linux/drivers/net/ethernet/intel/ice/ice_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7#include "ice_flow.h"
   8
   9#define ICE_PF_RESET_WAIT_COUNT 300
  10
  11/**
  12 * ice_set_mac_type - Sets MAC type
  13 * @hw: pointer to the HW structure
  14 *
  15 * This function sets the MAC type of the adapter based on the
  16 * vendor ID and device ID stored in the HW structure.
  17 */
  18static int ice_set_mac_type(struct ice_hw *hw)
  19{
  20        if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  21                return -ENODEV;
  22
  23        switch (hw->device_id) {
  24        case ICE_DEV_ID_E810C_BACKPLANE:
  25        case ICE_DEV_ID_E810C_QSFP:
  26        case ICE_DEV_ID_E810C_SFP:
  27        case ICE_DEV_ID_E810_XXV_BACKPLANE:
  28        case ICE_DEV_ID_E810_XXV_QSFP:
  29        case ICE_DEV_ID_E810_XXV_SFP:
  30                hw->mac_type = ICE_MAC_E810;
  31                break;
  32        case ICE_DEV_ID_E823C_10G_BASE_T:
  33        case ICE_DEV_ID_E823C_BACKPLANE:
  34        case ICE_DEV_ID_E823C_QSFP:
  35        case ICE_DEV_ID_E823C_SFP:
  36        case ICE_DEV_ID_E823C_SGMII:
  37        case ICE_DEV_ID_E822C_10G_BASE_T:
  38        case ICE_DEV_ID_E822C_BACKPLANE:
  39        case ICE_DEV_ID_E822C_QSFP:
  40        case ICE_DEV_ID_E822C_SFP:
  41        case ICE_DEV_ID_E822C_SGMII:
  42        case ICE_DEV_ID_E822L_10G_BASE_T:
  43        case ICE_DEV_ID_E822L_BACKPLANE:
  44        case ICE_DEV_ID_E822L_SFP:
  45        case ICE_DEV_ID_E822L_SGMII:
  46        case ICE_DEV_ID_E823L_10G_BASE_T:
  47        case ICE_DEV_ID_E823L_1GBE:
  48        case ICE_DEV_ID_E823L_BACKPLANE:
  49        case ICE_DEV_ID_E823L_QSFP:
  50        case ICE_DEV_ID_E823L_SFP:
  51                hw->mac_type = ICE_MAC_GENERIC;
  52                break;
  53        default:
  54                hw->mac_type = ICE_MAC_UNKNOWN;
  55                break;
  56        }
  57
  58        ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
  59        return 0;
  60}
  61
  62/**
  63 * ice_is_e810
  64 * @hw: pointer to the hardware structure
  65 *
  66 * returns true if the device is E810 based, false if not.
  67 */
  68bool ice_is_e810(struct ice_hw *hw)
  69{
  70        return hw->mac_type == ICE_MAC_E810;
  71}
  72
  73/**
  74 * ice_is_e810t
  75 * @hw: pointer to the hardware structure
  76 *
  77 * returns true if the device is E810T based, false if not.
  78 */
  79bool ice_is_e810t(struct ice_hw *hw)
  80{
  81        switch (hw->device_id) {
  82        case ICE_DEV_ID_E810C_SFP:
  83                if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T ||
  84                    hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
  85                        return true;
  86                break;
  87        default:
  88                break;
  89        }
  90
  91        return false;
  92}
  93
  94/**
  95 * ice_clear_pf_cfg - Clear PF configuration
  96 * @hw: pointer to the hardware structure
  97 *
  98 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
  99 * configuration, flow director filters, etc.).
 100 */
 101int ice_clear_pf_cfg(struct ice_hw *hw)
 102{
 103        struct ice_aq_desc desc;
 104
 105        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
 106
 107        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 108}
 109
 110/**
 111 * ice_aq_manage_mac_read - manage MAC address read command
 112 * @hw: pointer to the HW struct
 113 * @buf: a virtual buffer to hold the manage MAC read response
 114 * @buf_size: Size of the virtual buffer
 115 * @cd: pointer to command details structure or NULL
 116 *
 117 * This function is used to return per PF station MAC address (0x0107).
 118 * NOTE: Upon successful completion of this command, MAC address information
 119 * is returned in user specified buffer. Please interpret user specified
 120 * buffer as "manage_mac_read" response.
 121 * Response such as various MAC addresses are stored in HW struct (port.mac)
 122 * ice_discover_dev_caps is expected to be called before this function is
 123 * called.
 124 */
 125static int
 126ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 127                       struct ice_sq_cd *cd)
 128{
 129        struct ice_aqc_manage_mac_read_resp *resp;
 130        struct ice_aqc_manage_mac_read *cmd;
 131        struct ice_aq_desc desc;
 132        int status;
 133        u16 flags;
 134        u8 i;
 135
 136        cmd = &desc.params.mac_read;
 137
 138        if (buf_size < sizeof(*resp))
 139                return -EINVAL;
 140
 141        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 142
 143        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 144        if (status)
 145                return status;
 146
 147        resp = buf;
 148        flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 149
 150        if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 151                ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 152                return -EIO;
 153        }
 154
 155        /* A single port can report up to two (LAN and WoL) addresses */
 156        for (i = 0; i < cmd->num_addr; i++)
 157                if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 158                        ether_addr_copy(hw->port_info->mac.lan_addr,
 159                                        resp[i].mac_addr);
 160                        ether_addr_copy(hw->port_info->mac.perm_addr,
 161                                        resp[i].mac_addr);
 162                        break;
 163                }
 164
 165        return 0;
 166}
 167
 168/**
 169 * ice_aq_get_phy_caps - returns PHY capabilities
 170 * @pi: port information structure
 171 * @qual_mods: report qualified modules
 172 * @report_mode: report mode capabilities
 173 * @pcaps: structure for PHY capabilities to be filled
 174 * @cd: pointer to command details structure or NULL
 175 *
 176 * Returns the various PHY capabilities supported on the Port (0x0600)
 177 */
 178int
 179ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 180                    struct ice_aqc_get_phy_caps_data *pcaps,
 181                    struct ice_sq_cd *cd)
 182{
 183        struct ice_aqc_get_phy_caps *cmd;
 184        u16 pcaps_size = sizeof(*pcaps);
 185        struct ice_aq_desc desc;
 186        struct ice_hw *hw;
 187        int status;
 188
 189        cmd = &desc.params.get_phy;
 190
 191        if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 192                return -EINVAL;
 193        hw = pi->hw;
 194
 195        if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 196            !ice_fw_supports_report_dflt_cfg(hw))
 197                return -EINVAL;
 198
 199        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 200
 201        if (qual_mods)
 202                cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 203
 204        cmd->param0 |= cpu_to_le16(report_mode);
 205        status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 206
 207        ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
 208                  report_mode);
 209        ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
 210                  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
 211        ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
 212                  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
 213        ice_debug(hw, ICE_DBG_LINK, "   caps = 0x%x\n", pcaps->caps);
 214        ice_debug(hw, ICE_DBG_LINK, "   low_power_ctrl_an = 0x%x\n",
 215                  pcaps->low_power_ctrl_an);
 216        ice_debug(hw, ICE_DBG_LINK, "   eee_cap = 0x%x\n", pcaps->eee_cap);
 217        ice_debug(hw, ICE_DBG_LINK, "   eeer_value = 0x%x\n",
 218                  pcaps->eeer_value);
 219        ice_debug(hw, ICE_DBG_LINK, "   link_fec_options = 0x%x\n",
 220                  pcaps->link_fec_options);
 221        ice_debug(hw, ICE_DBG_LINK, "   module_compliance_enforcement = 0x%x\n",
 222                  pcaps->module_compliance_enforcement);
 223        ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
 224                  pcaps->extended_compliance_code);
 225        ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
 226                  pcaps->module_type[0]);
 227        ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
 228                  pcaps->module_type[1]);
 229        ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
 230                  pcaps->module_type[2]);
 231
 232        if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 233                pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 234                pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 235                memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 236                       sizeof(pi->phy.link_info.module_type));
 237        }
 238
 239        return status;
 240}
 241
 242/**
 243 * ice_aq_get_link_topo_handle - get link topology node return status
 244 * @pi: port information structure
 245 * @node_type: requested node type
 246 * @cd: pointer to command details structure or NULL
 247 *
 248 * Get link topology node return status for specified node type (0x06E0)
 249 *
 250 * Node type cage can be used to determine if cage is present. If AQC
 251 * returns error (ENOENT), then no cage present. If no cage present, then
 252 * connection type is backplane or BASE-T.
 253 */
 254static int
 255ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 256                            struct ice_sq_cd *cd)
 257{
 258        struct ice_aqc_get_link_topo *cmd;
 259        struct ice_aq_desc desc;
 260
 261        cmd = &desc.params.get_link_topo;
 262
 263        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 264
 265        cmd->addr.topo_params.node_type_ctx =
 266                (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 267                 ICE_AQC_LINK_TOPO_NODE_CTX_S);
 268
 269        /* set node type */
 270        cmd->addr.topo_params.node_type_ctx |=
 271                (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 272
 273        return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 274}
 275
 276/**
 277 * ice_is_media_cage_present
 278 * @pi: port information structure
 279 *
 280 * Returns true if media cage is present, else false. If no cage, then
 281 * media type is backplane or BASE-T.
 282 */
 283static bool ice_is_media_cage_present(struct ice_port_info *pi)
 284{
 285        /* Node type cage can be used to determine if cage is present. If AQC
 286         * returns error (ENOENT), then no cage present. If no cage present then
 287         * connection type is backplane or BASE-T.
 288         */
 289        return !ice_aq_get_link_topo_handle(pi,
 290                                            ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 291                                            NULL);
 292}
 293
 294/**
 295 * ice_get_media_type - Gets media type
 296 * @pi: port information structure
 297 */
 298static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 299{
 300        struct ice_link_status *hw_link_info;
 301
 302        if (!pi)
 303                return ICE_MEDIA_UNKNOWN;
 304
 305        hw_link_info = &pi->phy.link_info;
 306        if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 307                /* If more than one media type is selected, report unknown */
 308                return ICE_MEDIA_UNKNOWN;
 309
 310        if (hw_link_info->phy_type_low) {
 311                /* 1G SGMII is a special case where some DA cable PHYs
 312                 * may show this as an option when it really shouldn't
 313                 * be since SGMII is meant to be between a MAC and a PHY
 314                 * in a backplane. Try to detect this case and handle it
 315                 */
 316                if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 317                    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 318                    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 319                    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 320                    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 321                        return ICE_MEDIA_DA;
 322
 323                switch (hw_link_info->phy_type_low) {
 324                case ICE_PHY_TYPE_LOW_1000BASE_SX:
 325                case ICE_PHY_TYPE_LOW_1000BASE_LX:
 326                case ICE_PHY_TYPE_LOW_10GBASE_SR:
 327                case ICE_PHY_TYPE_LOW_10GBASE_LR:
 328                case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 329                case ICE_PHY_TYPE_LOW_25GBASE_SR:
 330                case ICE_PHY_TYPE_LOW_25GBASE_LR:
 331                case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 332                case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 333                case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 334                case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 335                case ICE_PHY_TYPE_LOW_50GBASE_SR:
 336                case ICE_PHY_TYPE_LOW_50GBASE_FR:
 337                case ICE_PHY_TYPE_LOW_50GBASE_LR:
 338                case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 339                case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 340                case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 341                case ICE_PHY_TYPE_LOW_100GBASE_DR:
 342                case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 343                case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 344                case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 345                case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 346                case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 347                case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 348                case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 349                case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 350                        return ICE_MEDIA_FIBER;
 351                case ICE_PHY_TYPE_LOW_100BASE_TX:
 352                case ICE_PHY_TYPE_LOW_1000BASE_T:
 353                case ICE_PHY_TYPE_LOW_2500BASE_T:
 354                case ICE_PHY_TYPE_LOW_5GBASE_T:
 355                case ICE_PHY_TYPE_LOW_10GBASE_T:
 356                case ICE_PHY_TYPE_LOW_25GBASE_T:
 357                        return ICE_MEDIA_BASET;
 358                case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 359                case ICE_PHY_TYPE_LOW_25GBASE_CR:
 360                case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 361                case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 362                case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 363                case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 364                case ICE_PHY_TYPE_LOW_50GBASE_CP:
 365                case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 366                case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 367                case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 368                        return ICE_MEDIA_DA;
 369                case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 370                case ICE_PHY_TYPE_LOW_40G_XLAUI:
 371                case ICE_PHY_TYPE_LOW_50G_LAUI2:
 372                case ICE_PHY_TYPE_LOW_50G_AUI2:
 373                case ICE_PHY_TYPE_LOW_50G_AUI1:
 374                case ICE_PHY_TYPE_LOW_100G_AUI4:
 375                case ICE_PHY_TYPE_LOW_100G_CAUI4:
 376                        if (ice_is_media_cage_present(pi))
 377                                return ICE_MEDIA_DA;
 378                        fallthrough;
 379                case ICE_PHY_TYPE_LOW_1000BASE_KX:
 380                case ICE_PHY_TYPE_LOW_2500BASE_KX:
 381                case ICE_PHY_TYPE_LOW_2500BASE_X:
 382                case ICE_PHY_TYPE_LOW_5GBASE_KR:
 383                case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 384                case ICE_PHY_TYPE_LOW_25GBASE_KR:
 385                case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 386                case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 387                case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 388                case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 389                case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 390                case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 391                case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 392                        return ICE_MEDIA_BACKPLANE;
 393                }
 394        } else {
 395                switch (hw_link_info->phy_type_high) {
 396                case ICE_PHY_TYPE_HIGH_100G_AUI2:
 397                case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 398                        if (ice_is_media_cage_present(pi))
 399                                return ICE_MEDIA_DA;
 400                        fallthrough;
 401                case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 402                        return ICE_MEDIA_BACKPLANE;
 403                case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 404                case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 405                        return ICE_MEDIA_FIBER;
 406                }
 407        }
 408        return ICE_MEDIA_UNKNOWN;
 409}
 410
 411/**
 412 * ice_aq_get_link_info
 413 * @pi: port information structure
 414 * @ena_lse: enable/disable LinkStatusEvent reporting
 415 * @link: pointer to link status structure - optional
 416 * @cd: pointer to command details structure or NULL
 417 *
 418 * Get Link Status (0x607). Returns the link status of the adapter.
 419 */
 420int
 421ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 422                     struct ice_link_status *link, struct ice_sq_cd *cd)
 423{
 424        struct ice_aqc_get_link_status_data link_data = { 0 };
 425        struct ice_aqc_get_link_status *resp;
 426        struct ice_link_status *li_old, *li;
 427        enum ice_media_type *hw_media_type;
 428        struct ice_fc_info *hw_fc_info;
 429        bool tx_pause, rx_pause;
 430        struct ice_aq_desc desc;
 431        struct ice_hw *hw;
 432        u16 cmd_flags;
 433        int status;
 434
 435        if (!pi)
 436                return -EINVAL;
 437        hw = pi->hw;
 438        li_old = &pi->phy.link_info_old;
 439        hw_media_type = &pi->phy.media_type;
 440        li = &pi->phy.link_info;
 441        hw_fc_info = &pi->fc;
 442
 443        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 444        cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 445        resp = &desc.params.get_link_status;
 446        resp->cmd_flags = cpu_to_le16(cmd_flags);
 447        resp->lport_num = pi->lport;
 448
 449        status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
 450
 451        if (status)
 452                return status;
 453
 454        /* save off old link status information */
 455        *li_old = *li;
 456
 457        /* update current link status information */
 458        li->link_speed = le16_to_cpu(link_data.link_speed);
 459        li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 460        li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 461        *hw_media_type = ice_get_media_type(pi);
 462        li->link_info = link_data.link_info;
 463        li->link_cfg_err = link_data.link_cfg_err;
 464        li->an_info = link_data.an_info;
 465        li->ext_info = link_data.ext_info;
 466        li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 467        li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 468        li->topo_media_conflict = link_data.topo_media_conflict;
 469        li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 470                                      ICE_AQ_CFG_PACING_TYPE_M);
 471
 472        /* update fc info */
 473        tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 474        rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 475        if (tx_pause && rx_pause)
 476                hw_fc_info->current_mode = ICE_FC_FULL;
 477        else if (tx_pause)
 478                hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 479        else if (rx_pause)
 480                hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 481        else
 482                hw_fc_info->current_mode = ICE_FC_NONE;
 483
 484        li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 485
 486        ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 487        ice_debug(hw, ICE_DBG_LINK, "   link_speed = 0x%x\n", li->link_speed);
 488        ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
 489                  (unsigned long long)li->phy_type_low);
 490        ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
 491                  (unsigned long long)li->phy_type_high);
 492        ice_debug(hw, ICE_DBG_LINK, "   media_type = 0x%x\n", *hw_media_type);
 493        ice_debug(hw, ICE_DBG_LINK, "   link_info = 0x%x\n", li->link_info);
 494        ice_debug(hw, ICE_DBG_LINK, "   link_cfg_err = 0x%x\n", li->link_cfg_err);
 495        ice_debug(hw, ICE_DBG_LINK, "   an_info = 0x%x\n", li->an_info);
 496        ice_debug(hw, ICE_DBG_LINK, "   ext_info = 0x%x\n", li->ext_info);
 497        ice_debug(hw, ICE_DBG_LINK, "   fec_info = 0x%x\n", li->fec_info);
 498        ice_debug(hw, ICE_DBG_LINK, "   lse_ena = 0x%x\n", li->lse_ena);
 499        ice_debug(hw, ICE_DBG_LINK, "   max_frame = 0x%x\n",
 500                  li->max_frame_size);
 501        ice_debug(hw, ICE_DBG_LINK, "   pacing = 0x%x\n", li->pacing);
 502
 503        /* save link status information */
 504        if (link)
 505                *link = *li;
 506
 507        /* flag cleared so calling functions don't call AQ again */
 508        pi->phy.get_link_info = false;
 509
 510        return 0;
 511}
 512
 513/**
 514 * ice_fill_tx_timer_and_fc_thresh
 515 * @hw: pointer to the HW struct
 516 * @cmd: pointer to MAC cfg structure
 517 *
 518 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 519 * descriptor
 520 */
 521static void
 522ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 523                                struct ice_aqc_set_mac_cfg *cmd)
 524{
 525        u16 fc_thres_val, tx_timer_val;
 526        u32 val;
 527
 528        /* We read back the transmit timer and FC threshold value of
 529         * LFC. Thus, we will use index =
 530         * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 531         *
 532         * Also, because we are operating on transmit timer and FC
 533         * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 534         */
 535#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
 536
 537        /* Retrieve the transmit timer */
 538        val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
 539        tx_timer_val = val &
 540                PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
 541        cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
 542
 543        /* Retrieve the FC threshold */
 544        val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
 545        fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
 546
 547        cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
 548}
 549
 550/**
 551 * ice_aq_set_mac_cfg
 552 * @hw: pointer to the HW struct
 553 * @max_frame_size: Maximum Frame Size to be supported
 554 * @cd: pointer to command details structure or NULL
 555 *
 556 * Set MAC configuration (0x0603)
 557 */
 558int
 559ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 560{
 561        struct ice_aqc_set_mac_cfg *cmd;
 562        struct ice_aq_desc desc;
 563
 564        cmd = &desc.params.set_mac_cfg;
 565
 566        if (max_frame_size == 0)
 567                return -EINVAL;
 568
 569        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 570
 571        cmd->max_frame_size = cpu_to_le16(max_frame_size);
 572
 573        ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 574
 575        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 576}
 577
 578/**
 579 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 580 * @hw: pointer to the HW struct
 581 */
 582static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 583{
 584        struct ice_switch_info *sw;
 585        int status;
 586
 587        hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 588                                       sizeof(*hw->switch_info), GFP_KERNEL);
 589        sw = hw->switch_info;
 590
 591        if (!sw)
 592                return -ENOMEM;
 593
 594        INIT_LIST_HEAD(&sw->vsi_list_map_head);
 595        sw->prof_res_bm_init = 0;
 596
 597        status = ice_init_def_sw_recp(hw);
 598        if (status) {
 599                devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 600                return status;
 601        }
 602        return 0;
 603}
 604
 605/**
 606 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 607 * @hw: pointer to the HW struct
 608 */
 609static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 610{
 611        struct ice_switch_info *sw = hw->switch_info;
 612        struct ice_vsi_list_map_info *v_pos_map;
 613        struct ice_vsi_list_map_info *v_tmp_map;
 614        struct ice_sw_recipe *recps;
 615        u8 i;
 616
 617        list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 618                                 list_entry) {
 619                list_del(&v_pos_map->list_entry);
 620                devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 621        }
 622        recps = sw->recp_list;
 623        for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
 624                struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
 625
 626                recps[i].root_rid = i;
 627                list_for_each_entry_safe(rg_entry, tmprg_entry,
 628                                         &recps[i].rg_list, l_entry) {
 629                        list_del(&rg_entry->l_entry);
 630                        devm_kfree(ice_hw_to_dev(hw), rg_entry);
 631                }
 632
 633                if (recps[i].adv_rule) {
 634                        struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
 635                        struct ice_adv_fltr_mgmt_list_entry *lst_itr;
 636
 637                        mutex_destroy(&recps[i].filt_rule_lock);
 638                        list_for_each_entry_safe(lst_itr, tmp_entry,
 639                                                 &recps[i].filt_rules,
 640                                                 list_entry) {
 641                                list_del(&lst_itr->list_entry);
 642                                devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
 643                                devm_kfree(ice_hw_to_dev(hw), lst_itr);
 644                        }
 645                } else {
 646                        struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 647
 648                        mutex_destroy(&recps[i].filt_rule_lock);
 649                        list_for_each_entry_safe(lst_itr, tmp_entry,
 650                                                 &recps[i].filt_rules,
 651                                                 list_entry) {
 652                                list_del(&lst_itr->list_entry);
 653                                devm_kfree(ice_hw_to_dev(hw), lst_itr);
 654                        }
 655                }
 656                if (recps[i].root_buf)
 657                        devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
 658        }
 659        ice_rm_all_sw_replay_rule_info(hw);
 660        devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 661        devm_kfree(ice_hw_to_dev(hw), sw);
 662}
 663
 664/**
 665 * ice_get_fw_log_cfg - get FW logging configuration
 666 * @hw: pointer to the HW struct
 667 */
 668static int ice_get_fw_log_cfg(struct ice_hw *hw)
 669{
 670        struct ice_aq_desc desc;
 671        __le16 *config;
 672        int status;
 673        u16 size;
 674
 675        size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
 676        config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
 677        if (!config)
 678                return -ENOMEM;
 679
 680        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
 681
 682        status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
 683        if (!status) {
 684                u16 i;
 685
 686                /* Save FW logging information into the HW structure */
 687                for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 688                        u16 v, m, flgs;
 689
 690                        v = le16_to_cpu(config[i]);
 691                        m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 692                        flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
 693
 694                        if (m < ICE_AQC_FW_LOG_ID_MAX)
 695                                hw->fw_log.evnts[m].cur = flgs;
 696                }
 697        }
 698
 699        devm_kfree(ice_hw_to_dev(hw), config);
 700
 701        return status;
 702}
 703
 704/**
 705 * ice_cfg_fw_log - configure FW logging
 706 * @hw: pointer to the HW struct
 707 * @enable: enable certain FW logging events if true, disable all if false
 708 *
 709 * This function enables/disables the FW logging via Rx CQ events and a UART
 710 * port based on predetermined configurations. FW logging via the Rx CQ can be
 711 * enabled/disabled for individual PF's. However, FW logging via the UART can
 712 * only be enabled/disabled for all PFs on the same device.
