linux/drivers/parport/parport_ip32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Low-level parallel port routines for built-in port on SGI IP32
   3 *
   4 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
   5 *
   6 * Based on parport_pc.c by
   7 *      Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
   8 *      Andrea Arcangeli, et al.
   9 *
  10 * Thanks to Ilya A. Volynets-Evenbakh for his help.
  11 *
  12 * Copyright (C) 2005, 2006 Arnaud Giersch.
  13 */
  14
  15/* Current status:
  16 *
  17 *      Basic SPP and PS2 modes are supported.
  18 *      Support for parallel port IRQ is present.
  19 *      Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
  20 *      supported.
  21 *      SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
  22 *      or without interrupt support.
  23 *
  24 *      Hardware ECP mode is not fully implemented (ecp_read_data and
  25 *      ecp_write_addr are actually missing).
  26 *
  27 * To do:
  28 *
  29 *      Fully implement ECP mode.
  30 *      EPP and ECP mode need to be tested.  I currently do not own any
  31 *      peripheral supporting these extended mode, and cannot test them.
  32 *      If DMA mode works well, decide if support for PIO FIFO modes should be
  33 *      dropped.
  34 *      Use the io{read,write} family functions when they become available in
  35 *      the linux-mips.org tree.  Note: the MIPS specific functions readsb()
  36 *      and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
  37 *      respectively.
  38 */
  39
  40/* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
  41 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
  42 * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
  43 * FIFO buffer and supports DMA transfers.
  44 *
  45 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
  46 *
  47 * Theoretically, we could simply use the parport_pc module.  It is however
  48 * not so simple.  The parport_pc code assumes that the parallel port
  49 * registers are port-mapped.  On the O2, they are memory-mapped.
  50 * Furthermore, each register is replicated on 256 consecutive addresses (as
  51 * it is for the built-in serial ports on the same chip).
  52 */
  53
  54/*--- Some configuration defines ---------------------------------------*/
  55
  56/* DEBUG_PARPORT_IP32
  57 *      0       disable debug
  58 *      1       standard level: pr_debug1 is enabled
  59 *      2       parport_ip32_dump_state is enabled
  60 *      >=3     verbose level: pr_debug is enabled
  61 */
  62#if !defined(DEBUG_PARPORT_IP32)
  63#       define DEBUG_PARPORT_IP32  0    /* 0 (disabled) for production */
  64#endif
  65
  66/*----------------------------------------------------------------------*/
  67
  68/* Setup DEBUG macros.  This is done before any includes, just in case we
  69 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
  70 */
  71#if DEBUG_PARPORT_IP32 == 1
  72#       warning DEBUG_PARPORT_IP32 == 1
  73#elif DEBUG_PARPORT_IP32 == 2
  74#       warning DEBUG_PARPORT_IP32 == 2
  75#elif DEBUG_PARPORT_IP32 >= 3
  76#       warning DEBUG_PARPORT_IP32 >= 3
  77#       if !defined(DEBUG)
  78#               define DEBUG /* enable pr_debug() in kernel.h */
  79#       endif
  80#endif
  81
  82#include <linux/completion.h>
  83#include <linux/delay.h>
  84#include <linux/dma-mapping.h>
  85#include <linux/err.h>
  86#include <linux/init.h>
  87#include <linux/interrupt.h>
  88#include <linux/jiffies.h>
  89#include <linux/kernel.h>
  90#include <linux/module.h>
  91#include <linux/parport.h>
  92#include <linux/sched/signal.h>
  93#include <linux/slab.h>
  94#include <linux/spinlock.h>
  95#include <linux/stddef.h>
  96#include <linux/types.h>
  97#include <asm/io.h>
  98#include <asm/ip32/ip32_ints.h>
  99#include <asm/ip32/mace.h>
 100
 101/*--- Global variables -------------------------------------------------*/
 102
 103/* Verbose probing on by default for debugging. */
 104#if DEBUG_PARPORT_IP32 >= 1
 105#       define DEFAULT_VERBOSE_PROBING  1
 106#else
 107#       define DEFAULT_VERBOSE_PROBING  0
 108#endif
 109
 110/* Default prefix for printk */
 111#define PPIP32 "parport_ip32: "
 112
 113/*
 114 * These are the module parameters:
 115 * @features:           bit mask of features to enable/disable
 116 *                      (all enabled by default)
 117 * @verbose_probing:    log chit-chat during initialization
 118 */
 119#define PARPORT_IP32_ENABLE_IRQ (1U << 0)
 120#define PARPORT_IP32_ENABLE_DMA (1U << 1)
 121#define PARPORT_IP32_ENABLE_SPP (1U << 2)
 122#define PARPORT_IP32_ENABLE_EPP (1U << 3)
 123#define PARPORT_IP32_ENABLE_ECP (1U << 4)
 124static unsigned int features =  ~0U;
 125static bool verbose_probing =   DEFAULT_VERBOSE_PROBING;
 126
 127/* We do not support more than one port. */
 128static struct parport *this_port;
 129
 130/* Timing constants for FIFO modes.  */
 131#define FIFO_NFAULT_TIMEOUT     100     /* milliseconds */
 132#define FIFO_POLLING_INTERVAL   50      /* microseconds */
 133
 134/*--- I/O register definitions -----------------------------------------*/
 135
 136/**
 137 * struct parport_ip32_regs - virtual addresses of parallel port registers
 138 * @data:       Data Register
 139 * @dsr:        Device Status Register
 140 * @dcr:        Device Control Register
 141 * @eppAddr:    EPP Address Register
 142 * @eppData0:   EPP Data Register 0
 143 * @eppData1:   EPP Data Register 1
 144 * @eppData2:   EPP Data Register 2
 145 * @eppData3:   EPP Data Register 3
 146 * @ecpAFifo:   ECP Address FIFO
 147 * @fifo:       General FIFO register.  The same address is used for:
 148 *              - cFifo, the Parallel Port DATA FIFO
 149 *              - ecpDFifo, the ECP Data FIFO
 150 *              - tFifo, the ECP Test FIFO
 151 * @cnfgA:      Configuration Register A
 152 * @cnfgB:      Configuration Register B
 153 * @ecr:        Extended Control Register
 154 */
 155struct parport_ip32_regs {
 156        void __iomem *data;
 157        void __iomem *dsr;
 158        void __iomem *dcr;
 159        void __iomem *eppAddr;
 160        void __iomem *eppData0;
 161        void __iomem *eppData1;
 162        void __iomem *eppData2;
 163        void __iomem *eppData3;
 164        void __iomem *ecpAFifo;
 165        void __iomem *fifo;
 166        void __iomem *cnfgA;
 167        void __iomem *cnfgB;
 168        void __iomem *ecr;
 169};
 170
 171/* Device Status Register */
 172#define DSR_nBUSY               (1U << 7)       /* PARPORT_STATUS_BUSY */
 173#define DSR_nACK                (1U << 6)       /* PARPORT_STATUS_ACK */
 174#define DSR_PERROR              (1U << 5)       /* PARPORT_STATUS_PAPEROUT */
 175#define DSR_SELECT              (1U << 4)       /* PARPORT_STATUS_SELECT */
 176#define DSR_nFAULT              (1U << 3)       /* PARPORT_STATUS_ERROR */
 177#define DSR_nPRINT              (1U << 2)       /* specific to TL16PIR552 */
 178/* #define DSR_reserved         (1U << 1) */
 179#define DSR_TIMEOUT             (1U << 0)       /* EPP timeout */
 180
 181/* Device Control Register */
 182/* #define DCR_reserved         (1U << 7) | (1U <<  6) */
 183#define DCR_DIR                 (1U << 5)       /* direction */
 184#define DCR_IRQ                 (1U << 4)       /* interrupt on nAck */
 185#define DCR_SELECT              (1U << 3)       /* PARPORT_CONTROL_SELECT */
 186#define DCR_nINIT               (1U << 2)       /* PARPORT_CONTROL_INIT */
 187#define DCR_AUTOFD              (1U << 1)       /* PARPORT_CONTROL_AUTOFD */
 188#define DCR_STROBE              (1U << 0)       /* PARPORT_CONTROL_STROBE */
 189
 190/* ECP Configuration Register A */
 191#define CNFGA_IRQ               (1U << 7)
 192#define CNFGA_ID_MASK           ((1U << 6) | (1U << 5) | (1U << 4))
 193#define CNFGA_ID_SHIFT          4
 194#define CNFGA_ID_16             (00U << CNFGA_ID_SHIFT)
 195#define CNFGA_ID_8              (01U << CNFGA_ID_SHIFT)
 196#define CNFGA_ID_32             (02U << CNFGA_ID_SHIFT)
 197/* #define CNFGA_reserved       (1U << 3) */
 198#define CNFGA_nBYTEINTRANS      (1U << 2)
 199#define CNFGA_PWORDLEFT         ((1U << 1) | (1U << 0))
 200
 201/* ECP Configuration Register B */
 202#define CNFGB_COMPRESS          (1U << 7)
 203#define CNFGB_INTRVAL           (1U << 6)
 204#define CNFGB_IRQ_MASK          ((1U << 5) | (1U << 4) | (1U << 3))
 205#define CNFGB_IRQ_SHIFT         3
 206#define CNFGB_DMA_MASK          ((1U << 2) | (1U << 1) | (1U << 0))
 207#define CNFGB_DMA_SHIFT         0
 208
 209/* Extended Control Register */
 210#define ECR_MODE_MASK           ((1U << 7) | (1U << 6) | (1U << 5))
 211#define ECR_MODE_SHIFT          5
 212#define ECR_MODE_SPP            (00U << ECR_MODE_SHIFT)
 213#define ECR_MODE_PS2            (01U << ECR_MODE_SHIFT)
 214#define ECR_MODE_PPF            (02U << ECR_MODE_SHIFT)
 215#define ECR_MODE_ECP            (03U << ECR_MODE_SHIFT)
 216#define ECR_MODE_EPP            (04U << ECR_MODE_SHIFT)
 217/* #define ECR_MODE_reserved    (05U << ECR_MODE_SHIFT) */
 218#define ECR_MODE_TST            (06U << ECR_MODE_SHIFT)
 219#define ECR_MODE_CFG            (07U << ECR_MODE_SHIFT)
 220#define ECR_nERRINTR            (1U << 4)
 221#define ECR_DMAEN               (1U << 3)
 222#define ECR_SERVINTR            (1U << 2)
 223#define ECR_F_FULL              (1U << 1)
 224#define ECR_F_EMPTY             (1U << 0)
 225
 226/*--- Private data -----------------------------------------------------*/
 227
 228/**
 229 * enum parport_ip32_irq_mode - operation mode of interrupt handler
 230 * @PARPORT_IP32_IRQ_FWD:       forward interrupt to the upper parport layer
 231 * @PARPORT_IP32_IRQ_HERE:      interrupt is handled locally
 232 */
 233enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
 234
 235/**
 236 * struct parport_ip32_private - private stuff for &struct parport
 237 * @regs:               register addresses
 238 * @dcr_cache:          cached contents of DCR
 239 * @dcr_writable:       bit mask of writable DCR bits
 240 * @pword:              number of bytes per PWord
 241 * @fifo_depth:         number of PWords that FIFO will hold
 242 * @readIntrThreshold:  minimum number of PWords we can read
 243 *                      if we get an interrupt
 244 * @writeIntrThreshold: minimum number of PWords we can write
 245 *                      if we get an interrupt
 246 * @irq_mode:           operation mode of interrupt handler for this port
 247 * @irq_complete:       mutex used to wait for an interrupt to occur
 248 */
 249struct parport_ip32_private {
 250        struct parport_ip32_regs        regs;
 251        unsigned int                    dcr_cache;
 252        unsigned int                    dcr_writable;
 253        unsigned int                    pword;
 254        unsigned int                    fifo_depth;
 255        unsigned int                    readIntrThreshold;
 256        unsigned int                    writeIntrThreshold;
 257        enum parport_ip32_irq_mode      irq_mode;
 258        struct completion               irq_complete;
 259};
 260
 261/*--- Debug code -------------------------------------------------------*/
 262
 263/*
 264 * pr_debug1 - print debug messages
 265 *
 266 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
 267 */
 268#if DEBUG_PARPORT_IP32 >= 1
 269#       define pr_debug1(...)   printk(KERN_DEBUG __VA_ARGS__)
 270#else /* DEBUG_PARPORT_IP32 < 1 */
 271#       define pr_debug1(...)   do { } while (0)
 272#endif
 273
 274/*
 275 * pr_trace, pr_trace1 - trace function calls
 276 * @p:          pointer to &struct parport
 277 * @fmt:        printk format string
 278 * @...:        parameters for format string
 279 *
 280 * Macros used to trace function calls.  The given string is formatted after
 281 * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
 282 * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
 283 * directly.
