linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
  46
  47int pci_pci_problems;
  48EXPORT_SYMBOL(pci_pci_problems);
  49
  50unsigned int pci_pm_d3hot_delay;
  51
  52static void pci_pme_list_scan(struct work_struct *work);
  53
  54static LIST_HEAD(pci_pme_list);
  55static DEFINE_MUTEX(pci_pme_list_mutex);
  56static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  57
  58struct pci_pme_device {
  59        struct list_head list;
  60        struct pci_dev *dev;
  61};
  62
  63#define PME_TIMEOUT 1000 /* How long between PME checks */
  64
  65static void pci_dev_d3_sleep(struct pci_dev *dev)
  66{
  67        unsigned int delay = dev->d3hot_delay;
  68
  69        if (delay < pci_pm_d3hot_delay)
  70                delay = pci_pm_d3hot_delay;
  71
  72        if (delay)
  73                msleep(delay);
  74}
  75
  76bool pci_reset_supported(struct pci_dev *dev)
  77{
  78        return dev->reset_methods[0] != 0;
  79}
  80
  81#ifdef CONFIG_PCI_DOMAINS
  82int pci_domains_supported = 1;
  83#endif
  84
  85#define DEFAULT_CARDBUS_IO_SIZE         (256)
  86#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  87/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  88unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  89unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  90
  91#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  92#define DEFAULT_HOTPLUG_MMIO_SIZE       (2*1024*1024)
  93#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE  (2*1024*1024)
  94/* hpiosize=nn can override this */
  95unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  96/*
  97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  99 * pci=hpmemsize=nnM overrides both
 100 */
 101unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 102unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 103
 104#define DEFAULT_HOTPLUG_BUS_SIZE        1
 105unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 106
 107
 108/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 109#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 111#elif defined CONFIG_PCIE_BUS_SAFE
 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 113#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 115#elif defined CONFIG_PCIE_BUS_PEER2PEER
 116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 117#else
 118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 119#endif
 120
 121/*
 122 * The default CLS is used if arch didn't set CLS explicitly and not
 123 * all pci devices agree on the same value.  Arch can override either
 124 * the dfl or actual value as it sees fit.  Don't forget this is
 125 * measured in 32-bit words, not bytes.
 126 */
 127u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 128u8 pci_cache_line_size;
 129
 130/*
 131 * If we set up a device for bus mastering, we need to check the latency
 132 * timer as certain BIOSes forget to set it properly.
 133 */
 134unsigned int pcibios_max_latency = 255;
 135
 136/* If set, the PCIe ARI capability will not be used. */
 137static bool pcie_ari_disabled;
 138
 139/* If set, the PCIe ATS capability will not be used. */
 140static bool pcie_ats_disabled;
 141
 142/* If set, the PCI config space of each device is printed during boot. */
 143bool pci_early_dump;
 144
 145bool pci_ats_disabled(void)
 146{
 147        return pcie_ats_disabled;
 148}
 149EXPORT_SYMBOL_GPL(pci_ats_disabled);
 150
 151/* Disable bridge_d3 for all PCIe ports */
 152static bool pci_bridge_d3_disable;
 153/* Force bridge_d3 for all PCIe ports */
 154static bool pci_bridge_d3_force;
 155
 156static int __init pcie_port_pm_setup(char *str)
 157{
 158        if (!strcmp(str, "off"))
 159                pci_bridge_d3_disable = true;
 160        else if (!strcmp(str, "force"))
 161                pci_bridge_d3_force = true;
 162        return 1;
 163}
 164__setup("pcie_port_pm=", pcie_port_pm_setup);
 165
 166/* Time to wait after a reset for device to become responsive */
 167#define PCIE_RESET_READY_POLL_MS 60000
 168
 169/**
 170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 171 * @bus: pointer to PCI bus structure to search
 172 *
 173 * Given a PCI bus, returns the highest PCI bus number present in the set
 174 * including the given PCI bus and its list of child PCI buses.
 175 */
 176unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 177{
 178        struct pci_bus *tmp;
 179        unsigned char max, n;
 180
 181        max = bus->busn_res.end;
 182        list_for_each_entry(tmp, &bus->children, node) {
 183                n = pci_bus_max_busnr(tmp);
 184                if (n > max)
 185                        max = n;
 186        }
 187        return max;
 188}
 189EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 190
 191/**
 192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 193 * @pdev: the PCI device
 194 *
 195 * Returns error bits set in PCI_STATUS and clears them.
 196 */
 197int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 198{
 199        u16 status;
 200        int ret;
 201
 202        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 203        if (ret != PCIBIOS_SUCCESSFUL)
 204                return -EIO;
 205
 206        status &= PCI_STATUS_ERROR_BITS;
 207        if (status)
 208                pci_write_config_word(pdev, PCI_STATUS, status);
 209
 210        return status;
 211}
 212EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 213
 214#ifdef CONFIG_HAS_IOMEM
 215static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 216                                            bool write_combine)
 217{
 218        struct resource *res = &pdev->resource[bar];
 219        resource_size_t start = res->start;
 220        resource_size_t size = resource_size(res);
 221
 222        /*
 223         * Make sure the BAR is actually a memory resource, not an IO resource
 224         */
 225        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 226                pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 227                return NULL;
 228        }
 229
 230        if (write_combine)
 231                return ioremap_wc(start, size);
 232
 233        return ioremap(start, size);
 234}
 235
 236void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 237{
 238        return __pci_ioremap_resource(pdev, bar, false);
 239}
 240EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 241
 242void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 243{
 244        return __pci_ioremap_resource(pdev, bar, true);
 245}
 246EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 247#endif
 248
 249/**
 250 * pci_dev_str_match_path - test if a path string matches a device
 251 * @dev: the PCI device to test
 252 * @path: string to match the device against
 253 * @endptr: pointer to the string after the match
 254 *
 255 * Test if a string (typically from a kernel parameter) formatted as a
 256 * path of device/function addresses matches a PCI device. The string must
 257 * be of the form:
 258 *
 259 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 260 *
 261 * A path for a device can be obtained using 'lspci -t'.  Using a path
 262 * is more robust against bus renumbering than using only a single bus,
 263 * device and function address.
 264 *
 265 * Returns 1 if the string matches the device, 0 if it does not and
 266 * a negative error code if it fails to parse the string.
 267 */
 268static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 269                                  const char **endptr)
 270{
 271        int ret;
 272        unsigned int seg, bus, slot, func;
 273        char *wpath, *p;
 274        char end;
 275
 276        *endptr = strchrnul(path, ';');
 277
 278        wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 279        if (!wpath)
 280                return -ENOMEM;
 281
 282        while (1) {
 283                p = strrchr(wpath, '/');
 284                if (!p)
 285                        break;
 286                ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 287                if (ret != 2) {
 288                        ret = -EINVAL;
 289                        goto free_and_exit;
 290                }
 291
 292                if (dev->devfn != PCI_DEVFN(slot, func)) {
 293                        ret = 0;
 294                        goto free_and_exit;
 295                }
 296
 297                /*
 298                 * Note: we don't need to get a reference to the upstream
 299                 * bridge because we hold a reference to the top level
 300                 * device which should hold a reference to the bridge,
 301                 * and so on.
 302                 */
 303                dev = pci_upstream_bridge(dev);
 304                if (!dev) {
 305                        ret = 0;
 306                        goto free_and_exit;
 307                }
 308
 309                *p = 0;
 310        }
 311
 312        ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 313                     &func, &end);
 314        if (ret != 4) {
 315                seg = 0;
 316                ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 317                if (ret != 3) {
 318                        ret = -EINVAL;
 319                        goto free_and_exit;
 320                }
 321        }
 322
 323        ret = (seg == pci_domain_nr(dev->bus) &&
 324               bus == dev->bus->number &&
 325               dev->devfn == PCI_DEVFN(slot, func));
 326
 327free_and_exit:
 328        kfree(wpath);
 329        return ret;
 330}
 331
 332/**
 333 * pci_dev_str_match - test if a string matches a device
 334 * @dev: the PCI device to test
 335 * @p: string to match the device against
 336 * @endptr: pointer to the string after the match
 337 *
 338 * Test if a string (typically from a kernel parameter) matches a specified
 339 * PCI device. The string may be of one of the following formats:
 340 *
 341 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 342 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 343 *
 344 * The first format specifies a PCI bus/device/function address which
 345 * may change if new hardware is inserted, if motherboard firmware changes,
 346 * or due to changes caused in kernel parameters. If the domain is
 347 * left unspecified, it is taken to be 0.  In order to be robust against
 348 * bus renumbering issues, a path of PCI device/function numbers may be used
 349 * to address the specific device.  The path for a device can be determined
 350 * through the use of 'lspci -t'.