 713 *
 714 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 715 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 716 * before initializing the device.
 717 *
 718 * When re/configuring FW logging, callers need to update the "cfg" elements of
 719 * the hw->fw_log.evnts array with the desired logging event configurations for
 720 * modules of interest. When disabling FW logging completely, the callers can
 721 * just pass false in the "enable" parameter. On completion, the function will
 722 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 723 * logging event configurations of the modules that are being re/configured. FW
 724 * logging modules that are not part of a reconfiguration operation retain their
 725 * previous states.
 726 *
 727 * Before resetting the device, it is recommended that the driver disables FW
 728 * logging before shutting down the control queue. When disabling FW logging
 729 * ("enable" = false), the latest configurations of FW logging events stored in
 730 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 731 * a device reset.
 732 *
 733 * When enabling FW logging to emit log messages via the Rx CQ during the
 734 * device's initialization phase, a mechanism alternative to interrupt handlers
 735 * needs to be used to extract FW log messages from the Rx CQ periodically and
 736 * to prevent the Rx CQ from being full and stalling other types of control
 737 * messages from FW to SW. Interrupts are typically disabled during the device's
 738 * initialization phase.
 739 */
 740static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 741{
 742        struct ice_aqc_fw_logging *cmd;
 743        u16 i, chgs = 0, len = 0;
 744        struct ice_aq_desc desc;
 745        __le16 *data = NULL;
 746        u8 actv_evnts = 0;
 747        void *buf = NULL;
 748        int status = 0;
 749
 750        if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 751                return 0;
 752
 753        /* Disable FW logging only when the control queue is still responsive */
 754        if (!enable &&
 755            (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 756                return 0;
 757
 758        /* Get current FW log settings */
 759        status = ice_get_fw_log_cfg(hw);
 760        if (status)
 761                return status;
 762
 763        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 764        cmd = &desc.params.fw_logging;
 765
 766        /* Indicate which controls are valid */
 767        if (hw->fw_log.cq_en)
 768                cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 769
 770        if (hw->fw_log.uart_en)
 771                cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 772
 773        if (enable) {
 774                /* Fill in an array of entries with FW logging modules and
 775                 * logging events being reconfigured.
 776                 */
 777                for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 778                        u16 val;
 779
 780                        /* Keep track of enabled event types */
 781                        actv_evnts |= hw->fw_log.evnts[i].cfg;
 782
 783                        if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 784                                continue;
 785
 786                        if (!data) {
 787                                data = devm_kcalloc(ice_hw_to_dev(hw),
 788                                                    ICE_AQC_FW_LOG_ID_MAX,
 789                                                    sizeof(*data),
 790                                                    GFP_KERNEL);
 791                                if (!data)
 792                                        return -ENOMEM;
 793                        }
 794
 795                        val = i << ICE_AQC_FW_LOG_ID_S;
 796                        val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 797                        data[chgs++] = cpu_to_le16(val);
 798                }
 799
 800                /* Only enable FW logging if at least one module is specified.
 801                 * If FW logging is currently enabled but all modules are not
 802                 * enabled to emit log messages, disable FW logging altogether.
 803                 */
 804                if (actv_evnts) {
 805                        /* Leave if there is effectively no change */
 806                        if (!chgs)
 807                                goto out;
 808
 809                        if (hw->fw_log.cq_en)
 810                                cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 811
 812                        if (hw->fw_log.uart_en)
 813                                cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 814
 815                        buf = data;
 816                        len = sizeof(*data) * chgs;
 817                        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 818                }
 819        }
 820
 821        status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 822        if (!status) {
 823                /* Update the current configuration to reflect events enabled.
 824                 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 825                 * logging mode is enabled for the device. They do not reflect
 826                 * actual modules being enabled to emit log messages. So, their
 827                 * values remain unchanged even when all modules are disabled.
 828                 */
 829                u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 830
 831                hw->fw_log.actv_evnts = actv_evnts;
 832                for (i = 0; i < cnt; i++) {
 833                        u16 v, m;
 834
 835                        if (!enable) {
 836                                /* When disabling all FW logging events as part
 837                                 * of device's de-initialization, the original
 838                                 * configurations are retained, and can be used
 839                                 * to reconfigure FW logging later if the device
 840                                 * is re-initialized.
 841                                 */
 842                                hw->fw_log.evnts[i].cur = 0;
 843                                continue;
 844                        }
 845
 846                        v = le16_to_cpu(data[i]);
 847                        m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 848                        hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 849                }
 850        }
 851
 852out:
 853        if (data)
 854                devm_kfree(ice_hw_to_dev(hw), data);
 855
 856        return status;
 857}
 858
 859/**
 860 * ice_output_fw_log
 861 * @hw: pointer to the HW struct
 862 * @desc: pointer to the AQ message descriptor
 863 * @buf: pointer to the buffer accompanying the AQ message
 864 *
 865 * Formats a FW Log message and outputs it via the standard driver logs.
 866 */
 867void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
 868{
 869        ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
 870        ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
 871                        le16_to_cpu(desc->datalen));
 872        ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
 873}
 874
 875/**
 876 * ice_get_itr_intrl_gran
 877 * @hw: pointer to the HW struct
 878 *
 879 * Determines the ITR/INTRL granularities based on the maximum aggregate
 880 * bandwidth according to the device's configuration during power-on.
 881 */
 882static void ice_get_itr_intrl_gran(struct ice_hw *hw)
 883{
 884        u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
 885                         GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
 886                        GL_PWR_MODE_CTL_CAR_MAX_BW_S;
 887
 888        switch (max_agg_bw) {
 889        case ICE_MAX_AGG_BW_200G:
 890        case ICE_MAX_AGG_BW_100G:
 891        case ICE_MAX_AGG_BW_50G:
 892                hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 893                hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 894                break;
 895        case ICE_MAX_AGG_BW_25G:
 896                hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 897                hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 898                break;
 899        }
 900}
 901
 902/**
 903 * ice_init_hw - main hardware initialization routine
 904 * @hw: pointer to the hardware structure
 905 */
 906int ice_init_hw(struct ice_hw *hw)
 907{
 908        struct ice_aqc_get_phy_caps_data *pcaps;
 909        u16 mac_buf_len;
 910        void *mac_buf;
 911        int status;
 912
 913        /* Set MAC type based on DeviceID */
 914        status = ice_set_mac_type(hw);
 915        if (status)
 916                return status;
 917
 918        hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 919                         PF_FUNC_RID_FUNC_NUM_M) >>
 920                PF_FUNC_RID_FUNC_NUM_S;
 921
 922        status = ice_reset(hw, ICE_RESET_PFR);
 923        if (status)
 924                return status;
 925
 926        ice_get_itr_intrl_gran(hw);
 927
 928        status = ice_create_all_ctrlq(hw);
 929        if (status)
 930                goto err_unroll_cqinit;
 931
 932        /* Enable FW logging. Not fatal if this fails. */
 933        status = ice_cfg_fw_log(hw, true);
 934        if (status)
 935                ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 936
 937        status = ice_clear_pf_cfg(hw);
 938        if (status)
 939                goto err_unroll_cqinit;
 940
 941        /* Set bit to enable Flow Director filters */
 942        wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
 943        INIT_LIST_HEAD(&hw->fdir_list_head);
 944
 945        ice_clear_pxe_mode(hw);
 946
 947        status = ice_init_nvm(hw);
 948        if (status)
 949                goto err_unroll_cqinit;
 950
 951        status = ice_get_caps(hw);
 952        if (status)
 953                goto err_unroll_cqinit;
 954
 955        hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 956                                     sizeof(*hw->port_info), GFP_KERNEL);
 957        if (!hw->port_info) {
 958                status = -ENOMEM;
 959                goto err_unroll_cqinit;
 960        }
 961
 962        /* set the back pointer to HW */
 963        hw->port_info->hw = hw;
 964
 965        /* Initialize port_info struct with switch configuration data */
 966        status = ice_get_initial_sw_cfg(hw);
 967        if (status)
 968                goto err_unroll_alloc;
 969
 970        hw->evb_veb = true;
 971
 972        /* Query the allocated resources for Tx scheduler */
 973        status = ice_sched_query_res_alloc(hw);
 974        if (status) {
 975                ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
 976                goto err_unroll_alloc;
 977        }
 978        ice_sched_get_psm_clk_freq(hw);
 979
 980        /* Initialize port_info struct with scheduler data */
 981        status = ice_sched_init_port(hw->port_info);
 982        if (status)
 983                goto err_unroll_sched;
 984
 985        pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 986        if (!pcaps) {
 987                status = -ENOMEM;
 988                goto err_unroll_sched;
 989        }
 990
 991        /* Initialize port_info struct with PHY capabilities */
 992        status = ice_aq_get_phy_caps(hw->port_info, false,
 993                                     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
 994                                     NULL);
 995        devm_kfree(ice_hw_to_dev(hw), pcaps);
 996        if (status)
 997                dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
 998                         status);
 999
1000        /* Initialize port_info struct with link information */
1001        status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1002        if (status)
1003                goto err_unroll_sched;
1004
1005        /* need a valid SW entry point to build a Tx tree */
1006        if (!hw->sw_entry_point_layer) {
1007                ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1008                status = -EIO;
1009                goto err_unroll_sched;
1010        }
1011        INIT_LIST_HEAD(&hw->agg_list);
1012        /* Initialize max burst size */
1013        if (!hw->max_burst_size)
1014                ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1015
1016        status = ice_init_fltr_mgmt_struct(hw);
1017        if (status)
1018                goto err_unroll_sched;
1019
1020        /* Get MAC information */
1021        /* A single port can report up to two (LAN and WoL) addresses */
1022        mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1023                               sizeof(struct ice_aqc_manage_mac_read_resp),
1024                               GFP_KERNEL);
1025        mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1026
1027        if (!mac_buf) {
1028                status = -ENOMEM;
1029                goto err_unroll_fltr_mgmt_struct;
1030        }
1031
1032        status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1033        devm_kfree(ice_hw_to_dev(hw), mac_buf);
1034
1035        if (status)
1036                goto err_unroll_fltr_mgmt_struct;
1037        /* enable jumbo frame support at MAC level */
1038        status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1039        if (status)
1040                goto err_unroll_fltr_mgmt_struct;
1041        /* Obtain counter base index which would be used by flow director */
1042        status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1043        if (status)
1044                goto err_unroll_fltr_mgmt_struct;
1045        status = ice_init_hw_tbls(hw);
1046        if (status)
1047                goto err_unroll_fltr_mgmt_struct;
1048        mutex_init(&hw->tnl_lock);
1049        return 0;
1050
1051err_unroll_fltr_mgmt_struct:
1052        ice_cleanup_fltr_mgmt_struct(hw);
1053err_unroll_sched:
1054        ice_sched_cleanup_all(hw);
1055err_unroll_alloc:
1056        devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1057err_unroll_cqinit:
1058        ice_destroy_all_ctrlq(hw);
1059        return status;
1060}
1061
1062/**
1063 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1064 * @hw: pointer to the hardware structure
1065 *
1066 * This should be called only during nominal operation, not as a result of
1067 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1068 * applicable initializations if it fails for any reason.
1069 */
1070void ice_deinit_hw(struct ice_hw *hw)
1071{
1072        ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1073        ice_cleanup_fltr_mgmt_struct(hw);
1074
1075        ice_sched_cleanup_all(hw);
1076        ice_sched_clear_agg(hw);
1077        ice_free_seg(hw);
1078        ice_free_hw_tbls(hw);
1079        mutex_destroy(&hw->tnl_lock);
1080
1081        if (hw->port_info) {
1082                devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1083                hw->port_info = NULL;
1084        }
1085
1086        /* Attempt to disable FW logging before shutting down control queues */
1087        ice_cfg_fw_log(hw, false);
1088        ice_destroy_all_ctrlq(hw);
1089
1090        /* Clear VSI contexts if not already cleared */
1091        ice_clear_all_vsi_ctx(hw);
1092}
1093
1094/**
1095 * ice_check_reset - Check to see if a global reset is complete
1096 * @hw: pointer to the hardware structure
1097 */
1098int ice_check_reset(struct ice_hw *hw)
1099{
1100        u32 cnt, reg = 0, grst_timeout, uld_mask;
1101
1102        /* Poll for Device Active state in case a recent CORER, GLOBR,
1103         * or EMPR has occurred. The grst delay value is in 100ms units.
1104         * Add 1sec for outstanding AQ commands that can take a long time.
1105         */
1106        grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1107                        GLGEN_RSTCTL_GRSTDEL_S) + 10;
1108
1109        for (cnt = 0; cnt < grst_timeout; cnt++) {
1110                mdelay(100);
1111                reg = rd32(hw, GLGEN_RSTAT);
1112                if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1113                        break;
1114        }
1115
1116        if (cnt == grst_timeout) {
1117                ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1118                return -EIO;
1119        }
1120
1121#define ICE_RESET_DONE_MASK     (GLNVM_ULD_PCIER_DONE_M |\
1122                                 GLNVM_ULD_PCIER_DONE_1_M |\
1123                                 GLNVM_ULD_CORER_DONE_M |\
1124                                 GLNVM_ULD_GLOBR_DONE_M |\
1125                                 GLNVM_ULD_POR_DONE_M |\
1126                                 GLNVM_ULD_POR_DONE_1_M |\
1127                                 GLNVM_ULD_PCIER_DONE_2_M)
1128
1129        uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1130                                          GLNVM_ULD_PE_DONE_M : 0);
1131
1132        /* Device is Active; check Global Reset processes are done */
1133        for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1134                reg = rd32(hw, GLNVM_ULD) & uld_mask;
1135                if (reg == uld_mask) {
1136                        ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1137                        break;
1138                }
1139                mdelay(10);
1140        }
1141
1142        if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1143                ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1144                          reg);
1145                return -EIO;
1146        }
1147
1148        return 0;
1149}
1150
1151/**
1152 * ice_pf_reset - Reset the PF
1153 * @hw: pointer to the hardware structure
1154 *
1155 * If a global reset has been triggered, this function checks
1156 * for its completion and then issues the PF reset
1157 */
1158static int ice_pf_reset(struct ice_hw *hw)
1159{
1160        u32 cnt, reg;
1161
1162        /* If at function entry a global reset was already in progress, i.e.
1163         * state is not 'device active' or any of the reset done bits are not
1164         * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1165         * global reset is done.
1166         */
1167        if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1168            (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1169                /* poll on global reset currently in progress until done */
1170                if (ice_check_reset(hw))
1171                        return -EIO;
1172
1173                return 0;
1174        }
1175
1176        /* Reset the PF */
1177        reg = rd32(hw, PFGEN_CTRL);
1178
1179        wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1180
1181        /* Wait for the PFR to complete. The wait time is the global config lock
1182         * timeout plus the PFR timeout which will account for a possible reset
1183         * that is occurring during a download package operation.