 284 */
 285#define __pr_trace(pr, p, fmt, ...)                                     \
 286        pr("%s: %s" fmt "\n",                                           \
 287           ({ const struct parport *__p = (p);                          \
 288                   __p ? __p->name : "parport_ip32"; }),                \
 289           __func__ , ##__VA_ARGS__)
 290#define pr_trace(p, fmt, ...)   __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
 291#define pr_trace1(p, fmt, ...)  __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
 292
 293/*
 294 * __pr_probe, pr_probe - print message if @verbose_probing is true
 295 * @p:          pointer to &struct parport
 296 * @fmt:        printk format string
 297 * @...:        parameters for format string
 298 *
 299 * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
 300 */
 301#define __pr_probe(...)                                                 \
 302        do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
 303#define pr_probe(p, fmt, ...)                                           \
 304        __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
 305
 306/*
 307 * parport_ip32_dump_state - print register status of parport
 308 * @p:          pointer to &struct parport
 309 * @str:        string to add in message
 310 * @show_ecp_config:    shall we dump ECP configuration registers too?
 311 *
 312 * This function is only here for debugging purpose, and should be used with
 313 * care.  Reading the parallel port registers may have undesired side effects.
 314 * Especially if @show_ecp_config is true, the parallel port is resetted.
 315 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
 316 */
 317#if DEBUG_PARPORT_IP32 >= 2
 318static void parport_ip32_dump_state(struct parport *p, char *str,
 319                                    unsigned int show_ecp_config)
 320{
 321        struct parport_ip32_private * const priv = p->physport->private_data;
 322        unsigned int i;
 323
 324        printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
 325        {
 326                static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
 327                                                     "ECP", "EPP", "???",
 328                                                     "TST", "CFG"};
 329                unsigned int ecr = readb(priv->regs.ecr);
 330                printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
 331                pr_cont(" %s",
 332                        ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
 333                if (ecr & ECR_nERRINTR)
 334                        pr_cont(",nErrIntrEn");
 335                if (ecr & ECR_DMAEN)
 336                        pr_cont(",dmaEn");
 337                if (ecr & ECR_SERVINTR)
 338                        pr_cont(",serviceIntr");
 339                if (ecr & ECR_F_FULL)
 340                        pr_cont(",f_full");
 341                if (ecr & ECR_F_EMPTY)
 342                        pr_cont(",f_empty");
 343                pr_cont("\n");
 344        }
 345        if (show_ecp_config) {
 346                unsigned int oecr, cnfgA, cnfgB;
 347                oecr = readb(priv->regs.ecr);
 348                writeb(ECR_MODE_PS2, priv->regs.ecr);
 349                writeb(ECR_MODE_CFG, priv->regs.ecr);
 350                cnfgA = readb(priv->regs.cnfgA);
 351                cnfgB = readb(priv->regs.cnfgB);
 352                writeb(ECR_MODE_PS2, priv->regs.ecr);
 353                writeb(oecr, priv->regs.ecr);
 354                printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
 355                pr_cont(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
 356                switch (cnfgA & CNFGA_ID_MASK) {
 357                case CNFGA_ID_8:
 358                        pr_cont(",8 bits");
 359                        break;
 360                case CNFGA_ID_16:
 361                        pr_cont(",16 bits");
 362                        break;
 363                case CNFGA_ID_32:
 364                        pr_cont(",32 bits");
 365                        break;
 366                default:
 367                        pr_cont(",unknown ID");
 368                        break;
 369                }
 370                if (!(cnfgA & CNFGA_nBYTEINTRANS))
 371                        pr_cont(",ByteInTrans");
 372                if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
 373                        pr_cont(",%d byte%s left",
 374                                cnfgA & CNFGA_PWORDLEFT,
 375                                ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
 376                pr_cont("\n");
 377                printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
 378                pr_cont(" irq=%u,dma=%u",
 379                        (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
 380                        (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
 381                pr_cont(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
 382                if (cnfgB & CNFGB_COMPRESS)
 383                        pr_cont(",compress");
 384                pr_cont("\n");
 385        }
 386        for (i = 0; i < 2; i++) {
 387                unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
 388                printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
 389                       i ? "soft" : "hard", dcr);
 390                pr_cont(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
 391                if (dcr & DCR_IRQ)
 392                        pr_cont(",ackIntEn");
 393                if (!(dcr & DCR_SELECT))
 394                        pr_cont(",nSelectIn");
 395                if (dcr & DCR_nINIT)
 396                        pr_cont(",nInit");
 397                if (!(dcr & DCR_AUTOFD))
 398                        pr_cont(",nAutoFD");
 399                if (!(dcr & DCR_STROBE))
 400                        pr_cont(",nStrobe");
 401                pr_cont("\n");
 402        }
 403#define sep (f++ ? ',' : ' ')
 404        {
 405                unsigned int f = 0;
 406                unsigned int dsr = readb(priv->regs.dsr);
 407                printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
 408                if (!(dsr & DSR_nBUSY))
 409                        pr_cont("%cBusy", sep);
 410                if (dsr & DSR_nACK)
 411                        pr_cont("%cnAck", sep);
 412                if (dsr & DSR_PERROR)
 413                        pr_cont("%cPError", sep);
 414                if (dsr & DSR_SELECT)
 415                        pr_cont("%cSelect", sep);
 416                if (dsr & DSR_nFAULT)
 417                        pr_cont("%cnFault", sep);
 418                if (!(dsr & DSR_nPRINT))
 419                        pr_cont("%c(Print)", sep);
 420                if (dsr & DSR_TIMEOUT)
 421                        pr_cont("%cTimeout", sep);
 422                pr_cont("\n");
 423        }
 424#undef sep
 425}
 426#else /* DEBUG_PARPORT_IP32 < 2 */
 427#define parport_ip32_dump_state(...)    do { } while (0)
 428#endif
 429
 430/*
 431 * CHECK_EXTRA_BITS - track and log extra bits
 432 * @p:          pointer to &struct parport
 433 * @b:          byte to inspect
 434 * @m:          bit mask of authorized bits
 435 *
 436 * This is used to track and log extra bits that should not be there in
 437 * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
 438 * defined if %DEBUG_PARPORT_IP32 >= 1.
 439 */
 440#if DEBUG_PARPORT_IP32 >= 1
 441#define CHECK_EXTRA_BITS(p, b, m)                                       \
 442        do {                                                            \
 443                unsigned int __b = (b), __m = (m);                      \
 444                if (__b & ~__m)                                         \
 445                        pr_debug1(PPIP32 "%s: extra bits in %s(%s): "   \
 446                                  "0x%02x/0x%02x\n",                    \
 447                                  (p)->name, __func__, #b, __b, __m);   \
 448        } while (0)
 449#else /* DEBUG_PARPORT_IP32 < 1 */
 450#define CHECK_EXTRA_BITS(...)   do { } while (0)
 451#endif
 452
 453/*--- IP32 parallel port DMA operations --------------------------------*/
 454
 455/**
 456 * struct parport_ip32_dma_data - private data needed for DMA operation
 457 * @dir:        DMA direction (from or to device)
 458 * @buf:        buffer physical address
 459 * @len:        buffer length
 460 * @next:       address of next bytes to DMA transfer
 461 * @left:       number of bytes remaining
 462 * @ctx:        next context to write (0: context_a; 1: context_b)
 463 * @irq_on:     are the DMA IRQs currently enabled?
