 239}
 240
 241static int cxgb4vf_set_addr_hash(struct port_info *pi)
 242{
 243        struct adapter *adapter = pi->adapter;
 244        u64 vec = 0;
 245        bool ucast = false;
 246        struct hash_mac_addr *entry;
 247
 248        /* Calculate the hash vector for the updated list and program it */
 249        list_for_each_entry(entry, &adapter->mac_hlist, list) {
 250                ucast |= is_unicast_ether_addr(entry->addr);
 251                vec |= (1ULL << hash_mac_addr(entry->addr));
 252        }
 253        return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
 254}
 255
 256/**
 257 *      cxgb4vf_change_mac - Update match filter for a MAC address.
 258 *      @pi: the port_info
 259 *      @viid: the VI id
 260 *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
 261 *                 or -1
 262 *      @addr: the new MAC address value
 263 *      @persistent: whether a new MAC allocation should be persistent
 264 *
 265 *      Modifies an MPS filter and sets it to the new MAC address if
 266 *      @tcam_idx >= 0, or adds the MAC address to a new filter if
 267 *      @tcam_idx < 0. In the latter case the address is added persistently
 268 *      if @persist is %true.
 269 *      Addresses are programmed to hash region, if tcam runs out of entries.
 270 *
 271 */
 272static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
 273                              int *tcam_idx, const u8 *addr, bool persistent)
 274{
 275        struct hash_mac_addr *new_entry, *entry;
 276        struct adapter *adapter = pi->adapter;
 277        int ret;
 278
 279        ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
 280        /* We ran out of TCAM entries. try programming hash region. */
 281        if (ret == -ENOMEM) {
 282                /* If the MAC address to be updated is in the hash addr
 283                 * list, update it from the list
 284                 */
 285                list_for_each_entry(entry, &adapter->mac_hlist, list) {
 286                        if (entry->iface_mac) {
 287                                ether_addr_copy(entry->addr, addr);
 288                                goto set_hash;
 289                        }
 290                }
 291                new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
 292                if (!new_entry)
 293                        return -ENOMEM;
 294                ether_addr_copy(new_entry->addr, addr);
 295                new_entry->iface_mac = true;
 296                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 297set_hash:
 298                ret = cxgb4vf_set_addr_hash(pi);
 299        } else if (ret >= 0) {
 300                *tcam_idx = ret;
 301                ret = 0;
 302        }
 303
 304        return ret;
 305}
 306
 307/*
 308 * Net device operations.
 309 * ======================
 310 */
 311
 312
 313
 314
 315/*
 316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
 317 * Interface).
 318 */
 319static int link_start(struct net_device *dev)
 320{
 321        int ret;
 322        struct port_info *pi = netdev_priv(dev);
 323
 324        /*
 325         * We do not set address filters and promiscuity here, the stack does
 326         * that step explicitly. Enable vlan accel.
 327         */
 328        ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
 329                              true);
 330        if (ret == 0)
 331                ret = cxgb4vf_change_mac(pi, pi->viid,
 332                                         &pi->xact_addr_filt,
 333                                         dev->dev_addr, true);
 334
 335        /*
 336         * We don't need to actually "start the link" itself since the
 337         * firmware will do that for us when the first Virtual Interface
 338         * is enabled on a port.
 339         */
 340        if (ret == 0)
 341                ret = t4vf_enable_pi(pi->adapter, pi, true, true);
 342
 343        return ret;
 344}
 345
 346/*
 347 * Name the MSI-X interrupts.
 348 */
 349static void name_msix_vecs(struct adapter *adapter)
 350{
 351        int namelen = sizeof(adapter->msix_info[0].desc) - 1;
 352        int pidx;
 353
 354        /*
 355         * Firmware events.
 356         */
 357        snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
 358                 "%s-FWeventq", adapter->name);
 359        adapter->msix_info[MSIX_FW].desc[namelen] = 0;
 360
 361        /*
 362         * Ethernet queues.
 363         */
 364        for_each_port(adapter, pidx) {
 365                struct net_device *dev = adapter->port[pidx];
 366                const struct port_info *pi = netdev_priv(dev);
 367                int qs, msi;
 368
 369                for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
 370                        snprintf(adapter->msix_info[msi].desc, namelen,
 371                                 "%s-%d", dev->name, qs);
 372                        adapter->msix_info[msi].desc[namelen] = 0;
 373                }
 374        }
 375}
 376
 377/*
 378 * Request all of our MSI-X resources.
 379 */
 380static int request_msix_queue_irqs(struct adapter *adapter)
 381{
 382        struct sge *s = &adapter->sge;
 383        int rxq, msi, err;
 384
 385        /*
 386         * Firmware events.
 387         */
 388        err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
 389                          0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
 390        if (err)
 391                return err;
 392
 393        /*
 394         * Ethernet queues.
 395         */
 396        msi = MSIX_IQFLINT;
 397        for_each_ethrxq(s, rxq) {
 398                err = request_irq(adapter->msix_info[msi].vec,
 399                                  t4vf_sge_intr_msix, 0,
 400                                  adapter->msix_info[msi].desc,
 401                                  &s->ethrxq[rxq].rspq);
 402                if (err)
 403                        goto err_free_irqs;
 404                msi++;
 405        }
 406        return 0;
 407
 408err_free_irqs:
 409        while (--rxq >= 0)
 410                free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
 411        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 412        return err;
 413}
 414
 415/*
 416 * Free our MSI-X resources.
 417 */
 418static void free_msix_queue_irqs(struct adapter *adapter)
 419{
 420        struct sge *s = &adapter->sge;
 421        int rxq, msi;
 422
 423        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 424        msi = MSIX_IQFLINT;
 425        for_each_ethrxq(s, rxq)
 426                free_irq(adapter->msix_info[msi++].vec,
 427                         &s->ethrxq[rxq].rspq);
 428}
 429
 430/*
 431 * Turn on NAPI and start up interrupts on a response queue.
 432 */
 433static void qenable(struct sge_rspq *rspq)
 434{
 435        napi_enable(&rspq->napi);
 436
 437        /*
 438         * 0-increment the Going To Sleep register to start the timer and
 439         * enable interrupts.
 440         */
 441        t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 442                     CIDXINC_V(0) |
 443                     SEINTARM_V(rspq->intr_params) |
 444                     INGRESSQID_V(rspq->cntxt_id));
 445}
 446
 447/*
 448 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
 449 */
 450static void enable_rx(struct adapter *adapter)
 451{
 452        int rxq;
 453        struct sge *s = &adapter->sge;
 454
 455        for_each_ethrxq(s, rxq)
 456                qenable(&s->ethrxq[rxq].rspq);
 457        qenable(&s->fw_evtq);
 458
 459        /*
 460         * The interrupt queue doesn't use NAPI so we do the 0-increment of
 461         * its Going To Sleep register here to get it started.
 462         */
 463        if (adapter->flags & CXGB4VF_USING_MSI)
 464                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 465                             CIDXINC_V(0) |
 466                             SEINTARM_V(s->intrq.intr_params) |
 467                             INGRESSQID_V(s->intrq.cntxt_id));
 468
 469}
 470
 471/*
 472 * Wait until all NAPI handlers are descheduled.
 473 */
 474static void quiesce_rx(struct adapter *adapter)
 475{
 476        struct sge *s = &adapter->sge;
 477        int rxq;
 478
 479        for_each_ethrxq(s, rxq)
 480                napi_disable(&s->ethrxq[rxq].rspq.napi);
 481        napi_disable(&s->fw_evtq.napi);
 482}
 483
 484/*
 485 * Response queue handler for the firmware event queue.
 486 */
 487static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
 488                          const struct pkt_gl *gl)
 489{
 490        /*
 491         * Extract response opcode and get pointer to CPL message body.
 492         */
 493        struct adapter *adapter = rspq->adapter;
 494        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 495        void *cpl = (void *)(rsp + 1);
 496
 497        switch (opcode) {
 498        case CPL_FW6_MSG: {
 499                /*
 500                 * We've received an asynchronous message from the firmware.
 501                 */
 502                const struct cpl_fw6_msg *fw_msg = cpl;
 503                if (fw_msg->type == FW6_TYPE_CMD_RPL)
 504                        t4vf_handle_fw_rpl(adapter, fw_msg->data);
 505                break;
 506        }
 507
 508        case CPL_FW4_MSG: {
 509                /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 510                 */
 511                const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
 512                opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
 513                if (opcode != CPL_SGE_EGR_UPDATE) {
 514                        dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 515                                , opcode);
 516                        break;
 517                }
 518                cpl = (void *)p;
 519        }
 520                fallthrough;
 521
 522        case CPL_SGE_EGR_UPDATE: {
 523                /*
 524                 * We've received an Egress Queue Status Update message.  We
 525                 * get these, if the SGE is configured to send these when the
 526                 * firmware passes certain points in processing our TX
 527                 * Ethernet Queue or if we make an explicit request for one.
 528                 * We use these updates to determine when we may need to
 529                 * restart a TX Ethernet Queue which was stopped for lack of
 530                 * free TX Queue Descriptors ...
 531                 */
 532                const struct cpl_sge_egr_update *p = cpl;
 533                unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
 534                struct sge *s = &adapter->sge;
 535                struct sge_txq *tq;
 536                struct sge_eth_txq *txq;
 537                unsigned int eq_idx;
 538
 539                /*
 540                 * Perform sanity checking on the Queue ID to make sure it
 541                 * really refers to one of our TX Ethernet Egress Queues which
 542                 * is active and matches the queue's ID.  None of these error
 543                 * conditions should ever happen so we may want to either make
 544                 * them fatal and/or conditionalized under DEBUG.
 545                 */
 546                eq_idx = EQ_IDX(s, qid);
 547                if (unlikely(eq_idx >= MAX_EGRQ)) {
 548                        dev_err(adapter->pdev_dev,
 549                                "Egress Update QID %d out of range\n", qid);
 550                        break;
 551                }
 552                tq = s->egr_map[eq_idx];
 553                if (unlikely(tq == NULL)) {
 554                        dev_err(adapter->pdev_dev,
 555                                "Egress Update QID %d TXQ=NULL\n", qid);
 556                        break;
 557                }
 558                txq = container_of(tq, struct sge_eth_txq, q);
 559                if (unlikely(tq->abs_id != qid)) {
 560                        dev_err(adapter->pdev_dev,
 561                                "Egress Update QID %d refers to TXQ %d\n",
 562                                qid, tq->abs_id);
 563                        break;
 564                }
 565
 566                /*
 567                 * Restart a stopped TX Queue which has less than half of its
 568                 * TX ring in use ...
 569                 */
 570                txq->q.restarts++;
 571                netif_tx_wake_queue(txq->txq);
 572                break;
 573        }
 574
 575        default:
 576                dev_err(adapter->pdev_dev,
 577                        "unexpected CPL %#x on FW event queue\n", opcode);
 578        }
 579
 580        return 0;
 581}
 582
 583/*
 584 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
 585 * to use and initializes them.  We support multiple "Queue Sets" per port if
 586 * we have MSI-X, otherwise just one queue set per port.
 587 */
 588static int setup_sge_queues(struct adapter *adapter)
 589{
 590        struct sge *s = &adapter->sge;
 591        int err, pidx, msix;
 592
 593        /*
 594         * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
 595         * state.
 596         */
 597        bitmap_zero(s->starving_fl, MAX_EGRQ);
 598
 599        /*
 600         * If we're using MSI interrupt mode we need to set up a "forwarded
 601         * interrupt" queue which we'll set up with our MSI vector.  The rest
 602         * of the ingress queues will be set up to forward their interrupts to
 603         * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
 604         * the intrq's queue ID as the interrupt forwarding queue for the
 605         * subsequent calls ...
 606         */
 607        if (adapter->flags & CXGB4VF_USING_MSI) {
 608                err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
 609                                         adapter->port[0], 0, NULL, NULL);
 610                if (err)
 611                        goto err_free_queues;
 612        }
 613
 614        /*
 615         * Allocate our ingress queue for asynchronous firmware messages.
 616         */
 617        err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
 618                                 MSIX_FW, NULL, fwevtq_handler);
 619        if (err)
 620                goto err_free_queues;
 621
 622        /*
 623         * Allocate each "port"'s initial Queue Sets.  These can be changed
 624         * later on ... up to the point where any interface on the adapter is
 625         * brought up at which point lots of things get nailed down
 626         * permanently ...
 627         */
 628        msix = MSIX_IQFLINT;
 629        for_each_port(adapter, pidx) {
 630                struct net_device *dev = adapter->port[pidx];
 631                struct port_info *pi = netdev_priv(dev);
 632                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 633                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 634                int qs;
 635
 636                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 637                        err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
 638                                                 dev, msix++,
 639                                                 &rxq->fl, t4vf_ethrx_handler);
 640                        if (err)
 641                                goto err_free_queues;
 642
 643                        err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
 644                                             netdev_get_tx_queue(dev, qs),
 645                                             s->fw_evtq.cntxt_id);
 646                        if (err)
 647                                goto err_free_queues;
 648
 649                        rxq->rspq.idx = qs;
 650                        memset(&rxq->stats, 0, sizeof(rxq->stats));
 651                }
 652        }
 653
 654        /*
 655         * Create the reverse mappings for the queues.