1184         */
1185        for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1186             ICE_PF_RESET_WAIT_COUNT; cnt++) {
1187                reg = rd32(hw, PFGEN_CTRL);
1188                if (!(reg & PFGEN_CTRL_PFSWR_M))
1189                        break;
1190
1191                mdelay(1);
1192        }
1193
1194        if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1195                ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1196                return -EIO;
1197        }
1198
1199        return 0;
1200}
1201
1202/**
1203 * ice_reset - Perform different types of reset
1204 * @hw: pointer to the hardware structure
1205 * @req: reset request
1206 *
1207 * This function triggers a reset as specified by the req parameter.
1208 *
1209 * Note:
1210 * If anything other than a PF reset is triggered, PXE mode is restored.
1211 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1212 * interface has been restored in the rebuild flow.
1213 */
1214int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1215{
1216        u32 val = 0;
1217
1218        switch (req) {
1219        case ICE_RESET_PFR:
1220                return ice_pf_reset(hw);
1221        case ICE_RESET_CORER:
1222                ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1223                val = GLGEN_RTRIG_CORER_M;
1224                break;
1225        case ICE_RESET_GLOBR:
1226                ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1227                val = GLGEN_RTRIG_GLOBR_M;
1228                break;
1229        default:
1230                return -EINVAL;
1231        }
1232
1233        val |= rd32(hw, GLGEN_RTRIG);
1234        wr32(hw, GLGEN_RTRIG, val);
1235        ice_flush(hw);
1236
1237        /* wait for the FW to be ready */
1238        return ice_check_reset(hw);
1239}
1240
1241/**
1242 * ice_copy_rxq_ctx_to_hw
1243 * @hw: pointer to the hardware structure
1244 * @ice_rxq_ctx: pointer to the rxq context
1245 * @rxq_index: the index of the Rx queue
1246 *
1247 * Copies rxq context from dense structure to HW register space
1248 */
1249static int
1250ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1251{
1252        u8 i;
1253
1254        if (!ice_rxq_ctx)
1255                return -EINVAL;
1256
1257        if (rxq_index > QRX_CTRL_MAX_INDEX)
1258                return -EINVAL;
1259
1260        /* Copy each dword separately to HW */
1261        for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1262                wr32(hw, QRX_CONTEXT(i, rxq_index),
1263                     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1264
1265                ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1266                          *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1267        }
1268
1269        return 0;
1270}
1271
1272/* LAN Rx Queue Context */
1273static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1274        /* Field                Width   LSB */
1275        ICE_CTX_STORE(ice_rlan_ctx, head,               13,     0),
1276        ICE_CTX_STORE(ice_rlan_ctx, cpuid,              8,      13),
1277        ICE_CTX_STORE(ice_rlan_ctx, base,               57,     32),
1278        ICE_CTX_STORE(ice_rlan_ctx, qlen,               13,     89),
1279        ICE_CTX_STORE(ice_rlan_ctx, dbuf,               7,      102),
1280        ICE_CTX_STORE(ice_rlan_ctx, hbuf,               5,      109),
1281        ICE_CTX_STORE(ice_rlan_ctx, dtype,              2,      114),
1282        ICE_CTX_STORE(ice_rlan_ctx, dsize,              1,      116),
1283        ICE_CTX_STORE(ice_rlan_ctx, crcstrip,           1,      117),
1284        ICE_CTX_STORE(ice_rlan_ctx, l2tsel,             1,      119),
1285        ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,           4,      120),
1286        ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,           2,      124),
1287        ICE_CTX_STORE(ice_rlan_ctx, showiv,             1,      127),
1288        ICE_CTX_STORE(ice_rlan_ctx, rxmax,              14,     174),
1289        ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,       1,      193),
1290        ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,       1,      194),
1291        ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,        1,      195),
1292        ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,        1,      196),
1293        ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,         3,      198),
1294        ICE_CTX_STORE(ice_rlan_ctx, prefena,            1,      201),
1295        { 0 }
1296};
1297
1298/**
1299 * ice_write_rxq_ctx
1300 * @hw: pointer to the hardware structure
1301 * @rlan_ctx: pointer to the rxq context
1302 * @rxq_index: the index of the Rx queue
1303 *
1304 * Converts rxq context from sparse to dense structure and then writes
1305 * it to HW register space and enables the hardware to prefetch descriptors
1306 * instead of only fetching them on demand
1307 */
1308int
1309ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1310                  u32 rxq_index)
1311{
1312        u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1313
1314        if (!rlan_ctx)
1315                return -EINVAL;
1316
1317        rlan_ctx->prefena = 1;
1318
1319        ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1320        return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1321}
1322
1323/* LAN Tx Queue Context */
1324const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1325                                    /* Field                    Width   LSB */
1326        ICE_CTX_STORE(ice_tlan_ctx, base,                       57,     0),
1327        ICE_CTX_STORE(ice_tlan_ctx, port_num,                   3,      57),
1328        ICE_CTX_STORE(ice_tlan_ctx, cgd_num,                    5,      60),
1329        ICE_CTX_STORE(ice_tlan_ctx, pf_num,                     3,      65),
1330        ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,                   10,     68),
1331        ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,                  2,      78),
1332        ICE_CTX_STORE(ice_tlan_ctx, src_vsi,                    10,     80),
1333        ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,                   1,      90),
1334        ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,        1,      91),
1335        ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,                   1,      92),
1336        ICE_CTX_STORE(ice_tlan_ctx, cpuid,                      8,      93),
1337        ICE_CTX_STORE(ice_tlan_ctx, wb_mode,                    1,      101),
1338        ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,                 1,      102),
1339        ICE_CTX_STORE(ice_tlan_ctx, tphrd,                      1,      103),
1340        ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,                 1,      104),
1341        ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,                    9,      105),
1342        ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,               14,     114),
1343        ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,      1,      128),
1344        ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,             6,      129),
1345        ICE_CTX_STORE(ice_tlan_ctx, qlen,                       13,     135),
1346        ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,            4,      148),
1347        ICE_CTX_STORE(ice_tlan_ctx, tso_ena,                    1,      152),
1348        ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,                   11,     153),
1349        ICE_CTX_STORE(ice_tlan_ctx, legacy_int,                 1,      164),
1350        ICE_CTX_STORE(ice_tlan_ctx, drop_ena,                   1,      165),
1351        ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,             2,      166),
1352        ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,        3,      168),
1353        ICE_CTX_STORE(ice_tlan_ctx, int_q_state,                122,    171),
1354        { 0 }
1355};
1356
1357/* Sideband Queue command wrappers */
1358
1359/**
1360 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1361 * @hw: pointer to the HW struct
1362 * @desc: descriptor describing the command
1363 * @buf: buffer to use for indirect commands (NULL for direct commands)
1364 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1365 * @cd: pointer to command details structure
1366 */
1367static int
1368ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1369                 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1370{
1371        return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1372                               (struct ice_aq_desc *)desc, buf, buf_size, cd);
1373}
1374
1375/**
1376 * ice_sbq_rw_reg - Fill Sideband Queue command
1377 * @hw: pointer to the HW struct
1378 * @in: message info to be filled in descriptor
1379 */
1380int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1381{
1382        struct ice_sbq_cmd_desc desc = {0};
1383        struct ice_sbq_msg_req msg = {0};
1384        u16 msg_len;
1385        int status;
1386
1387        msg_len = sizeof(msg);
1388
1389        msg.dest_dev = in->dest_dev;
1390        msg.opcode = in->opcode;
1391        msg.flags = ICE_SBQ_MSG_FLAGS;
1392        msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1393        msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1394        msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1395
1396        if (in->opcode)
1397                msg.data = cpu_to_le32(in->data);
1398        else
1399                /* data read comes back in completion, so shorten the struct by
1400                 * sizeof(msg.data)
1401                 */
1402                msg_len -= sizeof(msg.data);
1403
1404        desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1405        desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1406        desc.param0.cmd_len = cpu_to_le16(msg_len);
1407        status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1408        if (!status && !in->opcode)
1409                in->data = le32_to_cpu
1410                        (((struct ice_sbq_msg_cmpl *)&msg)->data);
1411        return status;
1412}
1413
1414/* FW Admin Queue command wrappers */
1415
1416/* Software lock/mutex that is meant to be held while the Global Config Lock
1417 * in firmware is acquired by the software to prevent most (but not all) types
1418 * of AQ commands from being sent to FW
1419 */
1420DEFINE_MUTEX(ice_global_cfg_lock_sw);
1421
1422/**
1423 * ice_should_retry_sq_send_cmd
1424 * @opcode: AQ opcode
1425 *
1426 * Decide if we should retry the send command routine for the ATQ, depending
1427 * on the opcode.
1428 */
1429static bool ice_should_retry_sq_send_cmd(u16 opcode)
1430{
1431        switch (opcode) {
1432        case ice_aqc_opc_get_link_topo:
1433        case ice_aqc_opc_lldp_stop:
1434        case ice_aqc_opc_lldp_start:
1435        case ice_aqc_opc_lldp_filter_ctrl:
1436                return true;
1437        }
1438
1439        return false;
1440}
1441
1442/**
1443 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1444 * @hw: pointer to the HW struct
1445 * @cq: pointer to the specific Control queue
1446 * @desc: prefilled descriptor describing the command
1447 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1448 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1449 * @cd: pointer to command details structure
1450 *
1451 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1452 * Queue if the EBUSY AQ error is returned.
1453 */
1454static int
1455ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1456                      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1457                      struct ice_sq_cd *cd)
1458{
1459        struct ice_aq_desc desc_cpy;
1460        bool is_cmd_for_retry;
1461        u8 *buf_cpy = NULL;
1462        u8 idx = 0;
1463        u16 opcode;
1464        int status;
1465
1466        opcode = le16_to_cpu(desc->opcode);
1467        is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1468        memset(&desc_cpy, 0, sizeof(desc_cpy));
1469
1470        if (is_cmd_for_retry) {
1471                if (buf) {
1472                        buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1473                        if (!buf_cpy)
1474                                return -ENOMEM;
1475                }
1476
1477                memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1478        }
1479
1480        do {
1481                status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1482
1483                if (!is_cmd_for_retry || !status ||
1484                    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1485                        break;
1486
1487                if (buf_cpy)
1488                        memcpy(buf, buf_cpy, buf_size);
1489
1490                memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1491
1492                mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1493
1494        } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1495
1496        kfree(buf_cpy);
1497
1498        return status;
1499}
1500
1501/**
1502 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1503 * @hw: pointer to the HW struct
1504 * @desc: descriptor describing the command
1505 * @buf: buffer to use for indirect commands (NULL for direct commands)
1506 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1507 * @cd: pointer to command details structure
1508 *
1509 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1510 */
1511int
1512ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1513                u16 buf_size, struct ice_sq_cd *cd)
1514{
1515        struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1516        bool lock_acquired = false;
1517        int status;
1518
1519        /* When a package download is in process (i.e. when the firmware's
1520         * Global Configuration Lock resource is held), only the Download
1521         * Package, Get Version, Get Package Info List, Upload Section,
1522         * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1523         * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1524         * Recipes to Profile Association, and Release Resource (with resource
1525         * ID set to Global Config Lock) AdminQ commands are allowed; all others
1526         * must block until the package download completes and the Global Config
1527         * Lock is released.  See also ice_acquire_global_cfg_lock().
1528         */
1529        switch (le16_to_cpu(desc->opcode)) {
1530        case ice_aqc_opc_download_pkg:
1531        case ice_aqc_opc_get_pkg_info_list:
1532        case ice_aqc_opc_get_ver:
1533        case ice_aqc_opc_upload_section:
1534        case ice_aqc_opc_update_pkg:
1535        case ice_aqc_opc_set_port_params:
1536        case ice_aqc_opc_get_vlan_mode_parameters:
1537        case ice_aqc_opc_set_vlan_mode_parameters:
1538        case ice_aqc_opc_add_recipe:
1539        case ice_aqc_opc_recipe_to_profile:
1540        case ice_aqc_opc_get_recipe:
1541        case ice_aqc_opc_get_recipe_to_profile:
1542                break;
1543        case ice_aqc_opc_release_res:
1544                if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1545                        break;
1546                fallthrough;
1547        default:
1548                mutex_lock(&ice_global_cfg_lock_sw);
1549                lock_acquired = true;
1550                break;
1551        }
1552
1553        status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1554        if (lock_acquired)
1555                mutex_unlock(&ice_global_cfg_lock_sw);
1556
1557        return status;
1558}
1559
1560/**
1561 * ice_aq_get_fw_ver
1562 * @hw: pointer to the HW struct
1563 * @cd: pointer to command details structure or NULL
1564 *
1565 * Get the firmware version (0x0001) from the admin queue commands
1566 */
1567int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1568{
1569        struct ice_aqc_get_ver *resp;
1570        struct ice_aq_desc desc;
1571        int status;
1572
1573        resp = &desc.params.get_ver;
1574
1575        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1576
1577        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1578
1579        if (!status) {
1580                hw->fw_branch = resp->fw_branch;
1581                hw->fw_maj_ver = resp->fw_major;
1582                hw->fw_min_ver = resp->fw_minor;
1583                hw->fw_patch = resp->fw_patch;
1584                hw->fw_build = le32_to_cpu(resp->fw_build);
1585                hw->api_branch = resp->api_branch;
1586                hw->api_maj_ver = resp->api_major;
1587                hw->api_min_ver = resp->api_minor;
1588                hw->api_patch = resp->api_patch;
1589        }
1590
1591        return status;
1592}
1593
1594/**
1595 * ice_aq_send_driver_ver
1596 * @hw: pointer to the HW struct
1597 * @dv: driver's major, minor version
1598 * @cd: pointer to command details structure or NULL
1599 *
1600 * Send the driver version (0x0002) to the firmware
1601 */
1602int
1603ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1604                       struct ice_sq_cd *cd)
1605{
1606        struct ice_aqc_driver_ver *cmd;
1607        struct ice_aq_desc desc;
1608        u16 len;
1609
1610        cmd = &desc.params.driver_ver;
1611
1612        if (!dv)
1613                return -EINVAL;
1614
1615        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1616
1617        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1618        cmd->major_ver = dv->major_ver;
1619        cmd->minor_ver = dv->minor_ver;
1620        cmd->build_ver = dv->build_ver;
1621        cmd->subbuild_ver = dv->subbuild_ver;
1622
1623        len = 0;
1624        while (len < sizeof(dv->driver_string) &&
1625               isascii(dv->driver_string[len]) && dv->driver_string[len])
1626                len++;
1627
1628        return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1629}
1630
1631/**
1632 * ice_aq_q_shutdown
1633 * @hw: pointer to the HW struct
1634 * @unloading: is the driver unloading itself
1635 *
1636 * Tell the Firmware that we're shutting down the AdminQ and whether
1637 * or not the driver is unloading as well (0x0003).
1638 */
1639int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1640{
1641        struct ice_aqc_q_shutdown *cmd;
1642        struct ice_aq_desc desc;
1643
1644        cmd = &desc.params.q_shutdown;
1645
1646        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1647
1648        if (unloading)
1649                cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1650
1651        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1652}
1653
1654/**
1655 * ice_aq_req_res
1656 * @hw: pointer to the HW struct
1657 * @res: resource ID
1658 * @access: access type
1659 * @sdp_number: resource number
1660 * @timeout: the maximum time in ms that the driver may hold the resource
1661 * @cd: pointer to command details structure or NULL
1662 *
1663 * Requests common resource using the admin queue commands (0x0008).
1664 * When attempting to acquire the Global Config Lock, the driver can
1665 * learn of three states:
1666 *  1) 0 -         acquired lock, and can perform download package
1667 *  2) -EIO -      did not get lock, driver should fail to load
1668 *  3) -EALREADY - did not get lock, but another driver has
1669 *                 successfully downloaded the package; the driver does
1670 *                 not have to download the package and can continue
1671 *                 loading
1672 *
1673 * Note that if the caller is in an acquire lock, perform action, release lock
1674 * phase of operation, it is possible that the FW may detect a timeout and issue
1675 * a CORER. In this case, the driver will receive a CORER interrupt and will
1676 * have to determine its cause. The calling thread that is handling this flow
1677 * will likely get an error propagated back to it indicating the Download
1678 * Package, Update Package or the Release Resource AQ commands timed out.
1679 */
1680static int
1681ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1682               enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1683               struct ice_sq_cd *cd)
1684{
1685        struct ice_aqc_req_res *cmd_resp;
1686        struct ice_aq_desc desc;
1687        int status;
1688
1689        cmd_resp = &desc.params.res_owner;
1690
1691        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1692
1693        cmd_resp->res_id = cpu_to_le16(res);
1694        cmd_resp->access_type = cpu_to_le16(access);
1695        cmd_resp->res_number = cpu_to_le32(sdp_number);
1696        cmd_resp->timeout = cpu_to_le32(*timeout);
1697        *timeout = 0;
1698
1699        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1700
1701        /* The completion specifies the maximum time in ms that the driver
1702         * may hold the resource in the Timeout field.
1703         */
1704
1705        /* Global config lock response utilizes an additional status field.
1706         *
1707         * If the Global config lock resource is held by some other driver, the
1708         * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1709         * and the timeout field indicates the maximum time the current owner
1710         * of the resource has to free it.
1711         */
1712        if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1713                if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1714                        *timeout = le32_to_cpu(cmd_resp->timeout);
1715                        return 0;
1716                } else if (le16_to_cpu(cmd_resp->status) ==
1717                           ICE_AQ_RES_GLBL_IN_PROG) {
1718                        *timeout = le32_to_cpu(cmd_resp->timeout);
1719                        return -EIO;
1720                } else if (le16_to_cpu(cmd_resp->status) ==
1721                           ICE_AQ_RES_GLBL_DONE) {
1722                        return -EALREADY;
1723                }
1724
1725                /* invalid FW response, force a timeout immediately */
1726                *timeout = 0;
1727                return -EIO;
1728        }
1729
1730        /* If the resource is held by some other driver, the command completes
1731         * with a busy return value and the timeout field indicates the maximum
1732         * time the current owner of the resource has to free it.
1733         */
1734        if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1735                *timeout = le32_to_cpu(cmd_resp->timeout);
1736
1737        return status;
1738}
1739
1740/**
1741 * ice_aq_release_res
1742 * @hw: pointer to the HW struct
1743 * @res: resource ID
1744 * @sdp_number: resource number
1745 * @cd: pointer to command details structure or NULL
1746 *
1747 * release common resource using the admin queue commands (0x0009)
1748 */
1749static int
1750ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1751                   struct ice_sq_cd *cd)
1752{
1753        struct ice_aqc_req_res *cmd;
1754        struct ice_aq_desc desc;
1755
1756        cmd = &desc.params.res_owner;
1757
1758        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1759
1760        cmd->res_id = cpu_to_le16(res);
1761        cmd->res_number = cpu_to_le32(sdp_number);
1762
1763        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1764}
1765
1766/**
1767 * ice_acquire_res
1768 * @hw: pointer to the HW structure
1769 * @res: resource ID
1770 * @access: access type (read or write)
1771 * @timeout: timeout in milliseconds
1772 *
1773 * This function will attempt to acquire the ownership of a resource.
1774 */
1775int
1776ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1777                enum ice_aq_res_access_type access, u32 timeout)
1778{
1779#define ICE_RES_POLLING_DELAY_MS        10
1780        u32 delay = ICE_RES_POLLING_DELAY_MS;
1781        u32 time_left = timeout;
1782        int status;
1783
1784        status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1785
1786        /* A return code of -EALREADY means that another driver has
1787         * previously acquired the resource and performed any necessary updates;
1788         * in this case the caller does not obtain the resource and has no
1789         * further work to do.