 464 * @lock:       spinlock to protect access to the structure
 465 */
 466struct parport_ip32_dma_data {
 467        enum dma_data_direction         dir;
 468        dma_addr_t                      buf;
 469        dma_addr_t                      next;
 470        size_t                          len;
 471        size_t                          left;
 472        unsigned int                    ctx;
 473        unsigned int                    irq_on;
 474        spinlock_t                      lock;
 475};
 476static struct parport_ip32_dma_data parport_ip32_dma;
 477
 478/**
 479 * parport_ip32_dma_setup_context - setup next DMA context
 480 * @limit:      maximum data size for the context
 481 *
 482 * The alignment constraints must be verified in caller function, and the
 483 * parameter @limit must be set accordingly.
 484 */
 485static void parport_ip32_dma_setup_context(unsigned int limit)
 486{
 487        unsigned long flags;
 488
 489        spin_lock_irqsave(&parport_ip32_dma.lock, flags);
 490        if (parport_ip32_dma.left > 0) {
 491                /* Note: ctxreg is "volatile" here only because
 492                 * mace->perif.ctrl.parport.context_a and context_b are
 493                 * "volatile".  */
 494                volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
 495                        &mace->perif.ctrl.parport.context_a :
 496                        &mace->perif.ctrl.parport.context_b;
 497                u64 count;
 498                u64 ctxval;
 499                if (parport_ip32_dma.left <= limit) {
 500                        count = parport_ip32_dma.left;
 501                        ctxval = MACEPAR_CONTEXT_LASTFLAG;
 502                } else {
 503                        count = limit;
 504                        ctxval = 0;
 505                }
 506
 507                pr_trace(NULL,
 508                         "(%u): 0x%04x:0x%04x, %u -> %u%s",
 509                         limit,
 510                         (unsigned int)parport_ip32_dma.buf,
 511                         (unsigned int)parport_ip32_dma.next,
 512                         (unsigned int)count,
 513                         parport_ip32_dma.ctx, ctxval ? "*" : "");
 514
 515                ctxval |= parport_ip32_dma.next &
 516                        MACEPAR_CONTEXT_BASEADDR_MASK;
 517                ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
 518                        MACEPAR_CONTEXT_DATALEN_MASK;
 519                writeq(ctxval, ctxreg);
 520                parport_ip32_dma.next += count;
 521                parport_ip32_dma.left -= count;
 522                parport_ip32_dma.ctx ^= 1U;
 523        }
 524        /* If there is nothing more to send, disable IRQs to avoid to
 525         * face an IRQ storm which can lock the machine.  Disable them
 526         * only once. */
 527        if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
 528                pr_debug(PPIP32 "IRQ off (ctx)\n");
 529                disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
 530                disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
 531                parport_ip32_dma.irq_on = 0;
 532        }
 533        spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
 534}
 535
 536/**
 537 * parport_ip32_dma_interrupt - DMA interrupt handler
 538 * @irq:        interrupt number
 539 * @dev_id:     unused
 540 */
 541static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
 542{
 543        if (parport_ip32_dma.left)
 544                pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
 545        parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
 546        return IRQ_HANDLED;
 547}
 548
 549#if DEBUG_PARPORT_IP32
 550static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
 551{
 552        pr_trace1(NULL, "(%d)", irq);
 553        return IRQ_HANDLED;
 554}
 555#endif
 556
 557/**
 558 * parport_ip32_dma_start - begins a DMA transfer
 559 * @p:          partport to work on
 560 * @dir:        DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
 561 * @addr:       pointer to data buffer
 562 * @count:      buffer size
 563 *
 564 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
 565 * correctly balanced.
 566 */
 567static int parport_ip32_dma_start(struct parport *p,
 568                enum dma_data_direction dir, void *addr, size_t count)
 569{
 570        unsigned int limit;
 571        u64 ctrl;
 572
 573        pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
 574
 575        /* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
 576         * be 64 bytes aligned. */
 577        BUG_ON(dir != DMA_TO_DEVICE);
 578
 579        /* Reset DMA controller */
 580        ctrl = MACEPAR_CTLSTAT_RESET;
 581        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 582
 583        /* DMA IRQs should normally be enabled */
 584        if (!parport_ip32_dma.irq_on) {
 585                WARN_ON(1);
 586                enable_irq(MACEISA_PAR_CTXA_IRQ);
 587                enable_irq(MACEISA_PAR_CTXB_IRQ);
 588                parport_ip32_dma.irq_on = 1;
 589        }
 590
 591        /* Prepare DMA pointers */
 592        parport_ip32_dma.dir = dir;
 593        parport_ip32_dma.buf = dma_map_single(&p->bus_dev, addr, count, dir);
 594        parport_ip32_dma.len = count;
 595        parport_ip32_dma.next = parport_ip32_dma.buf;
 596        parport_ip32_dma.left = parport_ip32_dma.len;
 597        parport_ip32_dma.ctx = 0;
 598
 599        /* Setup DMA direction and first two contexts */
 600        ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
 601        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 602        /* Single transfer should not cross a 4K page boundary */
 603        limit = MACEPAR_CONTEXT_DATA_BOUND -
 604                (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
 605        parport_ip32_dma_setup_context(limit);
 606        parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
 607
 608        /* Real start of DMA transfer */
 609        ctrl |= MACEPAR_CTLSTAT_ENABLE;
 610        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 611
 612        return 0;
 613}
 614
 615/**
 616 * parport_ip32_dma_stop - ends a running DMA transfer
 617 * @p:          partport to work on
 618 *
 619 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
 620 * correctly balanced.
 621 */
 622static void parport_ip32_dma_stop(struct parport *p)
 623{
 624        u64 ctx_a;
 625        u64 ctx_b;
 626        u64 ctrl;
 627        u64 diag;
 628        size_t res[2];  /* {[0] = res_a, [1] = res_b} */
 629
 630        pr_trace(NULL, "()");
 631
 632        /* Disable IRQs */
 633        spin_lock_irq(&parport_ip32_dma.lock);
 634        if (parport_ip32_dma.irq_on) {
 635                pr_debug(PPIP32 "IRQ off (stop)\n");
 636                disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
 637                disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
 638                parport_ip32_dma.irq_on = 0;
 639        }
 640        spin_unlock_irq(&parport_ip32_dma.lock);
 641        /* Force IRQ synchronization, even if the IRQs were disabled
 642         * elsewhere. */
 643        synchronize_irq(MACEISA_PAR_CTXA_IRQ);
 644        synchronize_irq(MACEISA_PAR_CTXB_IRQ);
 645
 646        /* Stop DMA transfer */
 647        ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
 648        ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
 649        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 650
 651        /* Adjust residue (parport_ip32_dma.left) */
 652        ctx_a = readq(&mace->perif.ctrl.parport.context_a);
 653        ctx_b = readq(&mace->perif.ctrl.parport.context_b);
 654        ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
 655        diag = readq(&mace->perif.ctrl.parport.diagnostic);
 656        res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
 657                1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
 658                     MACEPAR_CONTEXT_DATALEN_SHIFT) :
 659                0;
 660        res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
 661                1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
 662                     MACEPAR_CONTEXT_DATALEN_SHIFT) :
 663                0;
 664        if (diag & MACEPAR_DIAG_DMACTIVE)
 665                res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
 666                        1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
 667                             MACEPAR_DIAG_CTRSHIFT);
 668        parport_ip32_dma.left += res[0] + res[1];
 669
 670        /* Reset DMA controller, and re-enable IRQs */
 671        ctrl = MACEPAR_CTLSTAT_RESET;
 672        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 673        pr_debug(PPIP32 "IRQ on (stop)\n");
 674        enable_irq(MACEISA_PAR_CTXA_IRQ);
 675        enable_irq(MACEISA_PAR_CTXB_IRQ);
 676        parport_ip32_dma.irq_on = 1;
 677
 678        dma_unmap_single(&p->bus_dev, parport_ip32_dma.buf,
 679                         parport_ip32_dma.len, parport_ip32_dma.dir);
 680}
 681
 682/**
 683 * parport_ip32_dma_get_residue - get residue from last DMA transfer
 684 *
 685 * Returns the number of bytes remaining from last DMA transfer.
 686 */
 687static inline size_t parport_ip32_dma_get_residue(void)
 688{
 689        return parport_ip32_dma.left;
 690}
 691
 692/**
 693 * parport_ip32_dma_register - initialize DMA engine
 694 *
 695 * Returns zero for success.
 696 */
 697static int parport_ip32_dma_register(void)
 698{
 699        int err;
 700
 701        spin_lock_init(&parport_ip32_dma.lock);
 702        parport_ip32_dma.irq_on = 1;
 703
 704        /* Reset DMA controller */
 705        writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
 706
 707        /* Request IRQs */
 708        err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
 709                          0, "parport_ip32", NULL);
 710        if (err)
 711                goto fail_a;
 712        err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
 713                          0, "parport_ip32", NULL);
 714        if (err)
 715                goto fail_b;
 716#if DEBUG_PARPORT_IP32
 717        /* FIXME - what is this IRQ for? */
 718        err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
 719                          0, "parport_ip32", NULL);
 720        if (err)
 721                goto fail_merr;
 722#endif
 723        return 0;
 724
 725#if DEBUG_PARPORT_IP32
 726fail_merr:
 727        free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
 728#endif
 729fail_b:
 730        free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
 731fail_a:
 732        return err;
 733}
 734
 735/**
 736 * parport_ip32_dma_unregister - release and free resources for DMA engine
 737 */
 738static void parport_ip32_dma_unregister(void)
 739{
 740#if DEBUG_PARPORT_IP32
 741        free_irq(MACEISA_PAR_MERR_IRQ, NULL);
 742#endif
 743        free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
 744        free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
 745}
 746
 747/*--- Interrupt handlers and associates --------------------------------*/
 748
 749/**
 750 * parport_ip32_wakeup - wakes up code waiting for an interrupt
 751 * @p:          pointer to &struct parport
 752 */
 753static inline void parport_ip32_wakeup(struct parport *p)
 754{
 755        struct parport_ip32_private * const priv = p->physport->private_data;
 756        complete(&priv->irq_complete);
 757}
 758
 759/**
 760 * parport_ip32_interrupt - interrupt handler
 761 * @irq:        interrupt number
 762 * @dev_id:     pointer to &struct parport
 763 *
 764 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
 765 * %PARPORT_IP32_IRQ_FWD.