 656         */
 657        s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
 658        s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
 659        IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
 660        for_each_port(adapter, pidx) {
 661                struct net_device *dev = adapter->port[pidx];
 662                struct port_info *pi = netdev_priv(dev);
 663                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 664                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 665                int qs;
 666
 667                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 668                        IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
 669                        EQ_MAP(s, txq->q.abs_id) = &txq->q;
 670
 671                        /*
 672                         * The FW_IQ_CMD doesn't return the Absolute Queue IDs
 673                         * for Free Lists but since all of the Egress Queues
 674                         * (including Free Lists) have Relative Queue IDs
 675                         * which are computed as Absolute - Base Queue ID, we
 676                         * can synthesize the Absolute Queue IDs for the Free
 677                         * Lists.  This is useful for debugging purposes when
 678                         * we want to dump Queue Contexts via the PF Driver.
 679                         */
 680                        rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
 681                        EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
 682                }
 683        }
 684        return 0;
 685
 686err_free_queues:
 687        t4vf_free_sge_resources(adapter);
 688        return err;
 689}
 690
 691/*
 692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
 693 * queues.  We configure the RSS CPU lookup table to distribute to the number
 694 * of HW receive queues, and the response queue lookup table to narrow that
 695 * down to the response queues actually configured for each "port" (Virtual
 696 * Interface).  We always configure the RSS mapping for all ports since the
 697 * mapping table has plenty of entries.
 698 */
 699static int setup_rss(struct adapter *adapter)
 700{
 701        int pidx;
 702
 703        for_each_port(adapter, pidx) {
 704                struct port_info *pi = adap2pinfo(adapter, pidx);
 705                struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
 706                u16 rss[MAX_PORT_QSETS];
 707                int qs, err;
 708
 709                for (qs = 0; qs < pi->nqsets; qs++)
 710                        rss[qs] = rxq[qs].rspq.abs_id;
 711
 712                err = t4vf_config_rss_range(adapter, pi->viid,
 713                                            0, pi->rss_size, rss, pi->nqsets);
 714                if (err)
 715                        return err;
 716
 717                /*
 718                 * Perform Global RSS Mode-specific initialization.
 719                 */
 720                switch (adapter->params.rss.mode) {
 721                case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
 722                        /*
 723                         * If Tunnel All Lookup isn't specified in the global
 724                         * RSS Configuration, then we need to specify a
 725                         * default Ingress Queue for any ingress packets which
 726                         * aren't hashed.  We'll use our first ingress queue
 727                         * ...
 728                         */
 729                        if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
 730                                union rss_vi_config config;
 731                                err = t4vf_read_rss_vi_config(adapter,
 732                                                              pi->viid,
 733                                                              &config);
 734                                if (err)
 735                                        return err;
 736                                config.basicvirtual.defaultq =
 737                                        rxq[0].rspq.abs_id;
 738                                err = t4vf_write_rss_vi_config(adapter,
 739                                                               pi->viid,
 740                                                               &config);
 741                                if (err)
 742                                        return err;
 743                        }
 744                        break;
 745                }
 746        }
 747
 748        return 0;
 749}
 750
 751/*
 752 * Bring the adapter up.  Called whenever we go from no "ports" open to having
 753 * one open.  This function performs the actions necessary to make an adapter
 754 * operational, such as completing the initialization of HW modules, and
 755 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
 756 * this is called "cxgb_up" in the PF Driver.)
 757 */
 758static int adapter_up(struct adapter *adapter)
 759{
 760        int err;
 761
 762        /*
 763         * If this is the first time we've been called, perform basic
 764         * adapter setup.  Once we've done this, many of our adapter
 765         * parameters can no longer be changed ...
 766         */
 767        if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
 768                err = setup_sge_queues(adapter);
 769                if (err)
 770                        return err;
 771                err = setup_rss(adapter);
 772                if (err) {
 773                        t4vf_free_sge_resources(adapter);
 774                        return err;
 775                }
 776
 777                if (adapter->flags & CXGB4VF_USING_MSIX)
 778                        name_msix_vecs(adapter);
 779
 780                adapter->flags |= CXGB4VF_FULL_INIT_DONE;
 781        }
 782
 783        /*
 784         * Acquire our interrupt resources.  We only support MSI-X and MSI.
 785         */
 786        BUG_ON((adapter->flags &
 787               (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
 788        if (adapter->flags & CXGB4VF_USING_MSIX)
 789                err = request_msix_queue_irqs(adapter);
 790        else
 791                err = request_irq(adapter->pdev->irq,
 792                                  t4vf_intr_handler(adapter), 0,
 793                                  adapter->name, adapter);
 794        if (err) {
 795                dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
 796                        err);
 797                return err;
 798        }
 799
 800        /*
 801         * Enable NAPI ingress processing and return success.
 802         */
 803        enable_rx(adapter);
 804        t4vf_sge_start(adapter);
 805
 806        return 0;
 807}
 808
 809/*
 810 * Bring the adapter down.  Called whenever the last "port" (Virtual
 811 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
 812 * Driver.)
 813 */
 814static void adapter_down(struct adapter *adapter)
 815{
 816        /*
 817         * Free interrupt resources.
 818         */
 819        if (adapter->flags & CXGB4VF_USING_MSIX)
 820                free_msix_queue_irqs(adapter);
 821        else
 822                free_irq(adapter->pdev->irq, adapter);
 823
 824        /*
 825         * Wait for NAPI handlers to finish.
 826         */
 827        quiesce_rx(adapter);
 828}
 829
 830/*
 831 * Start up a net device.
 832 */
 833static int cxgb4vf_open(struct net_device *dev)
 834{
 835        int err;
 836        struct port_info *pi = netdev_priv(dev);
 837        struct adapter *adapter = pi->adapter;
 838
 839        /*
 840         * If we don't have a connection to the firmware there's nothing we
 841         * can do.
 842         */
 843        if (!(adapter->flags & CXGB4VF_FW_OK))
 844                return -ENXIO;
 845
 846        /*
 847         * If this is the first interface that we're opening on the "adapter",
 848         * bring the "adapter" up now.
 849         */
 850        if (adapter->open_device_map == 0) {
 851                err = adapter_up(adapter);
 852                if (err)
 853                        return err;
 854        }
 855
 856        /* It's possible that the basic port information could have
 857         * changed since we first read it.
 858         */
 859        err = t4vf_update_port_info(pi);
 860        if (err < 0)
 861                return err;
 862
 863        /*
 864         * Note that this interface is up and start everything up ...
 865         */
 866        err = link_start(dev);
 867        if (err)
 868                goto err_unwind;
 869
 870        pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
 871
 872        netif_tx_start_all_queues(dev);
 873        set_bit(pi->port_id, &adapter->open_device_map);
 874        return 0;
 875
 876err_unwind:
 877        if (adapter->open_device_map == 0)
 878                adapter_down(adapter);
 879        return err;
 880}
 881
 882/*
 883 * Shut down a net device.  This routine is called "cxgb_close" in the PF
 884 * Driver ...
 885 */
 886static int cxgb4vf_stop(struct net_device *dev)
 887{
 888        struct port_info *pi = netdev_priv(dev);
 889        struct adapter *adapter = pi->adapter;
 890
 891        netif_tx_stop_all_queues(dev);
 892        netif_carrier_off(dev);
 893        t4vf_enable_pi(adapter, pi, false, false);
 894
 895        clear_bit(pi->port_id, &adapter->open_device_map);
 896        if (adapter->open_device_map == 0)
 897                adapter_down(adapter);
 898        return 0;
 899}
 900
 901/*
 902 * Translate our basic statistics into the standard "ifconfig" statistics.
 903 */
 904static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
 905{
 906        struct t4vf_port_stats stats;
 907        struct port_info *pi = netdev2pinfo(dev);
 908        struct adapter *adapter = pi->adapter;
 909        struct net_device_stats *ns = &dev->stats;
 910        int err;
 911
 912        spin_lock(&adapter->stats_lock);
 913        err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
 914        spin_unlock(&adapter->stats_lock);
 915
 916        memset(ns, 0, sizeof(*ns));
 917        if (err)
 918                return ns;
 919
 920        ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
 921                        stats.tx_ucast_bytes + stats.tx_offload_bytes);
 922        ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
 923                          stats.tx_ucast_frames + stats.tx_offload_frames);
 924        ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
 925                        stats.rx_ucast_bytes);
 926        ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
 927                          stats.rx_ucast_frames);
 928        ns->multicast = stats.rx_mcast_frames;
 929        ns->tx_errors = stats.tx_drop_frames;
 930        ns->rx_errors = stats.rx_err_frames;
 931
 932        return ns;
 933}
 934
 935static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 936{
 937        struct port_info *pi = netdev_priv(netdev);
 938        struct adapter *adapter = pi->adapter;
 939        int ret;
 940        u64 mhash = 0;
 941        u64 uhash = 0;
 942        bool free = false;
 943        bool ucast = is_unicast_ether_addr(mac_addr);
 944        const u8 *maclist[1] = {mac_addr};
 945        struct hash_mac_addr *new_entry;
 946
 947        ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
 948                                  NULL, ucast ? &uhash : &mhash, false);
 949        if (ret < 0)
 950                goto out;
 951        /* if hash != 0, then add the addr to hash addr list
 952         * so on the end we will calculate the hash for the
 953         * list and program it
 954         */
 955        if (uhash || mhash) {
 956                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 957                if (!new_entry)
 958                        return -ENOMEM;
 959                ether_addr_copy(new_entry->addr, mac_addr);
 960                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 961                ret = cxgb4vf_set_addr_hash(pi);
 962        }
 963out:
 964        return ret < 0 ? ret : 0;
 965}
 966
 967static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 968{
 969        struct port_info *pi = netdev_priv(netdev);
 970        struct adapter *adapter = pi->adapter;
 971        int ret;
 972        const u8 *maclist[1] = {mac_addr};
 973        struct hash_mac_addr *entry, *tmp;
 974
 975        /* If the MAC address to be removed is in the hash addr
 976         * list, delete it from the list and update hash vector
 977         */
 978        list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
 979                if (ether_addr_equal(entry->addr, mac_addr)) {
 980                        list_del(&entry->list);
 981                        kfree(entry);
 982                        return cxgb4vf_set_addr_hash(pi);
 983                }
 984        }
 985
 986        ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
 987        return ret < 0 ? -EINVAL : 0;
 988}
 989
 990/*
 991 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
 992 * If @mtu is -1 it is left unchanged.
 993 */
 994static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 995{
 996        struct port_info *pi = netdev_priv(dev);
 997
 998        __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
 999        __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1000        return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1001                               (dev->flags & IFF_PROMISC) != 0,
1002                               (dev->flags & IFF_ALLMULTI) != 0,
1003                               1, -1, sleep_ok);
1004}
1005
1006/*
1007 * Set the current receive modes on the device.
1008 */
1009static void cxgb4vf_set_rxmode(struct net_device *dev)
1010{
1011        /* unfortunately we can't return errors to the stack */
1012        set_rxmode(dev, -1, false);
1013}
1014
1015/*
1016 * Find the entry in the interrupt holdoff timer value array which comes
1017 * closest to the specified interrupt holdoff value.
1018 */
1019static int closest_timer(const struct sge *s, int us)
1020{
1021        int i, timer_idx = 0, min_delta = INT_MAX;
1022
1023        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1024                int delta = us - s->timer_val[i];
1025                if (delta < 0)
1026                        delta = -delta;
1027                if (delta < min_delta) {
1028                        min_delta = delta;
1029                        timer_idx = i;
1030                }
1031        }
1032        return timer_idx;
1033}
1034
1035static int closest_thres(const struct sge *s, int thres)
1036{
1037        int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1038
1039        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1040                delta = thres - s->counter_val[i];
1041                if (delta < 0)
1042                        delta = -delta;
1043                if (delta < min_delta) {
1044                        min_delta = delta;
1045                        pktcnt_idx = i;
1046                }
1047        }
1048        return pktcnt_idx;
1049}
1050
1051/*
1052 * Return a queue's interrupt hold-off time in us.  0 means no timer.
1053 */
1054static unsigned int qtimer_val(const struct adapter *adapter,
1055                               const struct sge_rspq *rspq)
1056{
1057        unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1058
1059        return timer_idx < SGE_NTIMERS
1060                ? adapter->sge.timer_val[timer_idx]
1061                : 0;
1062}
1063
1064/**
1065 *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1066 *      @adapter: the adapter
1067 *      @rspq: the RX response queue
1068 *      @us: the hold-off time in us, or 0 to disable timer
1069 *      @cnt: the hold-off packet count, or 0 to disable counter
1070 *
1071 *      Sets an RX response queue's interrupt hold-off time and packet count.