1790         */
1791        if (status == -EALREADY)
1792                goto ice_acquire_res_exit;
1793
1794        if (status)
1795                ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1796
1797        /* If necessary, poll until the current lock owner timeouts */
1798        timeout = time_left;
1799        while (status && timeout && time_left) {
1800                mdelay(delay);
1801                timeout = (timeout > delay) ? timeout - delay : 0;
1802                status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1803
1804                if (status == -EALREADY)
1805                        /* lock free, but no work to do */
1806                        break;
1807
1808                if (!status)
1809                        /* lock acquired */
1810                        break;
1811        }
1812        if (status && status != -EALREADY)
1813                ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1814
1815ice_acquire_res_exit:
1816        if (status == -EALREADY) {
1817                if (access == ICE_RES_WRITE)
1818                        ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1819                else
1820                        ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1821        }
1822        return status;
1823}
1824
1825/**
1826 * ice_release_res
1827 * @hw: pointer to the HW structure
1828 * @res: resource ID
1829 *
1830 * This function will release a resource using the proper Admin Command.
1831 */
1832void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1833{
1834        u32 total_delay = 0;
1835        int status;
1836
1837        status = ice_aq_release_res(hw, res, 0, NULL);
1838
1839        /* there are some rare cases when trying to release the resource
1840         * results in an admin queue timeout, so handle them correctly
1841         */
1842        while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
1843                mdelay(1);
1844                status = ice_aq_release_res(hw, res, 0, NULL);
1845                total_delay++;
1846        }
1847}
1848
1849/**
1850 * ice_aq_alloc_free_res - command to allocate/free resources
1851 * @hw: pointer to the HW struct
1852 * @num_entries: number of resource entries in buffer
1853 * @buf: Indirect buffer to hold data parameters and response
1854 * @buf_size: size of buffer for indirect commands
1855 * @opc: pass in the command opcode
1856 * @cd: pointer to command details structure or NULL
1857 *
1858 * Helper function to allocate/free resources using the admin queue commands
1859 */
1860int
1861ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1862                      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1863                      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1864{
1865        struct ice_aqc_alloc_free_res_cmd *cmd;
1866        struct ice_aq_desc desc;
1867
1868        cmd = &desc.params.sw_res_ctrl;
1869
1870        if (!buf)
1871                return -EINVAL;
1872
1873        if (buf_size < flex_array_size(buf, elem, num_entries))
1874                return -EINVAL;
1875
1876        ice_fill_dflt_direct_cmd_desc(&desc, opc);
1877
1878        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1879
1880        cmd->num_entries = cpu_to_le16(num_entries);
1881
1882        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1883}
1884
1885/**
1886 * ice_alloc_hw_res - allocate resource
1887 * @hw: pointer to the HW struct
1888 * @type: type of resource
1889 * @num: number of resources to allocate
1890 * @btm: allocate from bottom
1891 * @res: pointer to array that will receive the resources
1892 */
1893int
1894ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1895{
1896        struct ice_aqc_alloc_free_res_elem *buf;
1897        u16 buf_len;
1898        int status;
1899
1900        buf_len = struct_size(buf, elem, num);
1901        buf = kzalloc(buf_len, GFP_KERNEL);
1902        if (!buf)
1903                return -ENOMEM;
1904
1905        /* Prepare buffer to allocate resource. */
1906        buf->num_elems = cpu_to_le16(num);
1907        buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1908                                    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1909        if (btm)
1910                buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1911
1912        status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1913                                       ice_aqc_opc_alloc_res, NULL);
1914        if (status)
1915                goto ice_alloc_res_exit;
1916
1917        memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1918
1919ice_alloc_res_exit:
1920        kfree(buf);
1921        return status;
1922}
1923
1924/**
1925 * ice_free_hw_res - free allocated HW resource
1926 * @hw: pointer to the HW struct
1927 * @type: type of resource to free
1928 * @num: number of resources
1929 * @res: pointer to array that contains the resources to free
1930 */
1931int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1932{
1933        struct ice_aqc_alloc_free_res_elem *buf;
1934        u16 buf_len;
1935        int status;
1936
1937        buf_len = struct_size(buf, elem, num);
1938        buf = kzalloc(buf_len, GFP_KERNEL);
1939        if (!buf)
1940                return -ENOMEM;
1941
1942        /* Prepare buffer to free resource. */
1943        buf->num_elems = cpu_to_le16(num);
1944        buf->res_type = cpu_to_le16(type);
1945        memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1946
1947        status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1948                                       ice_aqc_opc_free_res, NULL);
1949        if (status)
1950                ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1951
1952        kfree(buf);
1953        return status;
1954}
1955
1956/**
1957 * ice_get_num_per_func - determine number of resources per PF
1958 * @hw: pointer to the HW structure
1959 * @max: value to be evenly split between each PF
1960 *
1961 * Determine the number of valid functions by going through the bitmap returned
1962 * from parsing capabilities and use this to calculate the number of resources
1963 * per PF based on the max value passed in.
1964 */
1965static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1966{
1967        u8 funcs;
1968
1969#define ICE_CAPS_VALID_FUNCS_M  0xFF
1970        funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1971                         ICE_CAPS_VALID_FUNCS_M);
1972
1973        if (!funcs)
1974                return 0;
1975
1976        return max / funcs;
1977}
1978
1979/**
1980 * ice_parse_common_caps - parse common device/function capabilities
1981 * @hw: pointer to the HW struct
1982 * @caps: pointer to common capabilities structure
1983 * @elem: the capability element to parse
1984 * @prefix: message prefix for tracing capabilities
1985 *
1986 * Given a capability element, extract relevant details into the common
1987 * capability structure.
1988 *
1989 * Returns: true if the capability matches one of the common capability ids,
1990 * false otherwise.
1991 */
1992static bool
1993ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1994                      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1995{
1996        u32 logical_id = le32_to_cpu(elem->logical_id);
1997        u32 phys_id = le32_to_cpu(elem->phys_id);
1998        u32 number = le32_to_cpu(elem->number);
1999        u16 cap = le16_to_cpu(elem->cap);
2000        bool found = true;
2001
2002        switch (cap) {
2003        case ICE_AQC_CAPS_VALID_FUNCTIONS:
2004                caps->valid_functions = number;
2005                ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2006                          caps->valid_functions);
2007                break;
2008        case ICE_AQC_CAPS_SRIOV:
2009                caps->sr_iov_1_1 = (number == 1);
2010                ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2011                          caps->sr_iov_1_1);
2012                break;
2013        case ICE_AQC_CAPS_DCB:
2014                caps->dcb = (number == 1);
2015                caps->active_tc_bitmap = logical_id;
2016                caps->maxtc = phys_id;
2017                ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2018                ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2019                          caps->active_tc_bitmap);
2020                ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2021                break;
2022        case ICE_AQC_CAPS_RSS:
2023                caps->rss_table_size = number;
2024                caps->rss_table_entry_width = logical_id;
2025                ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2026                          caps->rss_table_size);
2027                ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2028                          caps->rss_table_entry_width);
2029                break;
2030        case ICE_AQC_CAPS_RXQS:
2031                caps->num_rxq = number;
2032                caps->rxq_first_id = phys_id;
2033                ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2034                          caps->num_rxq);
2035                ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2036                          caps->rxq_first_id);
2037                break;
2038        case ICE_AQC_CAPS_TXQS:
2039                caps->num_txq = number;
2040                caps->txq_first_id = phys_id;
2041                ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2042                          caps->num_txq);
2043                ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2044                          caps->txq_first_id);
2045                break;
2046        case ICE_AQC_CAPS_MSIX:
2047                caps->num_msix_vectors = number;
2048                caps->msix_vector_first_id = phys_id;
2049                ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2050                          caps->num_msix_vectors);
2051                ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2052                          caps->msix_vector_first_id);
2053                break;
2054        case ICE_AQC_CAPS_PENDING_NVM_VER:
2055                caps->nvm_update_pending_nvm = true;
2056                ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2057                break;
2058        case ICE_AQC_CAPS_PENDING_OROM_VER:
2059                caps->nvm_update_pending_orom = true;
2060                ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2061                break;
2062        case ICE_AQC_CAPS_PENDING_NET_VER:
2063                caps->nvm_update_pending_netlist = true;
2064                ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2065                break;
2066        case ICE_AQC_CAPS_NVM_MGMT:
2067                caps->nvm_unified_update =
2068                        (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2069                        true : false;
2070                ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2071                          caps->nvm_unified_update);
2072                break;
2073        case ICE_AQC_CAPS_RDMA:
2074                caps->rdma = (number == 1);
2075                ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2076                break;
2077        case ICE_AQC_CAPS_MAX_MTU:
2078                caps->max_mtu = number;
2079                ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2080                          prefix, caps->max_mtu);
2081                break;
2082        case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2083                caps->pcie_reset_avoidance = (number > 0);
2084                ice_debug(hw, ICE_DBG_INIT,
2085                          "%s: pcie_reset_avoidance = %d\n", prefix,
2086                          caps->pcie_reset_avoidance);
2087                break;
2088        case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2089                caps->reset_restrict_support = (number == 1);
2090                ice_debug(hw, ICE_DBG_INIT,
2091                          "%s: reset_restrict_support = %d\n", prefix,
2092                          caps->reset_restrict_support);
2093                break;
2094        default:
2095                /* Not one of the recognized common capabilities */
2096                found = false;
2097        }
2098
2099        return found;
2100}
2101
2102/**
2103 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2104 * @hw: pointer to the HW structure
2105 * @caps: pointer to capabilities structure to fix
2106 *
2107 * Re-calculate the capabilities that are dependent on the number of physical
2108 * ports; i.e. some features are not supported or function differently on
2109 * devices with more than 4 ports.
2110 */
2111static void
2112ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2113{
2114        /* This assumes device capabilities are always scanned before function
2115         * capabilities during the initialization flow.
2116         */
2117        if (hw->dev_caps.num_funcs > 4) {
2118                /* Max 4 TCs per port */
2119                caps->maxtc = 4;
2120                ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2121                          caps->maxtc);
2122                if (caps->rdma) {
2123                        ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2124                        caps->rdma = 0;
2125                }
2126
2127                /* print message only when processing device capabilities
2128                 * during initialization.
2129                 */
2130                if (caps == &hw->dev_caps.common_cap)
2131                        dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2132        }
2133}
2134
2135/**
2136 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2137 * @hw: pointer to the HW struct
2138 * @func_p: pointer to function capabilities structure
2139 * @cap: pointer to the capability element to parse
2140 *
2141 * Extract function capabilities for ICE_AQC_CAPS_VF.
2142 */
2143static void
2144ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2145                       struct ice_aqc_list_caps_elem *cap)
2146{
2147        u32 logical_id = le32_to_cpu(cap->logical_id);
2148        u32 number = le32_to_cpu(cap->number);
2149
2150        func_p->num_allocd_vfs = number;
2151        func_p->vf_base_id = logical_id;
2152        ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2153                  func_p->num_allocd_vfs);
2154        ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2155                  func_p->vf_base_id);
2156}
2157
2158/**
2159 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2160 * @hw: pointer to the HW struct
2161 * @func_p: pointer to function capabilities structure
2162 * @cap: pointer to the capability element to parse
2163 *
2164 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2165 */
2166static void
2167ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2168                        struct ice_aqc_list_caps_elem *cap)
2169{
2170        func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2171        ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2172                  le32_to_cpu(cap->number));
2173        ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2174                  func_p->guar_num_vsi);
2175}
2176
2177/**
2178 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2179 * @hw: pointer to the HW struct
2180 * @func_p: pointer to function capabilities structure
2181 * @cap: pointer to the capability element to parse
2182 *
2183 * Extract function capabilities for ICE_AQC_CAPS_1588.
2184 */
2185static void
2186ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2187                         struct ice_aqc_list_caps_elem *cap)
2188{
2189        struct ice_ts_func_info *info = &func_p->ts_func_info;
2190        u32 number = le32_to_cpu(cap->number);
2191
2192        info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2193        func_p->common_cap.ieee_1588 = info->ena;
2194
2195        info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2196        info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2197        info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2198        info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2199
2200        info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2201        info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2202
2203        if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2204                info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2205        } else {
2206                /* Unknown clock frequency, so assume a (probably incorrect)
2207                 * default to avoid out-of-bounds look ups of frequency
2208                 * related information.
2209                 */
2210                ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2211                          info->clk_freq);
2212                info->time_ref = ICE_TIME_REF_FREQ_25_000;
2213        }
2214
2215        ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2216                  func_p->common_cap.ieee_1588);
2217        ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2218                  info->src_tmr_owned);
2219        ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2220                  info->tmr_ena);
2221        ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2222                  info->tmr_index_owned);
2223        ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2224                  info->tmr_index_assoc);
2225        ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2226                  info->clk_freq);
2227        ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2228                  info->clk_src);
2229}
2230
2231/**
2232 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2233 * @hw: pointer to the HW struct
2234 * @func_p: pointer to function capabilities structure
2235 *
2236 * Extract function capabilities for ICE_AQC_CAPS_FD.
2237 */
2238static void
2239ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2240{
2241        u32 reg_val, val;
2242
2243        reg_val = rd32(hw, GLQF_FD_SIZE);
2244        val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2245                GLQF_FD_SIZE_FD_GSIZE_S;
2246        func_p->fd_fltr_guar =
2247                ice_get_num_per_func(hw, val);
2248        val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2249                GLQF_FD_SIZE_FD_BSIZE_S;
2250        func_p->fd_fltr_best_effort = val;
2251
2252        ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2253                  func_p->fd_fltr_guar);
2254        ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2255                  func_p->fd_fltr_best_effort);
2256}
2257
2258/**
2259 * ice_parse_func_caps - Parse function capabilities
2260 * @hw: pointer to the HW struct
2261 * @func_p: pointer to function capabilities structure
2262 * @buf: buffer containing the function capability records
2263 * @cap_count: the number of capabilities
2264 *
2265 * Helper function to parse function (0x000A) capabilities list. For
2266 * capabilities shared between device and function, this relies on
2267 * ice_parse_common_caps.
2268 *
2269 * Loop through the list of provided capabilities and extract the relevant
2270 * data into the function capabilities structured.
2271 */
2272static void
2273ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2274                    void *buf, u32 cap_count)
2275{
2276        struct ice_aqc_list_caps_elem *cap_resp;
2277        u32 i;
2278
2279        cap_resp = buf;
2280
2281        memset(func_p, 0, sizeof(*func_p));
2282
2283        for (i = 0; i < cap_count; i++) {
2284                u16 cap = le16_to_cpu(cap_resp[i].cap);
2285                bool found;
2286
2287                found = ice_parse_common_caps(hw, &func_p->common_cap,
2288                                              &cap_resp[i], "func caps");
2289
2290                switch (cap) {
2291                case ICE_AQC_CAPS_VF:
2292                        ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2293                        break;
2294                case ICE_AQC_CAPS_VSI:
2295                        ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2296                        break;
2297                case ICE_AQC_CAPS_1588:
2298                        ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2299                        break;
2300                case ICE_AQC_CAPS_FD:
2301                        ice_parse_fdir_func_caps(hw, func_p);
2302                        break;
2303                default:
2304                        /* Don't list common capabilities as unknown */
2305                        if (!found)
2306                                ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2307                                          i, cap);
2308                        break;
2309                }
2310        }
2311
2312        ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2313}
2314
2315/**
2316 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2317 * @hw: pointer to the HW struct
2318 * @dev_p: pointer to device capabilities structure
2319 * @cap: capability element to parse
2320 *
2321 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2322 */
2323static void
2324ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2325                              struct ice_aqc_list_caps_elem *cap)
2326{
2327        u32 number = le32_to_cpu(cap->number);
2328
2329        dev_p->num_funcs = hweight32(number);
2330        ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2331                  dev_p->num_funcs);
2332}
2333
2334/**
2335 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2336 * @hw: pointer to the HW struct
2337 * @dev_p: pointer to device capabilities structure
2338 * @cap: capability element to parse
2339 *
2340 * Parse ICE_AQC_CAPS_VF for device capabilities.
2341 */
2342static void
2343ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2344                      struct ice_aqc_list_caps_elem *cap)
2345{
2346        u32 number = le32_to_cpu(cap->number);
2347
2348        dev_p->num_vfs_exposed = number;
2349        ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2350                  dev_p->num_vfs_exposed);
2351}
2352
2353/**
2354 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2355 * @hw: pointer to the HW struct
2356 * @dev_p: pointer to device capabilities structure
2357 * @cap: capability element to parse
2358 *
2359 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2360 */
2361static void
2362ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2363                       struct ice_aqc_list_caps_elem *cap)
2364{
2365        u32 number = le32_to_cpu(cap->number);
2366
2367        dev_p->num_vsi_allocd_to_host = number;
2368        ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2369                  dev_p->num_vsi_allocd_to_host);
2370}
2371
2372/**
2373 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2374 * @hw: pointer to the HW struct
2375 * @dev_p: pointer to device capabilities structure
2376 * @cap: capability element to parse
2377 *
2378 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2379 */
2380static void
2381ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2382                        struct ice_aqc_list_caps_elem *cap)
2383{
2384        struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2385        u32 logical_id = le32_to_cpu(cap->logical_id);
2386        u32 phys_id = le32_to_cpu(cap->phys_id);
2387        u32 number = le32_to_cpu(cap->number);
2388
2389        info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2390        dev_p->common_cap.ieee_1588 = info->ena;
2391
2392        info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2393        info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2394        info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2395
2396        info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2397        info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2398        info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2399
2400        info->ena_ports = logical_id;
2401        info->tmr_own_map = phys_id;
2402
2403        ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2404                  dev_p->common_cap.ieee_1588);
2405        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2406                  info->tmr0_owner);
2407        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2408                  info->tmr0_owned);
2409        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2410                  info->tmr0_ena);
2411        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2412                  info->tmr1_owner);
2413        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2414                  info->tmr1_owned);
2415        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2416                  info->tmr1_ena);
2417        ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2418                  info->ena_ports);
2419        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2420                  info->tmr_own_map);
2421}
2422
2423/**
2424 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2425 * @hw: pointer to the HW struct
2426 * @dev_p: pointer to device capabilities structure
2427 * @cap: capability element to parse
2428 *
2429 * Parse ICE_AQC_CAPS_FD for device capabilities.
2430 */
2431static void
2432ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2433                        struct ice_aqc_list_caps_elem *cap)
2434{
2435        u32 number = le32_to_cpu(cap->number);
2436
2437        dev_p->num_flow_director_fltr = number;
2438        ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2439                  dev_p->num_flow_director_fltr);
2440}
2441
2442/**
2443 * ice_parse_dev_caps - Parse device capabilities
2444 * @hw: pointer to the HW struct
2445 * @dev_p: pointer to device capabilities structure
2446 * @buf: buffer containing the device capability records
2447 * @cap_count: the number of capabilities
2448 *
2449 * Helper device to parse device (0x000B) capabilities list. For
2450 * capabilities shared between device and function, this relies on
2451 * ice_parse_common_caps.
2452 *
2453 * Loop through the list of provided capabilities and extract the relevant
2454 * data into the device capabilities structured.