 351 *
 352 * The second format matches devices using IDs in the configuration
 353 * space which may match multiple devices in the system. A value of 0
 354 * for any field will match all devices. (Note: this differs from
 355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 356 * legacy reasons and convenience so users don't have to specify
 357 * FFFFFFFFs on the command line.)
 358 *
 359 * Returns 1 if the string matches the device, 0 if it does not and
 360 * a negative error code if the string cannot be parsed.
 361 */
 362static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 363                             const char **endptr)
 364{
 365        int ret;
 366        int count;
 367        unsigned short vendor, device, subsystem_vendor, subsystem_device;
 368
 369        if (strncmp(p, "pci:", 4) == 0) {
 370                /* PCI vendor/device (subvendor/subdevice) IDs are specified */
 371                p += 4;
 372                ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 373                             &subsystem_vendor, &subsystem_device, &count);
 374                if (ret != 4) {
 375                        ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 376                        if (ret != 2)
 377                                return -EINVAL;
 378
 379                        subsystem_vendor = 0;
 380                        subsystem_device = 0;
 381                }
 382
 383                p += count;
 384
 385                if ((!vendor || vendor == dev->vendor) &&
 386                    (!device || device == dev->device) &&
 387                    (!subsystem_vendor ||
 388                            subsystem_vendor == dev->subsystem_vendor) &&
 389                    (!subsystem_device ||
 390                            subsystem_device == dev->subsystem_device))
 391                        goto found;
 392        } else {
 393                /*
 394                 * PCI Bus, Device, Function IDs are specified
 395                 * (optionally, may include a path of devfns following it)
 396                 */
 397                ret = pci_dev_str_match_path(dev, p, &p);
 398                if (ret < 0)
 399                        return ret;
 400                else if (ret)
 401                        goto found;
 402        }
 403
 404        *endptr = p;
 405        return 0;
 406
 407found:
 408        *endptr = p;
 409        return 1;
 410}
 411
 412static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 413                                  u8 pos, int cap, int *ttl)
 414{
 415        u8 id;
 416        u16 ent;
 417
 418        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 419
 420        while ((*ttl)--) {
 421                if (pos < 0x40)
 422                        break;
 423                pos &= ~3;
 424                pci_bus_read_config_word(bus, devfn, pos, &ent);
 425
 426                id = ent & 0xff;
 427                if (id == 0xff)
 428                        break;
 429                if (id == cap)
 430                        return pos;
 431                pos = (ent >> 8);
 432        }
 433        return 0;
 434}
 435
 436static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 437                              u8 pos, int cap)
 438{
 439        int ttl = PCI_FIND_CAP_TTL;
 440
 441        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 442}
 443
 444u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 445{
 446        return __pci_find_next_cap(dev->bus, dev->devfn,
 447                                   pos + PCI_CAP_LIST_NEXT, cap);
 448}
 449EXPORT_SYMBOL_GPL(pci_find_next_capability);
 450
 451static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 452                                    unsigned int devfn, u8 hdr_type)
 453{
 454        u16 status;
 455
 456        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 457        if (!(status & PCI_STATUS_CAP_LIST))
 458                return 0;
 459
 460        switch (hdr_type) {
 461        case PCI_HEADER_TYPE_NORMAL:
 462        case PCI_HEADER_TYPE_BRIDGE:
 463                return PCI_CAPABILITY_LIST;
 464        case PCI_HEADER_TYPE_CARDBUS:
 465                return PCI_CB_CAPABILITY_LIST;
 466        }
 467
 468        return 0;
 469}
 470
 471/**
 472 * pci_find_capability - query for devices' capabilities
 473 * @dev: PCI device to query
 474 * @cap: capability code
 475 *
 476 * Tell if a device supports a given PCI capability.
 477 * Returns the address of the requested capability structure within the
 478 * device's PCI configuration space or 0 in case the device does not
 479 * support it.  Possible values for @cap include:
 480 *
 481 *  %PCI_CAP_ID_PM           Power Management
 482 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 483 *  %PCI_CAP_ID_VPD          Vital Product Data
 484 *  %PCI_CAP_ID_SLOTID       Slot Identification
 485 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 486 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 487 *  %PCI_CAP_ID_PCIX         PCI-X
 488 *  %PCI_CAP_ID_EXP          PCI Express
 489 */
 490u8 pci_find_capability(struct pci_dev *dev, int cap)
 491{
 492        u8 pos;
 493
 494        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 495        if (pos)
 496                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 497
 498        return pos;
 499}
 500EXPORT_SYMBOL(pci_find_capability);
 501
 502/**
 503 * pci_bus_find_capability - query for devices' capabilities
 504 * @bus: the PCI bus to query
 505 * @devfn: PCI device to query
 506 * @cap: capability code
 507 *
 508 * Like pci_find_capability() but works for PCI devices that do not have a
 509 * pci_dev structure set up yet.
 510 *
 511 * Returns the address of the requested capability structure within the
 512 * device's PCI configuration space or 0 in case the device does not
 513 * support it.
 514 */
 515u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 516{
 517        u8 hdr_type, pos;
 518
 519        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 520
 521        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 522        if (pos)
 523                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 524
 525        return pos;
 526}
 527EXPORT_SYMBOL(pci_bus_find_capability);
 528
 529/**
 530 * pci_find_next_ext_capability - Find an extended capability
 531 * @dev: PCI device to query
 532 * @start: address at which to start looking (0 to start at beginning of list)
 533 * @cap: capability code
 534 *
 535 * Returns the address of the next matching extended capability structure
 536 * within the device's PCI configuration space or 0 if the device does
 537 * not support it.  Some capabilities can occur several times, e.g., the
 538 * vendor-specific capability, and this provides a way to find them all.
 539 */
 540u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 541{
 542        u32 header;
 543        int ttl;
 544        u16 pos = PCI_CFG_SPACE_SIZE;
 545
 546        /* minimum 8 bytes per capability */
 547        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 548
 549        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 550                return 0;
 551
 552        if (start)
 553                pos = start;
 554
 555        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 556                return 0;
 557
 558        /*
 559         * If we have no capabilities, this is indicated by cap ID,
 560         * cap version and next pointer all being 0.
 561         */
 562        if (header == 0)
 563                return 0;
 564
 565        while (ttl-- > 0) {
 566                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 567                        return pos;
 568
 569                pos = PCI_EXT_CAP_NEXT(header);
 570                if (pos < PCI_CFG_SPACE_SIZE)
 571                        break;
 572
 573                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 574                        break;
 575        }
 576
 577        return 0;
 578}
 579EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 580
 581/**
 582 * pci_find_ext_capability - Find an extended capability
 583 * @dev: PCI device to query
 584 * @cap: capability code
 585 *
 586 * Returns the address of the requested extended capability structure
 587 * within the device's PCI configuration space or 0 if the device does
 588 * not support it.  Possible values for @cap include:
 589 *
 590 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 591 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 592 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 593 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 594 */
 595u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 596{
 597        return pci_find_next_ext_capability(dev, 0, cap);
 598}
 599EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 600
 601/**
 602 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 603 * @dev: PCI device to query
 604 *
 605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 606 * Number.
 607 *
 608 * Returns the DSN, or zero if the capability does not exist.
 609 */
 610u64 pci_get_dsn(struct pci_dev *dev)
 611{
 612        u32 dword;
 613        u64 dsn;
 614        int pos;
 615
 616        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 617        if (!pos)
 618                return 0;
 619
 620        /*
 621         * The Device Serial Number is two dwords offset 4 bytes from the
 622         * capability position. The specification says that the first dword is
 623         * the lower half, and the second dword is the upper half.