 766 */
 767static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
 768{
 769        struct parport * const p = dev_id;
 770        struct parport_ip32_private * const priv = p->physport->private_data;
 771        enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
 772
 773        switch (irq_mode) {
 774        case PARPORT_IP32_IRQ_FWD:
 775                return parport_irq_handler(irq, dev_id);
 776
 777        case PARPORT_IP32_IRQ_HERE:
 778                parport_ip32_wakeup(p);
 779                break;
 780        }
 781
 782        return IRQ_HANDLED;
 783}
 784
 785/*--- Some utility function to manipulate ECR register -----------------*/
 786
 787/**
 788 * parport_ip32_read_econtrol - read contents of the ECR register
 789 * @p:          pointer to &struct parport
 790 */
 791static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
 792{
 793        struct parport_ip32_private * const priv = p->physport->private_data;
 794        return readb(priv->regs.ecr);
 795}
 796
 797/**
 798 * parport_ip32_write_econtrol - write new contents to the ECR register
 799 * @p:          pointer to &struct parport
 800 * @c:          new value to write
 801 */
 802static inline void parport_ip32_write_econtrol(struct parport *p,
 803                                               unsigned int c)
 804{
 805        struct parport_ip32_private * const priv = p->physport->private_data;
 806        writeb(c, priv->regs.ecr);
 807}
 808
 809/**
 810 * parport_ip32_frob_econtrol - change bits from the ECR register
 811 * @p:          pointer to &struct parport
 812 * @mask:       bit mask of bits to change
 813 * @val:        new value for changed bits
 814 *
 815 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
 816 * in @val, and write the result to the ECR.
 817 */
 818static inline void parport_ip32_frob_econtrol(struct parport *p,
 819                                              unsigned int mask,
 820                                              unsigned int val)
 821{
 822        unsigned int c;
 823        c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
 824        parport_ip32_write_econtrol(p, c);
 825}
 826
 827/**
 828 * parport_ip32_set_mode - change mode of ECP port
 829 * @p:          pointer to &struct parport
 830 * @mode:       new mode to write in ECR
 831 *
 832 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
 833 * mode @mode.  Go through PS2 mode if needed.
 834 */
 835static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
 836{
 837        unsigned int omode;
 838
 839        mode &= ECR_MODE_MASK;
 840        omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
 841
 842        if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
 843              || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
 844                /* We have to go through PS2 mode */
 845                unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
 846                parport_ip32_write_econtrol(p, ecr);
 847        }
 848        parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
 849}
 850
 851/*--- Basic functions needed for parport -------------------------------*/
 852
 853/**
 854 * parport_ip32_read_data - return current contents of the DATA register
 855 * @p:          pointer to &struct parport
 856 */
 857static inline unsigned char parport_ip32_read_data(struct parport *p)
 858{
 859        struct parport_ip32_private * const priv = p->physport->private_data;
 860        return readb(priv->regs.data);
 861}
 862
 863/**
 864 * parport_ip32_write_data - set new contents for the DATA register
 865 * @p:          pointer to &struct parport
 866 * @d:          new value to write
 867 */
 868static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
 869{
 870        struct parport_ip32_private * const priv = p->physport->private_data;
 871        writeb(d, priv->regs.data);
 872}
 873
 874/**
 875 * parport_ip32_read_status - return current contents of the DSR register
 876 * @p:          pointer to &struct parport
 877 */
 878static inline unsigned char parport_ip32_read_status(struct parport *p)
 879{
 880        struct parport_ip32_private * const priv = p->physport->private_data;
 881        return readb(priv->regs.dsr);
 882}
 883
 884/**
 885 * __parport_ip32_read_control - return cached contents of the DCR register
 886 * @p:          pointer to &struct parport
 887 */
 888static inline unsigned int __parport_ip32_read_control(struct parport *p)
 889{
 890        struct parport_ip32_private * const priv = p->physport->private_data;
 891        return priv->dcr_cache; /* use soft copy */
 892}
 893
 894/**
 895 * __parport_ip32_write_control - set new contents for the DCR register
 896 * @p:          pointer to &struct parport
 897 * @c:          new value to write
 898 */
 899static inline void __parport_ip32_write_control(struct parport *p,
 900                                                unsigned int c)
 901{
 902        struct parport_ip32_private * const priv = p->physport->private_data;
 903        CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
 904        c &= priv->dcr_writable; /* only writable bits */
 905        writeb(c, priv->regs.dcr);
 906        priv->dcr_cache = c;            /* update soft copy */
 907}
 908
 909/**
 910 * __parport_ip32_frob_control - change bits from the DCR register
 911 * @p:          pointer to &struct parport
 912 * @mask:       bit mask of bits to change
 913 * @val:        new value for changed bits
 914 *
 915 * This is equivalent to read from the DCR, mask out the bits in @mask,
 916 * exclusive-or with the bits in @val, and write the result to the DCR.
 917 * Actually, the cached contents of the DCR is used.
 918 */
 919static inline void __parport_ip32_frob_control(struct parport *p,
 920                                               unsigned int mask,
 921                                               unsigned int val)
 922{
 923        unsigned int c;
 924        c = (__parport_ip32_read_control(p) & ~mask) ^ val;
 925        __parport_ip32_write_control(p, c);
 926}
 927
 928/**
 929 * parport_ip32_read_control - return cached contents of the DCR register
 930 * @p:          pointer to &struct parport
 931 *
 932 * The return value is masked so as to only return the value of %DCR_STROBE,
 933 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 934 */
 935static inline unsigned char parport_ip32_read_control(struct parport *p)
 936{
 937        const unsigned int rm =
 938                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 939        return __parport_ip32_read_control(p) & rm;
 940}
 941
 942/**
 943 * parport_ip32_write_control - set new contents for the DCR register
 944 * @p:          pointer to &struct parport
 945 * @c:          new value to write
 946 *
 947 * The value is masked so as to only change the value of %DCR_STROBE,
 948 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 949 */
 950static inline void parport_ip32_write_control(struct parport *p,
 951                                              unsigned char c)
 952{
 953        const unsigned int wm =
 954                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 955        CHECK_EXTRA_BITS(p, c, wm);
 956        __parport_ip32_frob_control(p, wm, c & wm);
 957}
 958
 959/**
 960 * parport_ip32_frob_control - change bits from the DCR register
 961 * @p:          pointer to &struct parport
 962 * @mask:       bit mask of bits to change
 963 * @val:        new value for changed bits
 964 *
 965 * This differs from __parport_ip32_frob_control() in that it only allows to
 966 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 967 */
 968static inline unsigned char parport_ip32_frob_control(struct parport *p,
 969                                                      unsigned char mask,
 970                                                      unsigned char val)
 971{
 972        const unsigned int wm =
 973                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 974        CHECK_EXTRA_BITS(p, mask, wm);
 975        CHECK_EXTRA_BITS(p, val, wm);
 976        __parport_ip32_frob_control(p, mask & wm, val & wm);
 977        return parport_ip32_read_control(p);
 978}
 979
 980/**
 981 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
 982 * @p:          pointer to &struct parport
 983 */
 984static inline void parport_ip32_disable_irq(struct parport *p)
 985{
 986        __parport_ip32_frob_control(p, DCR_IRQ, 0);
 987}
 988
 989/**
 990 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
 991 * @p:          pointer to &struct parport
 992 */
 993static inline void parport_ip32_enable_irq(struct parport *p)
 994{
 995        __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
 996}
 997
 998/**
 999 * parport_ip32_data_forward - enable host-to-peripheral communications
1000 * @p:          pointer to &struct parport
1001 *
1002 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1003 */
1004static inline void parport_ip32_data_forward(struct parport *p)
1005{
1006        __parport_ip32_frob_control(p, DCR_DIR, 0);
1007}
1008
1009/**
1010 * parport_ip32_data_reverse - enable peripheral-to-host communications
1011 * @p:          pointer to &struct parport
1012 *
1013 * Place the data bus in a high impedance state, if @p->modes has the
1014 * PARPORT_MODE_TRISTATE bit set.