2455 */
2456static void
2457ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2458                   void *buf, u32 cap_count)
2459{
2460        struct ice_aqc_list_caps_elem *cap_resp;
2461        u32 i;
2462
2463        cap_resp = buf;
2464
2465        memset(dev_p, 0, sizeof(*dev_p));
2466
2467        for (i = 0; i < cap_count; i++) {
2468                u16 cap = le16_to_cpu(cap_resp[i].cap);
2469                bool found;
2470
2471                found = ice_parse_common_caps(hw, &dev_p->common_cap,
2472                                              &cap_resp[i], "dev caps");
2473
2474                switch (cap) {
2475                case ICE_AQC_CAPS_VALID_FUNCTIONS:
2476                        ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2477                        break;
2478                case ICE_AQC_CAPS_VF:
2479                        ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2480                        break;
2481                case ICE_AQC_CAPS_VSI:
2482                        ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2483                        break;
2484                case ICE_AQC_CAPS_1588:
2485                        ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2486                        break;
2487                case  ICE_AQC_CAPS_FD:
2488                        ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2489                        break;
2490                default:
2491                        /* Don't list common capabilities as unknown */
2492                        if (!found)
2493                                ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2494                                          i, cap);
2495                        break;
2496                }
2497        }
2498
2499        ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2500}
2501
2502/**
2503 * ice_aq_list_caps - query function/device capabilities
2504 * @hw: pointer to the HW struct
2505 * @buf: a buffer to hold the capabilities
2506 * @buf_size: size of the buffer
2507 * @cap_count: if not NULL, set to the number of capabilities reported
2508 * @opc: capabilities type to discover, device or function
2509 * @cd: pointer to command details structure or NULL
2510 *
2511 * Get the function (0x000A) or device (0x000B) capabilities description from
2512 * firmware and store it in the buffer.
2513 *
2514 * If the cap_count pointer is not NULL, then it is set to the number of
2515 * capabilities firmware will report. Note that if the buffer size is too
2516 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2517 * cap_count will still be updated in this case. It is recommended that the
2518 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2519 * firmware could return) to avoid this.
2520 */
2521int
2522ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2523                 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2524{
2525        struct ice_aqc_list_caps *cmd;
2526        struct ice_aq_desc desc;
2527        int status;
2528
2529        cmd = &desc.params.get_cap;
2530
2531        if (opc != ice_aqc_opc_list_func_caps &&
2532            opc != ice_aqc_opc_list_dev_caps)
2533                return -EINVAL;
2534
2535        ice_fill_dflt_direct_cmd_desc(&desc, opc);
2536        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2537
2538        if (cap_count)
2539                *cap_count = le32_to_cpu(cmd->count);
2540
2541        return status;
2542}
2543
2544/**
2545 * ice_discover_dev_caps - Read and extract device capabilities
2546 * @hw: pointer to the hardware structure
2547 * @dev_caps: pointer to device capabilities structure
2548 *
2549 * Read the device capabilities and extract them into the dev_caps structure
2550 * for later use.
2551 */
2552int
2553ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2554{
2555        u32 cap_count = 0;
2556        void *cbuf;
2557        int status;
2558
2559        cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2560        if (!cbuf)
2561                return -ENOMEM;
2562
2563        /* Although the driver doesn't know the number of capabilities the
2564         * device will return, we can simply send a 4KB buffer, the maximum
2565         * possible size that firmware can return.
2566         */
2567        cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2568
2569        status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2570                                  ice_aqc_opc_list_dev_caps, NULL);
2571        if (!status)
2572                ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2573        kfree(cbuf);
2574
2575        return status;
2576}
2577
2578/**
2579 * ice_discover_func_caps - Read and extract function capabilities
2580 * @hw: pointer to the hardware structure
2581 * @func_caps: pointer to function capabilities structure
2582 *
2583 * Read the function capabilities and extract them into the func_caps structure
2584 * for later use.
2585 */
2586static int
2587ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2588{
2589        u32 cap_count = 0;
2590        void *cbuf;
2591        int status;
2592
2593        cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2594        if (!cbuf)
2595                return -ENOMEM;
2596
2597        /* Although the driver doesn't know the number of capabilities the
2598         * device will return, we can simply send a 4KB buffer, the maximum
2599         * possible size that firmware can return.
2600         */
2601        cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2602
2603        status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2604                                  ice_aqc_opc_list_func_caps, NULL);
2605        if (!status)
2606                ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2607        kfree(cbuf);
2608
2609        return status;
2610}
2611
2612/**
2613 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2614 * @hw: pointer to the hardware structure
2615 */
2616void ice_set_safe_mode_caps(struct ice_hw *hw)
2617{
2618        struct ice_hw_func_caps *func_caps = &hw->func_caps;
2619        struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2620        struct ice_hw_common_caps cached_caps;
2621        u32 num_funcs;
2622
2623        /* cache some func_caps values that should be restored after memset */
2624        cached_caps = func_caps->common_cap;
2625
2626        /* unset func capabilities */
2627        memset(func_caps, 0, sizeof(*func_caps));
2628
2629#define ICE_RESTORE_FUNC_CAP(name) \
2630        func_caps->common_cap.name = cached_caps.name
2631
2632        /* restore cached values */
2633        ICE_RESTORE_FUNC_CAP(valid_functions);
2634        ICE_RESTORE_FUNC_CAP(txq_first_id);
2635        ICE_RESTORE_FUNC_CAP(rxq_first_id);
2636        ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2637        ICE_RESTORE_FUNC_CAP(max_mtu);
2638        ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2639        ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2640        ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2641        ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2642
2643        /* one Tx and one Rx queue in safe mode */
2644        func_caps->common_cap.num_rxq = 1;
2645        func_caps->common_cap.num_txq = 1;
2646
2647        /* two MSIX vectors, one for traffic and one for misc causes */
2648        func_caps->common_cap.num_msix_vectors = 2;
2649        func_caps->guar_num_vsi = 1;
2650
2651        /* cache some dev_caps values that should be restored after memset */
2652        cached_caps = dev_caps->common_cap;
2653        num_funcs = dev_caps->num_funcs;
2654
2655        /* unset dev capabilities */
2656        memset(dev_caps, 0, sizeof(*dev_caps));
2657
2658#define ICE_RESTORE_DEV_CAP(name) \
2659        dev_caps->common_cap.name = cached_caps.name
2660
2661        /* restore cached values */
2662        ICE_RESTORE_DEV_CAP(valid_functions);
2663        ICE_RESTORE_DEV_CAP(txq_first_id);
2664        ICE_RESTORE_DEV_CAP(rxq_first_id);
2665        ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2666        ICE_RESTORE_DEV_CAP(max_mtu);
2667        ICE_RESTORE_DEV_CAP(nvm_unified_update);
2668        ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2669        ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2670        ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2671        dev_caps->num_funcs = num_funcs;
2672
2673        /* one Tx and one Rx queue per function in safe mode */
2674        dev_caps->common_cap.num_rxq = num_funcs;
2675        dev_caps->common_cap.num_txq = num_funcs;
2676
2677        /* two MSIX vectors per function */
2678        dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2679}
2680
2681/**
2682 * ice_get_caps - get info about the HW
2683 * @hw: pointer to the hardware structure
2684 */
2685int ice_get_caps(struct ice_hw *hw)
2686{
2687        int status;
2688
2689        status = ice_discover_dev_caps(hw, &hw->dev_caps);
2690        if (status)
2691                return status;
2692
2693        return ice_discover_func_caps(hw, &hw->func_caps);
2694}
2695
2696/**
2697 * ice_aq_manage_mac_write - manage MAC address write command
2698 * @hw: pointer to the HW struct
2699 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2700 * @flags: flags to control write behavior
2701 * @cd: pointer to command details structure or NULL
2702 *
2703 * This function is used to write MAC address to the NVM (0x0108).
2704 */
2705int
2706ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2707                        struct ice_sq_cd *cd)
2708{
2709        struct ice_aqc_manage_mac_write *cmd;
2710        struct ice_aq_desc desc;
2711
2712        cmd = &desc.params.mac_write;
2713        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2714
2715        cmd->flags = flags;
2716        ether_addr_copy(cmd->mac_addr, mac_addr);
2717
2718        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2719}
2720
2721/**
2722 * ice_aq_clear_pxe_mode
2723 * @hw: pointer to the HW struct
2724 *
2725 * Tell the firmware that the driver is taking over from PXE (0x0110).
2726 */
2727static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2728{
2729        struct ice_aq_desc desc;
2730
2731        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2732        desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2733
2734        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2735}
2736
2737/**
2738 * ice_clear_pxe_mode - clear pxe operations mode
2739 * @hw: pointer to the HW struct
2740 *
2741 * Make sure all PXE mode settings are cleared, including things
2742 * like descriptor fetch/write-back mode.
2743 */
2744void ice_clear_pxe_mode(struct ice_hw *hw)
2745{
2746        if (ice_check_sq_alive(hw, &hw->adminq))
2747                ice_aq_clear_pxe_mode(hw);
2748}
2749
2750/**
2751 * ice_aq_set_port_params - set physical port parameters.
2752 * @pi: pointer to the port info struct
2753 * @double_vlan: if set double VLAN is enabled
2754 * @cd: pointer to command details structure or NULL
2755 *
2756 * Set Physical port parameters (0x0203)
2757 */
2758int
2759ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2760                       struct ice_sq_cd *cd)
2761
2762{
2763        struct ice_aqc_set_port_params *cmd;
2764        struct ice_hw *hw = pi->hw;
2765        struct ice_aq_desc desc;
2766        u16 cmd_flags = 0;
2767
2768        cmd = &desc.params.set_port_params;
2769
2770        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2771        if (double_vlan)
2772                cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2773        cmd->cmd_flags = cpu_to_le16(cmd_flags);
2774
2775        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2776}
2777
2778/**
2779 * ice_get_link_speed_based_on_phy_type - returns link speed
2780 * @phy_type_low: lower part of phy_type
2781 * @phy_type_high: higher part of phy_type
2782 *
2783 * This helper function will convert an entry in PHY type structure
2784 * [phy_type_low, phy_type_high] to its corresponding link speed.
2785 * Note: In the structure of [phy_type_low, phy_type_high], there should
2786 * be one bit set, as this function will convert one PHY type to its
2787 * speed.
2788 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2789 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2790 */
2791static u16
2792ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2793{
2794        u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2795        u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2796
2797        switch (phy_type_low) {
2798        case ICE_PHY_TYPE_LOW_100BASE_TX:
2799        case ICE_PHY_TYPE_LOW_100M_SGMII:
2800                speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2801                break;
2802        case ICE_PHY_TYPE_LOW_1000BASE_T:
2803        case ICE_PHY_TYPE_LOW_1000BASE_SX:
2804        case ICE_PHY_TYPE_LOW_1000BASE_LX:
2805        case ICE_PHY_TYPE_LOW_1000BASE_KX:
2806        case ICE_PHY_TYPE_LOW_1G_SGMII:
2807                speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2808                break;
2809        case ICE_PHY_TYPE_LOW_2500BASE_T:
2810        case ICE_PHY_TYPE_LOW_2500BASE_X:
2811        case ICE_PHY_TYPE_LOW_2500BASE_KX:
2812                speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2813                break;
2814        case ICE_PHY_TYPE_LOW_5GBASE_T:
2815        case ICE_PHY_TYPE_LOW_5GBASE_KR:
2816                speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2817                break;
2818        case ICE_PHY_TYPE_LOW_10GBASE_T:
2819        case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2820        case ICE_PHY_TYPE_LOW_10GBASE_SR:
2821        case ICE_PHY_TYPE_LOW_10GBASE_LR:
2822        case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2823        case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2824        case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2825                speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2826                break;
2827        case ICE_PHY_TYPE_LOW_25GBASE_T:
2828        case ICE_PHY_TYPE_LOW_25GBASE_CR:
2829        case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2830        case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2831        case ICE_PHY_TYPE_LOW_25GBASE_SR:
2832        case ICE_PHY_TYPE_LOW_25GBASE_LR:
2833        case ICE_PHY_TYPE_LOW_25GBASE_KR:
2834        case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2835        case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2836        case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2837        case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2838                speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2839                break;
2840        case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2841        case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2842        case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2843        case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2844        case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2845        case ICE_PHY_TYPE_LOW_40G_XLAUI:
2846                speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2847                break;
2848        case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2849        case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2850        case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2851        case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2852        case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2853        case ICE_PHY_TYPE_LOW_50G_LAUI2:
2854        case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2855        case ICE_PHY_TYPE_LOW_50G_AUI2:
2856        case ICE_PHY_TYPE_LOW_50GBASE_CP:
2857        case ICE_PHY_TYPE_LOW_50GBASE_SR:
2858        case ICE_PHY_TYPE_LOW_50GBASE_FR:
2859        case ICE_PHY_TYPE_LOW_50GBASE_LR:
2860        case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2861        case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2862        case ICE_PHY_TYPE_LOW_50G_AUI1:
2863                speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2864                break;
2865        case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2866        case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2867        case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2868        case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2869        case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2870        case ICE_PHY_TYPE_LOW_100G_CAUI4:
2871        case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2872        case ICE_PHY_TYPE_LOW_100G_AUI4:
2873        case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2874        case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2875        case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2876        case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2877        case ICE_PHY_TYPE_LOW_100GBASE_DR:
2878                speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2879                break;
2880        default:
2881                speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2882                break;
2883        }
2884
2885        switch (phy_type_high) {
2886        case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2887        case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2888        case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2889        case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2890        case ICE_PHY_TYPE_HIGH_100G_AUI2:
2891                speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2892                break;
2893        default:
2894                speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2895                break;
2896        }
2897
2898        if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2899            speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2900                return ICE_AQ_LINK_SPEED_UNKNOWN;
2901        else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2902                 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2903                return ICE_AQ_LINK_SPEED_UNKNOWN;
2904        else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2905                 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2906                return speed_phy_type_low;
2907        else
2908                return speed_phy_type_high;
2909}
2910
2911/**
2912 * ice_update_phy_type
2913 * @phy_type_low: pointer to the lower part of phy_type
2914 * @phy_type_high: pointer to the higher part of phy_type
2915 * @link_speeds_bitmap: targeted link speeds bitmap
2916 *
2917 * Note: For the link_speeds_bitmap structure, you can check it at
2918 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2919 * link_speeds_bitmap include multiple speeds.
2920 *
2921 * Each entry in this [phy_type_low, phy_type_high] structure will
2922 * present a certain link speed. This helper function will turn on bits
2923 * in [phy_type_low, phy_type_high] structure based on the value of
2924 * link_speeds_bitmap input parameter.
2925 */
2926void
2927ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2928                    u16 link_speeds_bitmap)
2929{
2930        u64 pt_high;
2931        u64 pt_low;
2932        int index;
2933        u16 speed;
2934
2935        /* We first check with low part of phy_type */
2936        for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2937                pt_low = BIT_ULL(index);
2938                speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2939
2940                if (link_speeds_bitmap & speed)
2941                        *phy_type_low |= BIT_ULL(index);
2942        }
2943
2944        /* We then check with high part of phy_type */
2945        for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2946                pt_high = BIT_ULL(index);
2947                speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2948
2949                if (link_speeds_bitmap & speed)
2950                        *phy_type_high |= BIT_ULL(index);
2951        }
2952}
2953
2954/**
2955 * ice_aq_set_phy_cfg
2956 * @hw: pointer to the HW struct
2957 * @pi: port info structure of the interested logical port
2958 * @cfg: structure with PHY configuration data to be set
2959 * @cd: pointer to command details structure or NULL
2960 *
2961 * Set the various PHY configuration parameters supported on the Port.
2962 * One or more of the Set PHY config parameters may be ignored in an MFP
2963 * mode as the PF may not have the privilege to set some of the PHY Config
2964 * parameters. This status will be indicated by the command response (0x0601).
2965 */
2966int
2967ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2968                   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2969{
2970        struct ice_aq_desc desc;
2971        int status;
2972
2973        if (!cfg)
2974                return -EINVAL;
2975
2976        /* Ensure that only valid bits of cfg->caps can be turned on. */
2977        if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2978                ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2979                          cfg->caps);
2980
2981                cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2982        }
2983
2984        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2985        desc.params.set_phy.lport_num = pi->lport;
2986        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2987
2988        ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2989        ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
2990                  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2991        ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
2992                  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2993        ice_debug(hw, ICE_DBG_LINK, "   caps = 0x%x\n", cfg->caps);
2994        ice_debug(hw, ICE_DBG_LINK, "   low_power_ctrl_an = 0x%x\n",
2995                  cfg->low_power_ctrl_an);
2996        ice_debug(hw, ICE_DBG_LINK, "   eee_cap = 0x%x\n", cfg->eee_cap);
2997        ice_debug(hw, ICE_DBG_LINK, "   eeer_value = 0x%x\n", cfg->eeer_value);
2998        ice_debug(hw, ICE_DBG_LINK, "   link_fec_opt = 0x%x\n",
2999                  cfg->link_fec_opt);
3000
3001        status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3002        if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3003                status = 0;
3004
3005        if (!status)
3006                pi->phy.curr_user_phy_cfg = *cfg;
3007
3008        return status;
3009}
3010
3011/**
3012 * ice_update_link_info - update status of the HW network link
3013 * @pi: port info structure of the interested logical port
3014 */
3015int ice_update_link_info(struct ice_port_info *pi)
3016{
3017        struct ice_link_status *li;
3018        int status;
3019
3020        if (!pi)
3021                return -EINVAL;
3022
3023        li = &pi->phy.link_info;
3024
3025        status = ice_aq_get_link_info(pi, true, NULL, NULL);
3026        if (status)
3027                return status;
3028
3029        if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3030                struct ice_aqc_get_phy_caps_data *pcaps;
3031                struct ice_hw *hw;
3032
3033                hw = pi->hw;
3034                pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3035                                     GFP_KERNEL);
3036                if (!pcaps)
3037                        return -ENOMEM;
3038
3039                status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3040                                             pcaps, NULL);
3041
3042                devm_kfree(ice_hw_to_dev(hw), pcaps);
3043        }
3044
3045        return status;
3046}
3047
3048/**
3049 * ice_cache_phy_user_req
3050 * @pi: port information structure
3051 * @cache_data: PHY logging data
3052 * @cache_mode: PHY logging mode
3053 *
3054 * Log the user request on (FC, FEC, SPEED) for later use.