 624         */
 625        pos += 4;
 626        pci_read_config_dword(dev, pos, &dword);
 627        dsn = (u64)dword;
 628        pci_read_config_dword(dev, pos + 4, &dword);
 629        dsn |= ((u64)dword) << 32;
 630
 631        return dsn;
 632}
 633EXPORT_SYMBOL_GPL(pci_get_dsn);
 634
 635static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 636{
 637        int rc, ttl = PCI_FIND_CAP_TTL;
 638        u8 cap, mask;
 639
 640        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 641                mask = HT_3BIT_CAP_MASK;
 642        else
 643                mask = HT_5BIT_CAP_MASK;
 644
 645        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 646                                      PCI_CAP_ID_HT, &ttl);
 647        while (pos) {
 648                rc = pci_read_config_byte(dev, pos + 3, &cap);
 649                if (rc != PCIBIOS_SUCCESSFUL)
 650                        return 0;
 651
 652                if ((cap & mask) == ht_cap)
 653                        return pos;
 654
 655                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 656                                              pos + PCI_CAP_LIST_NEXT,
 657                                              PCI_CAP_ID_HT, &ttl);
 658        }
 659
 660        return 0;
 661}
 662
 663/**
 664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 665 * @dev: PCI device to query
 666 * @pos: Position from which to continue searching
 667 * @ht_cap: HyperTransport capability code
 668 *
 669 * To be used in conjunction with pci_find_ht_capability() to search for
 670 * all capabilities matching @ht_cap. @pos should always be a value returned
 671 * from pci_find_ht_capability().
 672 *
 673 * NB. To be 100% safe against broken PCI devices, the caller should take
 674 * steps to avoid an infinite loop.
 675 */
 676u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 677{
 678        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 679}
 680EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 681
 682/**
 683 * pci_find_ht_capability - query a device's HyperTransport capabilities
 684 * @dev: PCI device to query
 685 * @ht_cap: HyperTransport capability code
 686 *
 687 * Tell if a device supports a given HyperTransport capability.
 688 * Returns an address within the device's PCI configuration space
 689 * or 0 in case the device does not support the request capability.
 690 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 691 * which has a HyperTransport capability matching @ht_cap.
 692 */
 693u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 694{
 695        u8 pos;
 696
 697        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 698        if (pos)
 699                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 700
 701        return pos;
 702}
 703EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 704
 705/**
 706 * pci_find_vsec_capability - Find a vendor-specific extended capability
 707 * @dev: PCI device to query
 708 * @vendor: Vendor ID for which capability is defined
 709 * @cap: Vendor-specific capability ID
 710 *
 711 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 712 * VSEC ID @cap. If found, return the capability offset in
 713 * config space; otherwise return 0.
 714 */
 715u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 716{
 717        u16 vsec = 0;
 718        u32 header;
 719
 720        if (vendor != dev->vendor)
 721                return 0;
 722
 723        while ((vsec = pci_find_next_ext_capability(dev, vsec,
 724                                                     PCI_EXT_CAP_ID_VNDR))) {
 725                if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 726                                          &header) == PCIBIOS_SUCCESSFUL &&
 727                    PCI_VNDR_HEADER_ID(header) == cap)
 728                        return vsec;
 729        }
 730
 731        return 0;
 732}
 733EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 734
 735/**
 736 * pci_find_dvsec_capability - Find DVSEC for vendor
 737 * @dev: PCI device to query
 738 * @vendor: Vendor ID to match for the DVSEC
 739 * @dvsec: Designated Vendor-specific capability ID
 740 *
 741 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 742 * offset in config space; otherwise return 0.
 743 */
 744u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 745{
 746        int pos;
 747
 748        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 749        if (!pos)
 750                return 0;
 751
 752        while (pos) {
 753                u16 v, id;
 754
 755                pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 756                pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 757                if (vendor == v && dvsec == id)
 758                        return pos;
 759
 760                pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 761        }
 762
 763        return 0;
 764}
 765EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 766
 767/**
 768 * pci_find_parent_resource - return resource region of parent bus of given
 769 *                            region
 770 * @dev: PCI device structure contains resources to be searched
 771 * @res: child resource record for which parent is sought
 772 *
 773 * For given resource region of given device, return the resource region of
 774 * parent bus the given region is contained in.
 775 */
 776struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 777                                          struct resource *res)
 778{
 779        const struct pci_bus *bus = dev->bus;
 780        struct resource *r;
 781        int i;
 782
 783        pci_bus_for_each_resource(bus, r, i) {
 784                if (!r)
 785                        continue;
 786                if (resource_contains(r, res)) {
 787
 788                        /*
 789                         * If the window is prefetchable but the BAR is
 790                         * not, the allocator made a mistake.
 791                         */
 792                        if (r->flags & IORESOURCE_PREFETCH &&
 793                            !(res->flags & IORESOURCE_PREFETCH))
 794                                return NULL;
 795
 796                        /*
 797                         * If we're below a transparent bridge, there may
 798                         * be both a positively-decoded aperture and a
 799                         * subtractively-decoded region that contain the BAR.
 800                         * We want the positively-decoded one, so this depends
 801                         * on pci_bus_for_each_resource() giving us those
 802                         * first.
 803                         */
 804                        return r;
 805                }
 806        }
 807        return NULL;
 808}
 809EXPORT_SYMBOL(pci_find_parent_resource);
 810
 811/**
 812 * pci_find_resource - Return matching PCI device resource
 813 * @dev: PCI device to query
 814 * @res: Resource to look for
 815 *
 816 * Goes over standard PCI resources (BARs) and checks if the given resource
 817 * is partially or fully contained in any of them. In that case the
 818 * matching resource is returned, %NULL otherwise.
 819 */
 820struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 821{
 822        int i;
 823
 824        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 825                struct resource *r = &dev->resource[i];
 826
 827                if (r->start && resource_contains(r, res))
 828                        return r;
 829        }
 830
 831        return NULL;
 832}
 833EXPORT_SYMBOL(pci_find_resource);
 834
 835/**
 836 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 837 * @dev: the PCI device to operate on
 838 * @pos: config space offset of status word
 839 * @mask: mask of bit(s) to care about in status word
 840 *
 841 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 842 */
 843int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 844{
 845        int i;
 846
 847        /* Wait for Transaction Pending bit clean */
 848        for (i = 0; i < 4; i++) {
 849                u16 status;
 850                if (i)
 851                        msleep((1 << (i - 1)) * 100);
 852
 853                pci_read_config_word(dev, pos, &status);
 854                if (!(status & mask))
 855                        return 1;
 856        }
 857
 858        return 0;
 859}
 860
 861static int pci_acs_enable;
 862
 863/**
 864 * pci_request_acs - ask for ACS to be enabled if supported
 865 */
 866void pci_request_acs(void)
 867{
 868        pci_acs_enable = 1;
 869}
 870
 871static const char *disable_acs_redir_param;
 872
 873/**
 874 * pci_disable_acs_redir - disable ACS redirect capabilities
 875 * @dev: the PCI device
 876 *
 877 * For only devices specified in the disable_acs_redir parameter.
 878 */
 879static void pci_disable_acs_redir(struct pci_dev *dev)
 880{
 881        int ret = 0;
 882        const char *p;
 883        int pos;
 884        u16 ctrl;
 885
 886        if (!disable_acs_redir_param)
 887                return;
 888
 889        p = disable_acs_redir_param;
 890        while (*p) {
 891                ret = pci_dev_str_match(dev, p, &p);
 892                if (ret < 0) {
 893                        pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 894                                     disable_acs_redir_param);
 895
 896                        break;
 897                } else if (ret == 1) {
 898                        /* Found a match */
 899                        break;
 900                }
 901
 902                if (*p != ';' && *p != ',') {
 903                        /* End of param or invalid format */
 904                        break;
 905                }
 906                p++;
 907        }
 908
 909        if (ret != 1)
 910                return;
 911
 912        if (!pci_dev_specific_disable_acs_redir(dev))
 913                return;
 914
 915        pos = dev->acs_cap;
 916        if (!pos) {
 917                pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 918                return;
 919        }
 920
 921        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 922
 923        /* P2P Request & Completion Redirect */
 924        ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 925
 926        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 927
 928        pci_info(dev, "disabled ACS redirect\n");
 929}
 930
 931/**
 932 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 933 * @dev: the PCI device
 934 */
 935static void pci_std_enable_acs(struct pci_dev *dev)
 936{
 937        int pos;
 938        u16 cap;
 939        u16 ctrl;
 940
 941        pos = dev->acs_cap;
 942        if (!pos)
 943                return;
 944
 945        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 946        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 947
 948        /* Source Validation */
 949        ctrl |= (cap & PCI_ACS_SV);
 950
 951        /* P2P Request Redirect */
 952        ctrl |= (cap & PCI_ACS_RR);
 953
 954        /* P2P Completion Redirect */
 955        ctrl |= (cap & PCI_ACS_CR);
 956
 957        /* Upstream Forwarding */
 958        ctrl |= (cap & PCI_ACS_UF);
 959
 960        /* Enable Translation Blocking for external devices and noats */
 961        if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
 962                ctrl |= (cap & PCI_ACS_TB);
 963
 964        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 965}
 966
 967/**
 968 * pci_enable_acs - enable ACS if hardware support it
 969 * @dev: the PCI device
 970 */
 971static void pci_enable_acs(struct pci_dev *dev)
 972{
 973        if (!pci_acs_enable)
 974                goto disable_acs_redir;
 975
 976        if (!pci_dev_specific_enable_acs(dev))
 977                goto disable_acs_redir;
 978
 979        pci_std_enable_acs(dev);
 980
 981disable_acs_redir:
 982        /*
 983         * Note: pci_disable_acs_redir() must be called even if ACS was not
 984         * enabled by the kernel because it may have been enabled by
 985         * platform firmware.  So if we are told to disable it, we should
 986         * always disable it after setting the kernel's default
 987         * preferences.