1072 *      At least one of the two needs to be enabled for the queue to generate
1073 *      interrupts.
1074 */
1075static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1076                               unsigned int us, unsigned int cnt)
1077{
1078        unsigned int timer_idx;
1079
1080        /*
1081         * If both the interrupt holdoff timer and count are specified as
1082         * zero, default to a holdoff count of 1 ...
1083         */
1084        if ((us | cnt) == 0)
1085                cnt = 1;
1086
1087        /*
1088         * If an interrupt holdoff count has been specified, then find the
1089         * closest configured holdoff count and use that.  If the response
1090         * queue has already been created, then update its queue context
1091         * parameters ...
1092         */
1093        if (cnt) {
1094                int err;
1095                u32 v, pktcnt_idx;
1096
1097                pktcnt_idx = closest_thres(&adapter->sge, cnt);
1098                if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1099                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1100                            FW_PARAMS_PARAM_X_V(
1101                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1102                            FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1103                        err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1104                        if (err)
1105                                return err;
1106                }
1107                rspq->pktcnt_idx = pktcnt_idx;
1108        }
1109
1110        /*
1111         * Compute the closest holdoff timer index from the supplied holdoff
1112         * timer value.
1113         */
1114        timer_idx = (us == 0
1115                     ? SGE_TIMER_RSTRT_CNTR
1116                     : closest_timer(&adapter->sge, us));
1117
1118        /*
1119         * Update the response queue's interrupt coalescing parameters and
1120         * return success.
1121         */
1122        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1123                             QINTR_CNT_EN_V(cnt > 0));
1124        return 0;
1125}
1126
1127/*
1128 * Return a version number to identify the type of adapter.  The scheme is:
1129 * - bits 0..9: chip version
1130 * - bits 10..15: chip revision
1131 */
1132static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1133{
1134        /*
1135         * Chip version 4, revision 0x3f (cxgb4vf).
1136         */
1137        return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1138}
1139
1140/*
1141 * Execute the specified ioctl command.
1142 */
1143static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1144{
1145        int ret = 0;
1146
1147        switch (cmd) {
1148            /*
1149             * The VF Driver doesn't have access to any of the other
1150             * common Ethernet device ioctl()'s (like reading/writing
1151             * PHY registers, etc.
1152             */
1153
1154        default:
1155                ret = -EOPNOTSUPP;
1156                break;
1157        }
1158        return ret;
1159}
1160
1161/*
1162 * Change the device's MTU.
1163 */
1164static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1165{
1166        int ret;
1167        struct port_info *pi = netdev_priv(dev);
1168
1169        ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1170                              -1, -1, -1, -1, true);
1171        if (!ret)
1172                dev->mtu = new_mtu;
1173        return ret;
1174}
1175
1176static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1177        netdev_features_t features)
1178{
1179        /*
1180         * Since there is no support for separate rx/tx vlan accel
1181         * enable/disable make sure tx flag is always in same state as rx.
1182         */
1183        if (features & NETIF_F_HW_VLAN_CTAG_RX)
1184                features |= NETIF_F_HW_VLAN_CTAG_TX;
1185        else
1186                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1187
1188        return features;
1189}
1190
1191static int cxgb4vf_set_features(struct net_device *dev,
1192        netdev_features_t features)
1193{
1194        struct port_info *pi = netdev_priv(dev);
1195        netdev_features_t changed = dev->features ^ features;
1196
1197        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1198                t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1199                                features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1200
1201        return 0;
1202}
1203
1204/*
1205 * Change the devices MAC address.
1206 */
1207static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1208{
1209        int ret;
1210        struct sockaddr *addr = _addr;
1211        struct port_info *pi = netdev_priv(dev);
1212
1213        if (!is_valid_ether_addr(addr->sa_data))
1214                return -EADDRNOTAVAIL;
1215
1216        ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1217                                 addr->sa_data, true);
1218        if (ret < 0)
1219                return ret;
1220
1221        eth_hw_addr_set(dev, addr->sa_data);
1222        return 0;
1223}
1224
1225#ifdef CONFIG_NET_POLL_CONTROLLER
1226/*
1227 * Poll all of our receive queues.  This is called outside of normal interrupt
1228 * context.
1229 */
1230static void cxgb4vf_poll_controller(struct net_device *dev)
1231{
1232        struct port_info *pi = netdev_priv(dev);
1233        struct adapter *adapter = pi->adapter;
1234
1235        if (adapter->flags & CXGB4VF_USING_MSIX) {
1236                struct sge_eth_rxq *rxq;
1237                int nqsets;
1238
1239                rxq = &adapter->sge.ethrxq[pi->first_qset];
1240                for (nqsets = pi->nqsets; nqsets; nqsets--) {
1241                        t4vf_sge_intr_msix(0, &rxq->rspq);
1242                        rxq++;
1243                }
1244        } else
1245                t4vf_intr_handler(adapter)(0, adapter);
1246}
1247#endif
1248
1249/*
1250 * Ethtool operations.
1251 * ===================
1252 *
1253 * Note that we don't support any ethtool operations which change the physical
1254 * state of the port to which we're linked.
1255 */
1256
1257/**
1258 *      from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1259 *      @port_type: Firmware Port Type
1260 *      @mod_type: Firmware Module Type
1261 *
1262 *      Translate Firmware Port/Module type to Ethtool Port Type.
1263 */
1264static int from_fw_port_mod_type(enum fw_port_type port_type,
1265                                 enum fw_port_module_type mod_type)
1266{
1267        if (port_type == FW_PORT_TYPE_BT_SGMII ||
1268            port_type == FW_PORT_TYPE_BT_XFI ||
1269            port_type == FW_PORT_TYPE_BT_XAUI) {
1270                return PORT_TP;
1271        } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1272                   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1273                return PORT_FIBRE;
1274        } else if (port_type == FW_PORT_TYPE_SFP ||
1275                   port_type == FW_PORT_TYPE_QSFP_10G ||
1276                   port_type == FW_PORT_TYPE_QSA ||
1277                   port_type == FW_PORT_TYPE_QSFP ||
1278                   port_type == FW_PORT_TYPE_CR4_QSFP ||
1279                   port_type == FW_PORT_TYPE_CR_QSFP ||
1280                   port_type == FW_PORT_TYPE_CR2_QSFP ||
1281                   port_type == FW_PORT_TYPE_SFP28) {
1282                if (mod_type == FW_PORT_MOD_TYPE_LR ||
1283                    mod_type == FW_PORT_MOD_TYPE_SR ||
1284                    mod_type == FW_PORT_MOD_TYPE_ER ||
1285                    mod_type == FW_PORT_MOD_TYPE_LRM)
1286                        return PORT_FIBRE;
1287                else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1288                         mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1289                        return PORT_DA;
1290                else
1291                        return PORT_OTHER;
1292        } else if (port_type == FW_PORT_TYPE_KR4_100G ||
1293                   port_type == FW_PORT_TYPE_KR_SFP28 ||
1294                   port_type == FW_PORT_TYPE_KR_XLAUI) {
1295                return PORT_NONE;
1296        }
1297
1298        return PORT_OTHER;
1299}
1300
1301/**
1302 *      fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1303 *      @port_type: Firmware Port Type
1304 *      @fw_caps: Firmware Port Capabilities
1305 *      @link_mode_mask: ethtool Link Mode Mask
1306 *
1307 *      Translate a Firmware Port Capabilities specification to an ethtool
1308 *      Link Mode Mask.
1309 */
1310static void fw_caps_to_lmm(enum fw_port_type port_type,
1311                           unsigned int fw_caps,
1312                           unsigned long *link_mode_mask)
1313{
1314        #define SET_LMM(__lmm_name) \
1315                __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1316                          link_mode_mask)
1317
1318        #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1319                do { \
1320                        if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1321                                SET_LMM(__lmm_name); \
1322                } while (0)
1323
1324        switch (port_type) {
1325        case FW_PORT_TYPE_BT_SGMII:
1326        case FW_PORT_TYPE_BT_XFI:
1327        case FW_PORT_TYPE_BT_XAUI:
1328                SET_LMM(TP);
1329                FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1330                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1331                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1332                break;
1333
1334        case FW_PORT_TYPE_KX4:
1335        case FW_PORT_TYPE_KX:
1336                SET_LMM(Backplane);
1337                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1338                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1339                break;
1340
1341        case FW_PORT_TYPE_KR:
1342                SET_LMM(Backplane);
1343                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1344                break;
1345
1346        case FW_PORT_TYPE_BP_AP:
1347                SET_LMM(Backplane);
1348                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1349                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1350                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1351                break;
1352
1353        case FW_PORT_TYPE_BP4_AP:
1354                SET_LMM(Backplane);
1355                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1356                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1357                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1358                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1359                break;
1360
1361        case FW_PORT_TYPE_FIBER_XFI:
1362        case FW_PORT_TYPE_FIBER_XAUI:
1363        case FW_PORT_TYPE_SFP:
1364        case FW_PORT_TYPE_QSFP_10G:
1365        case FW_PORT_TYPE_QSA:
1366                SET_LMM(FIBRE);
1367                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1368                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1369                break;
1370
1371        case FW_PORT_TYPE_BP40_BA:
1372        case FW_PORT_TYPE_QSFP:
1373                SET_LMM(FIBRE);
1374                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1375                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1376                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1377                break;
1378
1379        case FW_PORT_TYPE_CR_QSFP:
1380        case FW_PORT_TYPE_SFP28:
1381                SET_LMM(FIBRE);
1382                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1383                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1384                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1385                break;
1386
1387        case FW_PORT_TYPE_KR_SFP28:
1388                SET_LMM(Backplane);
1389                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1390                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1391                FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1392                break;
1393
1394        case FW_PORT_TYPE_KR_XLAUI:
1395                SET_LMM(Backplane);
1396                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1397                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1398                FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1399                break;
1400
1401        case FW_PORT_TYPE_CR2_QSFP:
1402                SET_LMM(FIBRE);
1403                FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1404                break;
1405
1406        case FW_PORT_TYPE_KR4_100G:
1407        case FW_PORT_TYPE_CR4_QSFP:
1408                SET_LMM(FIBRE);
1409                FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1410                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1411                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1412                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1413                FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1414                FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1415                break;
1416
1417        default:
1418                break;
1419        }
1420
1421        if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1422                FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1423                FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1424        } else {
1425                SET_LMM(FEC_NONE);
1426        }
1427
1428        FW_CAPS_TO_LMM(ANEG, Autoneg);
1429        FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1430        FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1431
1432        #undef FW_CAPS_TO_LMM
1433        #undef SET_LMM
1434}
1435
1436static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1437                                  struct ethtool_link_ksettings *link_ksettings)
1438{
1439        struct port_info *pi = netdev_priv(dev);
1440        struct ethtool_link_settings *base = &link_ksettings->base;
1441
1442        /* For the nonce, the Firmware doesn't send up Port State changes
1443         * when the Virtual Interface attached to the Port is down.  So
1444         * if it's down, let's grab any changes.
1445         */
1446        if (!netif_running(dev))
1447                (void)t4vf_update_port_info(pi);
1448
1449        ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1450        ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1451        ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1452
1453        base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1454
1455        if (pi->mdio_addr >= 0) {
1456                base->phy_address = pi->mdio_addr;
1457                base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1458                                      ? ETH_MDIO_SUPPORTS_C22
1459                                      : ETH_MDIO_SUPPORTS_C45);
1460        } else {
1461                base->phy_address = 255;
1462                base->mdio_support = 0;
1463        }
1464
1465        fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1466                       link_ksettings->link_modes.supported);
1467        fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1468                       link_ksettings->link_modes.advertising);
1469        fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1470                       link_ksettings->link_modes.lp_advertising);
1471
1472        if (netif_carrier_ok(dev)) {
1473                base->speed = pi->link_cfg.speed;
1474                base->duplex = DUPLEX_FULL;
1475        } else {
1476                base->speed = SPEED_UNKNOWN;
1477                base->duplex = DUPLEX_UNKNOWN;
1478        }
1479
1480        base->autoneg = pi->link_cfg.autoneg;
1481        if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1482                ethtool_link_ksettings_add_link_mode(link_ksettings,
1483                                                     supported, Autoneg);
1484        if (pi->link_cfg.autoneg)
1485                ethtool_link_ksettings_add_link_mode(link_ksettings,
1486                                                     advertising, Autoneg);
1487
1488        return 0;
1489}
1490
1491/* Translate the Firmware FEC value into the ethtool value. */
1492static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1493{
1494        unsigned int eth_fec = 0;
1495
1496        if (fw_fec & FW_PORT_CAP32_FEC_RS)
1497                eth_fec |= ETHTOOL_FEC_RS;
1498        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1499                eth_fec |= ETHTOOL_FEC_BASER;
1500
1501        /* if nothing is set, then FEC is off */
1502        if (!eth_fec)
1503                eth_fec = ETHTOOL_FEC_OFF;
1504
1505        return eth_fec;
1506}
1507
1508/* Translate Common Code FEC value into ethtool value. */
1509static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1510{
1511        unsigned int eth_fec = 0;
1512
1513        if (cc_fec & FEC_AUTO)
1514                eth_fec |= ETHTOOL_FEC_AUTO;
1515        if (cc_fec & FEC_RS)
1516                eth_fec |= ETHTOOL_FEC_RS;
1517        if (cc_fec & FEC_BASER_RS)
1518                eth_fec |= ETHTOOL_FEC_BASER;
1519
1520        /* if nothing is set, then FEC is off */
1521        if (!eth_fec)
1522                eth_fec = ETHTOOL_FEC_OFF;
1523
1524        return eth_fec;
1525}
1526
1527static int cxgb4vf_get_fecparam(struct net_device *dev,
1528                                struct ethtool_fecparam *fec)
1529{
1530        const struct port_info *pi = netdev_priv(dev);
1531        const struct link_config *lc = &pi->link_cfg;
1532
1533        /* Translate the Firmware FEC Support into the ethtool value.  We
1534         * always support IEEE 802.3 "automatic" selection of Link FEC type if
1535         * any FEC is supported.