3055 */
3056static void
3057ice_cache_phy_user_req(struct ice_port_info *pi,
3058                       struct ice_phy_cache_mode_data cache_data,
3059                       enum ice_phy_cache_mode cache_mode)
3060{
3061        if (!pi)
3062                return;
3063
3064        switch (cache_mode) {
3065        case ICE_FC_MODE:
3066                pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3067                break;
3068        case ICE_SPEED_MODE:
3069                pi->phy.curr_user_speed_req =
3070                        cache_data.data.curr_user_speed_req;
3071                break;
3072        case ICE_FEC_MODE:
3073                pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3074                break;
3075        default:
3076                break;
3077        }
3078}
3079
3080/**
3081 * ice_caps_to_fc_mode
3082 * @caps: PHY capabilities
3083 *
3084 * Convert PHY FC capabilities to ice FC mode
3085 */
3086enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3087{
3088        if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3089            caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3090                return ICE_FC_FULL;
3091
3092        if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3093                return ICE_FC_TX_PAUSE;
3094
3095        if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3096                return ICE_FC_RX_PAUSE;
3097
3098        return ICE_FC_NONE;
3099}
3100
3101/**
3102 * ice_caps_to_fec_mode
3103 * @caps: PHY capabilities
3104 * @fec_options: Link FEC options
3105 *
3106 * Convert PHY FEC capabilities to ice FEC mode
3107 */
3108enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3109{
3110        if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3111                return ICE_FEC_AUTO;
3112
3113        if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3114                           ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3115                           ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3116                           ICE_AQC_PHY_FEC_25G_KR_REQ))
3117                return ICE_FEC_BASER;
3118
3119        if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3120                           ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3121                           ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3122                return ICE_FEC_RS;
3123
3124        return ICE_FEC_NONE;
3125}
3126
3127/**
3128 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3129 * @pi: port information structure
3130 * @cfg: PHY configuration data to set FC mode
3131 * @req_mode: FC mode to configure
3132 */
3133int
3134ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3135               enum ice_fc_mode req_mode)
3136{
3137        struct ice_phy_cache_mode_data cache_data;
3138        u8 pause_mask = 0x0;
3139
3140        if (!pi || !cfg)
3141                return -EINVAL;
3142
3143        switch (req_mode) {
3144        case ICE_FC_FULL:
3145                pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3146                pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3147                break;
3148        case ICE_FC_RX_PAUSE:
3149                pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3150                break;
3151        case ICE_FC_TX_PAUSE:
3152                pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3153                break;
3154        default:
3155                break;
3156        }
3157
3158        /* clear the old pause settings */
3159        cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3160                ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3161
3162        /* set the new capabilities */
3163        cfg->caps |= pause_mask;
3164
3165        /* Cache user FC request */
3166        cache_data.data.curr_user_fc_req = req_mode;
3167        ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3168
3169        return 0;
3170}
3171
3172/**
3173 * ice_set_fc
3174 * @pi: port information structure
3175 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3176 * @ena_auto_link_update: enable automatic link update
3177 *
3178 * Set the requested flow control mode.
3179 */
3180int
3181ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3182{
3183        struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3184        struct ice_aqc_get_phy_caps_data *pcaps;
3185        struct ice_hw *hw;
3186        int status;
3187
3188        if (!pi || !aq_failures)
3189                return -EINVAL;
3190
3191        *aq_failures = 0;
3192        hw = pi->hw;
3193
3194        pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3195        if (!pcaps)
3196                return -ENOMEM;
3197
3198        /* Get the current PHY config */
3199        status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3200                                     pcaps, NULL);
3201        if (status) {
3202                *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3203                goto out;
3204        }
3205
3206        ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3207
3208        /* Configure the set PHY data */
3209        status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3210        if (status)
3211                goto out;
3212
3213        /* If the capabilities have changed, then set the new config */
3214        if (cfg.caps != pcaps->caps) {
3215                int retry_count, retry_max = 10;
3216
3217                /* Auto restart link so settings take effect */
3218                if (ena_auto_link_update)
3219                        cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3220
3221                status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3222                if (status) {
3223                        *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3224                        goto out;
3225                }
3226
3227                /* Update the link info
3228                 * It sometimes takes a really long time for link to
3229                 * come back from the atomic reset. Thus, we wait a
3230                 * little bit.
3231                 */
3232                for (retry_count = 0; retry_count < retry_max; retry_count++) {
3233                        status = ice_update_link_info(pi);
3234
3235                        if (!status)
3236                                break;
3237
3238                        mdelay(100);
3239                }
3240
3241                if (status)
3242                        *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3243        }
3244
3245out:
3246        devm_kfree(ice_hw_to_dev(hw), pcaps);
3247        return status;
3248}
3249
3250/**
3251 * ice_phy_caps_equals_cfg
3252 * @phy_caps: PHY capabilities
3253 * @phy_cfg: PHY configuration
3254 *
3255 * Helper function to determine if PHY capabilities matches PHY
3256 * configuration
3257 */
3258bool
3259ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3260                        struct ice_aqc_set_phy_cfg_data *phy_cfg)
3261{
3262        u8 caps_mask, cfg_mask;
3263
3264        if (!phy_caps || !phy_cfg)
3265                return false;
3266
3267        /* These bits are not common between capabilities and configuration.
3268         * Do not use them to determine equality.
3269         */
3270        caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3271                                              ICE_AQC_GET_PHY_EN_MOD_QUAL);
3272        cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3273
3274        if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3275            phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3276            ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3277            phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3278            phy_caps->eee_cap != phy_cfg->eee_cap ||
3279            phy_caps->eeer_value != phy_cfg->eeer_value ||
3280            phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3281                return false;
3282
3283        return true;
3284}
3285
3286/**
3287 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3288 * @pi: port information structure
3289 * @caps: PHY ability structure to copy date from
3290 * @cfg: PHY configuration structure to copy data to
3291 *
3292 * Helper function to copy AQC PHY get ability data to PHY set configuration
3293 * data structure
3294 */
3295void
3296ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3297                         struct ice_aqc_get_phy_caps_data *caps,
3298                         struct ice_aqc_set_phy_cfg_data *cfg)
3299{
3300        if (!pi || !caps || !cfg)
3301                return;
3302
3303        memset(cfg, 0, sizeof(*cfg));
3304        cfg->phy_type_low = caps->phy_type_low;
3305        cfg->phy_type_high = caps->phy_type_high;
3306        cfg->caps = caps->caps;
3307        cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3308        cfg->eee_cap = caps->eee_cap;
3309        cfg->eeer_value = caps->eeer_value;
3310        cfg->link_fec_opt = caps->link_fec_options;
3311        cfg->module_compliance_enforcement =
3312                caps->module_compliance_enforcement;
3313}
3314
3315/**
3316 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3317 * @pi: port information structure
3318 * @cfg: PHY configuration data to set FEC mode
3319 * @fec: FEC mode to configure
3320 */
3321int
3322ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3323                enum ice_fec_mode fec)
3324{
3325        struct ice_aqc_get_phy_caps_data *pcaps;
3326        struct ice_hw *hw;
3327        int status;
3328
3329        if (!pi || !cfg)
3330                return -EINVAL;
3331
3332        hw = pi->hw;
3333
3334        pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3335        if (!pcaps)
3336                return -ENOMEM;
3337
3338        status = ice_aq_get_phy_caps(pi, false,
3339                                     (ice_fw_supports_report_dflt_cfg(hw) ?
3340                                      ICE_AQC_REPORT_DFLT_CFG :
3341                                      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3342        if (status)
3343                goto out;
3344
3345        cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3346        cfg->link_fec_opt = pcaps->link_fec_options;
3347
3348        switch (fec) {
3349        case ICE_FEC_BASER:
3350                /* Clear RS bits, and AND BASE-R ability
3351                 * bits and OR request bits.
3352                 */
3353                cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3354                        ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3355                cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3356                        ICE_AQC_PHY_FEC_25G_KR_REQ;
3357                break;
3358        case ICE_FEC_RS:
3359                /* Clear BASE-R bits, and AND RS ability
3360                 * bits and OR request bits.
3361                 */
3362                cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3363                cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3364                        ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3365                break;
3366        case ICE_FEC_NONE:
3367                /* Clear all FEC option bits. */
3368                cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3369                break;
3370        case ICE_FEC_AUTO:
3371                /* AND auto FEC bit, and all caps bits. */
3372                cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3373                cfg->link_fec_opt |= pcaps->link_fec_options;
3374                break;
3375        default:
3376                status = -EINVAL;
3377                break;
3378        }
3379
3380        if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3381            !ice_fw_supports_report_dflt_cfg(hw)) {
3382                struct ice_link_default_override_tlv tlv = { 0 };
3383
3384                status = ice_get_link_default_override(&tlv, pi);
3385                if (status)
3386                        goto out;
3387
3388                if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3389                    (tlv.options & ICE_LINK_OVERRIDE_EN))
3390                        cfg->link_fec_opt = tlv.fec_options;
3391        }
3392
3393out:
3394        kfree(pcaps);
3395
3396        return status;
3397}
3398
3399/**
3400 * ice_get_link_status - get status of the HW network link
3401 * @pi: port information structure
3402 * @link_up: pointer to bool (true/false = linkup/linkdown)
3403 *
3404 * Variable link_up is true if link is up, false if link is down.
3405 * The variable link_up is invalid if status is non zero. As a
3406 * result of this call, link status reporting becomes enabled
3407 */
3408int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3409{
3410        struct ice_phy_info *phy_info;
3411        int status = 0;
3412
3413        if (!pi || !link_up)
3414                return -EINVAL;
3415
3416        phy_info = &pi->phy;
3417
3418        if (phy_info->get_link_info) {
3419                status = ice_update_link_info(pi);
3420
3421                if (status)
3422                        ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3423                                  status);
3424        }
3425
3426        *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3427
3428        return status;
3429}
3430
3431/**
3432 * ice_aq_set_link_restart_an
3433 * @pi: pointer to the port information structure
3434 * @ena_link: if true: enable link, if false: disable link
3435 * @cd: pointer to command details structure or NULL
3436 *
3437 * Sets up the link and restarts the Auto-Negotiation over the link.
3438 */
3439int
3440ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3441                           struct ice_sq_cd *cd)
3442{
3443        struct ice_aqc_restart_an *cmd;
3444        struct ice_aq_desc desc;
3445
3446        cmd = &desc.params.restart_an;
3447
3448        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3449
3450        cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3451        cmd->lport_num = pi->lport;
3452        if (ena_link)
3453                cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3454        else
3455                cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3456
3457        return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3458}
3459
3460/**
3461 * ice_aq_set_event_mask
3462 * @hw: pointer to the HW struct
3463 * @port_num: port number of the physical function
3464 * @mask: event mask to be set
3465 * @cd: pointer to command details structure or NULL
3466 *
3467 * Set event mask (0x0613)
3468 */
3469int
3470ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3471                      struct ice_sq_cd *cd)
3472{
3473        struct ice_aqc_set_event_mask *cmd;
3474        struct ice_aq_desc desc;
3475
3476        cmd = &desc.params.set_event_mask;
3477
3478        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3479
3480        cmd->lport_num = port_num;
3481
3482        cmd->event_mask = cpu_to_le16(mask);
3483        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3484}
3485
3486/**
3487 * ice_aq_set_mac_loopback
3488 * @hw: pointer to the HW struct
3489 * @ena_lpbk: Enable or Disable loopback
3490 * @cd: pointer to command details structure or NULL
3491 *
3492 * Enable/disable loopback on a given port
3493 */
3494int
3495ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3496{
3497        struct ice_aqc_set_mac_lb *cmd;
3498        struct ice_aq_desc desc;
3499
3500        cmd = &desc.params.set_mac_lb;
3501
3502        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3503        if (ena_lpbk)
3504                cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3505
3506        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3507}
3508
3509/**
3510 * ice_aq_set_port_id_led
3511 * @pi: pointer to the port information
3512 * @is_orig_mode: is this LED set to original mode (by the net-list)
3513 * @cd: pointer to command details structure or NULL
3514 *
3515 * Set LED value for the given port (0x06e9)
3516 */
3517int
3518ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3519                       struct ice_sq_cd *cd)
3520{
3521        struct ice_aqc_set_port_id_led *cmd;
3522        struct ice_hw *hw = pi->hw;
3523        struct ice_aq_desc desc;
3524
3525        cmd = &desc.params.set_port_id_led;
3526
3527        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3528
3529        if (is_orig_mode)
3530                cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3531        else
3532                cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3533
3534        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3535}
3536
3537/**
3538 * ice_aq_sff_eeprom
3539 * @hw: pointer to the HW struct
3540 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3541 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3542 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3543 * @page: QSFP page
3544 * @set_page: set or ignore the page
3545 * @data: pointer to data buffer to be read/written to the I2C device.
3546 * @length: 1-16 for read, 1 for write.
3547 * @write: 0 read, 1 for write.
3548 * @cd: pointer to command details structure or NULL
3549 *
3550 * Read/Write SFF EEPROM (0x06EE)
3551 */
3552int
3553ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3554                  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3555                  bool write, struct ice_sq_cd *cd)
3556{
3557        struct ice_aqc_sff_eeprom *cmd;
3558        struct ice_aq_desc desc;
3559        int status;
3560
3561        if (!data || (mem_addr & 0xff00))
3562                return -EINVAL;
3563
3564        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3565        cmd = &desc.params.read_write_sff_param;
3566        desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3567        cmd->lport_num = (u8)(lport & 0xff);
3568        cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3569        cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3570                                         ICE_AQC_SFF_I2CBUS_7BIT_M) |
3571                                        ((set_page <<
3572                                          ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3573                                         ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3574        cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3575        cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3576        if (write)
3577                cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3578
3579        status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3580        return status;
3581}
3582
3583/**
3584 * __ice_aq_get_set_rss_lut
3585 * @hw: pointer to the hardware structure
3586 * @params: RSS LUT parameters
3587 * @set: set true to set the table, false to get the table
3588 *
3589 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3590 */
3591static int
3592__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3593{
3594        u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3595        struct ice_aqc_get_set_rss_lut *cmd_resp;
3596        struct ice_aq_desc desc;
3597        int status;
3598        u8 *lut;
3599
3600        if (!params)
3601                return -EINVAL;
3602
3603        vsi_handle = params->vsi_handle;
3604        lut = params->lut;
3605
3606        if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3607                return -EINVAL;
3608
3609        lut_size = params->lut_size;
3610        lut_type = params->lut_type;
3611        glob_lut_idx = params->global_lut_id;
3612        vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3613
3614        cmd_resp = &desc.params.get_set_rss_lut;
3615
3616        if (set) {
3617                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3618                desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3619        } else {
3620                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3621        }
3622
3623        cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3624                                         ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3625                                        ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3626                                       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3627
3628        switch (lut_type) {
3629        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3630        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3631        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3632                flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3633                          ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3634                break;
3635        default:
3636                status = -EINVAL;
3637                goto ice_aq_get_set_rss_lut_exit;
3638        }
3639
3640        if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3641                flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3642                          ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3643
3644                if (!set)
3645                        goto ice_aq_get_set_rss_lut_send;
3646        } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3647                if (!set)
3648                        goto ice_aq_get_set_rss_lut_send;
3649        } else {
3650                goto ice_aq_get_set_rss_lut_send;
3651        }
3652
3653        /* LUT size is only valid for Global and PF table types */
3654        switch (lut_size) {
3655        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3656                break;
3657        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3658                flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3659                          ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3660                         ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3661                break;
3662        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3663                if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3664                        flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3665                                  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3666                                 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3667                        break;
3668                }
3669                fallthrough;
3670        default:
3671                status = -EINVAL;
3672                goto ice_aq_get_set_rss_lut_exit;
3673        }
3674
3675ice_aq_get_set_rss_lut_send:
3676        cmd_resp->flags = cpu_to_le16(flags);
3677        status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3678
3679ice_aq_get_set_rss_lut_exit:
3680        return status;
3681}
3682
3683/**
3684 * ice_aq_get_rss_lut
3685 * @hw: pointer to the hardware structure
3686 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3687 *
3688 * get the RSS lookup table, PF or VSI type
3689 */
3690int
3691ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3692{
3693        return __ice_aq_get_set_rss_lut(hw, get_params, false);
3694}
3695
3696/**
3697 * ice_aq_set_rss_lut
3698 * @hw: pointer to the hardware structure
3699 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3700 *
3701 * set the RSS lookup table, PF or VSI type
3702 */
3703int
3704ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3705{
3706        return __ice_aq_get_set_rss_lut(hw, set_params, true);
3707}
3708
3709/**
3710 * __ice_aq_get_set_rss_key
3711 * @hw: pointer to the HW struct
3712 * @vsi_id: VSI FW index
3713 * @key: pointer to key info struct
3714 * @set: set true to set the key, false to get the key
3715 *
3716 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3717 */
3718static int
3719__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3720                         struct ice_aqc_get_set_rss_keys *key, bool set)
3721{
3722        struct ice_aqc_get_set_rss_key *cmd_resp;
3723        u16 key_size = sizeof(*key);
3724        struct ice_aq_desc desc;
3725
3726        cmd_resp = &desc.params.get_set_rss_key;
3727
3728        if (set) {
3729                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3730                desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3731        } else {
3732                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3733        }
3734
3735        cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3736                                         ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3737                                        ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3738                                       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3739
3740        return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3741}
3742
3743/**
3744 * ice_aq_get_rss_key
3745 * @hw: pointer to the HW struct
3746 * @vsi_handle: software VSI handle
3747 * @key: pointer to key info struct
3748 *
3749 * get the RSS key per VSI
3750 */
3751int
3752ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3753                   struct ice_aqc_get_set_rss_keys *key)
3754{
3755        if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3756                return -EINVAL;
3757
3758        return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3759                                        key, false);
3760}
3761
3762/**
3763 * ice_aq_set_rss_key
3764 * @hw: pointer to the HW struct
3765 * @vsi_handle: software VSI handle
3766 * @keys: pointer to key info struct
3767 *
3768 * set the RSS key per VSI
3769 */
3770int
3771ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3772                   struct ice_aqc_get_set_rss_keys *keys)
3773{
3774        if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3775                return -EINVAL;
3776
3777        return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3778                                        keys, true);
3779}
3780
3781/**
3782 * ice_aq_add_lan_txq
3783 * @hw: pointer to the hardware structure
3784 * @num_qgrps: Number of added queue groups
3785 * @qg_list: list of queue groups to be added
3786 * @buf_size: size of buffer for indirect command
3787 * @cd: pointer to command details structure or NULL
3788 *
3789 * Add Tx LAN queue (0x0C30)
3790 *
3791 * NOTE:
3792 * Prior to calling add Tx LAN queue:
3793 * Initialize the following as part of the Tx queue context:
3794 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3795 * Cache profile and Packet shaper profile.
3796 *
3797 * After add Tx LAN queue AQ command is completed:
3798 * Interrupts should be associated with specific queues,
3799 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3800 * flow.