1015 */
1016static inline void parport_ip32_data_reverse(struct parport *p)
1017{
1018        __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1019}
1020
1021/**
1022 * parport_ip32_init_state - for core parport code
1023 * @dev:        pointer to &struct pardevice
1024 * @s:          pointer to &struct parport_state to initialize
1025 */
1026static void parport_ip32_init_state(struct pardevice *dev,
1027                                    struct parport_state *s)
1028{
1029        s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1030        s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1031}
1032
1033/**
1034 * parport_ip32_save_state - for core parport code
1035 * @p:          pointer to &struct parport
1036 * @s:          pointer to &struct parport_state to save state to
1037 */
1038static void parport_ip32_save_state(struct parport *p,
1039                                    struct parport_state *s)
1040{
1041        s->u.ip32.dcr = __parport_ip32_read_control(p);
1042        s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1043}
1044
1045/**
1046 * parport_ip32_restore_state - for core parport code
1047 * @p:          pointer to &struct parport
1048 * @s:          pointer to &struct parport_state to restore state from
1049 */
1050static void parport_ip32_restore_state(struct parport *p,
1051                                       struct parport_state *s)
1052{
1053        parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1054        parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1055        __parport_ip32_write_control(p, s->u.ip32.dcr);
1056}
1057
1058/*--- EPP mode functions -----------------------------------------------*/
1059
1060/**
1061 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1062 * @p:          pointer to &struct parport
1063 *
1064 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1065 */
1066static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1067{
1068        struct parport_ip32_private * const priv = p->physport->private_data;
1069        unsigned int cleared;
1070
1071        if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1072                cleared = 1;
1073        else {
1074                unsigned int r;
1075                /* To clear timeout some chips require double read */
1076                parport_ip32_read_status(p);
1077                r = parport_ip32_read_status(p);
1078                /* Some reset by writing 1 */
1079                writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1080                /* Others by writing 0 */
1081                writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1082
1083                r = parport_ip32_read_status(p);
1084                cleared = !(r & DSR_TIMEOUT);
1085        }
1086
1087        pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1088        return cleared;
1089}
1090
1091/**
1092 * parport_ip32_epp_read - generic EPP read function
1093 * @eppreg:     I/O register to read from
1094 * @p:          pointer to &struct parport
1095 * @buf:        buffer to store read data
1096 * @len:        length of buffer @buf
1097 * @flags:      may be PARPORT_EPP_FAST
1098 */
1099static size_t parport_ip32_epp_read(void __iomem *eppreg,
1100                                    struct parport *p, void *buf,
1101                                    size_t len, int flags)
1102{
1103        struct parport_ip32_private * const priv = p->physport->private_data;
1104        size_t got;
1105        parport_ip32_set_mode(p, ECR_MODE_EPP);
1106        parport_ip32_data_reverse(p);
1107        parport_ip32_write_control(p, DCR_nINIT);
1108        if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1109                readsb(eppreg, buf, len);
1110                if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1111                        parport_ip32_clear_epp_timeout(p);
1112                        return -EIO;
1113                }
1114                got = len;
1115        } else {
1116                u8 *bufp = buf;
1117                for (got = 0; got < len; got++) {
1118                        *bufp++ = readb(eppreg);
1119                        if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1120                                parport_ip32_clear_epp_timeout(p);
1121                                break;
1122                        }
1123                }
1124        }
1125        parport_ip32_data_forward(p);
1126        parport_ip32_set_mode(p, ECR_MODE_PS2);
1127        return got;
1128}
1129
1130/**
1131 * parport_ip32_epp_write - generic EPP write function
1132 * @eppreg:     I/O register to write to
1133 * @p:          pointer to &struct parport
1134 * @buf:        buffer of data to write
1135 * @len:        length of buffer @buf
1136 * @flags:      may be PARPORT_EPP_FAST
1137 */
1138static size_t parport_ip32_epp_write(void __iomem *eppreg,
1139                                     struct parport *p, const void *buf,
1140                                     size_t len, int flags)
1141{
1142        struct parport_ip32_private * const priv = p->physport->private_data;
1143        size_t written;
1144        parport_ip32_set_mode(p, ECR_MODE_EPP);
1145        parport_ip32_data_forward(p);
1146        parport_ip32_write_control(p, DCR_nINIT);
1147        if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1148                writesb(eppreg, buf, len);
1149                if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1150                        parport_ip32_clear_epp_timeout(p);
1151                        return -EIO;
1152                }
1153                written = len;
1154        } else {
1155                const u8 *bufp = buf;
1156                for (written = 0; written < len; written++) {
1157                        writeb(*bufp++, eppreg);
1158                        if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1159                                parport_ip32_clear_epp_timeout(p);
1160                                break;
1161                        }
1162                }
1163        }
1164        parport_ip32_set_mode(p, ECR_MODE_PS2);
1165        return written;
1166}
1167
1168/**
1169 * parport_ip32_epp_read_data - read a block of data in EPP mode
1170 * @p:          pointer to &struct parport
1171 * @buf:        buffer to store read data
1172 * @len:        length of buffer @buf
1173 * @flags:      may be PARPORT_EPP_FAST
1174 */
1175static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1176                                         size_t len, int flags)
1177{
1178        struct parport_ip32_private * const priv = p->physport->private_data;
1179        return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1180}
1181
1182/**
1183 * parport_ip32_epp_write_data - write a block of data in EPP mode
1184 * @p:          pointer to &struct parport
1185 * @buf:        buffer of data to write
1186 * @len:        length of buffer @buf
1187 * @flags:      may be PARPORT_EPP_FAST
1188 */
1189static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1190                                          size_t len, int flags)
1191{
1192        struct parport_ip32_private * const priv = p->physport->private_data;
1193        return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1194}
1195
1196/**
1197 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1198 * @p:          pointer to &struct parport
1199 * @buf:        buffer to store read data
1200 * @len:        length of buffer @buf
1201 * @flags:      may be PARPORT_EPP_FAST
1202 */
1203static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1204                                         size_t len, int flags)
1205{
1206        struct parport_ip32_private * const priv = p->physport->private_data;
1207        return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1208}
1209
1210/**
1211 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1212 * @p:          pointer to &struct parport
1213 * @buf:        buffer of data to write
1214 * @len:        length of buffer @buf
1215 * @flags:      may be PARPORT_EPP_FAST
1216 */
1217static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1218                                          size_t len, int flags)
1219{
1220        struct parport_ip32_private * const priv = p->physport->private_data;
1221        return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1222}
1223
1224/*--- ECP mode functions (FIFO) ----------------------------------------*/
1225
1226/**
1227 * parport_ip32_fifo_wait_break - check if the waiting function should return
1228 * @p:          pointer to &struct parport
1229 * @expire:     timeout expiring date, in jiffies
1230 *
1231 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1232 * immediately or not.  The break conditions are:
1233 *      - expired timeout;
1234 *      - a pending signal;
1235 *      - nFault asserted low.
1236 * This function also calls cond_resched().
1237 */
1238static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1239                                                 unsigned long expire)
1240{
1241        cond_resched();
1242        if (time_after(jiffies, expire)) {
1243                pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1244                return 1;
1245        }
1246        if (signal_pending(current)) {
1247                pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1248                return 1;
1249        }
1250        if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1251                pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1252                return 1;
1253        }
1254        return 0;
1255}
1256
1257/**
1258 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1259 * @p:          pointer to &struct parport
1260 *
1261 * Returns the number of bytes that can safely be written in the FIFO.  A
1262 * return value of zero means that the calling function should terminate as
1263 * fast as possible.
1264 */
1265static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1266{
1267        struct parport_ip32_private * const priv = p->physport->private_data;
1268        struct parport * const physport = p->physport;
1269        unsigned long expire;
1270        unsigned int count;
1271        unsigned int ecr;
1272
1273        expire = jiffies + physport->cad->timeout;
1274        count = 0;
1275        while (1) {
1276                if (parport_ip32_fifo_wait_break(p, expire))
1277                        break;
1278
1279                /* Check FIFO state.  We do nothing when the FIFO is nor full,
1280                 * nor empty.  It appears that the FIFO full bit is not always
1281                 * reliable, the FIFO state is sometimes wrongly reported, and
1282                 * the chip gets confused if we give it another byte. */
1283                ecr = parport_ip32_read_econtrol(p);
1284                if (ecr & ECR_F_EMPTY) {
1285                        /* FIFO is empty, fill it up */
1286                        count = priv->fifo_depth;
1287                        break;
1288                }
1289
1290                /* Wait a moment... */
1291                udelay(FIFO_POLLING_INTERVAL);
1292        } /* while (1) */
1293
1294        return count;
1295}
1296
1297/**
1298 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1299 * @p:          pointer to &struct parport
1300 *
1301 * Returns the number of bytes that can safely be written in the FIFO.  A
1302 * return value of zero means that the calling function should terminate as
1303 * fast as possible.
1304 */
1305static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1306{
1307        static unsigned int lost_interrupt = 0;
1308        struct parport_ip32_private * const priv = p->physport->private_data;
1309        struct parport * const physport = p->physport;
1310        unsigned long nfault_timeout;
1311        unsigned long expire;
1312        unsigned int count;
1313        unsigned int ecr;
1314
1315        nfault_timeout = min((unsigned long)physport->cad->timeout,
1316                             msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1317        expire = jiffies + physport->cad->timeout;
1318        count = 0;
1319        while (1) {
1320                if (parport_ip32_fifo_wait_break(p, expire))
1321                        break;
1322
1323                /* Initialize mutex used to take interrupts into account */
1324                reinit_completion(&priv->irq_complete);
1325
1326                /* Enable serviceIntr */
1327                parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1328
1329                /* Enabling serviceIntr while the FIFO is empty does not
1330                 * always generate an interrupt, so check for emptiness
1331                 * now. */
1332                ecr = parport_ip32_read_econtrol(p);
1333                if (!(ecr & ECR_F_EMPTY)) {
1334                        /* FIFO is not empty: wait for an interrupt or a
1335                         * timeout to occur */
1336                        wait_for_completion_interruptible_timeout(
1337                                &priv->irq_complete, nfault_timeout);
1338                        ecr = parport_ip32_read_econtrol(p);
1339                        if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1340                            && !lost_interrupt) {
1341                                pr_warn(PPIP32 "%s: lost interrupt in %s\n",
1342                                        p->name, __func__);
1343                                lost_interrupt = 1;
1344                        }
1345                }
1346
1347                /* Disable serviceIntr */
1348                parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1349
1350                /* Check FIFO state */
1351                if (ecr & ECR_F_EMPTY) {
1352                        /* FIFO is empty, fill it up */
1353                        count = priv->fifo_depth;
1354                        break;
1355                } else if (ecr & ECR_SERVINTR) {
1356                        /* FIFO is not empty, but we know that can safely push
1357                         * writeIntrThreshold bytes into it */
1358                        count = priv->writeIntrThreshold;
1359                        break;
1360                }
1361                /* FIFO is not empty, and we did not get any interrupt.