1536         */
1537        fec->fec = fwcap_to_eth_fec(lc->pcaps);
1538        if (fec->fec != ETHTOOL_FEC_OFF)
1539                fec->fec |= ETHTOOL_FEC_AUTO;
1540
1541        /* Translate the current internal FEC parameters into the
1542         * ethtool values.
1543         */
1544        fec->active_fec = cc_to_eth_fec(lc->fec);
1545        return 0;
1546}
1547
1548/*
1549 * Return our driver information.
1550 */
1551static void cxgb4vf_get_drvinfo(struct net_device *dev,
1552                                struct ethtool_drvinfo *drvinfo)
1553{
1554        struct adapter *adapter = netdev2adap(dev);
1555
1556        strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1557        strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1558                sizeof(drvinfo->bus_info));
1559        snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1560                 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1561                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1562                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1563                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1564                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1565                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1566                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1567                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1568                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1569}
1570
1571/*
1572 * Return current adapter message level.
1573 */
1574static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1575{
1576        return netdev2adap(dev)->msg_enable;
1577}
1578
1579/*
1580 * Set current adapter message level.
1581 */
1582static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1583{
1584        netdev2adap(dev)->msg_enable = msglevel;
1585}
1586
1587/*
1588 * Return the device's current Queue Set ring size parameters along with the
1589 * allowed maximum values.  Since ethtool doesn't understand the concept of
1590 * multi-queue devices, we just return the current values associated with the
1591 * first Queue Set.
1592 */
1593static void cxgb4vf_get_ringparam(struct net_device *dev,
1594                                  struct ethtool_ringparam *rp,
1595                                  struct kernel_ethtool_ringparam *kernel_rp,
1596                                  struct netlink_ext_ack *extack)
1597{
1598        const struct port_info *pi = netdev_priv(dev);
1599        const struct sge *s = &pi->adapter->sge;
1600
1601        rp->rx_max_pending = MAX_RX_BUFFERS;
1602        rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1603        rp->rx_jumbo_max_pending = 0;
1604        rp->tx_max_pending = MAX_TXQ_ENTRIES;
1605
1606        rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1607        rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1608        rp->rx_jumbo_pending = 0;
1609        rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1610}
1611
1612/*
1613 * Set the Queue Set ring size parameters for the device.  Again, since
1614 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1615 * apply these new values across all of the Queue Sets associated with the
1616 * device -- after vetting them of course!
1617 */
1618static int cxgb4vf_set_ringparam(struct net_device *dev,
1619                                 struct ethtool_ringparam *rp,
1620                                 struct kernel_ethtool_ringparam *kernel_rp,
1621                                 struct netlink_ext_ack *extack)
1622{
1623        const struct port_info *pi = netdev_priv(dev);
1624        struct adapter *adapter = pi->adapter;
1625        struct sge *s = &adapter->sge;
1626        int qs;
1627
1628        if (rp->rx_pending > MAX_RX_BUFFERS ||
1629            rp->rx_jumbo_pending ||
1630            rp->tx_pending > MAX_TXQ_ENTRIES ||
1631            rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1632            rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1633            rp->rx_pending < MIN_FL_ENTRIES ||
1634            rp->tx_pending < MIN_TXQ_ENTRIES)
1635                return -EINVAL;
1636
1637        if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1638                return -EBUSY;
1639
1640        for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1641                s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1642                s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1643                s->ethtxq[qs].q.size = rp->tx_pending;
1644        }
1645        return 0;
1646}
1647
1648/*
1649 * Return the interrupt holdoff timer and count for the first Queue Set on the
1650 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1651 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1652 */
1653static int cxgb4vf_get_coalesce(struct net_device *dev,
1654                                struct ethtool_coalesce *coalesce,
1655                                struct kernel_ethtool_coalesce *kernel_coal,
1656                                struct netlink_ext_ack *extack)
1657{
1658        const struct port_info *pi = netdev_priv(dev);
1659        const struct adapter *adapter = pi->adapter;
1660        const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1661
1662        coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1663        coalesce->rx_max_coalesced_frames =
1664                ((rspq->intr_params & QINTR_CNT_EN_F)
1665                 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1666                 : 0);
1667        return 0;
1668}
1669
1670/*
1671 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1672 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1673 * the interrupt holdoff timer on any of the device's Queue Sets.
1674 */
1675static int cxgb4vf_set_coalesce(struct net_device *dev,
1676                                struct ethtool_coalesce *coalesce,
1677                                struct kernel_ethtool_coalesce *kernel_coal,
1678                                struct netlink_ext_ack *extack)
1679{
1680        const struct port_info *pi = netdev_priv(dev);
1681        struct adapter *adapter = pi->adapter;
1682
1683        return set_rxq_intr_params(adapter,
1684                                   &adapter->sge.ethrxq[pi->first_qset].rspq,
1685                                   coalesce->rx_coalesce_usecs,
1686                                   coalesce->rx_max_coalesced_frames);
1687}
1688
1689/*
1690 * Report current port link pause parameter settings.
1691 */
1692static void cxgb4vf_get_pauseparam(struct net_device *dev,
1693                                   struct ethtool_pauseparam *pauseparam)
1694{
1695        struct port_info *pi = netdev_priv(dev);
1696
1697        pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1698        pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0;
1699        pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0;
1700}
1701
1702/*
1703 * Identify the port by blinking the port's LED.
1704 */
1705static int cxgb4vf_phys_id(struct net_device *dev,
1706                           enum ethtool_phys_id_state state)
1707{
1708        unsigned int val;
1709        struct port_info *pi = netdev_priv(dev);
1710
1711        if (state == ETHTOOL_ID_ACTIVE)
1712                val = 0xffff;
1713        else if (state == ETHTOOL_ID_INACTIVE)
1714                val = 0;
1715        else
1716                return -EINVAL;
1717
1718        return t4vf_identify_port(pi->adapter, pi->viid, val);
1719}
1720
1721/*
1722 * Port stats maintained per queue of the port.
1723 */
1724struct queue_port_stats {
1725        u64 tso;
1726        u64 tx_csum;
1727        u64 rx_csum;
1728        u64 vlan_ex;
1729        u64 vlan_ins;
1730        u64 lro_pkts;
1731        u64 lro_merged;
1732};
1733
1734/*
1735 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1736 * these need to match the order of statistics returned by
1737 * t4vf_get_port_stats().
1738 */
1739static const char stats_strings[][ETH_GSTRING_LEN] = {
1740        /*
1741         * These must match the layout of the t4vf_port_stats structure.
1742         */
1743        "TxBroadcastBytes  ",
1744        "TxBroadcastFrames ",
1745        "TxMulticastBytes  ",
1746        "TxMulticastFrames ",
1747        "TxUnicastBytes    ",
1748        "TxUnicastFrames   ",
1749        "TxDroppedFrames   ",
1750        "TxOffloadBytes    ",
1751        "TxOffloadFrames   ",
1752        "RxBroadcastBytes  ",
1753        "RxBroadcastFrames ",
1754        "RxMulticastBytes  ",
1755        "RxMulticastFrames ",
1756        "RxUnicastBytes    ",
1757        "RxUnicastFrames   ",
1758        "RxErrorFrames     ",
1759
1760        /*
1761         * These are accumulated per-queue statistics and must match the
1762         * order of the fields in the queue_port_stats structure.
1763         */
1764        "TSO               ",
1765        "TxCsumOffload     ",
1766        "RxCsumGood        ",
1767        "VLANextractions   ",
1768        "VLANinsertions    ",
1769        "GROPackets        ",
1770        "GROMerged         ",
1771};
1772
1773/*
1774 * Return the number of statistics in the specified statistics set.
1775 */
1776static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1777{
1778        switch (sset) {
1779        case ETH_SS_STATS:
1780                return ARRAY_SIZE(stats_strings);
1781        default:
1782                return -EOPNOTSUPP;
1783        }
1784        /*NOTREACHED*/
1785}
1786
1787/*
1788 * Return the strings for the specified statistics set.
1789 */
1790static void cxgb4vf_get_strings(struct net_device *dev,
1791                                u32 sset,
1792                                u8 *data)
1793{
1794        switch (sset) {
1795        case ETH_SS_STATS:
1796                memcpy(data, stats_strings, sizeof(stats_strings));
1797                break;
1798        }
1799}
1800
1801/*
1802 * Small utility routine to accumulate queue statistics across the queues of
1803 * a "port".
1804 */
1805static void collect_sge_port_stats(const struct adapter *adapter,
1806                                   const struct port_info *pi,
1807                                   struct queue_port_stats *stats)
1808{
1809        const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1810        const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1811        int qs;
1812
1813        memset(stats, 0, sizeof(*stats));
1814        for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1815                stats->tso += txq->tso;
1816                stats->tx_csum += txq->tx_cso;
1817                stats->rx_csum += rxq->stats.rx_cso;
1818                stats->vlan_ex += rxq->stats.vlan_ex;
1819                stats->vlan_ins += txq->vlan_ins;
1820                stats->lro_pkts += rxq->stats.lro_pkts;
1821                stats->lro_merged += rxq->stats.lro_merged;
1822        }
1823}
1824
1825/*
1826 * Return the ETH_SS_STATS statistics set.
1827 */
1828static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1829                                      struct ethtool_stats *stats,
1830                                      u64 *data)
1831{
1832        struct port_info *pi = netdev2pinfo(dev);
1833        struct adapter *adapter = pi->adapter;
1834        int err = t4vf_get_port_stats(adapter, pi->pidx,
1835                                      (struct t4vf_port_stats *)data);
1836        if (err)
1837                memset(data, 0, sizeof(struct t4vf_port_stats));
1838
1839        data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1840        collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1841}
1842
1843/*
1844 * Return the size of our register map.
1845 */
1846static int cxgb4vf_get_regs_len(struct net_device *dev)
1847{
1848        return T4VF_REGMAP_SIZE;
1849}
1850
1851/*
1852 * Dump a block of registers, start to end inclusive, into a buffer.
1853 */
1854static void reg_block_dump(struct adapter *adapter, void *regbuf,
1855                           unsigned int start, unsigned int end)
1856{
1857        u32 *bp = regbuf + start - T4VF_REGMAP_START;
1858
1859        for ( ; start <= end; start += sizeof(u32)) {
1860                /*
1861                 * Avoid reading the Mailbox Control register since that
1862                 * can trigger a Mailbox Ownership Arbitration cycle and
1863                 * interfere with communication with the firmware.
1864                 */
1865                if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1866                        *bp++ = 0xffff;
1867                else
1868                        *bp++ = t4_read_reg(adapter, start);
1869        }
1870}
1871
1872/*
1873 * Copy our entire register map into the provided buffer.
1874 */
1875static void cxgb4vf_get_regs(struct net_device *dev,
1876                             struct ethtool_regs *regs,
1877                             void *regbuf)
1878{
1879        struct adapter *adapter = netdev2adap(dev);
1880
1881        regs->version = mk_adap_vers(adapter);
1882
1883        /*
1884         * Fill in register buffer with our register map.
1885         */
1886        memset(regbuf, 0, T4VF_REGMAP_SIZE);
1887
1888        reg_block_dump(adapter, regbuf,
1889                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1890                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1891        reg_block_dump(adapter, regbuf,
1892                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1893                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1894
1895        /* T5 adds new registers in the PL Register map.