3801 */
3802static int
3803ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3804                   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3805                   struct ice_sq_cd *cd)
3806{
3807        struct ice_aqc_add_tx_qgrp *list;
3808        struct ice_aqc_add_txqs *cmd;
3809        struct ice_aq_desc desc;
3810        u16 i, sum_size = 0;
3811
3812        cmd = &desc.params.add_txqs;
3813
3814        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3815
3816        if (!qg_list)
3817                return -EINVAL;
3818
3819        if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3820                return -EINVAL;
3821
3822        for (i = 0, list = qg_list; i < num_qgrps; i++) {
3823                sum_size += struct_size(list, txqs, list->num_txqs);
3824                list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3825                                                      list->num_txqs);
3826        }
3827
3828        if (buf_size != sum_size)
3829                return -EINVAL;
3830
3831        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3832
3833        cmd->num_qgrps = num_qgrps;
3834
3835        return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3836}
3837
3838/**
3839 * ice_aq_dis_lan_txq
3840 * @hw: pointer to the hardware structure
3841 * @num_qgrps: number of groups in the list
3842 * @qg_list: the list of groups to disable
3843 * @buf_size: the total size of the qg_list buffer in bytes
3844 * @rst_src: if called due to reset, specifies the reset source
3845 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3846 * @cd: pointer to command details structure or NULL
3847 *
3848 * Disable LAN Tx queue (0x0C31)
3849 */
3850static int
3851ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3852                   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3853                   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3854                   struct ice_sq_cd *cd)
3855{
3856        struct ice_aqc_dis_txq_item *item;
3857        struct ice_aqc_dis_txqs *cmd;
3858        struct ice_aq_desc desc;
3859        u16 i, sz = 0;
3860        int status;
3861
3862        cmd = &desc.params.dis_txqs;
3863        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3864
3865        /* qg_list can be NULL only in VM/VF reset flow */
3866        if (!qg_list && !rst_src)
3867                return -EINVAL;
3868
3869        if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3870                return -EINVAL;
3871
3872        cmd->num_entries = num_qgrps;
3873
3874        cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3875                                            ICE_AQC_Q_DIS_TIMEOUT_M);
3876
3877        switch (rst_src) {
3878        case ICE_VM_RESET:
3879                cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3880                cmd->vmvf_and_timeout |=
3881                        cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3882                break;
3883        case ICE_VF_RESET:
3884                cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3885                /* In this case, FW expects vmvf_num to be absolute VF ID */
3886                cmd->vmvf_and_timeout |=
3887                        cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3888                                    ICE_AQC_Q_DIS_VMVF_NUM_M);
3889                break;
3890        case ICE_NO_RESET:
3891        default:
3892                break;
3893        }
3894
3895        /* flush pipe on time out */
3896        cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3897        /* If no queue group info, we are in a reset flow. Issue the AQ */
3898        if (!qg_list)
3899                goto do_aq;
3900
3901        /* set RD bit to indicate that command buffer is provided by the driver
3902         * and it needs to be read by the firmware
3903         */
3904        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3905
3906        for (i = 0, item = qg_list; i < num_qgrps; i++) {
3907                u16 item_size = struct_size(item, q_id, item->num_qs);
3908
3909                /* If the num of queues is even, add 2 bytes of padding */
3910                if ((item->num_qs % 2) == 0)
3911                        item_size += 2;
3912
3913                sz += item_size;
3914
3915                item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3916        }
3917
3918        if (buf_size != sz)
3919                return -EINVAL;
3920
3921do_aq:
3922        status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3923        if (status) {
3924                if (!qg_list)
3925                        ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3926                                  vmvf_num, hw->adminq.sq_last_status);
3927                else
3928                        ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3929                                  le16_to_cpu(qg_list[0].q_id[0]),
3930                                  hw->adminq.sq_last_status);
3931        }
3932        return status;
3933}
3934
3935/**
3936 * ice_aq_add_rdma_qsets
3937 * @hw: pointer to the hardware structure
3938 * @num_qset_grps: Number of RDMA Qset groups
3939 * @qset_list: list of Qset groups to be added
3940 * @buf_size: size of buffer for indirect command
3941 * @cd: pointer to command details structure or NULL
3942 *
3943 * Add Tx RDMA Qsets (0x0C33)
3944 */
3945static int
3946ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3947                      struct ice_aqc_add_rdma_qset_data *qset_list,
3948                      u16 buf_size, struct ice_sq_cd *cd)
3949{
3950        struct ice_aqc_add_rdma_qset_data *list;
3951        struct ice_aqc_add_rdma_qset *cmd;
3952        struct ice_aq_desc desc;
3953        u16 i, sum_size = 0;
3954
3955        cmd = &desc.params.add_rdma_qset;
3956
3957        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3958
3959        if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3960                return -EINVAL;
3961
3962        for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3963                u16 num_qsets = le16_to_cpu(list->num_qsets);
3964
3965                sum_size += struct_size(list, rdma_qsets, num_qsets);
3966                list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3967                                                             num_qsets);
3968        }
3969
3970        if (buf_size != sum_size)
3971                return -EINVAL;
3972
3973        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3974
3975        cmd->num_qset_grps = num_qset_grps;
3976
3977        return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
3978}
3979
3980/* End of FW Admin Queue command wrappers */
3981
3982/**
3983 * ice_write_byte - write a byte to a packed context structure
3984 * @src_ctx:  the context structure to read from
3985 * @dest_ctx: the context to be written to
3986 * @ce_info:  a description of the struct to be filled
3987 */
3988static void
3989ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3990{
3991        u8 src_byte, dest_byte, mask;
3992        u8 *from, *dest;
3993        u16 shift_width;
3994
3995        /* copy from the next struct field */
3996        from = src_ctx + ce_info->offset;
3997
3998        /* prepare the bits and mask */
3999        shift_width = ce_info->lsb % 8;
4000        mask = (u8)(BIT(ce_info->width) - 1);
4001
4002        src_byte = *from;
4003        src_byte &= mask;
4004
4005        /* shift to correct alignment */
4006        mask <<= shift_width;
4007        src_byte <<= shift_width;
4008
4009        /* get the current bits from the target bit string */
4010        dest = dest_ctx + (ce_info->lsb / 8);
4011
4012        memcpy(&dest_byte, dest, sizeof(dest_byte));
4013
4014        dest_byte &= ~mask;     /* get the bits not changing */
4015        dest_byte |= src_byte;  /* add in the new bits */
4016
4017        /* put it all back */
4018        memcpy(dest, &dest_byte, sizeof(dest_byte));
4019}
4020
4021/**
4022 * ice_write_word - write a word to a packed context structure
4023 * @src_ctx:  the context structure to read from
4024 * @dest_ctx: the context to be written to
4025 * @ce_info:  a description of the struct to be filled
4026 */
4027static void
4028ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4029{
4030        u16 src_word, mask;
4031        __le16 dest_word;
4032        u8 *from, *dest;
4033        u16 shift_width;
4034
4035        /* copy from the next struct field */
4036        from = src_ctx + ce_info->offset;
4037
4038        /* prepare the bits and mask */
4039        shift_width = ce_info->lsb % 8;
4040        mask = BIT(ce_info->width) - 1;
4041
4042        /* don't swizzle the bits until after the mask because the mask bits
4043         * will be in a different bit position on big endian machines
4044         */
4045        src_word = *(u16 *)from;
4046        src_word &= mask;
4047
4048        /* shift to correct alignment */
4049        mask <<= shift_width;
4050        src_word <<= shift_width;
4051
4052        /* get the current bits from the target bit string */
4053        dest = dest_ctx + (ce_info->lsb / 8);
4054
4055        memcpy(&dest_word, dest, sizeof(dest_word));
4056
4057        dest_word &= ~(cpu_to_le16(mask));      /* get the bits not changing */
4058        dest_word |= cpu_to_le16(src_word);     /* add in the new bits */
4059
4060        /* put it all back */
4061        memcpy(dest, &dest_word, sizeof(dest_word));
4062}
4063
4064/**
4065 * ice_write_dword - write a dword to a packed context structure
4066 * @src_ctx:  the context structure to read from
4067 * @dest_ctx: the context to be written to
4068 * @ce_info:  a description of the struct to be filled
4069 */
4070static void
4071ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4072{
4073        u32 src_dword, mask;
4074        __le32 dest_dword;
4075        u8 *from, *dest;
4076        u16 shift_width;
4077
4078        /* copy from the next struct field */
4079        from = src_ctx + ce_info->offset;
4080
4081        /* prepare the bits and mask */
4082        shift_width = ce_info->lsb % 8;
4083
4084        /* if the field width is exactly 32 on an x86 machine, then the shift
4085         * operation will not work because the SHL instructions count is masked
4086         * to 5 bits so the shift will do nothing
4087         */
4088        if (ce_info->width < 32)
4089                mask = BIT(ce_info->width) - 1;
4090        else
4091                mask = (u32)~0;
4092
4093        /* don't swizzle the bits until after the mask because the mask bits
4094         * will be in a different bit position on big endian machines
4095         */
4096        src_dword = *(u32 *)from;
4097        src_dword &= mask;
4098
4099        /* shift to correct alignment */
4100        mask <<= shift_width;
4101        src_dword <<= shift_width;
4102
4103        /* get the current bits from the target bit string */
4104        dest = dest_ctx + (ce_info->lsb / 8);
4105
4106        memcpy(&dest_dword, dest, sizeof(dest_dword));
4107
4108        dest_dword &= ~(cpu_to_le32(mask));     /* get the bits not changing */
4109        dest_dword |= cpu_to_le32(src_dword);   /* add in the new bits */
4110
4111        /* put it all back */
4112        memcpy(dest, &dest_dword, sizeof(dest_dword));
4113}
4114
4115/**
4116 * ice_write_qword - write a qword to a packed context structure
4117 * @src_ctx:  the context structure to read from
4118 * @dest_ctx: the context to be written to
4119 * @ce_info:  a description of the struct to be filled
4120 */
4121static void
4122ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4123{
4124        u64 src_qword, mask;
4125        __le64 dest_qword;
4126        u8 *from, *dest;
4127        u16 shift_width;
4128
4129        /* copy from the next struct field */
4130        from = src_ctx + ce_info->offset;
4131
4132        /* prepare the bits and mask */
4133        shift_width = ce_info->lsb % 8;
4134
4135        /* if the field width is exactly 64 on an x86 machine, then the shift
4136         * operation will not work because the SHL instructions count is masked
4137         * to 6 bits so the shift will do nothing
4138         */
4139        if (ce_info->width < 64)
4140                mask = BIT_ULL(ce_info->width) - 1;
4141        else
4142                mask = (u64)~0;
4143
4144        /* don't swizzle the bits until after the mask because the mask bits
4145         * will be in a different bit position on big endian machines
4146         */
4147        src_qword = *(u64 *)from;
4148        src_qword &= mask;
4149
4150        /* shift to correct alignment */
4151        mask <<= shift_width;
4152        src_qword <<= shift_width;
4153
4154        /* get the current bits from the target bit string */
4155        dest = dest_ctx + (ce_info->lsb / 8);
4156
4157        memcpy(&dest_qword, dest, sizeof(dest_qword));
4158
4159        dest_qword &= ~(cpu_to_le64(mask));     /* get the bits not changing */
4160        dest_qword |= cpu_to_le64(src_qword);   /* add in the new bits */
4161
4162        /* put it all back */
4163        memcpy(dest, &dest_qword, sizeof(dest_qword));
4164}
4165
4166/**
4167 * ice_set_ctx - set context bits in packed structure
4168 * @hw: pointer to the hardware structure
4169 * @src_ctx:  pointer to a generic non-packed context structure
4170 * @dest_ctx: pointer to memory for the packed structure
4171 * @ce_info:  a description of the structure to be transformed
4172 */
4173int
4174ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4175            const struct ice_ctx_ele *ce_info)
4176{
4177        int f;
4178
4179        for (f = 0; ce_info[f].width; f++) {
4180                /* We have to deal with each element of the FW response
4181                 * using the correct size so that we are correct regardless
4182                 * of the endianness of the machine.
4183                 */
4184                if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4185                        ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4186                                  f, ce_info[f].width, ce_info[f].size_of);
4187                        continue;
4188                }
4189                switch (ce_info[f].size_of) {
4190                case sizeof(u8):
4191                        ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4192                        break;
4193                case sizeof(u16):
4194                        ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4195                        break;
4196                case sizeof(u32):
4197                        ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4198                        break;
4199                case sizeof(u64):
4200                        ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4201                        break;
4202                default:
4203                        return -EINVAL;
4204                }
4205        }
4206
4207        return 0;
4208}
4209
4210/**
4211 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4212 * @hw: pointer to the HW struct
4213 * @vsi_handle: software VSI handle
4214 * @tc: TC number
4215 * @q_handle: software queue handle
4216 */
4217struct ice_q_ctx *
4218ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4219{
4220        struct ice_vsi_ctx *vsi;
4221        struct ice_q_ctx *q_ctx;
4222
4223        vsi = ice_get_vsi_ctx(hw, vsi_handle);
4224        if (!vsi)
4225                return NULL;
4226        if (q_handle >= vsi->num_lan_q_entries[tc])
4227                return NULL;
4228        if (!vsi->lan_q_ctx[tc])
4229                return NULL;
4230        q_ctx = vsi->lan_q_ctx[tc];
4231        return &q_ctx[q_handle];
4232}
4233
4234/**
4235 * ice_ena_vsi_txq
4236 * @pi: port information structure
4237 * @vsi_handle: software VSI handle
4238 * @tc: TC number
4239 * @q_handle: software queue handle
4240 * @num_qgrps: Number of added queue groups
4241 * @buf: list of queue groups to be added
4242 * @buf_size: size of buffer for indirect command
4243 * @cd: pointer to command details structure or NULL
4244 *
4245 * This function adds one LAN queue
4246 */
4247int
4248ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4249                u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4250                struct ice_sq_cd *cd)
4251{
4252        struct ice_aqc_txsched_elem_data node = { 0 };
4253        struct ice_sched_node *parent;
4254        struct ice_q_ctx *q_ctx;
4255        struct ice_hw *hw;
4256        int status;
4257
4258        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4259                return -EIO;
4260
4261        if (num_qgrps > 1 || buf->num_txqs > 1)
4262                return -ENOSPC;
4263
4264        hw = pi->hw;
4265
4266        if (!ice_is_vsi_valid(hw, vsi_handle))
4267                return -EINVAL;
4268
4269        mutex_lock(&pi->sched_lock);
4270
4271        q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4272        if (!q_ctx) {
4273                ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4274                          q_handle);
4275                status = -EINVAL;
4276                goto ena_txq_exit;
4277        }
4278
4279        /* find a parent node */
4280        parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4281                                            ICE_SCHED_NODE_OWNER_LAN);
4282        if (!parent) {
4283                status = -EINVAL;
4284                goto ena_txq_exit;
4285        }
4286
4287        buf->parent_teid = parent->info.node_teid;
4288        node.parent_teid = parent->info.node_teid;
4289        /* Mark that the values in the "generic" section as valid. The default
4290         * value in the "generic" section is zero. This means that :
4291         * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4292         * - 0 priority among siblings, indicated by Bit 1-3.
4293         * - WFQ, indicated by Bit 4.
4294         * - 0 Adjustment value is used in PSM credit update flow, indicated by
4295         * Bit 5-6.
4296         * - Bit 7 is reserved.
4297         * Without setting the generic section as valid in valid_sections, the
4298         * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4299         */
4300        buf->txqs[0].info.valid_sections =
4301                ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4302                ICE_AQC_ELEM_VALID_EIR;
4303        buf->txqs[0].info.generic = 0;
4304        buf->txqs[0].info.cir_bw.bw_profile_idx =
4305                cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4306        buf->txqs[0].info.cir_bw.bw_alloc =
4307                cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4308        buf->txqs[0].info.eir_bw.bw_profile_idx =
4309                cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4310        buf->txqs[0].info.eir_bw.bw_alloc =
4311                cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4312
4313        /* add the LAN queue */
4314        status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4315        if (status) {
4316                ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4317                          le16_to_cpu(buf->txqs[0].txq_id),
4318                          hw->adminq.sq_last_status);
4319                goto ena_txq_exit;
4320        }
4321
4322        node.node_teid = buf->txqs[0].q_teid;
4323        node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4324        q_ctx->q_handle = q_handle;
4325        q_ctx->q_teid = le32_to_cpu(node.node_teid);
4326
4327        /* add a leaf node into scheduler tree queue layer */
4328        status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4329        if (!status)
4330                status = ice_sched_replay_q_bw(pi, q_ctx);
4331
4332ena_txq_exit:
4333        mutex_unlock(&pi->sched_lock);
4334        return status;
4335}
4336
4337/**
4338 * ice_dis_vsi_txq
4339 * @pi: port information structure
4340 * @vsi_handle: software VSI handle
4341 * @tc: TC number
4342 * @num_queues: number of queues
4343 * @q_handles: pointer to software queue handle array
4344 * @q_ids: pointer to the q_id array
4345 * @q_teids: pointer to queue node teids
4346 * @rst_src: if called due to reset, specifies the reset source
4347 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4348 * @cd: pointer to command details structure or NULL
4349 *
4350 * This function removes queues and their corresponding nodes in SW DB
4351 */
4352int
4353ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4354                u16 *q_handles, u16 *q_ids, u32 *q_teids,
4355                enum ice_disq_rst_src rst_src, u16 vmvf_num,
4356                struct ice_sq_cd *cd)
4357{
4358        struct ice_aqc_dis_txq_item *qg_list;
4359        struct ice_q_ctx *q_ctx;
4360        int status = -ENOENT;
4361        struct ice_hw *hw;
4362        u16 i, buf_size;
4363
4364        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4365                return -EIO;
4366
4367        hw = pi->hw;
4368
4369        if (!num_queues) {
4370                /* if queue is disabled already yet the disable queue command
4371                 * has to be sent to complete the VF reset, then call
4372                 * ice_aq_dis_lan_txq without any queue information
4373                 */
4374                if (rst_src)
4375                        return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4376                                                  vmvf_num, NULL);
4377                return -EIO;
4378        }
4379
4380        buf_size = struct_size(qg_list, q_id, 1);
4381        qg_list = kzalloc(buf_size, GFP_KERNEL);
4382        if (!qg_list)
4383                return -ENOMEM;
4384
4385        mutex_lock(&pi->sched_lock);
4386
4387        for (i = 0; i < num_queues; i++) {
4388                struct ice_sched_node *node;
4389
4390                node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4391                if (!node)
4392                        continue;
4393                q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4394                if (!q_ctx) {
4395                        ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4396                                  q_handles[i]);
4397                        continue;
4398                }
4399                if (q_ctx->q_handle != q_handles[i]) {
4400                        ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4401                                  q_ctx->q_handle, q_handles[i]);
4402                        continue;
4403                }
4404                qg_list->parent_teid = node->info.parent_teid;
4405                qg_list->num_qs = 1;
4406                qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4407                status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4408                                            vmvf_num, cd);
4409
4410                if (status)
4411                        break;
4412                ice_free_sched_node(pi, node);
4413                q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4414        }
4415        mutex_unlock(&pi->sched_lock);
4416        kfree(qg_list);
4417        return status;
4418}
4419
4420/**
4421 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4422 * @pi: port information structure
4423 * @vsi_handle: software VSI handle
4424 * @tc_bitmap: TC bitmap
4425 * @maxqs: max queues array per TC
4426 * @owner: LAN or RDMA
4427 *
4428 * This function adds/updates the VSI queues per TC.
4429 */
4430static int
4431ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4432               u16 *maxqs, u8 owner)
4433{
4434        int status = 0;
4435        u8 i;
4436
4437        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4438                return -EIO;
4439
4440        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4441                return -EINVAL;
4442
4443        mutex_lock(&pi->sched_lock);
4444
4445        ice_for_each_traffic_class(i) {
4446                /* configuration is possible only if TC node is present */
4447                if (!ice_sched_get_tc_node(pi, i))
4448                        continue;
4449
4450                status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4451                                           ice_is_tc_ena(tc_bitmap, i));
4452                if (status)
4453                        break;
4454        }
4455
4456        mutex_unlock(&pi->sched_lock);
4457        return status;
4458}
4459
4460/**
4461 * ice_cfg_vsi_lan - configure VSI LAN queues
4462 * @pi: port information structure
4463 * @vsi_handle: software VSI handle
4464 * @tc_bitmap: TC bitmap
4465 * @max_lanqs: max LAN queues array per TC
4466 *
4467 * This function adds/updates the VSI LAN queues per TC.
4468 */
4469int
4470ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4471                u16 *max_lanqs)
4472{
4473        return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4474                              ICE_SCHED_NODE_OWNER_LAN);
4475}
4476
4477/**
4478 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4479 * @pi: port information structure
4480 * @vsi_handle: software VSI handle
4481 * @tc_bitmap: TC bitmap
4482 * @max_rdmaqs: max RDMA queues array per TC
4483 *
4484 * This function adds/updates the VSI RDMA queues per TC.