 988         */
 989        pci_disable_acs_redir(dev);
 990}
 991
 992/**
 993 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 994 * @dev: PCI device to have its BARs restored
 995 *
 996 * Restore the BAR values for a given device, so as to make it
 997 * accessible by its driver.
 998 */
 999static void pci_restore_bars(struct pci_dev *dev)
1000{
1001        int i;
1002
1003        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1004                pci_update_resource(dev, i);
1005}
1006
1007static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1008{
1009        if (pci_use_mid_pm())
1010                return true;
1011
1012        return acpi_pci_power_manageable(dev);
1013}
1014
1015static inline int platform_pci_set_power_state(struct pci_dev *dev,
1016                                               pci_power_t t)
1017{
1018        if (pci_use_mid_pm())
1019                return mid_pci_set_power_state(dev, t);
1020
1021        return acpi_pci_set_power_state(dev, t);
1022}
1023
1024static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1025{
1026        if (pci_use_mid_pm())
1027                return mid_pci_get_power_state(dev);
1028
1029        return acpi_pci_get_power_state(dev);
1030}
1031
1032static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1033{
1034        if (!pci_use_mid_pm())
1035                acpi_pci_refresh_power_state(dev);
1036}
1037
1038static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1039{
1040        if (pci_use_mid_pm())
1041                return PCI_POWER_ERROR;
1042
1043        return acpi_pci_choose_state(dev);
1044}
1045
1046static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1047{
1048        if (pci_use_mid_pm())
1049                return PCI_POWER_ERROR;
1050
1051        return acpi_pci_wakeup(dev, enable);
1052}
1053
1054static inline bool platform_pci_need_resume(struct pci_dev *dev)
1055{
1056        if (pci_use_mid_pm())
1057                return false;
1058
1059        return acpi_pci_need_resume(dev);
1060}
1061
1062static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1063{
1064        if (pci_use_mid_pm())
1065                return false;
1066
1067        return acpi_pci_bridge_d3(dev);
1068}
1069
1070/**
1071 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1072 *                           given PCI device
1073 * @dev: PCI device to handle.
1074 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1075 *
1076 * RETURN VALUE:
1077 * -EINVAL if the requested state is invalid.
1078 * -EIO if device does not support PCI PM or its PM capabilities register has a
1079 * wrong version, or device doesn't support the requested state.
1080 * 0 if device already is in the requested state.
1081 * 0 if device's power state has been successfully changed.
1082 */
1083static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1084{
1085        u16 pmcsr;
1086        bool need_restore = false;
1087
1088        /* Check if we're already there */
1089        if (dev->current_state == state)
1090                return 0;
1091
1092        if (!dev->pm_cap)
1093                return -EIO;
1094
1095        if (state < PCI_D0 || state > PCI_D3hot)
1096                return -EINVAL;
1097
1098        /*
1099         * Validate transition: We can enter D0 from any state, but if
1100         * we're already in a low-power state, we can only go deeper.  E.g.,
1101         * we can go from D1 to D3, but we can't go directly from D3 to D1;
1102         * we'd have to go from D3 to D0, then to D1.
1103         */
1104        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1105            && dev->current_state > state) {
1106                pci_err(dev, "invalid power transition (from %s to %s)\n",
1107                        pci_power_name(dev->current_state),
1108                        pci_power_name(state));
1109                return -EINVAL;
1110        }
1111
1112        /* Check if this device supports the desired state */
1113        if ((state == PCI_D1 && !dev->d1_support)
1114           || (state == PCI_D2 && !dev->d2_support))
1115                return -EIO;
1116
1117        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1118        if (PCI_POSSIBLE_ERROR(pmcsr)) {
1119                pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1120                        pci_power_name(dev->current_state),
1121                        pci_power_name(state));
1122                return -EIO;
1123        }
1124
1125        /*
1126         * If we're (effectively) in D3, force entire word to 0.
1127         * This doesn't affect PME_Status, disables PME_En, and
1128         * sets PowerState to 0.
1129         */
1130        switch (dev->current_state) {
1131        case PCI_D0:
1132        case PCI_D1:
1133        case PCI_D2:
1134                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1135                pmcsr |= state;
1136                break;
1137        case PCI_D3hot:
1138        case PCI_D3cold:
1139        case PCI_UNKNOWN: /* Boot-up */
1140                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1141                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1142                        need_restore = true;
1143                fallthrough;    /* force to D0 */
1144        default:
1145                pmcsr = 0;
1146                break;
1147        }
1148
1149        /* Enter specified state */
1150        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1151
1152        /*
1153         * Mandatory power management transition delays; see PCI PM 1.1
1154         * 5.6.1 table 18
1155         */
1156        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1157                pci_dev_d3_sleep(dev);
1158        else if (state == PCI_D2 || dev->current_state == PCI_D2)
1159                udelay(PCI_PM_D2_DELAY);
1160
1161        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163        if (dev->current_state != state)
1164                pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1165                         pci_power_name(dev->current_state),
1166                         pci_power_name(state));
1167
1168        /*
1169         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1170         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1171         * from D3hot to D0 _may_ perform an internal reset, thereby
1172         * going to "D0 Uninitialized" rather than "D0 Initialized".
1173         * For example, at least some versions of the 3c905B and the
1174         * 3c556B exhibit this behaviour.
1175         *
1176         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1177         * devices in a D3hot state at boot.  Consequently, we need to
1178         * restore at least the BARs so that the device will be
1179         * accessible to its driver.
1180         */
1181        if (need_restore)
1182                pci_restore_bars(dev);
1183
1184        if (dev->bus->self)
1185                pcie_aspm_pm_state_change(dev->bus->self);
1186
1187        return 0;
1188}
1189
1190/**
1191 * pci_update_current_state - Read power state of given device and cache it
1192 * @dev: PCI device to handle.
1193 * @state: State to cache in case the device doesn't have the PM capability
1194 *
1195 * The power state is read from the PMCSR register, which however is
1196 * inaccessible in D3cold.  The platform firmware is therefore queried first
1197 * to detect accessibility of the register.  In case the platform firmware
1198 * reports an incorrect state or the device isn't power manageable by the
1199 * platform at all, we try to detect D3cold by testing accessibility of the
1200 * vendor ID in config space.
1201 */
1202void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1203{
1204        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1205            !pci_device_is_present(dev)) {
1206                dev->current_state = PCI_D3cold;
1207        } else if (dev->pm_cap) {
1208                u16 pmcsr;
1209
1210                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1211                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1212        } else {
1213                dev->current_state = state;
1214        }
1215}
1216
1217/**
1218 * pci_refresh_power_state - Refresh the given device's power state data
1219 * @dev: Target PCI device.
1220 *
1221 * Ask the platform to refresh the devices power state information and invoke
1222 * pci_update_current_state() to update its current PCI power state.
1223 */
1224void pci_refresh_power_state(struct pci_dev *dev)
1225{
1226        platform_pci_refresh_power_state(dev);
1227        pci_update_current_state(dev, dev->current_state);
1228}
1229
1230/**
1231 * pci_platform_power_transition - Use platform to change device power state
1232 * @dev: PCI device to handle.
1233 * @state: State to put the device into.