1896         */
1897        reg_block_dump(adapter, regbuf,
1898                       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1899                       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1900                       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1901        reg_block_dump(adapter, regbuf,
1902                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1903                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1904
1905        reg_block_dump(adapter, regbuf,
1906                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1907                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1908}
1909
1910/*
1911 * Report current Wake On LAN settings.
1912 */
1913static void cxgb4vf_get_wol(struct net_device *dev,
1914                            struct ethtool_wolinfo *wol)
1915{
1916        wol->supported = 0;
1917        wol->wolopts = 0;
1918        memset(&wol->sopass, 0, sizeof(wol->sopass));
1919}
1920
1921/*
1922 * TCP Segmentation Offload flags which we support.
1923 */
1924#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1925#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1926                   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1927
1928static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1929        .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1930                                     ETHTOOL_COALESCE_RX_MAX_FRAMES,
1931        .get_link_ksettings     = cxgb4vf_get_link_ksettings,
1932        .get_fecparam           = cxgb4vf_get_fecparam,
1933        .get_drvinfo            = cxgb4vf_get_drvinfo,
1934        .get_msglevel           = cxgb4vf_get_msglevel,
1935        .set_msglevel           = cxgb4vf_set_msglevel,
1936        .get_ringparam          = cxgb4vf_get_ringparam,
1937        .set_ringparam          = cxgb4vf_set_ringparam,
1938        .get_coalesce           = cxgb4vf_get_coalesce,
1939        .set_coalesce           = cxgb4vf_set_coalesce,
1940        .get_pauseparam         = cxgb4vf_get_pauseparam,
1941        .get_link               = ethtool_op_get_link,
1942        .get_strings            = cxgb4vf_get_strings,
1943        .set_phys_id            = cxgb4vf_phys_id,
1944        .get_sset_count         = cxgb4vf_get_sset_count,
1945        .get_ethtool_stats      = cxgb4vf_get_ethtool_stats,
1946        .get_regs_len           = cxgb4vf_get_regs_len,
1947        .get_regs               = cxgb4vf_get_regs,
1948        .get_wol                = cxgb4vf_get_wol,
1949};
1950
1951/*
1952 * /sys/kernel/debug/cxgb4vf support code and data.
1953 * ================================================
1954 */
1955
1956/*
1957 * Show Firmware Mailbox Command/Reply Log
1958 *
1959 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1960 * it's possible that we can catch things during a log update and therefore
1961 * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1962 * If we ever decide that we want to make sure that we're dumping a coherent
1963 * log, we'd need to perform locking in the mailbox logging and in
1964 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1965 * like we do for the Firmware Device Log.  But as stated above, meh ...
1966 */
1967static int mboxlog_show(struct seq_file *seq, void *v)
1968{
1969        struct adapter *adapter = seq->private;
1970        struct mbox_cmd_log *log = adapter->mbox_log;
1971        struct mbox_cmd *entry;
1972        int entry_idx, i;
1973
1974        if (v == SEQ_START_TOKEN) {
1975                seq_printf(seq,
1976                           "%10s  %15s  %5s  %5s  %s\n",
1977                           "Seq#", "Tstamp", "Atime", "Etime",
1978                           "Command/Reply");
1979                return 0;
1980        }
1981
1982        entry_idx = log->cursor + ((uintptr_t)v - 2);
1983        if (entry_idx >= log->size)
1984                entry_idx -= log->size;
1985        entry = mbox_cmd_log_entry(log, entry_idx);
1986
1987        /* skip over unused entries */
1988        if (entry->timestamp == 0)
1989                return 0;
1990
1991        seq_printf(seq, "%10u  %15llu  %5d  %5d",
1992                   entry->seqno, entry->timestamp,
1993                   entry->access, entry->execute);
1994        for (i = 0; i < MBOX_LEN / 8; i++) {
1995                u64 flit = entry->cmd[i];
1996                u32 hi = (u32)(flit >> 32);
1997                u32 lo = (u32)flit;
1998
1999                seq_printf(seq, "  %08x %08x", hi, lo);
2000        }
2001        seq_puts(seq, "\n");
2002        return 0;
2003}
2004
2005static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
2006{
2007        struct adapter *adapter = seq->private;
2008        struct mbox_cmd_log *log = adapter->mbox_log;
2009
2010        return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2011}
2012
2013static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2014{
2015        return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2016}
2017
2018static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2019{
2020        ++*pos;
2021        return mboxlog_get_idx(seq, *pos);
2022}
2023
2024static void mboxlog_stop(struct seq_file *seq, void *v)
2025{
2026}
2027
2028static const struct seq_operations mboxlog_sops = {
2029        .start = mboxlog_start,
2030        .next  = mboxlog_next,
2031        .stop  = mboxlog_stop,
2032        .show  = mboxlog_show
2033};
2034
2035DEFINE_SEQ_ATTRIBUTE(mboxlog);
2036/*
2037 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2038 */
2039#define QPL     4
2040
2041static int sge_qinfo_show(struct seq_file *seq, void *v)
2042{
2043        struct adapter *adapter = seq->private;
2044        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2045        int qs, r = (uintptr_t)v - 1;
2046
2047        if (r)
2048                seq_putc(seq, '\n');
2049
2050        #define S3(fmt_spec, s, v) \
2051                do {\
2052                        seq_printf(seq, "%-12s", s); \
2053                        for (qs = 0; qs < n; ++qs) \
2054                                seq_printf(seq, " %16" fmt_spec, v); \
2055                        seq_putc(seq, '\n'); \
2056                } while (0)
2057        #define S(s, v)         S3("s", s, v)
2058        #define T(s, v)         S3("u", s, txq[qs].v)
2059        #define R(s, v)         S3("u", s, rxq[qs].v)
2060
2061        if (r < eth_entries) {
2062                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2063                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2064                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2065
2066                S("QType:", "Ethernet");
2067                S("Interface:",
2068                  (rxq[qs].rspq.netdev
2069                   ? rxq[qs].rspq.netdev->name
2070                   : "N/A"));
2071                S3("d", "Port:",
2072                   (rxq[qs].rspq.netdev
2073                    ? ((struct port_info *)
2074                       netdev_priv(rxq[qs].rspq.netdev))->port_id
2075                    : -1));
2076                T("TxQ ID:", q.abs_id);
2077                T("TxQ size:", q.size);
2078                T("TxQ inuse:", q.in_use);
2079                T("TxQ PIdx:", q.pidx);
2080                T("TxQ CIdx:", q.cidx);
2081                R("RspQ ID:", rspq.abs_id);
2082                R("RspQ size:", rspq.size);
2083                R("RspQE size:", rspq.iqe_len);
2084                S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2085                S3("u", "Intr pktcnt:",
2086                   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2087                R("RspQ CIdx:", rspq.cidx);
2088                R("RspQ Gen:", rspq.gen);
2089                R("FL ID:", fl.abs_id);
2090                R("FL size:", fl.size - MIN_FL_RESID);
2091                R("FL avail:", fl.avail);
2092                R("FL PIdx:", fl.pidx);
2093                R("FL CIdx:", fl.cidx);
2094                return 0;
2095        }
2096
2097        r -= eth_entries;
2098        if (r == 0) {
2099                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2100
2101                seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2102                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2103                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2104                           qtimer_val(adapter, evtq));
2105                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2106                           adapter->sge.counter_val[evtq->pktcnt_idx]);
2107                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2108                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2109        } else if (r == 1) {
2110                const struct sge_rspq *intrq = &adapter->sge.intrq;
2111
2112                seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2113                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2114                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2115                           qtimer_val(adapter, intrq));
2116                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2117                           adapter->sge.counter_val[intrq->pktcnt_idx]);
2118                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2119                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2120        }
2121
2122        #undef R
2123        #undef T
2124        #undef S
2125        #undef S3
2126
2127        return 0;
2128}
2129
2130/*
2131 * Return the number of "entries" in our "file".  We group the multi-Queue
2132 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2133 *
2134 *     Ethernet RX/TX Queue Sets
2135 *     Firmware Event Queue
2136 *     Forwarded Interrupt Queue (if in MSI mode)
2137 */
2138static int sge_queue_entries(const struct adapter *adapter)
2139{
2140        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2141                ((adapter->flags & CXGB4VF_USING_MSI) != 0);
2142}
2143
2144static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2145{
2146        int entries = sge_queue_entries(seq->private);
2147
2148        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2149}
2150
2151static void sge_queue_stop(struct seq_file *seq, void *v)
2152{
2153}
2154
2155static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2156{
2157        int entries = sge_queue_entries(seq->private);
2158
2159        ++*pos;
2160        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2161}
2162
2163static const struct seq_operations sge_qinfo_sops = {
2164        .start = sge_queue_start,
2165        .next  = sge_queue_next,
2166        .stop  = sge_queue_stop,
2167        .show  = sge_qinfo_show
2168};
2169
2170DEFINE_SEQ_ATTRIBUTE(sge_qinfo);
2171
2172/*
2173 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2174 */
2175#define QPL     4
2176
2177static int sge_qstats_show(struct seq_file *seq, void *v)
2178{
2179        struct adapter *adapter = seq->private;
2180        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2181        int qs, r = (uintptr_t)v - 1;
2182
2183        if (r)
2184                seq_putc(seq, '\n');
2185
2186        #define S3(fmt, s, v) \
2187                do { \
2188                        seq_printf(seq, "%-16s", s); \
2189                        for (qs = 0; qs < n; ++qs) \
2190                                seq_printf(seq, " %8" fmt, v); \
2191                        seq_putc(seq, '\n'); \
2192                } while (0)
2193        #define S(s, v)         S3("s", s, v)
2194
2195        #define T3(fmt, s, v)   S3(fmt, s, txq[qs].v)
2196        #define T(s, v)         T3("lu", s, v)
2197
2198        #define R3(fmt, s, v)   S3(fmt, s, rxq[qs].v)
2199        #define R(s, v)         R3("lu", s, v)
2200
2201        if (r < eth_entries) {
2202                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2203                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2204                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2205
2206                S("QType:", "Ethernet");
2207                S("Interface:",
2208                  (rxq[qs].rspq.netdev
2209                   ? rxq[qs].rspq.netdev->name
2210                   : "N/A"));
2211                R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2212                R("RxPackets:", stats.pkts);
2213                R("RxCSO:", stats.rx_cso);
2214                R("VLANxtract:", stats.vlan_ex);
2215                R("LROmerged:", stats.lro_merged);
2216                R("LROpackets:", stats.lro_pkts);
2217                R("RxDrops:", stats.rx_drops);
2218                T("TSO:", tso);
2219                T("TxCSO:", tx_cso);
2220                T("VLANins:", vlan_ins);
2221                T("TxQFull:", q.stops);
2222                T("TxQRestarts:", q.restarts);
2223                T("TxMapErr:", mapping_err);
2224                R("FLAllocErr:", fl.alloc_failed);
2225                R("FLLrgAlcErr:", fl.large_alloc_failed);
2226                R("FLStarving:", fl.starving);
2227                return 0;
2228        }
2229
2230        r -= eth_entries;
2231        if (r == 0) {
2232                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2233
2234                seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2235                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2236                           evtq->unhandled_irqs);
2237                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2238                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2239        } else if (r == 1) {
2240                const struct sge_rspq *intrq = &adapter->sge.intrq;
2241
2242                seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2243                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2244                           intrq->unhandled_irqs);
2245                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2246                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2247        }
2248
2249        #undef R
2250        #undef T
2251        #undef S
2252        #undef R3
2253        #undef T3
2254        #undef S3
2255
2256        return 0;
2257}
2258
2259/*
2260 * Return the number of "entries" in our "file".  We group the multi-Queue
2261 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2262 *
2263 *     Ethernet RX/TX Queue Sets
2264 *     Firmware Event Queue
2265 *     Forwarded Interrupt Queue (if in MSI mode)
2266 */
2267static int sge_qstats_entries(const struct adapter *adapter)
2268{
2269        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2270                ((adapter->flags & CXGB4VF_USING_MSI) != 0);
2271}
2272
2273static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2274{
2275        int entries = sge_qstats_entries(seq->private);
2276
2277        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2278}
2279
2280static void sge_qstats_stop(struct seq_file *seq, void *v)
2281{
2282}
2283
2284static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2285{
2286        int entries = sge_qstats_entries(seq->private);
2287
2288        (*pos)++;
2289        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2290}
2291
2292static const struct seq_operations sge_qstats_sops = {
2293        .start = sge_qstats_start,
2294        .next  = sge_qstats_next,
2295        .stop  = sge_qstats_stop,
2296        .show  = sge_qstats_show
2297};
2298
2299DEFINE_SEQ_ATTRIBUTE(sge_qstats);
2300
2301/*
2302 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2303 */
2304static int resources_show(struct seq_file *seq, void *v)
2305{
2306        struct adapter *adapter = seq->private;
2307        struct vf_resources *vfres = &adapter->params.vfres;
2308
2309        #define S(desc, fmt, var) \
2310                seq_printf(seq, "%-60s " fmt "\n", \
2311                           desc " (" #var "):", vfres->var)
2312
2313        S("Virtual Interfaces", "%d", nvi);
2314        S("Egress Queues", "%d", neq);
2315        S("Ethernet Control", "%d", nethctrl);
2316        S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2317        S("Ingress Queues", "%d", niq);
2318        S("Traffic Class", "%d", tc);
2319        S("Port Access Rights Mask", "%#x", pmask);
2320        S("MAC Address Filters", "%d", nexactf);
2321        S("Firmware Command Read Capabilities", "%#x", r_caps);
2322        S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2323
2324        #undef S
2325
2326        return 0;
2327}
2328DEFINE_SHOW_ATTRIBUTE(resources);
2329
2330/*
2331 * Show Virtual Interfaces.