4485 */
4486int
4487ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4488                 u16 *max_rdmaqs)
4489{
4490        return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4491                              ICE_SCHED_NODE_OWNER_RDMA);
4492}
4493
4494/**
4495 * ice_ena_vsi_rdma_qset
4496 * @pi: port information structure
4497 * @vsi_handle: software VSI handle
4498 * @tc: TC number
4499 * @rdma_qset: pointer to RDMA Qset
4500 * @num_qsets: number of RDMA Qsets
4501 * @qset_teid: pointer to Qset node TEIDs
4502 *
4503 * This function adds RDMA Qset
4504 */
4505int
4506ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4507                      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4508{
4509        struct ice_aqc_txsched_elem_data node = { 0 };
4510        struct ice_aqc_add_rdma_qset_data *buf;
4511        struct ice_sched_node *parent;
4512        struct ice_hw *hw;
4513        u16 i, buf_size;
4514        int ret;
4515
4516        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4517                return -EIO;
4518        hw = pi->hw;
4519
4520        if (!ice_is_vsi_valid(hw, vsi_handle))
4521                return -EINVAL;
4522
4523        buf_size = struct_size(buf, rdma_qsets, num_qsets);
4524        buf = kzalloc(buf_size, GFP_KERNEL);
4525        if (!buf)
4526                return -ENOMEM;
4527        mutex_lock(&pi->sched_lock);
4528
4529        parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4530                                            ICE_SCHED_NODE_OWNER_RDMA);
4531        if (!parent) {
4532                ret = -EINVAL;
4533                goto rdma_error_exit;
4534        }
4535        buf->parent_teid = parent->info.node_teid;
4536        node.parent_teid = parent->info.node_teid;
4537
4538        buf->num_qsets = cpu_to_le16(num_qsets);
4539        for (i = 0; i < num_qsets; i++) {
4540                buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4541                buf->rdma_qsets[i].info.valid_sections =
4542                        ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4543                        ICE_AQC_ELEM_VALID_EIR;
4544                buf->rdma_qsets[i].info.generic = 0;
4545                buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4546                        cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4547                buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4548                        cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4549                buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4550                        cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4551                buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4552                        cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4553        }
4554        ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4555        if (ret) {
4556                ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4557                goto rdma_error_exit;
4558        }
4559        node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4560        for (i = 0; i < num_qsets; i++) {
4561                node.node_teid = buf->rdma_qsets[i].qset_teid;
4562                ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4563                                         &node);
4564                if (ret)
4565                        break;
4566                qset_teid[i] = le32_to_cpu(node.node_teid);
4567        }
4568rdma_error_exit:
4569        mutex_unlock(&pi->sched_lock);
4570        kfree(buf);
4571        return ret;
4572}
4573
4574/**
4575 * ice_dis_vsi_rdma_qset - free RDMA resources
4576 * @pi: port_info struct
4577 * @count: number of RDMA Qsets to free
4578 * @qset_teid: TEID of Qset node
4579 * @q_id: list of queue IDs being disabled
4580 */
4581int
4582ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4583                      u16 *q_id)
4584{
4585        struct ice_aqc_dis_txq_item *qg_list;
4586        struct ice_hw *hw;
4587        int status = 0;
4588        u16 qg_size;
4589        int i;
4590
4591        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4592                return -EIO;
4593
4594        hw = pi->hw;
4595
4596        qg_size = struct_size(qg_list, q_id, 1);
4597        qg_list = kzalloc(qg_size, GFP_KERNEL);
4598        if (!qg_list)
4599                return -ENOMEM;
4600
4601        mutex_lock(&pi->sched_lock);
4602
4603        for (i = 0; i < count; i++) {
4604                struct ice_sched_node *node;
4605
4606                node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4607                if (!node)
4608                        continue;
4609
4610                qg_list->parent_teid = node->info.parent_teid;
4611                qg_list->num_qs = 1;
4612                qg_list->q_id[0] =
4613                        cpu_to_le16(q_id[i] |
4614                                    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4615
4616                status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4617                                            ICE_NO_RESET, 0, NULL);
4618                if (status)
4619                        break;
4620
4621                ice_free_sched_node(pi, node);
4622        }
4623
4624        mutex_unlock(&pi->sched_lock);
4625        kfree(qg_list);
4626        return status;
4627}
4628
4629/**
4630 * ice_replay_pre_init - replay pre initialization
4631 * @hw: pointer to the HW struct
4632 *
4633 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4634 */
4635static int ice_replay_pre_init(struct ice_hw *hw)
4636{
4637        struct ice_switch_info *sw = hw->switch_info;
4638        u8 i;
4639
4640        /* Delete old entries from replay filter list head if there is any */
4641        ice_rm_all_sw_replay_rule_info(hw);
4642        /* In start of replay, move entries into replay_rules list, it
4643         * will allow adding rules entries back to filt_rules list,
4644         * which is operational list.
4645         */
4646        for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4647                list_replace_init(&sw->recp_list[i].filt_rules,
4648                                  &sw->recp_list[i].filt_replay_rules);
4649        ice_sched_replay_agg_vsi_preinit(hw);
4650
4651        return 0;
4652}
4653
4654/**
4655 * ice_replay_vsi - replay VSI configuration
4656 * @hw: pointer to the HW struct
4657 * @vsi_handle: driver VSI handle
4658 *
4659 * Restore all VSI configuration after reset. It is required to call this
4660 * function with main VSI first.
4661 */
4662int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4663{
4664        int status;
4665
4666        if (!ice_is_vsi_valid(hw, vsi_handle))
4667                return -EINVAL;
4668
4669        /* Replay pre-initialization if there is any */
4670        if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4671                status = ice_replay_pre_init(hw);
4672                if (status)
4673                        return status;
4674        }
4675        /* Replay per VSI all RSS configurations */
4676        status = ice_replay_rss_cfg(hw, vsi_handle);
4677        if (status)
4678                return status;
4679        /* Replay per VSI all filters */
4680        status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4681        if (!status)
4682                status = ice_replay_vsi_agg(hw, vsi_handle);
4683        return status;
4684}
4685
4686/**
4687 * ice_replay_post - post replay configuration cleanup
4688 * @hw: pointer to the HW struct
4689 *
4690 * Post replay cleanup.
4691 */
4692void ice_replay_post(struct ice_hw *hw)
4693{
4694        /* Delete old entries from replay filter list head */
4695        ice_rm_all_sw_replay_rule_info(hw);
4696        ice_sched_replay_agg(hw);
4697}
4698
4699/**
4700 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4701 * @hw: ptr to the hardware info
4702 * @reg: offset of 64 bit HW register to read from
4703 * @prev_stat_loaded: bool to specify if previous stats are loaded
4704 * @prev_stat: ptr to previous loaded stat value
4705 * @cur_stat: ptr to current stat value
4706 */
4707void
4708ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4709                  u64 *prev_stat, u64 *cur_stat)
4710{
4711        u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4712
4713        /* device stats are not reset at PFR, they likely will not be zeroed
4714         * when the driver starts. Thus, save the value from the first read
4715         * without adding to the statistic value so that we report stats which
4716         * count up from zero.
4717         */
4718        if (!prev_stat_loaded) {
4719                *prev_stat = new_data;
4720                return;
4721        }
4722
4723        /* Calculate the difference between the new and old values, and then
4724         * add it to the software stat value.
4725         */
4726        if (new_data >= *prev_stat)
4727                *cur_stat += new_data - *prev_stat;
4728        else
4729                /* to manage the potential roll-over */
4730                *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4731
4732        /* Update the previously stored value to prepare for next read */
4733        *prev_stat = new_data;
4734}
4735
4736/**
4737 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4738 * @hw: ptr to the hardware info
4739 * @reg: offset of HW register to read from
4740 * @prev_stat_loaded: bool to specify if previous stats are loaded
4741 * @prev_stat: ptr to previous loaded stat value
4742 * @cur_stat: ptr to current stat value
4743 */
4744void
4745ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4746                  u64 *prev_stat, u64 *cur_stat)
4747{
4748        u32 new_data;
4749
4750        new_data = rd32(hw, reg);
4751
4752        /* device stats are not reset at PFR, they likely will not be zeroed
4753         * when the driver starts. Thus, save the value from the first read
4754         * without adding to the statistic value so that we report stats which
4755         * count up from zero.
4756         */
4757        if (!prev_stat_loaded) {
4758                *prev_stat = new_data;
4759                return;
4760        }
4761
4762        /* Calculate the difference between the new and old values, and then
4763         * add it to the software stat value.
4764         */
4765        if (new_data >= *prev_stat)
4766                *cur_stat += new_data - *prev_stat;
4767        else
4768                /* to manage the potential roll-over */
4769                *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4770
4771        /* Update the previously stored value to prepare for next read */
4772        *prev_stat = new_data;
4773}
4774
4775/**
4776 * ice_sched_query_elem - query element information from HW
4777 * @hw: pointer to the HW struct
4778 * @node_teid: node TEID to be queried
4779 * @buf: buffer to element information
4780 *
4781 * This function queries HW element information
4782 */
4783int
4784ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4785                     struct ice_aqc_txsched_elem_data *buf)
4786{
4787        u16 buf_size, num_elem_ret = 0;
4788        int status;
4789
4790        buf_size = sizeof(*buf);
4791        memset(buf, 0, buf_size);
4792        buf->node_teid = cpu_to_le32(node_teid);
4793        status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4794                                          NULL);
4795        if (status || num_elem_ret != 1)
4796                ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4797        return status;
4798}
4799
4800/**
4801 * ice_aq_read_i2c
4802 * @hw: pointer to the hw struct
4803 * @topo_addr: topology address for a device to communicate with
4804 * @bus_addr: 7-bit I2C bus address
4805 * @addr: I2C memory address (I2C offset) with up to 16 bits
4806 * @params: I2C parameters: bit [7] - Repeated start,
4807 *                          bits [6:5] data offset size,
4808 *                          bit [4] - I2C address type,
4809 *                          bits [3:0] - data size to read (0-16 bytes)
4810 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
4811 * @cd: pointer to command details structure or NULL
4812 *
4813 * Read I2C (0x06E2)
4814 */
4815int
4816ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
4817                u16 bus_addr, __le16 addr, u8 params, u8 *data,
4818                struct ice_sq_cd *cd)
4819{
4820        struct ice_aq_desc desc = { 0 };
4821        struct ice_aqc_i2c *cmd;
4822        u8 data_size;
4823        int status;
4824
4825        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
4826        cmd = &desc.params.read_i2c;
4827
4828        if (!data)
4829                return -EINVAL;
4830
4831        data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
4832
4833        cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
4834        cmd->topo_addr = topo_addr;
4835        cmd->i2c_params = params;
4836        cmd->i2c_addr = addr;
4837
4838        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4839        if (!status) {
4840                struct ice_aqc_read_i2c_resp *resp;
4841                u8 i;
4842
4843                resp = &desc.params.read_i2c_resp;
4844                for (i = 0; i < data_size; i++) {
4845                        *data = resp->i2c_data[i];
4846                        data++;
4847                }
4848        }
4849
4850        return status;
4851}
4852
4853/**
4854 * ice_aq_set_driver_param - Set driver parameter to share via firmware
4855 * @hw: pointer to the HW struct
4856 * @idx: parameter index to set
4857 * @value: the value to set the parameter to
4858 * @cd: pointer to command details structure or NULL
4859 *
4860 * Set the value of one of the software defined parameters. All PFs connected
4861 * to this device can read the value using ice_aq_get_driver_param.
4862 *
4863 * Note that firmware provides no synchronization or locking, and will not
4864 * save the parameter value during a device reset. It is expected that
4865 * a single PF will write the parameter value, while all other PFs will only
4866 * read it.
4867 */
4868int
4869ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4870                        u32 value, struct ice_sq_cd *cd)
4871{
4872        struct ice_aqc_driver_shared_params *cmd;
4873        struct ice_aq_desc desc;
4874
4875        if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4876                return -EIO;
4877
4878        cmd = &desc.params.drv_shared_params;
4879
4880        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4881
4882        cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4883        cmd->param_indx = idx;
4884        cmd->param_val = cpu_to_le32(value);
4885
4886        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4887}
4888
4889/**
4890 * ice_aq_get_driver_param - Get driver parameter shared via firmware
4891 * @hw: pointer to the HW struct
4892 * @idx: parameter index to set
4893 * @value: storage to return the shared parameter
4894 * @cd: pointer to command details structure or NULL
4895 *
4896 * Get the value of one of the software defined parameters.
4897 *
4898 * Note that firmware provides no synchronization or locking. It is expected
4899 * that only a single PF will write a given parameter.
4900 */
4901int
4902ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4903                        u32 *value, struct ice_sq_cd *cd)
4904{
4905        struct ice_aqc_driver_shared_params *cmd;
4906        struct ice_aq_desc desc;
4907        int status;
4908
4909        if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4910                return -EIO;
4911
4912        cmd = &desc.params.drv_shared_params;
4913
4914        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4915
4916        cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4917        cmd->param_indx = idx;
4918
4919        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4920        if (status)
4921                return status;
4922
4923        *value = le32_to_cpu(cmd->param_val);
4924
4925        return 0;
4926}
4927
4928/**
4929 * ice_aq_set_gpio
4930 * @hw: pointer to the hw struct
4931 * @gpio_ctrl_handle: GPIO controller node handle
4932 * @pin_idx: IO Number of the GPIO that needs to be set
4933 * @value: SW provide IO value to set in the LSB
4934 * @cd: pointer to command details structure or NULL
4935 *
4936 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
4937 */
4938int
4939ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
4940                struct ice_sq_cd *cd)
4941{
4942        struct ice_aqc_gpio *cmd;
4943        struct ice_aq_desc desc;
4944
4945        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
4946        cmd = &desc.params.read_write_gpio;
4947        cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
4948        cmd->gpio_num = pin_idx;
4949        cmd->gpio_val = value ? 1 : 0;
4950
4951        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4952}
4953
4954/**
4955 * ice_aq_get_gpio
4956 * @hw: pointer to the hw struct
4957 * @gpio_ctrl_handle: GPIO controller node handle
4958 * @pin_idx: IO Number of the GPIO that needs to be set
4959 * @value: IO value read
4960 * @cd: pointer to command details structure or NULL
4961 *
4962 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
4963 * the topology
4964 */
4965int
4966ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
4967                bool *value, struct ice_sq_cd *cd)
4968{
4969        struct ice_aqc_gpio *cmd;
4970        struct ice_aq_desc desc;
4971        int status;
4972
4973        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
4974        cmd = &desc.params.read_write_gpio;
4975        cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
4976        cmd->gpio_num = pin_idx;
4977
4978        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4979        if (status)
4980                return status;
4981
4982        *value = !!cmd->gpio_val;
4983        return 0;
4984}
4985
4986/**
4987 * ice_fw_supports_link_override
4988 * @hw: pointer to the hardware structure
4989 *
4990 * Checks if the firmware supports link override
4991 */
4992bool ice_fw_supports_link_override(struct ice_hw *hw)
4993{
4994        if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4995                if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4996                        return true;
4997                if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4998                    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4999                        return true;
5000        } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
5001                return true;
5002        }
5003
5004        return false;
5005}
5006
5007/**
5008 * ice_get_link_default_override
5009 * @ldo: pointer to the link default override struct
5010 * @pi: pointer to the port info struct
5011 *
5012 * Gets the link default override for a port
5013 */
5014int
5015ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5016                              struct ice_port_info *pi)
5017{
5018        u16 i, tlv, tlv_len, tlv_start, buf, offset;
5019        struct ice_hw *hw = pi->hw;
5020        int status;
5021
5022        status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5023                                        ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5024        if (status) {
5025                ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5026                return status;
5027        }
5028
5029        /* Each port has its own config; calculate for our port */
5030        tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5031                ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5032
5033        /* link options first */
5034        status = ice_read_sr_word(hw, tlv_start, &buf);
5035        if (status) {
5036                ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5037                return status;
5038        }
5039        ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5040        ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5041                ICE_LINK_OVERRIDE_PHY_CFG_S;
5042
5043        /* link PHY config */
5044        offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5045        status = ice_read_sr_word(hw, offset, &buf);
5046        if (status) {
5047                ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5048                return status;
5049        }
5050        ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5051
5052        /* PHY types low */
5053        offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5054        for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5055                status = ice_read_sr_word(hw, (offset + i), &buf);
5056                if (status) {
5057                        ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5058                        return status;
5059                }
5060                /* shift 16 bits at a time to fill 64 bits */
5061                ldo->phy_type_low |= ((u64)buf << (i * 16));
5062        }
5063
5064        /* PHY types high */
5065        offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5066                ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5067        for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5068                status = ice_read_sr_word(hw, (offset + i), &buf);
5069                if (status) {
5070                        ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5071                        return status;
5072                }
5073                /* shift 16 bits at a time to fill 64 bits */
5074                ldo->phy_type_high |= ((u64)buf << (i * 16));
5075        }
5076
5077        return status;
5078}
5079
5080/**
5081 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5082 * @caps: get PHY capability data
5083 */
5084bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5085{
5086        if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5087            caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5088                                       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5089                                       ICE_AQC_PHY_AN_EN_CLAUSE37))
5090                return true;
5091
5092        return false;
5093}
5094
5095/**
5096 * ice_aq_set_lldp_mib - Set the LLDP MIB
5097 * @hw: pointer to the HW struct
5098 * @mib_type: Local, Remote or both Local and Remote MIBs
5099 * @buf: pointer to the caller-supplied buffer to store the MIB block
5100 * @buf_size: size of the buffer (in bytes)
5101 * @cd: pointer to command details structure or NULL
5102 *
5103 * Set the LLDP MIB. (0x0A08)
5104 */
5105int
5106ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5107                    struct ice_sq_cd *cd)
5108{
5109        struct ice_aqc_lldp_set_local_mib *cmd;
5110        struct ice_aq_desc desc;
5111
5112        cmd = &desc.params.lldp_set_mib;
5113
5114        if (buf_size == 0 || !buf)
5115                return -EINVAL;
5116
5117        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5118
5119        desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5120        desc.datalen = cpu_to_le16(buf_size);
5121
5122        cmd->type = mib_type;
5123        cmd->length = cpu_to_le16(buf_size);
5124
5125        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5126}
5127
5128/**
5129 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5130 * @hw: pointer to HW struct
5131 */
5132bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5133{
5134        if (hw->mac_type != ICE_MAC_E810)
5135                return false;
5136
5137        if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
5138                if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
5139                        return true;
5140                if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
5141                    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
5142                        return true;
5143        } else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
5144                return true;
5145        }
5146        return false;
5147}
5148
5149/**
5150 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5151 * @hw: pointer to HW struct
5152 * @vsi_num: absolute HW index for VSI
5153 * @add: boolean for if adding or removing a filter
5154 */
5155int
5156ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5157{
5158        struct ice_aqc_lldp_filter_ctrl *cmd;
5159        struct ice_aq_desc desc;
5160
5161        cmd = &desc.params.lldp_filter_ctrl;
5162
5163        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5164
5165        if (add)
5166                cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5167        else
5168                cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5169
5170        cmd->vsi_num = cpu_to_le16(vsi_num);
5171
5172        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5173}
5174
5175/**
5176 * ice_fw_supports_report_dflt_cfg
5177 * @hw: pointer to the hardware structure
5178 *
5179 * Checks if the firmware supports report default configuration
5180 */
5181bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5182{
5183        if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5184                if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
5185                        return true;
5186                if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
5187                    hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
5188                        return true;
5189        } else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5190                return true;
5191        }
5192        return false;
5193}
5194