1234 */
1235int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1236{
1237        int error;
1238
1239        error = platform_pci_set_power_state(dev, state);
1240        if (!error)
1241                pci_update_current_state(dev, state);
1242        else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1243                dev->current_state = PCI_D0;
1244
1245        return error;
1246}
1247EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1248
1249static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1250{
1251        pm_request_resume(&pci_dev->dev);
1252        return 0;
1253}
1254
1255/**
1256 * pci_resume_bus - Walk given bus and runtime resume devices on it
1257 * @bus: Top bus of the subtree to walk.
1258 */
1259void pci_resume_bus(struct pci_bus *bus)
1260{
1261        if (bus)
1262                pci_walk_bus(bus, pci_resume_one, NULL);
1263}
1264
1265static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1266{
1267        int delay = 1;
1268        u32 id;
1269
1270        /*
1271         * After reset, the device should not silently discard config
1272         * requests, but it may still indicate that it needs more time by
1273         * responding to them with CRS completions.  The Root Port will
1274         * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1275         * the read (except when CRS SV is enabled and the read was for the
1276         * Vendor ID; in that case it synthesizes 0x0001 data).
1277         *
1278         * Wait for the device to return a non-CRS completion.  Read the
1279         * Command register instead of Vendor ID so we don't have to
1280         * contend with the CRS SV value.
1281         */
1282        pci_read_config_dword(dev, PCI_COMMAND, &id);
1283        while (PCI_POSSIBLE_ERROR(id)) {
1284                if (delay > timeout) {
1285                        pci_warn(dev, "not ready %dms after %s; giving up\n",
1286                                 delay - 1, reset_type);
1287                        return -ENOTTY;
1288                }
1289
1290                if (delay > 1000)
1291                        pci_info(dev, "not ready %dms after %s; waiting\n",
1292                                 delay - 1, reset_type);
1293
1294                msleep(delay);
1295                delay *= 2;
1296                pci_read_config_dword(dev, PCI_COMMAND, &id);
1297        }
1298
1299        if (delay > 1000)
1300                pci_info(dev, "ready %dms after %s\n", delay - 1,
1301                         reset_type);
1302
1303        return 0;
1304}
1305
1306/**
1307 * pci_power_up - Put the given device into D0
1308 * @dev: PCI device to power up
1309 */
1310int pci_power_up(struct pci_dev *dev)
1311{
1312        pci_platform_power_transition(dev, PCI_D0);
1313
1314        /*
1315         * Mandatory power management transition delays are handled in
1316         * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1317         * corresponding bridge.
1318         */
1319        if (dev->runtime_d3cold) {
1320                /*
1321                 * When powering on a bridge from D3cold, the whole hierarchy
1322                 * may be powered on into D0uninitialized state, resume them to
1323                 * give them a chance to suspend again
1324                 */
1325                pci_resume_bus(dev->subordinate);
1326        }
1327
1328        return pci_raw_set_power_state(dev, PCI_D0);
1329}
1330
1331/**
1332 * __pci_dev_set_current_state - Set current state of a PCI device
1333 * @dev: Device to handle
1334 * @data: pointer to state to be set
1335 */
1336static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1337{
1338        pci_power_t state = *(pci_power_t *)data;
1339
1340        dev->current_state = state;
1341        return 0;
1342}
1343
1344/**
1345 * pci_bus_set_current_state - Walk given bus and set current state of devices
1346 * @bus: Top bus of the subtree to walk.
1347 * @state: state to be set
1348 */
1349void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1350{
1351        if (bus)
1352                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1353}
1354
1355/**
1356 * pci_set_power_state - Set the power state of a PCI device
1357 * @dev: PCI device to handle.
1358 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1359 *
1360 * Transition a device to a new power state, using the platform firmware and/or
1361 * the device's PCI PM registers.
1362 *
1363 * RETURN VALUE:
1364 * -EINVAL if the requested state is invalid.
1365 * -EIO if device does not support PCI PM or its PM capabilities register has a
1366 * wrong version, or device doesn't support the requested state.
1367 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1368 * 0 if device already is in the requested state.
1369 * 0 if the transition is to D3 but D3 is not supported.
1370 * 0 if device's power state has been successfully changed.
1371 */
1372int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1373{
1374        int error;
1375
1376        /* Bound the state we're entering */
1377        if (state > PCI_D3cold)
1378                state = PCI_D3cold;
1379        else if (state < PCI_D0)
1380                state = PCI_D0;
1381        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1382
1383                /*
1384                 * If the device or the parent bridge do not support PCI
1385                 * PM, ignore the request if we're doing anything other
1386                 * than putting it into D0 (which would only happen on
1387                 * boot).
1388                 */
1389                return 0;
1390
1391        /* Check if we're already there */
1392        if (dev->current_state == state)
1393                return 0;
1394
1395        if (state == PCI_D0)
1396                return pci_power_up(dev);
1397
1398        /*
1399         * This device is quirked not to be put into D3, so don't put it in
1400         * D3
1401         */
1402        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1403                return 0;
1404
1405        /*
1406         * To put device in D3cold, we put device into D3hot in native
1407         * way, then put device into D3cold with platform ops
1408         */
1409        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1410                                        PCI_D3hot : state);
1411
1412        if (pci_platform_power_transition(dev, state))
1413                return error;
1414
1415        /* Powering off a bridge may power off the whole hierarchy */
1416        if (state == PCI_D3cold)
1417                pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1418
1419        return 0;
1420}
1421EXPORT_SYMBOL(pci_set_power_state);
1422
1423#define PCI_EXP_SAVE_REGS       7
1424
1425static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1426                                                       u16 cap, bool extended)
1427{
1428        struct pci_cap_saved_state *tmp;
1429
1430        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1431                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1432                        return tmp;
1433        }
1434        return NULL;
1435}
1436
1437struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1438{
1439        return _pci_find_saved_cap(dev, cap, false);
1440}
1441
1442struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1443{
1444        return _pci_find_saved_cap(dev, cap, true);
1445}
1446
1447static int pci_save_pcie_state(struct pci_dev *dev)
1448{
1449        int i = 0;
1450        struct pci_cap_saved_state *save_state;
1451        u16 *cap;
1452
1453        if (!pci_is_pcie(dev))
1454                return 0;
1455
1456        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1457        if (!save_state) {
1458                pci_err(dev, "buffer not found in %s\n", __func__);
1459                return -ENOMEM;
1460        }
1461
1462        cap = (u16 *)&save_state->cap.data[0];
1463        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1464        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1465        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1466        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1467        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1468        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1469        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1470
1471        return 0;
1472}
1473
1474void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1475{
1476#ifdef CONFIG_PCIEASPM
1477        struct pci_dev *bridge;
1478        u32 ctl;
1479
1480        bridge = pci_upstream_bridge(dev);
1481        if (bridge && bridge->ltr_path) {
1482                pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1483                if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1484                        pci_dbg(bridge, "re-enabling LTR\n");
1485                        pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1486                                                 PCI_EXP_DEVCTL2_LTR_EN);
1487                }
1488        }
1489#endif
1490}
1491
1492static void pci_restore_pcie_state(struct pci_dev *dev)
1493{
1494        int i = 0;
1495        struct pci_cap_saved_state *save_state;
1496        u16 *cap;
1497
1498        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1499        if (!save_state)
1500                return;
1501
1502        /*
1503         * Downstream ports reset the LTR enable bit when link goes down.
1504         * Check and re-configure the bit here before restoring device.
1505         * PCIe r5.0, sec 7.5.3.16.