2332 */
2333static int interfaces_show(struct seq_file *seq, void *v)
2334{
2335        if (v == SEQ_START_TOKEN) {
2336                seq_puts(seq, "Interface  Port   VIID\n");
2337        } else {
2338                struct adapter *adapter = seq->private;
2339                int pidx = (uintptr_t)v - 2;
2340                struct net_device *dev = adapter->port[pidx];
2341                struct port_info *pi = netdev_priv(dev);
2342
2343                seq_printf(seq, "%9s  %4d  %#5x\n",
2344                           dev->name, pi->port_id, pi->viid);
2345        }
2346        return 0;
2347}
2348
2349static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2350{
2351        return pos <= adapter->params.nports
2352                ? (void *)(uintptr_t)(pos + 1)
2353                : NULL;
2354}
2355
2356static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2357{
2358        return *pos
2359                ? interfaces_get_idx(seq->private, *pos)
2360                : SEQ_START_TOKEN;
2361}
2362
2363static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2364{
2365        (*pos)++;
2366        return interfaces_get_idx(seq->private, *pos);
2367}
2368
2369static void interfaces_stop(struct seq_file *seq, void *v)
2370{
2371}
2372
2373static const struct seq_operations interfaces_sops = {
2374        .start = interfaces_start,
2375        .next  = interfaces_next,
2376        .stop  = interfaces_stop,
2377        .show  = interfaces_show
2378};
2379
2380DEFINE_SEQ_ATTRIBUTE(interfaces);
2381
2382/*
2383 * /sys/kernel/debugfs/cxgb4vf/ files list.
2384 */
2385struct cxgb4vf_debugfs_entry {
2386        const char *name;               /* name of debugfs node */
2387        umode_t mode;                   /* file system mode */
2388        const struct file_operations *fops;
2389};
2390
2391static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2392        { "mboxlog",    0444, &mboxlog_fops },
2393        { "sge_qinfo",  0444, &sge_qinfo_fops },
2394        { "sge_qstats", 0444, &sge_qstats_fops },
2395        { "resources",  0444, &resources_fops },
2396        { "interfaces", 0444, &interfaces_fops },
2397};
2398
2399/*
2400 * Module and device initialization and cleanup code.
2401 * ==================================================
2402 */
2403
2404/*
2405 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2406 * directory (debugfs_root) has already been set up.
2407 */
2408static int setup_debugfs(struct adapter *adapter)
2409{
2410        int i;
2411
2412        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2413
2414        /*
2415         * Debugfs support is best effort.
2416         */
2417        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2418                debugfs_create_file(debugfs_files[i].name,
2419                                    debugfs_files[i].mode,
2420                                    adapter->debugfs_root, adapter,
2421                                    debugfs_files[i].fops);
2422
2423        return 0;
2424}
2425
2426/*
2427 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2428 * it to our caller to tear down the directory (debugfs_root).
2429 */
2430static void cleanup_debugfs(struct adapter *adapter)
2431{
2432        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2433
2434        /*
2435         * Unlike our sister routine cleanup_proc(), we don't need to remove
2436         * individual entries because a call will be made to
2437         * debugfs_remove_recursive().  We just need to clean up any ancillary
2438         * persistent state.
2439         */
2440        /* nothing to do */
2441}
2442
2443/* Figure out how many Ports and Queue Sets we can support.  This depends on
2444 * knowing our Virtual Function Resources and may be called a second time if
2445 * we fall back from MSI-X to MSI Interrupt Mode.
2446 */
2447static void size_nports_qsets(struct adapter *adapter)
2448{
2449        struct vf_resources *vfres = &adapter->params.vfres;
2450        unsigned int ethqsets, pmask_nports;
2451
2452        /* The number of "ports" which we support is equal to the number of
2453         * Virtual Interfaces with which we've been provisioned.
2454         */
2455        adapter->params.nports = vfres->nvi;
2456        if (adapter->params.nports > MAX_NPORTS) {
2457                dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2458                         " allowed virtual interfaces\n", MAX_NPORTS,
2459                         adapter->params.nports);
2460                adapter->params.nports = MAX_NPORTS;
2461        }
2462
2463        /* We may have been provisioned with more VIs than the number of
2464         * ports we're allowed to access (our Port Access Rights Mask).
2465         * This is obviously a configuration conflict but we don't want to
2466         * crash the kernel or anything silly just because of that.
2467         */
2468        pmask_nports = hweight32(adapter->params.vfres.pmask);
2469        if (pmask_nports < adapter->params.nports) {
2470                dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2471                         " virtual interfaces; limited by Port Access Rights"
2472                         " mask %#x\n", pmask_nports, adapter->params.nports,
2473                         adapter->params.vfres.pmask);
2474                adapter->params.nports = pmask_nports;
2475        }
2476
2477        /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2478         * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2479         * reserve an Ingress Queue for a Forwarded Interrupts.
2480         *
2481         * The rest of the FL/Intr-capable ingress queues will be matched up
2482         * one-for-one with Ethernet/Control egress queues in order to form
2483         * "Queue Sets" which will be aportioned between the "ports".  For
2484         * each Queue Set, we'll need the ability to allocate two Egress
2485         * Contexts -- one for the Ingress Queue Free List and one for the TX
2486         * Ethernet Queue.
2487         *
2488         * Note that even if we're currently configured to use MSI-X
2489         * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2490         * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2491         * happens we'll need to adjust things later.
2492         */
2493        ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2494        if (vfres->nethctrl != ethqsets)
2495                ethqsets = min(vfres->nethctrl, ethqsets);
2496        if (vfres->neq < ethqsets*2)
2497                ethqsets = vfres->neq/2;
2498        if (ethqsets > MAX_ETH_QSETS)
2499                ethqsets = MAX_ETH_QSETS;
2500        adapter->sge.max_ethqsets = ethqsets;
2501
2502        if (adapter->sge.max_ethqsets < adapter->params.nports) {
2503                dev_warn(adapter->pdev_dev, "only using %d of %d available"
2504                         " virtual interfaces (too few Queue Sets)\n",
2505                         adapter->sge.max_ethqsets, adapter->params.nports);
2506                adapter->params.nports = adapter->sge.max_ethqsets;
2507        }
2508}
2509
2510/*
2511 * Perform early "adapter" initialization.  This is where we discover what
2512 * adapter parameters we're going to be using and initialize basic adapter
2513 * hardware support.
2514 */
2515static int adap_init0(struct adapter *adapter)
2516{
2517        struct sge_params *sge_params = &adapter->params.sge;
2518        struct sge *s = &adapter->sge;
2519        int err;
2520        u32 param, val = 0;
2521
2522        /*
2523         * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2524         * 2.6.31 and later we can't call pci_reset_function() in order to
2525         * issue an FLR because of a self- deadlock on the device semaphore.
2526         * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2527         * cases where they're needed -- for instance, some versions of KVM
2528         * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2529         * use the firmware based reset in order to reset any per function
2530         * state.
2531         */
2532        err = t4vf_fw_reset(adapter);
2533        if (err < 0) {
2534                dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2535                return err;
2536        }
2537
2538        /*
2539         * Grab basic operational parameters.  These will predominantly have
2540         * been set up by the Physical Function Driver or will be hard coded
2541         * into the adapter.  We just have to live with them ...  Note that
2542         * we _must_ get our VPD parameters before our SGE parameters because
2543         * we need to know the adapter's core clock from the VPD in order to
2544         * properly decode the SGE Timer Values.
2545         */
2546        err = t4vf_get_dev_params(adapter);
2547        if (err) {
2548                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2549                        " device parameters: err=%d\n", err);
2550                return err;
2551        }
2552        err = t4vf_get_vpd_params(adapter);
2553        if (err) {
2554                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2555                        " VPD parameters: err=%d\n", err);
2556                return err;
2557        }
2558        err = t4vf_get_sge_params(adapter);
2559        if (err) {
2560                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2561                        " SGE parameters: err=%d\n", err);
2562                return err;
2563        }
2564        err = t4vf_get_rss_glb_config(adapter);
2565        if (err) {
2566                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2567                        " RSS parameters: err=%d\n", err);
2568                return err;
2569        }
2570        if (adapter->params.rss.mode !=
2571            FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2572                dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2573                        " mode %d\n", adapter->params.rss.mode);
2574                return -EINVAL;
2575        }
2576        err = t4vf_sge_init(adapter);
2577        if (err) {
2578                dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2579                        " err=%d\n", err);
2580                return err;
2581        }
2582
2583        /* If we're running on newer firmware, let it know that we're
2584         * prepared to deal with encapsulated CPL messages.  Older
2585         * firmware won't understand this and we'll just get
2586         * unencapsulated messages ...
2587         */
2588        param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2589                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2590        val = 1;
2591        (void) t4vf_set_params(adapter, 1, &param, &val);
2592
2593        /*
2594         * Retrieve our RX interrupt holdoff timer values and counter
2595         * threshold values from the SGE parameters.
2596         */
2597        s->timer_val[0] = core_ticks_to_us(adapter,
2598                TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2599        s->timer_val[1] = core_ticks_to_us(adapter,
2600                TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2601        s->timer_val[2] = core_ticks_to_us(adapter,
2602                TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2603        s->timer_val[3] = core_ticks_to_us(adapter,
2604                TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2605        s->timer_val[4] = core_ticks_to_us(adapter,
2606                TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2607        s->timer_val[5] = core_ticks_to_us(adapter,
2608                TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2609
2610        s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2611        s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2612        s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2613        s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2614
2615        /*
2616         * Grab our Virtual Interface resource allocation, extract the
2617         * features that we're interested in and do a bit of sanity testing on
2618         * what we discover.
2619         */
2620        err = t4vf_get_vfres(adapter);
2621        if (err) {
2622                dev_err(adapter->pdev_dev, "unable to get virtual interface"
2623                        " resources: err=%d\n", err);
2624                return err;
2625        }
2626
2627        /* Check for various parameter sanity issues */
2628        if (adapter->params.vfres.pmask == 0) {
2629                dev_err(adapter->pdev_dev, "no port access configured\n"
2630                        "usable!\n");
2631                return -EINVAL;
2632        }
2633        if (adapter->params.vfres.nvi == 0) {
2634                dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2635                        "usable!\n");
2636                return -EINVAL;
2637        }
2638
2639        /* Initialize nports and max_ethqsets now that we have our Virtual
2640         * Function Resources.
2641         */
2642        size_nports_qsets(adapter);
2643
2644        adapter->flags |= CXGB4VF_FW_OK;
2645        return 0;
2646}
2647
2648static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2649                             u8 pkt_cnt_idx, unsigned int size,
2650                             unsigned int iqe_size)
2651{
2652        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2653                             (pkt_cnt_idx < SGE_NCOUNTERS ?
2654                              QINTR_CNT_EN_F : 0));
2655        rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2656                            ? pkt_cnt_idx
2657                            : 0);
2658        rspq->iqe_len = iqe_size;
2659        rspq->size = size;
2660}
2661
2662/*
2663 * Perform default configuration of DMA queues depending on the number and
2664 * type of ports we found and the number of available CPUs.  Most settings can
2665 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2666 * being brought up for the first time.
2667 */
2668static void cfg_queues(struct adapter *adapter)
2669{
2670        struct sge *s = &adapter->sge;
2671        int q10g, n10g, qidx, pidx, qs;
2672        size_t iqe_size;
2673
2674        /*
2675         * We should not be called till we know how many Queue Sets we can
2676         * support.  In particular, this means that we need to know what kind
2677         * of interrupts we'll be using ...
2678         */
2679        BUG_ON((adapter->flags &
2680               (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2681
2682        /*
2683         * Count the number of 10GbE Virtual Interfaces that we have.
2684         */
2685        n10g = 0;
2686        for_each_port(adapter, pidx)
2687                n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2688
2689        /*
2690         * We default to 1 queue per non-10G port and up to # of cores queues
2691         * per 10G port.