1362                 * Either it's time to check for nFault, or a signal is
1363                 * pending.  This is verified in
1364                 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1365        } /* while (1) */
1366
1367        return count;
1368}
1369
1370/**
1371 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1372 * @p:          pointer to &struct parport
1373 * @buf:        buffer of data to write
1374 * @len:        length of buffer @buf
1375 *
1376 * Uses PIO to write the contents of the buffer @buf into the parallel port
1377 * FIFO.  Returns the number of bytes that were actually written.  It can work
1378 * with or without the help of interrupts.  The parallel port must be
1379 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1380 */
1381static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1382                                                const void *buf, size_t len)
1383{
1384        struct parport_ip32_private * const priv = p->physport->private_data;
1385        const u8 *bufp = buf;
1386        size_t left = len;
1387
1388        priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1389
1390        while (left > 0) {
1391                unsigned int count;
1392
1393                count = (p->irq == PARPORT_IRQ_NONE) ?
1394                        parport_ip32_fwp_wait_polling(p) :
1395                        parport_ip32_fwp_wait_interrupt(p);
1396                if (count == 0)
1397                        break;  /* Transmission should be stopped */
1398                if (count > left)
1399                        count = left;
1400                if (count == 1) {
1401                        writeb(*bufp, priv->regs.fifo);
1402                        bufp++, left--;
1403                } else {
1404                        writesb(priv->regs.fifo, bufp, count);
1405                        bufp += count, left -= count;
1406                }
1407        }
1408
1409        priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1410
1411        return len - left;
1412}
1413
1414/**
1415 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1416 * @p:          pointer to &struct parport
1417 * @buf:        buffer of data to write
1418 * @len:        length of buffer @buf
1419 *
1420 * Uses DMA to write the contents of the buffer @buf into the parallel port
1421 * FIFO.  Returns the number of bytes that were actually written.  The
1422 * parallel port must be correctly initialized before calling
1423 * parport_ip32_fifo_write_block_dma().
1424 */
1425static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1426                                                const void *buf, size_t len)
1427{
1428        struct parport_ip32_private * const priv = p->physport->private_data;
1429        struct parport * const physport = p->physport;
1430        unsigned long nfault_timeout;
1431        unsigned long expire;
1432        size_t written;
1433        unsigned int ecr;
1434
1435        priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1436
1437        parport_ip32_dma_start(p, DMA_TO_DEVICE, (void *)buf, len);
1438        reinit_completion(&priv->irq_complete);
1439        parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1440
1441        nfault_timeout = min((unsigned long)physport->cad->timeout,
1442                             msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1443        expire = jiffies + physport->cad->timeout;
1444        while (1) {
1445                if (parport_ip32_fifo_wait_break(p, expire))
1446                        break;
1447                wait_for_completion_interruptible_timeout(&priv->irq_complete,
1448                                                          nfault_timeout);
1449                ecr = parport_ip32_read_econtrol(p);
1450                if (ecr & ECR_SERVINTR)
1451                        break;  /* DMA transfer just finished */
1452        }
1453        parport_ip32_dma_stop(p);
1454        written = len - parport_ip32_dma_get_residue();
1455
1456        priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1457
1458        return written;
1459}
1460
1461/**
1462 * parport_ip32_fifo_write_block - write a block of data
1463 * @p:          pointer to &struct parport
1464 * @buf:        buffer of data to write
1465 * @len:        length of buffer @buf
1466 *
1467 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1468 * p FIFO.  Returns the number of bytes that were actually written.
1469 */
1470static size_t parport_ip32_fifo_write_block(struct parport *p,
1471                                            const void *buf, size_t len)
1472{
1473        size_t written = 0;
1474        if (len)
1475                /* FIXME - Maybe some threshold value should be set for @len
1476                 * under which we revert to PIO mode? */
1477                written = (p->modes & PARPORT_MODE_DMA) ?
1478                        parport_ip32_fifo_write_block_dma(p, buf, len) :
1479                        parport_ip32_fifo_write_block_pio(p, buf, len);
1480        return written;
1481}
1482
1483/**
1484 * parport_ip32_drain_fifo - wait for FIFO to empty
1485 * @p:          pointer to &struct parport
1486 * @timeout:    timeout, in jiffies
1487 *
1488 * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1489 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1490 */
1491static unsigned int parport_ip32_drain_fifo(struct parport *p,
1492                                            unsigned long timeout)
1493{
1494        unsigned long expire = jiffies + timeout;
1495        unsigned int polling_interval;
1496        unsigned int counter;
1497
1498        /* Busy wait for approx. 200us */
1499        for (counter = 0; counter < 40; counter++) {
1500                if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1501                        break;
1502                if (time_after(jiffies, expire))
1503                        break;
1504                if (signal_pending(current))
1505                        break;
1506                udelay(5);
1507        }
1508        /* Poll slowly.  Polling interval starts with 1 millisecond, and is
1509         * increased exponentially until 128.  */
1510        polling_interval = 1; /* msecs */
1511        while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1512                if (time_after_eq(jiffies, expire))
1513                        break;
1514                msleep_interruptible(polling_interval);
1515                if (signal_pending(current))
1516                        break;
1517                if (polling_interval < 128)
1518                        polling_interval *= 2;
1519        }
1520
1521        return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1522}
1523
1524/**
1525 * parport_ip32_get_fifo_residue - reset FIFO
1526 * @p:          pointer to &struct parport
1527 * @mode:       current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1528 *
1529 * This function resets FIFO, and returns the number of bytes remaining in it.
1530 */
1531static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1532                                                  unsigned int mode)
1533{
1534        struct parport_ip32_private * const priv = p->physport->private_data;
1535        unsigned int residue;
1536        unsigned int cnfga;
1537
1538        /* FIXME - We are missing one byte if the printer is off-line.  I
1539         * don't know how to detect this.  It looks that the full bit is not
1540         * always reliable.  For the moment, the problem is avoided in most
1541         * cases by testing for BUSY in parport_ip32_compat_write_data().
1542         */
1543        if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1544                residue = 0;
1545        else {
1546                pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1547
1548                /* Stop all transfers.
1549                 *
1550                 * Microsoft's document instructs to drive DCR_STROBE to 0,
1551                 * but it doesn't work (at least in Compatibility mode, not
1552                 * tested in ECP mode).  Switching directly to Test mode (as
1553                 * in parport_pc) is not an option: it does confuse the port,
1554                 * ECP service interrupts are no more working after that.  A
1555                 * hard reset is then needed to revert to a sane state.
1556                 *
1557                 * Let's hope that the FIFO is really stuck and that the
1558                 * peripheral doesn't wake up now.
1559                 */
1560                parport_ip32_frob_control(p, DCR_STROBE, 0);
1561
1562                /* Fill up FIFO */
1563                for (residue = priv->fifo_depth; residue > 0; residue--) {
1564                        if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1565                                break;
1566                        writeb(0x00, priv->regs.fifo);
1567                }
1568        }
1569        if (residue)
1570                pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1571                          p->name, residue,
1572                          (residue == 1) ? " was" : "s were");
1573
1574        /* Now reset the FIFO */
1575        parport_ip32_set_mode(p, ECR_MODE_PS2);
1576
1577        /* Host recovery for ECP mode */
1578        if (mode == ECR_MODE_ECP) {
1579                parport_ip32_data_reverse(p);
1580                parport_ip32_frob_control(p, DCR_nINIT, 0);
1581                if (parport_wait_peripheral(p, DSR_PERROR, 0))
1582                        pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1583                                  p->name, __func__);
1584                parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1585                parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1586                if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1587                        pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1588                                  p->name, __func__);
1589        }
1590
1591        /* Adjust residue if needed */
1592        parport_ip32_set_mode(p, ECR_MODE_CFG);
1593        cnfga = readb(priv->regs.cnfgA);
1594        if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1595                pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1596                          p->name, cnfga);
1597                pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1598                          p->name);
1599                residue++;
1600        }
1601
1602        /* Don't care about partial PWords since we do not support
1603         * PWord != 1 byte. */
1604
1605        /* Back to forward PS2 mode. */
1606        parport_ip32_set_mode(p, ECR_MODE_PS2);
1607        parport_ip32_data_forward(p);
1608
1609        return residue;
1610}
1611
1612/**
1613 * parport_ip32_compat_write_data - write a block of data in SPP mode
1614 * @p:          pointer to &struct parport
1615 * @buf:        buffer of data to write
1616 * @len:        length of buffer @buf
1617 * @flags:      ignored
1618 */
1619static size_t parport_ip32_compat_write_data(struct parport *p,
1620                                             const void *buf, size_t len,
1621                                             int flags)
1622{
1623        static unsigned int ready_before = 1;
1624        struct parport_ip32_private * const priv = p->physport->private_data;
1625        struct parport * const physport = p->physport;
1626        size_t written = 0;
1627
1628        /* Special case: a timeout of zero means we cannot call schedule().
1629         * Also if O_NONBLOCK is set then use the default implementation. */
1630        if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1631                return parport_ieee1284_write_compat(p, buf, len, flags);
1632
1633        /* Reset FIFO, go in forward mode, and disable ackIntEn */
1634        parport_ip32_set_mode(p, ECR_MODE_PS2);
1635        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1636        parport_ip32_data_forward(p);
1637        parport_ip32_disable_irq(p);
1638        parport_ip32_set_mode(p, ECR_MODE_PPF);
1639        physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1640
1641        /* Wait for peripheral to become ready */
1642        if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1643                                       DSR_nBUSY | DSR_nFAULT)) {
1644                /* Avoid to flood the logs */
1645                if (ready_before)
1646                        pr_info(PPIP32 "%s: not ready in %s\n",
1647                                p->name, __func__);
1648                ready_before = 0;
1649                goto stop;
1650        }
1651        ready_before = 1;
1652
1653        written = parport_ip32_fifo_write_block(p, buf, len);
1654
1655        /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1656        parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1657
1658        /* Check for a potential residue */
1659        written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1660
1661        /* Then, wait for BUSY to get low. */
1662        if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1663                printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1664                       p->name, __func__);
1665
1666stop:
1667        /* Reset FIFO */
1668        parport_ip32_set_mode(p, ECR_MODE_PS2);
1669        physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1670
1671        return written;
1672}
1673
1674/*
1675 * FIXME - Insert here parport_ip32_ecp_read_data().