1506         */
1507        pci_bridge_reconfigure_ltr(dev);
1508
1509        cap = (u16 *)&save_state->cap.data[0];
1510        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1511        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1512        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1513        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1514        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1515        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1516        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1517}
1518
1519static int pci_save_pcix_state(struct pci_dev *dev)
1520{
1521        int pos;
1522        struct pci_cap_saved_state *save_state;
1523
1524        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1525        if (!pos)
1526                return 0;
1527
1528        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1529        if (!save_state) {
1530                pci_err(dev, "buffer not found in %s\n", __func__);
1531                return -ENOMEM;
1532        }
1533
1534        pci_read_config_word(dev, pos + PCI_X_CMD,
1535                             (u16 *)save_state->cap.data);
1536
1537        return 0;
1538}
1539
1540static void pci_restore_pcix_state(struct pci_dev *dev)
1541{
1542        int i = 0, pos;
1543        struct pci_cap_saved_state *save_state;
1544        u16 *cap;
1545
1546        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1547        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1548        if (!save_state || !pos)
1549                return;
1550        cap = (u16 *)&save_state->cap.data[0];
1551
1552        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1553}
1554
1555static void pci_save_ltr_state(struct pci_dev *dev)
1556{
1557        int ltr;
1558        struct pci_cap_saved_state *save_state;
1559        u32 *cap;
1560
1561        if (!pci_is_pcie(dev))
1562                return;
1563
1564        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1565        if (!ltr)
1566                return;
1567
1568        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1569        if (!save_state) {
1570                pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1571                return;
1572        }
1573
1574        /* Some broken devices only support dword access to LTR */
1575        cap = &save_state->cap.data[0];
1576        pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1577}
1578
1579static void pci_restore_ltr_state(struct pci_dev *dev)
1580{
1581        struct pci_cap_saved_state *save_state;
1582        int ltr;
1583        u32 *cap;
1584
1585        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1586        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1587        if (!save_state || !ltr)
1588                return;
1589
1590        /* Some broken devices only support dword access to LTR */
1591        cap = &save_state->cap.data[0];
1592        pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1593}
1594
1595/**
1596 * pci_save_state - save the PCI configuration space of a device before
1597 *                  suspending
1598 * @dev: PCI device that we're dealing with
1599 */
1600int pci_save_state(struct pci_dev *dev)
1601{
1602        int i;
1603        /* XXX: 100% dword access ok here? */
1604        for (i = 0; i < 16; i++) {
1605                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1606                pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1607                        i * 4, dev->saved_config_space[i]);
1608        }
1609        dev->state_saved = true;
1610
1611        i = pci_save_pcie_state(dev);
1612        if (i != 0)
1613                return i;
1614
1615        i = pci_save_pcix_state(dev);
1616        if (i != 0)
1617                return i;
1618
1619        pci_save_ltr_state(dev);
1620        pci_save_dpc_state(dev);
1621        pci_save_aer_state(dev);
1622        pci_save_ptm_state(dev);
1623        return pci_save_vc_state(dev);
1624}
1625EXPORT_SYMBOL(pci_save_state);
1626
1627static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1628                                     u32 saved_val, int retry, bool force)
1629{
1630        u32 val;
1631
1632        pci_read_config_dword(pdev, offset, &val);
1633        if (!force && val == saved_val)
1634                return;
1635
1636        for (;;) {
1637                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1638                        offset, val, saved_val);
1639                pci_write_config_dword(pdev, offset, saved_val);
1640                if (retry-- <= 0)
1641                        return;
1642
1643                pci_read_config_dword(pdev, offset, &val);
1644                if (val == saved_val)
1645                        return;
1646
1647                mdelay(1);
1648        }
1649}
1650
1651static void pci_restore_config_space_range(struct pci_dev *pdev,
1652                                           int start, int end, int retry,
1653                                           bool force)
1654{
1655        int index;
1656
1657        for (index = end; index >= start; index--)
1658                pci_restore_config_dword(pdev, 4 * index,
1659                                         pdev->saved_config_space[index],
1660                                         retry, force);
1661}
1662
1663static void pci_restore_config_space(struct pci_dev *pdev)
1664{
1665        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1666                pci_restore_config_space_range(pdev, 10, 15, 0, false);
1667                /* Restore BARs before the command register. */
1668                pci_restore_config_space_range(pdev, 4, 9, 10, false);
1669                pci_restore_config_space_range(pdev, 0, 3, 0, false);
1670        } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1671                pci_restore_config_space_range(pdev, 12, 15, 0, false);
1672
1673                /*
1674                 * Force rewriting of prefetch registers to avoid S3 resume
1675                 * issues on Intel PCI bridges that occur when these
1676                 * registers are not explicitly written.
1677                 */
1678                pci_restore_config_space_range(pdev, 9, 11, 0, true);
1679                pci_restore_config_space_range(pdev, 0, 8, 0, false);
1680        } else {
1681                pci_restore_config_space_range(pdev, 0, 15, 0, false);
1682        }
1683}
1684
1685static void pci_restore_rebar_state(struct pci_dev *pdev)
1686{
1687        unsigned int pos, nbars, i;
1688        u32 ctrl;
1689
1690        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1691        if (!pos)
1692                return;
1693
1694        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1695        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1696                    PCI_REBAR_CTRL_NBAR_SHIFT;
1697
1698        for (i = 0; i < nbars; i++, pos += 8) {
1699                struct resource *res;
1700                int bar_idx, size;
1701
1702                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1703                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1704                res = pdev->resource + bar_idx;
1705                size = pci_rebar_bytes_to_size(resource_size(res));
1706                ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1707                ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1708                pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1709        }
1710}
1711
1712/**
1713 * pci_restore_state - Restore the saved state of a PCI device
1714 * @dev: PCI device that we're dealing with
1715 */
1716void pci_restore_state(struct pci_dev *dev)
1717{
1718        if (!dev->state_saved)
1719                return;
1720
1721        /*
1722         * Restore max latencies (in the LTR capability) before enabling
1723         * LTR itself (in the PCIe capability).
1724         */
1725        pci_restore_ltr_state(dev);
1726
1727        pci_restore_pcie_state(dev);
1728        pci_restore_pasid_state(dev);
1729        pci_restore_pri_state(dev);
1730        pci_restore_ats_state(dev);
1731        pci_restore_vc_state(dev);
1732        pci_restore_rebar_state(dev);
1733        pci_restore_dpc_state(dev);
1734        pci_restore_ptm_state(dev);
1735
1736        pci_aer_clear_status(dev);
1737        pci_restore_aer_state(dev);
1738
1739        pci_restore_config_space(dev);
1740
1741        pci_restore_pcix_state(dev);
1742        pci_restore_msi_state(dev);
1743
1744        /* Restore ACS and IOV configuration state */
1745        pci_enable_acs(dev);
1746        pci_restore_iov_state(dev);
1747
1748        dev->state_saved = false;
1749}
1750EXPORT_SYMBOL(pci_restore_state);
1751
1752struct pci_saved_state {
1753        u32 config_space[16];
1754        struct pci_cap_saved_data cap[];
1755};
1756
1757/**
1758 * pci_store_saved_state - Allocate and return an opaque struct containing
1759 *                         the device saved state.
1760 * @dev: PCI device that we're dealing with
1761 *
1762 * Return NULL if no state or error.
1763 */
1764struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1765{
1766        struct pci_saved_state *state;
1767        struct pci_cap_saved_state *tmp;
1768        struct pci_cap_saved_data *cap;
1769        size_t size;
1770
1771        if (!dev->state_saved)
1772                return NULL;
1773
1774        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1775
1776        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1777                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1778
1779        state = kzalloc(size, GFP_KERNEL);
1780        if (!state)
1781                return NULL;
1782
1783        memcpy(state->config_space, dev->saved_config_space,
1784               sizeof(state->config_space));
1785
1786        cap = state->cap;
1787        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1788                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1789                memcpy(cap, &tmp->cap, len);
1790                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1791        }
1792        /* Empty cap_save terminates list */
1793
1794        return state;
1795}
1796EXPORT_SYMBOL_GPL(pci_store_saved_state);
1797
1798/**
1799 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1800 * @dev: PCI device that we're dealing with
1801 * @state: Saved state returned from pci_store_saved_state()
1802 */
1803int pci_load_saved_state(struct pci_dev *dev,
1804                         struct pci_saved_state *state)
1805{
1806        struct pci_cap_saved_data *cap;
1807
1808        dev->state_saved = false;
1809
1810        if (!state)
1811                return 0;
1812
1813        memcpy(dev->saved_config_space, state->config_space,
1814               sizeof(state->config_space));
1815
1816        cap = state->cap;
1817        while (cap->size) {
1818                struct pci_cap_saved_state *tmp;
1819
1820                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1821                if (!tmp || tmp->cap.size != cap->size)
1822                        return -EINVAL;
1823
1824                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1825                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1826                       sizeof(struct pci_cap_saved_data) + cap->size);
1827        }
1828
1829        dev->state_saved = true;
1830        return 0;
1831}
1832EXPORT_SYMBOL_GPL(pci_load_saved_state);
1833
1834/**
1835 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1836 *                                 and free the memory allocated for it.