2692         */
2693        if (n10g == 0)
2694                q10g = 0;
2695        else {
2696                int n1g = (adapter->params.nports - n10g);
2697                q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2698                if (q10g > num_online_cpus())
2699                        q10g = num_online_cpus();
2700        }
2701
2702        /*
2703         * Allocate the "Queue Sets" to the various Virtual Interfaces.
2704         * The layout will be established in setup_sge_queues() when the
2705         * adapter is brough up for the first time.
2706         */
2707        qidx = 0;
2708        for_each_port(adapter, pidx) {
2709                struct port_info *pi = adap2pinfo(adapter, pidx);
2710
2711                pi->first_qset = qidx;
2712                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2713                qidx += pi->nqsets;
2714        }
2715        s->ethqsets = qidx;
2716
2717        /*
2718         * The Ingress Queue Entry Size for our various Response Queues needs
2719         * to be big enough to accommodate the largest message we can receive
2720         * from the chip/firmware; which is 64 bytes ...
2721         */
2722        iqe_size = 64;
2723
2724        /*
2725         * Set up default Queue Set parameters ...  Start off with the
2726         * shortest interrupt holdoff timer.
2727         */
2728        for (qs = 0; qs < s->max_ethqsets; qs++) {
2729                struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2730                struct sge_eth_txq *txq = &s->ethtxq[qs];
2731
2732                init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2733                rxq->fl.size = 72;
2734                txq->q.size = 1024;
2735        }
2736
2737        /*
2738         * The firmware event queue is used for link state changes and
2739         * notifications of TX DMA completions.
2740         */
2741        init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2742
2743        /*
2744         * The forwarded interrupt queue is used when we're in MSI interrupt
2745         * mode.  In this mode all interrupts associated with RX queues will
2746         * be forwarded to a single queue which we'll associate with our MSI
2747         * interrupt vector.  The messages dropped in the forwarded interrupt
2748         * queue will indicate which ingress queue needs servicing ...  This
2749         * queue needs to be large enough to accommodate all of the ingress
2750         * queues which are forwarding their interrupt (+1 to prevent the PIDX
2751         * from equalling the CIDX if every ingress queue has an outstanding
2752         * interrupt).  The queue doesn't need to be any larger because no
2753         * ingress queue will ever have more than one outstanding interrupt at
2754         * any time ...
2755         */
2756        init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2757                  iqe_size);
2758}
2759
2760/*
2761 * Reduce the number of Ethernet queues across all ports to at most n.
2762 * n provides at least one queue per port.
2763 */
2764static void reduce_ethqs(struct adapter *adapter, int n)
2765{
2766        int i;
2767        struct port_info *pi;
2768
2769        /*
2770         * While we have too many active Ether Queue Sets, interate across the
2771         * "ports" and reduce their individual Queue Set allocations.
2772         */
2773        BUG_ON(n < adapter->params.nports);
2774        while (n < adapter->sge.ethqsets)
2775                for_each_port(adapter, i) {
2776                        pi = adap2pinfo(adapter, i);
2777                        if (pi->nqsets > 1) {
2778                                pi->nqsets--;
2779                                adapter->sge.ethqsets--;
2780                                if (adapter->sge.ethqsets <= n)
2781                                        break;
2782                        }
2783                }
2784
2785        /*
2786         * Reassign the starting Queue Sets for each of the "ports" ...
2787         */
2788        n = 0;
2789        for_each_port(adapter, i) {
2790                pi = adap2pinfo(adapter, i);
2791                pi->first_qset = n;
2792                n += pi->nqsets;
2793        }
2794}
2795
2796/*
2797 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2798 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2799 * need.  Minimally we need one for every Virtual Interface plus those needed
2800 * for our "extras".  Note that this process may lower the maximum number of
2801 * allowed Queue Sets ...
2802 */
2803static int enable_msix(struct adapter *adapter)
2804{
2805        int i, want, need, nqsets;
2806        struct msix_entry entries[MSIX_ENTRIES];
2807        struct sge *s = &adapter->sge;
2808
2809        for (i = 0; i < MSIX_ENTRIES; ++i)
2810                entries[i].entry = i;
2811
2812        /*
2813         * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2814         * plus those needed for our "extras" (for example, the firmware
2815         * message queue).  We _need_ at least one "Queue Set" per Virtual
2816         * Interface plus those needed for our "extras".  So now we get to see
2817         * if the song is right ...
2818         */
2819        want = s->max_ethqsets + MSIX_EXTRAS;
2820        need = adapter->params.nports + MSIX_EXTRAS;
2821
2822        want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2823        if (want < 0)
2824                return want;
2825
2826        nqsets = want - MSIX_EXTRAS;
2827        if (nqsets < s->max_ethqsets) {
2828                dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2829                         " for %d Queue Sets\n", nqsets);
2830                s->max_ethqsets = nqsets;
2831                if (nqsets < s->ethqsets)
2832                        reduce_ethqs(adapter, nqsets);
2833        }
2834        for (i = 0; i < want; ++i)
2835                adapter->msix_info[i].vec = entries[i].vector;
2836
2837        return 0;
2838}
2839
2840static const struct net_device_ops cxgb4vf_netdev_ops   = {
2841        .ndo_open               = cxgb4vf_open,
2842        .ndo_stop               = cxgb4vf_stop,
2843        .ndo_start_xmit         = t4vf_eth_xmit,
2844        .ndo_get_stats          = cxgb4vf_get_stats,
2845        .ndo_set_rx_mode        = cxgb4vf_set_rxmode,
2846        .ndo_set_mac_address    = cxgb4vf_set_mac_addr,
2847        .ndo_validate_addr      = eth_validate_addr,
2848        .ndo_eth_ioctl          = cxgb4vf_do_ioctl,
2849        .ndo_change_mtu         = cxgb4vf_change_mtu,
2850        .ndo_fix_features       = cxgb4vf_fix_features,
2851        .ndo_set_features       = cxgb4vf_set_features,
2852#ifdef CONFIG_NET_POLL_CONTROLLER
2853        .ndo_poll_controller    = cxgb4vf_poll_controller,
2854#endif
2855};
2856
2857/**
2858 *      cxgb4vf_get_port_mask - Get port mask for the VF based on mac
2859 *                              address stored on the adapter
2860 *      @adapter: The adapter
2861 *
2862 *      Find the the port mask for the VF based on the index of mac
2863 *      address stored in the adapter. If no mac address is stored on
2864 *      the adapter for the VF, use the port mask received from the
2865 *      firmware.
2866 */
2867static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter)
2868{
2869        unsigned int naddr = 1, pidx = 0;
2870        unsigned int pmask, rmask = 0;
2871        u8 mac[ETH_ALEN];
2872        int err;
2873
2874        pmask = adapter->params.vfres.pmask;
2875        while (pmask) {
2876                if (pmask & 1) {
2877                        err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac);
2878                        if (!err && !is_zero_ether_addr(mac))
2879                                rmask |= (1 << pidx);
2880                }
2881                pmask >>= 1;
2882                pidx++;
2883        }
2884        if (!rmask)
2885                rmask = adapter->params.vfres.pmask;
2886
2887        return rmask;
2888}
2889
2890/*
2891 * "Probe" a device: initialize a device and construct all kernel and driver
2892 * state needed to manage the device.  This routine is called "init_one" in
2893 * the PF Driver ...
2894 */
2895static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2896                             const struct pci_device_id *ent)
2897{
2898        struct adapter *adapter;
2899        struct net_device *netdev;
2900        struct port_info *pi;
2901        unsigned int pmask;
2902        int err, pidx;
2903
2904        /*
2905         * Initialize generic PCI device state.
2906         */
2907        err = pci_enable_device(pdev);
2908        if (err)
2909                return dev_err_probe(&pdev->dev, err, "cannot enable PCI device\n");
2910
2911        /*
2912         * Reserve PCI resources for the device.  If we can't get them some
2913         * other driver may have already claimed the device ...
2914         */
2915        err = pci_request_regions(pdev, KBUILD_MODNAME);
2916        if (err) {
2917                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2918                goto err_disable_device;
2919        }
2920
2921        /*
2922         * Set up our DMA mask
2923         */
2924        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2925        if (err) {
2926                dev_err(&pdev->dev, "no usable DMA configuration\n");
2927                goto err_release_regions;
2928        }
2929
2930        /*
2931         * Enable bus mastering for the device ...
2932         */
2933        pci_set_master(pdev);
2934
2935        /*
2936         * Allocate our adapter data structure and attach it to the device.
2937         */
2938        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2939        if (!adapter) {
2940                err = -ENOMEM;
2941                goto err_release_regions;
2942        }
2943        pci_set_drvdata(pdev, adapter);
2944        adapter->pdev = pdev;
2945        adapter->pdev_dev = &pdev->dev;
2946
2947        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2948                                    (sizeof(struct mbox_cmd) *
2949                                     T4VF_OS_LOG_MBOX_CMDS),
2950                                    GFP_KERNEL);
2951        if (!adapter->mbox_log) {
2952                err = -ENOMEM;
2953                goto err_free_adapter;
2954        }
2955        adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2956
2957        /*
2958         * Initialize SMP data synchronization resources.
2959         */
2960        spin_lock_init(&adapter->stats_lock);
2961        spin_lock_init(&adapter->mbox_lock);
2962        INIT_LIST_HEAD(&adapter->mlist.list);
2963
2964        /*
2965         * Map our I/O registers in BAR0.
2966         */
2967        adapter->regs = pci_ioremap_bar(pdev, 0);
2968        if (!adapter->regs) {
2969                dev_err(&pdev->dev, "cannot map device registers\n");
2970                err = -ENOMEM;
2971                goto err_free_adapter;
2972        }
2973
2974        /* Wait for the device to become ready before proceeding ...
2975         */
2976        err = t4vf_prep_adapter(adapter);
2977        if (err) {
2978                dev_err(adapter->pdev_dev, "device didn't become ready:"
2979                        " err=%d\n", err);
2980                goto err_unmap_bar0;
2981        }
2982
2983        /* For T5 and later we want to use the new BAR-based User Doorbells,
2984         * so we need to map BAR2 here ...
2985         */
2986        if (!is_t4(adapter->params.chip)) {
2987                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2988                                           pci_resource_len(pdev, 2));
2989                if (!adapter->bar2) {
2990                        dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2991                        err = -ENOMEM;
2992                        goto err_unmap_bar0;
2993                }
2994        }
2995        /*
2996         * Initialize adapter level features.
2997         */
2998        adapter->name = pci_name(pdev);
2999        adapter->msg_enable = DFLT_MSG_ENABLE;
3000
3001        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3002         * Ingress Packet Data to Free List Buffers in order to allow for
3003         * chipset performance optimizations between the Root Complex and
3004         * Memory Controllers.  (Messages to the associated Ingress Queue
3005         * notifying new Packet Placement in the Free Lists Buffers will be
3006         * send without the Relaxed Ordering Attribute thus guaranteeing that
3007         * all preceding PCIe Transaction Layer Packets will be processed
3008         * first.)  But some Root Complexes have various issues with Upstream
3009         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3010         * The PCIe devices which under the Root Complexes will be cleared the
3011         * Relaxed Ordering bit in the configuration space, So we check our
3012         * PCIe configuration space to see if it's flagged with advice against
3013         * using Relaxed Ordering.
3014         */
3015        if (!pcie_relaxed_ordering_enabled(pdev))
3016                adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3017
3018        err = adap_init0(adapter);
3019        if (err)
3020                dev_err(&pdev->dev,
3021                        "Adapter initialization failed, error %d. Continuing in debug mode\n",
3022                        err);
3023
3024        /* Initialize hash mac addr list */
3025        INIT_LIST_HEAD(&adapter->mac_hlist);
3026
3027        /*
3028         * Allocate our "adapter ports" and stitch everything together.
3029         */
3030        pmask = cxgb4vf_get_port_mask(adapter);
3031        for_each_port(adapter, pidx) {
3032                int port_id, viid;
3033                u8 mac[ETH_ALEN];
3034                unsigned int naddr = 1;
3035
3036                /*
3037                 * We simplistically allocate our virtual interfaces
3038                 * sequentially across the port numbers to which we have
3039                 * access rights.  This should be configurable in some manner
3040                 * ...
3041                 */
3042                if (pmask == 0)
3043                        break;
3044                port_id = ffs(pmask) - 1;
3045                pmask &= ~(1 << port_id);
3046
3047                /*
3048                 * Allocate our network device and stitch things together.
3049                 */
3050                netdev = alloc_etherdev_mq(sizeof(struct port_info),
3051                                           MAX_PORT_QSETS);
3052                if (netdev == NULL) {
3053                        err = -ENOMEM;
3054                        goto err_free_dev;
3055                }
3056                adapter->port[pidx] = netdev;
3057                SET_NETDEV_DEV(netdev, &pdev->dev);
3058                pi = netdev_priv(netdev);
3059                pi->adapter = adapter;
3060                pi->pidx = pidx;
3061                pi->port_id = port_id;
3062
3063                /*
3064                 * Initialize the starting state of our "port" and register
3065                 * it.