1676 */
1677
1678/**
1679 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1680 * @p:          pointer to &struct parport
1681 * @buf:        buffer of data to write
1682 * @len:        length of buffer @buf
1683 * @flags:      ignored
1684 */
1685static size_t parport_ip32_ecp_write_data(struct parport *p,
1686                                          const void *buf, size_t len,
1687                                          int flags)
1688{
1689        static unsigned int ready_before = 1;
1690        struct parport_ip32_private * const priv = p->physport->private_data;
1691        struct parport * const physport = p->physport;
1692        size_t written = 0;
1693
1694        /* Special case: a timeout of zero means we cannot call schedule().
1695         * Also if O_NONBLOCK is set then use the default implementation. */
1696        if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1697                return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1698
1699        /* Negotiate to forward mode if necessary. */
1700        if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1701                /* Event 47: Set nInit high. */
1702                parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1703                                             DCR_nINIT | DCR_AUTOFD);
1704
1705                /* Event 49: PError goes high. */
1706                if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1707                        printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s\n",
1708                               p->name, __func__);
1709                        physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1710                        return 0;
1711                }
1712        }
1713
1714        /* Reset FIFO, go in forward mode, and disable ackIntEn */
1715        parport_ip32_set_mode(p, ECR_MODE_PS2);
1716        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1717        parport_ip32_data_forward(p);
1718        parport_ip32_disable_irq(p);
1719        parport_ip32_set_mode(p, ECR_MODE_ECP);
1720        physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1721
1722        /* Wait for peripheral to become ready */
1723        if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1724                                       DSR_nBUSY | DSR_nFAULT)) {
1725                /* Avoid to flood the logs */
1726                if (ready_before)
1727                        pr_info(PPIP32 "%s: not ready in %s\n",
1728                                p->name, __func__);
1729                ready_before = 0;
1730                goto stop;
1731        }
1732        ready_before = 1;
1733
1734        written = parport_ip32_fifo_write_block(p, buf, len);
1735
1736        /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1737        parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1738
1739        /* Check for a potential residue */
1740        written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1741
1742        /* Then, wait for BUSY to get low. */
1743        if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1744                printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1745                       p->name, __func__);
1746
1747stop:
1748        /* Reset FIFO */
1749        parport_ip32_set_mode(p, ECR_MODE_PS2);
1750        physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1751
1752        return written;
1753}
1754
1755/*
1756 * FIXME - Insert here parport_ip32_ecp_write_addr().
1757 */
1758
1759/*--- Default parport operations ---------------------------------------*/
1760
1761static const struct parport_operations parport_ip32_ops __initconst = {
1762        .write_data             = parport_ip32_write_data,
1763        .read_data              = parport_ip32_read_data,
1764
1765        .write_control          = parport_ip32_write_control,
1766        .read_control           = parport_ip32_read_control,
1767        .frob_control           = parport_ip32_frob_control,
1768
1769        .read_status            = parport_ip32_read_status,
1770
1771        .enable_irq             = parport_ip32_enable_irq,
1772        .disable_irq            = parport_ip32_disable_irq,
1773
1774        .data_forward           = parport_ip32_data_forward,
1775        .data_reverse           = parport_ip32_data_reverse,
1776
1777        .init_state             = parport_ip32_init_state,
1778        .save_state             = parport_ip32_save_state,
1779        .restore_state          = parport_ip32_restore_state,
1780
1781        .epp_write_data         = parport_ieee1284_epp_write_data,
1782        .epp_read_data          = parport_ieee1284_epp_read_data,
1783        .epp_write_addr         = parport_ieee1284_epp_write_addr,
1784        .epp_read_addr          = parport_ieee1284_epp_read_addr,
1785
1786        .ecp_write_data         = parport_ieee1284_ecp_write_data,
1787        .ecp_read_data          = parport_ieee1284_ecp_read_data,
1788        .ecp_write_addr         = parport_ieee1284_ecp_write_addr,
1789
1790        .compat_write_data      = parport_ieee1284_write_compat,
1791        .nibble_read_data       = parport_ieee1284_read_nibble,
1792        .byte_read_data         = parport_ieee1284_read_byte,
1793
1794        .owner                  = THIS_MODULE,
1795};
1796
1797/*--- Device detection -------------------------------------------------*/
1798
1799/**
1800 * parport_ip32_ecp_supported - check for an ECP port
1801 * @p:          pointer to the &parport structure
1802 *
1803 * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1804 * checks if an Extended Control Register seems to be present.  On successful
1805 * return, the port is placed in SPP mode.
1806 */
1807static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1808{
1809        struct parport_ip32_private * const priv = p->physport->private_data;
1810        unsigned int ecr;
1811
1812        ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1813        writeb(ecr, priv->regs.ecr);
1814        if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1815                goto fail;
1816
1817        pr_probe(p, "Found working ECR register\n");
1818        parport_ip32_set_mode(p, ECR_MODE_SPP);
1819        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1820        return 1;
1821
1822fail:
1823        pr_probe(p, "ECR register not found\n");
1824        return 0;
1825}
1826
1827/**
1828 * parport_ip32_fifo_supported - check for FIFO parameters
1829 * @p:          pointer to the &parport structure
1830 *
1831 * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1832 * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1833 * On return, the port is placed in SPP mode.
1834 */
1835static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1836{
1837        struct parport_ip32_private * const priv = p->physport->private_data;
1838        unsigned int configa, configb;
1839        unsigned int pword;
1840        unsigned int i;
1841
1842        /* Configuration mode */
1843        parport_ip32_set_mode(p, ECR_MODE_CFG);
1844        configa = readb(priv->regs.cnfgA);
1845        configb = readb(priv->regs.cnfgB);
1846
1847        /* Find out PWord size */
1848        switch (configa & CNFGA_ID_MASK) {
1849        case CNFGA_ID_8:
1850                pword = 1;
1851                break;
1852        case CNFGA_ID_16:
1853                pword = 2;
1854                break;
1855        case CNFGA_ID_32:
1856                pword = 4;
1857                break;
1858        default:
1859                pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1860                         (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1861                goto fail;
1862                break;
1863        }
1864        if (pword != 1) {
1865                pr_probe(p, "Unsupported PWord size: %u\n", pword);
1866                goto fail;
1867        }
1868        priv->pword = pword;
1869        pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1870
1871        /* Check for compression support */
1872        writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1873        if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1874                pr_probe(p, "Hardware compression detected (unsupported)\n");
1875        writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1876
1877        /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1878        parport_ip32_set_mode(p, ECR_MODE_TST);
1879
1880        /* FIFO must be empty now */
1881        if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1882                pr_probe(p, "FIFO not reset\n");
1883                goto fail;
1884        }
1885
1886        /* Find out FIFO depth. */
1887        priv->fifo_depth = 0;
1888        for (i = 0; i < 1024; i++) {
1889                if (readb(priv->regs.ecr) & ECR_F_FULL) {
1890                        /* FIFO full */
1891                        priv->fifo_depth = i;
1892                        break;
1893                }
1894                writeb((u8)i, priv->regs.fifo);
1895        }
1896        if (i >= 1024) {
1897                pr_probe(p, "Can't fill FIFO\n");
1898                goto fail;
1899        }
1900        if (!priv->fifo_depth) {
1901                pr_probe(p, "Can't get FIFO depth\n");
1902                goto fail;
1903        }
1904        pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1905
1906        /* Enable interrupts */
1907        parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1908
1909        /* Find out writeIntrThreshold: number of PWords we know we can write
1910         * if we get an interrupt. */
1911        priv->writeIntrThreshold = 0;
1912        for (i = 0; i < priv->fifo_depth; i++) {
1913                if (readb(priv->regs.fifo) != (u8)i) {
1914                        pr_probe(p, "Invalid data in FIFO\n");
1915                        goto fail;
1916                }
1917                if (!priv->writeIntrThreshold
1918                    && readb(priv->regs.ecr) & ECR_SERVINTR)
1919                        /* writeIntrThreshold reached */
1920                        priv->writeIntrThreshold = i + 1;
1921                if (i + 1 < priv->fifo_depth
1922                    && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1923                        /* FIFO empty before the last byte? */
1924                        pr_probe(p, "Data lost in FIFO\n");
1925                        goto fail;
1926                }
1927        }
1928        if (!priv->writeIntrThreshold) {
1929                pr_probe(p, "Can't get writeIntrThreshold\n");
1930                goto fail;
1931        }
1932        pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1933
1934        /* FIFO must be empty now */
1935        if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1936                pr_probe(p, "Can't empty FIFO\n");
1937                goto fail;
1938        }
1939
1940        /* Reset FIFO */
1941        parport_ip32_set_mode(p, ECR_MODE_PS2);
1942        /* Set reverse direction (must be in PS2 mode) */
1943        parport_ip32_data_reverse(p);
1944        /* Test FIFO, no interrupt, no DMA */
1945        parport_ip32_set_mode(p, ECR_MODE_TST);
1946        /* Enable interrupts */
1947        parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1948
1949        /* Find out readIntrThreshold: number of PWords we can read if we get
1950         * an interrupt. */
1951        priv->readIntrThreshold = 0;
1952        for (i = 0; i < priv->fifo_depth; i++) {
1953                writeb(0xaa, priv->regs.fifo);
1954                if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1955                        /* readIntrThreshold reached */
1956                        priv->readIntrThreshold = i + 1;
1957                        break;
1958                }
1959        }
1960        if (!priv->readIntrThreshold) {
1961                pr_probe(p, "Can't get readIntrThreshold\n");
1962                goto fail;
1963        }
1964        pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1965
1966        /* Reset ECR */
1967        parport_ip32_set_mode(p, ECR_MODE_PS2);
1968        parport_ip32_data_forward(p);
1969        parport_ip32_set_mode(p, ECR_MODE_SPP);
1970        return 1;
1971
1972fail:
1973        priv->fifo_depth = 0;
1974        parport_ip32_set_mode(p, ECR_MODE_SPP);
1975        return 0;
1976}
1977
1978/*--- Initialization code ----------------------------------------------*/
1979
1980/**
1981 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1982 * @regs:       pointer to &struct parport_ip32_regs to fill
1983 * @base:       base address of standard and EPP registers
1984 * @base_hi:    base address of ECP registers
1985 * @regshift:   how much to shift register offset by
1986 *
1987 * Compute register addresses, according to the ISA standard.  The addresses
1988 * of the standard and EPP registers are computed from address @base.  The
1989 * addresses of the ECP registers are computed from address @base_hi.