1837 * @dev: PCI device that we're dealing with
1838 * @state: Pointer to saved state returned from pci_store_saved_state()
1839 */
1840int pci_load_and_free_saved_state(struct pci_dev *dev,
1841                                  struct pci_saved_state **state)
1842{
1843        int ret = pci_load_saved_state(dev, *state);
1844        kfree(*state);
1845        *state = NULL;
1846        return ret;
1847}
1848EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1849
1850int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1851{
1852        return pci_enable_resources(dev, bars);
1853}
1854
1855static int do_pci_enable_device(struct pci_dev *dev, int bars)
1856{
1857        int err;
1858        struct pci_dev *bridge;
1859        u16 cmd;
1860        u8 pin;
1861
1862        err = pci_set_power_state(dev, PCI_D0);
1863        if (err < 0 && err != -EIO)
1864                return err;
1865
1866        bridge = pci_upstream_bridge(dev);
1867        if (bridge)
1868                pcie_aspm_powersave_config_link(bridge);
1869
1870        err = pcibios_enable_device(dev, bars);
1871        if (err < 0)
1872                return err;
1873        pci_fixup_device(pci_fixup_enable, dev);
1874
1875        if (dev->msi_enabled || dev->msix_enabled)
1876                return 0;
1877
1878        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1879        if (pin) {
1880                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1881                if (cmd & PCI_COMMAND_INTX_DISABLE)
1882                        pci_write_config_word(dev, PCI_COMMAND,
1883                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1884        }
1885
1886        return 0;
1887}
1888
1889/**
1890 * pci_reenable_device - Resume abandoned device
1891 * @dev: PCI device to be resumed
1892 *
1893 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1894 * to be called by normal code, write proper resume handler and use it instead.
1895 */
1896int pci_reenable_device(struct pci_dev *dev)
1897{
1898        if (pci_is_enabled(dev))
1899                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1900        return 0;
1901}
1902EXPORT_SYMBOL(pci_reenable_device);
1903
1904static void pci_enable_bridge(struct pci_dev *dev)
1905{
1906        struct pci_dev *bridge;
1907        int retval;
1908
1909        bridge = pci_upstream_bridge(dev);
1910        if (bridge)
1911                pci_enable_bridge(bridge);
1912
1913        if (pci_is_enabled(dev)) {
1914                if (!dev->is_busmaster)
1915                        pci_set_master(dev);
1916                return;
1917        }
1918
1919        retval = pci_enable_device(dev);
1920        if (retval)
1921                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1922                        retval);
1923        pci_set_master(dev);
1924}
1925
1926static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1927{
1928        struct pci_dev *bridge;
1929        int err;
1930        int i, bars = 0;
1931
1932        /*
1933         * Power state could be unknown at this point, either due to a fresh
1934         * boot or a device removal call.  So get the current power state
1935         * so that things like MSI message writing will behave as expected
1936         * (e.g. if the device really is in D0 at enable time).
1937         */
1938        pci_update_current_state(dev, dev->current_state);
1939
1940        if (atomic_inc_return(&dev->enable_cnt) > 1)
1941                return 0;               /* already enabled */
1942
1943        bridge = pci_upstream_bridge(dev);
1944        if (bridge)
1945                pci_enable_bridge(bridge);
1946
1947        /* only skip sriov related */
1948        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1949                if (dev->resource[i].flags & flags)
1950                        bars |= (1 << i);
1951        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1952                if (dev->resource[i].flags & flags)
1953                        bars |= (1 << i);
1954
1955        err = do_pci_enable_device(dev, bars);
1956        if (err < 0)
1957                atomic_dec(&dev->enable_cnt);
1958        return err;
1959}
1960
1961/**
1962 * pci_enable_device_io - Initialize a device for use with IO space
1963 * @dev: PCI device to be initialized
1964 *
1965 * Initialize device before it's used by a driver. Ask low-level code
1966 * to enable I/O resources. Wake up the device if it was suspended.
1967 * Beware, this function can fail.
1968 */
1969int pci_enable_device_io(struct pci_dev *dev)
1970{
1971        return pci_enable_device_flags(dev, IORESOURCE_IO);
1972}
1973EXPORT_SYMBOL(pci_enable_device_io);
1974
1975/**
1976 * pci_enable_device_mem - Initialize a device for use with Memory space
1977 * @dev: PCI device to be initialized
1978 *
1979 * Initialize device before it's used by a driver. Ask low-level code
1980 * to enable Memory resources. Wake up the device if it was suspended.
1981 * Beware, this function can fail.
1982 */
1983int pci_enable_device_mem(struct pci_dev *dev)
1984{
1985        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1986}
1987EXPORT_SYMBOL(pci_enable_device_mem);
1988
1989/**
1990 * pci_enable_device - Initialize device before it's used by a driver.
1991 * @dev: PCI device to be initialized
1992 *
1993 * Initialize device before it's used by a driver. Ask low-level code
1994 * to enable I/O and memory. Wake up the device if it was suspended.
1995 * Beware, this function can fail.
1996 *
1997 * Note we don't actually enable the device many times if we call
1998 * this function repeatedly (we just increment the count).
1999 */
2000int pci_enable_device(struct pci_dev *dev)
2001{
2002        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2003}
2004EXPORT_SYMBOL(pci_enable_device);
2005
2006/*
2007 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2008 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2009 * there's no need to track it separately.  pci_devres is initialized
2010 * when a device is enabled using managed PCI device enable interface.
2011 */
2012struct pci_devres {
2013        unsigned int enabled:1;
2014        unsigned int pinned:1;
2015        unsigned int orig_intx:1;
2016        unsigned int restore_intx:1;
2017        unsigned int mwi:1;
2018        u32 region_mask;
2019};
2020
2021static void pcim_release(struct device *gendev, void *res)
2022{
2023        struct pci_dev *dev = to_pci_dev(gendev);
2024        struct pci_devres *this = res;
2025        int i;
2026
2027        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2028                if (this->region_mask & (1 << i))
2029                        pci_release_region(dev, i);
2030
2031        if (this->mwi)
2032                pci_clear_mwi(dev);
2033
2034        if (this->restore_intx)
2035                pci_intx(dev, this->orig_intx);
2036
2037        if (this->enabled && !this->pinned)
2038                pci_disable_device(dev);
2039}
2040
2041static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2042{
2043        struct pci_devres *dr, *new_dr;
2044
2045        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2046        if (dr)
2047                return dr;
2048
2049        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2050        if (!new_dr)
2051                return NULL;
2052        return devres_get(&pdev->dev, new_dr, NULL, NULL);
2053}
2054
2055static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2056{
2057        if (pci_is_managed(pdev))
2058                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2059        return NULL;
2060}
2061
2062/**
2063 * pcim_enable_device - Managed pci_enable_device()
2064 * @pdev: PCI device to be initialized
2065 *
2066 * Managed pci_enable_device().
2067 */
2068int pcim_enable_device(struct pci_dev *pdev)
2069{
2070        struct pci_devres *dr;
2071        int rc;
2072
2073        dr = get_pci_dr(pdev);
2074        if (unlikely(!dr))
2075                return -ENOMEM;
2076        if (dr->enabled)
2077                return 0;
2078
2079        rc = pci_enable_device(pdev);
2080        if (!rc) {
2081                pdev->is_managed = 1;
2082                dr->enabled = 1;
2083        }
2084        return rc;
2085}
2086EXPORT_SYMBOL(pcim_enable_device);
2087
2088/**
2089 * pcim_pin_device - Pin managed PCI device
2090 * @pdev: PCI device to pin
2091 *
2092 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2093 * driver detach.  @pdev must have been enabled with
2094 * pcim_enable_device().
2095 */
2096void pcim_pin_device(struct pci_dev *pdev)
2097{
2098        struct pci_devres *dr;
2099
2100        dr = find_pci_dr(pdev);
2101        WARN_ON(!dr || !dr->enabled);
2102        if (dr)
2103                dr->pinned = 1;
2104}
2105EXPORT_SYMBOL(pcim_pin_device);
2106
2107/*
2108 * pcibios_device_add - provide arch specific hooks when adding device dev
2109 * @dev: the PCI device being added
2110 *
2111 * Permits the platform to provide architecture specific functionality when
2112 * devices are added. This is the default implementation. Architecture
2113 * implementations can override this.