3066                 */
3067                pi->xact_addr_filt = -1;
3068                netdev->irq = pdev->irq;
3069
3070                netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3071                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3072                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3073                netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
3074                netdev->vlan_features = netdev->features & VLAN_FEAT;
3075
3076                netdev->priv_flags |= IFF_UNICAST_FLT;
3077                netdev->min_mtu = 81;
3078                netdev->max_mtu = ETH_MAX_MTU;
3079
3080                netdev->netdev_ops = &cxgb4vf_netdev_ops;
3081                netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3082                netdev->dev_port = pi->port_id;
3083
3084                /*
3085                 * If we haven't been able to contact the firmware, there's
3086                 * nothing else we can do for this "port" ...
3087                 */
3088                if (!(adapter->flags & CXGB4VF_FW_OK))
3089                        continue;
3090
3091                viid = t4vf_alloc_vi(adapter, port_id);
3092                if (viid < 0) {
3093                        dev_err(&pdev->dev,
3094                                "cannot allocate VI for port %d: err=%d\n",
3095                                port_id, viid);
3096                        err = viid;
3097                        goto err_free_dev;
3098                }
3099                pi->viid = viid;
3100
3101                /*
3102                 * Initialize the hardware/software state for the port.
3103                 */
3104                err = t4vf_port_init(adapter, pidx);
3105                if (err) {
3106                        dev_err(&pdev->dev, "cannot initialize port %d\n",
3107                                pidx);
3108                        goto err_free_dev;
3109                }
3110
3111                err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac);
3112                if (err) {
3113                        dev_err(&pdev->dev,
3114                                "unable to determine MAC ACL address, "
3115                                "continuing anyway.. (status %d)\n", err);
3116                } else if (naddr && adapter->params.vfres.nvi == 1) {
3117                        struct sockaddr addr;
3118
3119                        ether_addr_copy(addr.sa_data, mac);
3120                        err = cxgb4vf_set_mac_addr(netdev, &addr);
3121                        if (err) {
3122                                dev_err(&pdev->dev,
3123                                        "unable to set MAC address %pM\n",
3124                                        mac);
3125                                goto err_free_dev;
3126                        }
3127                        dev_info(&pdev->dev,
3128                                 "Using assigned MAC ACL: %pM\n", mac);
3129                }
3130        }
3131
3132        /* See what interrupts we'll be using.  If we've been configured to
3133         * use MSI-X interrupts, try to enable them but fall back to using
3134         * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3135         * get MSI interrupts we bail with the error.
3136         */
3137        if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3138                adapter->flags |= CXGB4VF_USING_MSIX;
3139        else {
3140                if (msi == MSI_MSIX) {
3141                        dev_info(adapter->pdev_dev,
3142                                 "Unable to use MSI-X Interrupts; falling "
3143                                 "back to MSI Interrupts\n");
3144
3145                        /* We're going to need a Forwarded Interrupt Queue so
3146                         * that may cut into how many Queue Sets we can
3147                         * support.
3148                         */
3149                        msi = MSI_MSI;
3150                        size_nports_qsets(adapter);
3151                }
3152                err = pci_enable_msi(pdev);
3153                if (err) {
3154                        dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3155                                " err=%d\n", err);
3156                        goto err_free_dev;
3157                }
3158                adapter->flags |= CXGB4VF_USING_MSI;
3159        }
3160
3161        /* Now that we know how many "ports" we have and what interrupt
3162         * mechanism we're going to use, we can configure our queue resources.
3163         */
3164        cfg_queues(adapter);
3165
3166        /*
3167         * The "card" is now ready to go.  If any errors occur during device
3168         * registration we do not fail the whole "card" but rather proceed
3169         * only with the ports we manage to register successfully.  However we
3170         * must register at least one net device.
3171         */
3172        for_each_port(adapter, pidx) {
3173                struct port_info *pi = netdev_priv(adapter->port[pidx]);
3174                netdev = adapter->port[pidx];
3175                if (netdev == NULL)
3176                        continue;
3177
3178                netif_set_real_num_tx_queues(netdev, pi->nqsets);
3179                netif_set_real_num_rx_queues(netdev, pi->nqsets);
3180
3181                err = register_netdev(netdev);
3182                if (err) {
3183                        dev_warn(&pdev->dev, "cannot register net device %s,"
3184                                 " skipping\n", netdev->name);
3185                        continue;
3186                }
3187
3188                netif_carrier_off(netdev);
3189                set_bit(pidx, &adapter->registered_device_map);
3190        }
3191        if (adapter->registered_device_map == 0) {
3192                dev_err(&pdev->dev, "could not register any net devices\n");
3193                err = -EINVAL;
3194                goto err_disable_interrupts;
3195        }
3196
3197        /*
3198         * Set up our debugfs entries.
3199         */
3200        if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3201                adapter->debugfs_root =
3202                        debugfs_create_dir(pci_name(pdev),
3203                                           cxgb4vf_debugfs_root);
3204                setup_debugfs(adapter);
3205        }
3206
3207        /*
3208         * Print a short notice on the existence and configuration of the new
3209         * VF network device ...
3210         */
3211        for_each_port(adapter, pidx) {
3212                dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3213                         adapter->port[pidx]->name,
3214                         (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3215                         (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3216        }
3217
3218        /*
3219         * Return success!
3220         */
3221        return 0;
3222
3223        /*
3224         * Error recovery and exit code.  Unwind state that's been created
3225         * so far and return the error.
3226         */
3227err_disable_interrupts:
3228        if (adapter->flags & CXGB4VF_USING_MSIX) {
3229                pci_disable_msix(adapter->pdev);
3230                adapter->flags &= ~CXGB4VF_USING_MSIX;
3231        } else if (adapter->flags & CXGB4VF_USING_MSI) {
3232                pci_disable_msi(adapter->pdev);
3233                adapter->flags &= ~CXGB4VF_USING_MSI;
3234        }
3235
3236err_free_dev:
3237        for_each_port(adapter, pidx) {
3238                netdev = adapter->port[pidx];
3239                if (netdev == NULL)
3240                        continue;
3241                pi = netdev_priv(netdev);
3242                if (pi->viid)
3243                        t4vf_free_vi(adapter, pi->viid);
3244                if (test_bit(pidx, &adapter->registered_device_map))
3245                        unregister_netdev(netdev);
3246                free_netdev(netdev);
3247        }
3248
3249        if (!is_t4(adapter->params.chip))
3250                iounmap(adapter->bar2);
3251
3252err_unmap_bar0:
3253        iounmap(adapter->regs);
3254
3255err_free_adapter:
3256        kfree(adapter->mbox_log);
3257        kfree(adapter);
3258
3259err_release_regions:
3260        pci_release_regions(pdev);
3261        pci_clear_master(pdev);
3262
3263err_disable_device:
3264        pci_disable_device(pdev);
3265
3266        return err;
3267}
3268
3269/*
3270 * "Remove" a device: tear down all kernel and driver state created in the
3271 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3272 * that this is called "remove_one" in the PF Driver.)
3273 */
3274static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3275{
3276        struct adapter *adapter = pci_get_drvdata(pdev);
3277        struct hash_mac_addr *entry, *tmp;
3278
3279        /*
3280         * Tear down driver state associated with device.
3281         */
3282        if (adapter) {
3283                int pidx;
3284
3285                /*
3286                 * Stop all of our activity.  Unregister network port,
3287                 * disable interrupts, etc.
3288                 */
3289                for_each_port(adapter, pidx)
3290                        if (test_bit(pidx, &adapter->registered_device_map))
3291                                unregister_netdev(adapter->port[pidx]);
3292                t4vf_sge_stop(adapter);
3293                if (adapter->flags & CXGB4VF_USING_MSIX) {
3294                        pci_disable_msix(adapter->pdev);
3295                        adapter->flags &= ~CXGB4VF_USING_MSIX;
3296                } else if (adapter->flags & CXGB4VF_USING_MSI) {
3297                        pci_disable_msi(adapter->pdev);
3298                        adapter->flags &= ~CXGB4VF_USING_MSI;
3299                }
3300
3301                /*
3302                 * Tear down our debugfs entries.
3303                 */
3304                if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3305                        cleanup_debugfs(adapter);
3306                        debugfs_remove_recursive(adapter->debugfs_root);
3307                }
3308
3309                /*
3310                 * Free all of the various resources which we've acquired ...
3311                 */
3312                t4vf_free_sge_resources(adapter);
3313                for_each_port(adapter, pidx) {
3314                        struct net_device *netdev = adapter->port[pidx];
3315                        struct port_info *pi;
3316
3317                        if (netdev == NULL)
3318                                continue;
3319
3320                        pi = netdev_priv(netdev);
3321                        if (pi->viid)
3322                                t4vf_free_vi(adapter, pi->viid);
3323                        free_netdev(netdev);
3324                }
3325                iounmap(adapter->regs);
3326                if (!is_t4(adapter->params.chip))
3327                        iounmap(adapter->bar2);
3328                kfree(adapter->mbox_log);
3329                list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3330                                         list) {
3331                        list_del(&entry->list);
3332                        kfree(entry);
3333                }
3334                kfree(adapter);
3335        }
3336
3337        /*
3338         * Disable the device and release its PCI resources.
3339         */
3340        pci_disable_device(pdev);
3341        pci_clear_master(pdev);
3342        pci_release_regions(pdev);
3343}
3344
3345/*
3346 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3347 * delivery.
3348 */
3349static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3350{
3351        struct adapter *adapter;
3352        int pidx;
3353
3354        adapter = pci_get_drvdata(pdev);
3355        if (!adapter)
3356                return;
3357
3358        /* Disable all Virtual Interfaces.  This will shut down the
3359         * delivery of all ingress packets into the chip for these
3360         * Virtual Interfaces.
3361         */
3362        for_each_port(adapter, pidx)
3363                if (test_bit(pidx, &adapter->registered_device_map))
3364                        unregister_netdev(adapter->port[pidx]);
3365
3366        /* Free up all Queues which will prevent further DMA and
3367         * Interrupts allowing various internal pathways to drain.
3368         */
3369        t4vf_sge_stop(adapter);
3370        if (adapter->flags & CXGB4VF_USING_MSIX) {
3371                pci_disable_msix(adapter->pdev);
3372                adapter->flags &= ~CXGB4VF_USING_MSIX;
3373        } else if (adapter->flags & CXGB4VF_USING_MSI) {
3374                pci_disable_msi(adapter->pdev);
3375                adapter->flags &= ~CXGB4VF_USING_MSI;
3376        }
3377
3378        /*
3379         * Free up all Queues which will prevent further DMA and
3380         * Interrupts allowing various internal pathways to drain.
3381         */
3382        t4vf_free_sge_resources(adapter);
3383        pci_set_drvdata(pdev, NULL);
3384}
3385
3386/* Macros needed to support the PCI Device ID Table ...
3387 */
3388#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3389        static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3390#define CH_PCI_DEVICE_ID_FUNCTION       0x8
3391
3392#define CH_PCI_ID_TABLE_ENTRY(devid) \
3393                { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3394
3395#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3396
3397#include "../cxgb4/t4_pci_id_tbl.h"
3398
3399MODULE_DESCRIPTION(DRV_DESC);
3400MODULE_AUTHOR("Chelsio Communications");
3401MODULE_LICENSE("Dual BSD/GPL");
3402MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3403
3404static struct pci_driver cxgb4vf_driver = {
3405        .name           = KBUILD_MODNAME,
3406        .id_table       = cxgb4vf_pci_tbl,
3407        .probe          = cxgb4vf_pci_probe,
3408        .remove         = cxgb4vf_pci_remove,
3409        .shutdown       = cxgb4vf_pci_shutdown,
3410};
3411
3412/*
3413 * Initialize global driver state.
3414 */
3415static int __init cxgb4vf_module_init(void)
3416{
3417        int ret;
3418
3419        /*
3420         * Vet our module parameters.
3421         */
3422        if (msi != MSI_MSIX && msi != MSI_MSI) {
3423                pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3424                        msi, MSI_MSIX, MSI_MSI);
3425                return -EINVAL;
3426        }
3427
3428        /* Debugfs support is optional, debugfs will warn if this fails */
3429        cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3430
3431        ret = pci_register_driver(&cxgb4vf_driver);
3432        if (ret < 0)
3433                debugfs_remove(cxgb4vf_debugfs_root);
3434        return ret;
3435}
3436
3437/*
3438 * Tear down global driver state.
3439 */
3440static void __exit cxgb4vf_module_exit(void)
3441{
3442        pci_unregister_driver(&cxgb4vf_driver);
3443        debugfs_remove(cxgb4vf_debugfs_root);
3444}
3445
3446module_init(cxgb4vf_module_init);
3447module_exit(cxgb4vf_module_exit);
3448