1990 */
1991static void __init
1992parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
1993                                void __iomem *base, void __iomem *base_hi,
1994                                unsigned int regshift)
1995{
1996#define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
1997#define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
1998        *regs = (struct parport_ip32_regs){
1999                .data           = r_base(0),
2000                .dsr            = r_base(1),
2001                .dcr            = r_base(2),
2002                .eppAddr        = r_base(3),
2003                .eppData0       = r_base(4),
2004                .eppData1       = r_base(5),
2005                .eppData2       = r_base(6),
2006                .eppData3       = r_base(7),
2007                .ecpAFifo       = r_base(0),
2008                .fifo           = r_base_hi(0),
2009                .cnfgA          = r_base_hi(0),
2010                .cnfgB          = r_base_hi(1),
2011                .ecr            = r_base_hi(2)
2012        };
2013#undef r_base_hi
2014#undef r_base
2015}
2016
2017/**
2018 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2019 *
2020 * Returns the new allocated &parport structure.  On error, an error code is
2021 * encoded in return value with the ERR_PTR function.
2022 */
2023static __init struct parport *parport_ip32_probe_port(void)
2024{
2025        struct parport_ip32_regs regs;
2026        struct parport_ip32_private *priv = NULL;
2027        struct parport_operations *ops = NULL;
2028        struct parport *p = NULL;
2029        int err;
2030
2031        parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2032                                        &mace->isa.ecp1284, 8 /* regshift */);
2033
2034        ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2035        priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2036        p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2037        if (ops == NULL || priv == NULL || p == NULL) {
2038                err = -ENOMEM;
2039                goto fail;
2040        }
2041        p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2042        p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2043        p->private_data = priv;
2044
2045        *ops = parport_ip32_ops;
2046        *priv = (struct parport_ip32_private){
2047                .regs                   = regs,
2048                .dcr_writable           = DCR_DIR | DCR_SELECT | DCR_nINIT |
2049                                          DCR_AUTOFD | DCR_STROBE,
2050                .irq_mode               = PARPORT_IP32_IRQ_FWD,
2051        };
2052        init_completion(&priv->irq_complete);
2053
2054        /* Probe port. */
2055        if (!parport_ip32_ecp_supported(p)) {
2056                err = -ENODEV;
2057                goto fail;
2058        }
2059        parport_ip32_dump_state(p, "begin init", 0);
2060
2061        /* We found what looks like a working ECR register.  Simply assume
2062         * that all modes are correctly supported.  Enable basic modes. */
2063        p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2064        p->modes |= PARPORT_MODE_TRISTATE;
2065
2066        if (!parport_ip32_fifo_supported(p)) {
2067                pr_warn(PPIP32 "%s: error: FIFO disabled\n", p->name);
2068                /* Disable hardware modes depending on a working FIFO. */
2069                features &= ~PARPORT_IP32_ENABLE_SPP;
2070                features &= ~PARPORT_IP32_ENABLE_ECP;
2071                /* DMA is not needed if FIFO is not supported.  */
2072                features &= ~PARPORT_IP32_ENABLE_DMA;
2073        }
2074
2075        /* Request IRQ */
2076        if (features & PARPORT_IP32_ENABLE_IRQ) {
2077                int irq = MACEISA_PARALLEL_IRQ;
2078                if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2079                        pr_warn(PPIP32 "%s: error: IRQ disabled\n", p->name);
2080                        /* DMA cannot work without interrupts. */
2081                        features &= ~PARPORT_IP32_ENABLE_DMA;
2082                } else {
2083                        pr_probe(p, "Interrupt support enabled\n");
2084                        p->irq = irq;
2085                        priv->dcr_writable |= DCR_IRQ;
2086                }
2087        }
2088
2089        /* Allocate DMA resources */
2090        if (features & PARPORT_IP32_ENABLE_DMA) {
2091                if (parport_ip32_dma_register())
2092                        pr_warn(PPIP32 "%s: error: DMA disabled\n", p->name);
2093                else {
2094                        pr_probe(p, "DMA support enabled\n");
2095                        p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2096                        p->modes |= PARPORT_MODE_DMA;
2097                }
2098        }
2099
2100        if (features & PARPORT_IP32_ENABLE_SPP) {
2101                /* Enable compatibility FIFO mode */
2102                p->ops->compat_write_data = parport_ip32_compat_write_data;
2103                p->modes |= PARPORT_MODE_COMPAT;
2104                pr_probe(p, "Hardware support for SPP mode enabled\n");
2105        }
2106        if (features & PARPORT_IP32_ENABLE_EPP) {
2107                /* Set up access functions to use EPP hardware. */
2108                p->ops->epp_read_data = parport_ip32_epp_read_data;
2109                p->ops->epp_write_data = parport_ip32_epp_write_data;
2110                p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2111                p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2112                p->modes |= PARPORT_MODE_EPP;
2113                pr_probe(p, "Hardware support for EPP mode enabled\n");
2114        }
2115        if (features & PARPORT_IP32_ENABLE_ECP) {
2116                /* Enable ECP FIFO mode */
2117                p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2118                /* FIXME - not implemented */
2119/*              p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2120/*              p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2121                p->modes |= PARPORT_MODE_ECP;
2122                pr_probe(p, "Hardware support for ECP mode enabled\n");
2123        }
2124
2125        /* Initialize the port with sensible values */
2126        parport_ip32_set_mode(p, ECR_MODE_PS2);
2127        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2128        parport_ip32_data_forward(p);
2129        parport_ip32_disable_irq(p);
2130        parport_ip32_write_data(p, 0x00);
2131        parport_ip32_dump_state(p, "end init", 0);
2132
2133        /* Print out what we found */
2134        pr_info("%s: SGI IP32 at 0x%lx (0x%lx)", p->name, p->base, p->base_hi);
2135        if (p->irq != PARPORT_IRQ_NONE)
2136                pr_cont(", irq %d", p->irq);
2137        pr_cont(" [");
2138#define printmode(x)                                                    \
2139do {                                                                    \
2140        if (p->modes & PARPORT_MODE_##x)                                \
2141                pr_cont("%s%s", f++ ? "," : "", #x);                    \
2142} while (0)
2143        {
2144                unsigned int f = 0;
2145                printmode(PCSPP);
2146                printmode(TRISTATE);
2147                printmode(COMPAT);
2148                printmode(EPP);
2149                printmode(ECP);
2150                printmode(DMA);
2151        }
2152#undef printmode
2153        pr_cont("]\n");
2154
2155        parport_announce_port(p);
2156        return p;
2157
2158fail:
2159        if (p)
2160                parport_put_port(p);
2161        kfree(priv);
2162        kfree(ops);
2163        return ERR_PTR(err);
2164}
2165
2166/**
2167 * parport_ip32_unregister_port - unregister a parallel port
2168 * @p:          pointer to the &struct parport
2169 *
2170 * Unregisters a parallel port and free previously allocated resources
2171 * (memory, IRQ, ...).
2172 */
2173static __exit void parport_ip32_unregister_port(struct parport *p)
2174{
2175        struct parport_ip32_private * const priv = p->physport->private_data;
2176        struct parport_operations *ops = p->ops;
2177
2178        parport_remove_port(p);
2179        if (p->modes & PARPORT_MODE_DMA)
2180                parport_ip32_dma_unregister();
2181        if (p->irq != PARPORT_IRQ_NONE)
2182                free_irq(p->irq, p);
2183        parport_put_port(p);
2184        kfree(priv);
2185        kfree(ops);
2186}
2187
2188/**
2189 * parport_ip32_init - module initialization function
2190 */
2191static int __init parport_ip32_init(void)
2192{
2193        pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2194        this_port = parport_ip32_probe_port();
2195        return PTR_ERR_OR_ZERO(this_port);
2196}
2197
2198/**
2199 * parport_ip32_exit - module termination function
2200 */
2201static void __exit parport_ip32_exit(void)
2202{
2203        parport_ip32_unregister_port(this_port);
2204}
2205
2206/*--- Module stuff -----------------------------------------------------*/
2207
2208MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2209MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2210MODULE_LICENSE("GPL");
2211MODULE_VERSION("0.6");          /* update in parport_ip32_init() too */
2212
2213module_init(parport_ip32_init);
2214module_exit(parport_ip32_exit);
2215
2216module_param(verbose_probing, bool, S_IRUGO);
2217MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2218
2219module_param(features, uint, S_IRUGO);
2220MODULE_PARM_DESC(features,
2221                 "Bit mask of features to enable"
2222                 ", bit 0: IRQ support"
2223                 ", bit 1: DMA support"
2224                 ", bit 2: hardware SPP mode"
2225                 ", bit 3: hardware EPP mode"
2226                 ", bit 4: hardware ECP mode");
2227