2114 */
2115int __weak pcibios_device_add(struct pci_dev *dev)
2116{
2117        return 0;
2118}
2119
2120/**
2121 * pcibios_release_device - provide arch specific hooks when releasing
2122 *                          device dev
2123 * @dev: the PCI device being released
2124 *
2125 * Permits the platform to provide architecture specific functionality when
2126 * devices are released. This is the default implementation. Architecture
2127 * implementations can override this.
2128 */
2129void __weak pcibios_release_device(struct pci_dev *dev) {}
2130
2131/**
2132 * pcibios_disable_device - disable arch specific PCI resources for device dev
2133 * @dev: the PCI device to disable
2134 *
2135 * Disables architecture specific PCI resources for the device. This
2136 * is the default implementation. Architecture implementations can
2137 * override this.
2138 */
2139void __weak pcibios_disable_device(struct pci_dev *dev) {}
2140
2141/**
2142 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2143 * @irq: ISA IRQ to penalize
2144 * @active: IRQ active or not
2145 *
2146 * Permits the platform to provide architecture-specific functionality when
2147 * penalizing ISA IRQs. This is the default implementation. Architecture
2148 * implementations can override this.
2149 */
2150void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2151
2152static void do_pci_disable_device(struct pci_dev *dev)
2153{
2154        u16 pci_command;
2155
2156        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2157        if (pci_command & PCI_COMMAND_MASTER) {
2158                pci_command &= ~PCI_COMMAND_MASTER;
2159                pci_write_config_word(dev, PCI_COMMAND, pci_command);
2160        }
2161
2162        pcibios_disable_device(dev);
2163}
2164
2165/**
2166 * pci_disable_enabled_device - Disable device without updating enable_cnt
2167 * @dev: PCI device to disable
2168 *
2169 * NOTE: This function is a backend of PCI power management routines and is
2170 * not supposed to be called drivers.
2171 */
2172void pci_disable_enabled_device(struct pci_dev *dev)
2173{
2174        if (pci_is_enabled(dev))
2175                do_pci_disable_device(dev);
2176}
2177
2178/**
2179 * pci_disable_device - Disable PCI device after use
2180 * @dev: PCI device to be disabled
2181 *
2182 * Signal to the system that the PCI device is not in use by the system
2183 * anymore.  This only involves disabling PCI bus-mastering, if active.
2184 *
2185 * Note we don't actually disable the device until all callers of
2186 * pci_enable_device() have called pci_disable_device().
2187 */
2188void pci_disable_device(struct pci_dev *dev)
2189{
2190        struct pci_devres *dr;
2191
2192        dr = find_pci_dr(dev);
2193        if (dr)
2194                dr->enabled = 0;
2195
2196        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2197                      "disabling already-disabled device");
2198
2199        if (atomic_dec_return(&dev->enable_cnt) != 0)
2200                return;
2201
2202        do_pci_disable_device(dev);
2203
2204        dev->is_busmaster = 0;
2205}
2206EXPORT_SYMBOL(pci_disable_device);
2207
2208/**
2209 * pcibios_set_pcie_reset_state - set reset state for device dev
2210 * @dev: the PCIe device reset
2211 * @state: Reset state to enter into
2212 *
2213 * Set the PCIe reset state for the device. This is the default
2214 * implementation. Architecture implementations can override this.
2215 */
2216int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2217                                        enum pcie_reset_state state)
2218{
2219        return -EINVAL;
2220}
2221
2222/**
2223 * pci_set_pcie_reset_state - set reset state for device dev
2224 * @dev: the PCIe device reset
2225 * @state: Reset state to enter into
2226 *
2227 * Sets the PCI reset state for the device.
2228 */
2229int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2230{
2231        return pcibios_set_pcie_reset_state(dev, state);
2232}
2233EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2234
2235#ifdef CONFIG_PCIEAER
2236void pcie_clear_device_status(struct pci_dev *dev)
2237{
2238        u16 sta;
2239
2240        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2241        pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2242}
2243#endif
2244
2245/**
2246 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2247 * @dev: PCIe root port or event collector.
2248 */
2249void pcie_clear_root_pme_status(struct pci_dev *dev)
2250{
2251        pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2252}
2253
2254/**
2255 * pci_check_pme_status - Check if given device has generated PME.
2256 * @dev: Device to check.
2257 *
2258 * Check the PME status of the device and if set, clear it and clear PME enable
2259 * (if set).  Return 'true' if PME status and PME enable were both set or
2260 * 'false' otherwise.
2261 */
2262bool pci_check_pme_status(struct pci_dev *dev)
2263{
2264        int pmcsr_pos;
2265        u16 pmcsr;
2266        bool ret = false;
2267
2268        if (!dev->pm_cap)
2269                return false;
2270
2271        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2272        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2273        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2274                return false;
2275
2276        /* Clear PME status. */
2277        pmcsr |= PCI_PM_CTRL_PME_STATUS;
2278        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2279                /* Disable PME to avoid interrupt flood. */
2280                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2281                ret = true;
2282        }
2283
2284        pci_write_config_word(dev, pmcsr_pos, pmcsr);
2285
2286        return ret;
2287}
2288
2289/**
2290 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2291 * @dev: Device to handle.
2292 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2293 *
2294 * Check if @dev has generated PME and queue a resume request for it in that
2295 * case.
2296 */
2297static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2298{
2299        if (pme_poll_reset && dev->pme_poll)
2300                dev->pme_poll = false;
2301
2302        if (pci_check_pme_status(dev)) {
2303                pci_wakeup_event(dev);
2304                pm_request_resume(&dev->dev);
2305        }
2306        return 0;
2307}
2308
2309/**
2310 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2311 * @bus: Top bus of the subtree to walk.
2312 */
2313void pci_pme_wakeup_bus(struct pci_bus *bus)
2314{
2315        if (bus)
2316                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2317}
2318
2319
2320/**
2321 * pci_pme_capable - check the capability of PCI device to generate PME#
2322 * @dev: PCI device to handle.
2323 * @state: PCI state from which device will issue PME#.
2324 */
2325bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2326{
2327        if (!dev->pm_cap)
2328                return false;
2329
2330        return !!(dev->pme_support & (1 << state));
2331}
2332EXPORT_SYMBOL(pci_pme_capable);
2333
2334static void pci_pme_list_scan(struct work_struct *work)
2335{
2336        struct pci_pme_device *pme_dev, *n;
2337
2338        mutex_lock(&pci_pme_list_mutex);
2339        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2340                if (pme_dev->dev->pme_poll) {
2341                        struct pci_dev *bridge;
2342
2343                        bridge = pme_dev->dev->bus->self;
2344                        /*
2345                         * If bridge is in low power state, the
2346                         * configuration space of subordinate devices
2347                         * may be not accessible
2348                         */
2349                        if (bridge && bridge->current_state != PCI_D0)
2350                                continue;
2351                        /*
2352                         * If the device is in D3cold it should not be
2353                         * polled either.
2354                         */
2355                        if (pme_dev->dev->current_state == PCI_D3cold)
2356                                continue;
2357
2358                        pci_pme_wakeup(pme_dev->dev, NULL);
2359                } else {
2360                        list_del(&pme_dev->list);
2361                        kfree(pme_dev);
2362                }
2363        }
2364        if (!list_empty(&pci_pme_list))
2365                queue_delayed_work(system_freezable_wq, &pci_pme_work,
2366                                   msecs_to_jiffies(PME_TIMEOUT));
2367        mutex_unlock(&pci_pme_list_mutex);
2368}
2369
2370static void __pci_pme_active(struct pci_dev *dev, bool enable)
2371{
2372        u16 pmcsr;
2373
2374        if (!dev->pme_support)
2375                return;
2376
2377        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2378        /* Clear PME_Status by writing 1 to it and enable PME# */
2379        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2380        if (!enable)
2381                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2382
2383        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2384}
2385
2386/**
2387 * pci_pme_restore - Restore PME configuration after config space restore.
2388 * @dev: PCI device to update.
2389 */
2390void pci_pme_restore(struct pci_dev *dev)
2391{
2392        u16 pmcsr;
2393
2394        if (!dev->pme_support)
2395                return;
2396
2397        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2398        if (dev->wakeup_prepared) {
2399                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2400                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2401        } else {
2402                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2403                pmcsr |= PCI_PM_CTRL_PME_STATUS;
2404        }
2405        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2406}
2407
2408/**
2409 * pci_pme_active - enable or disable PCI device's PME# function
2410 * @dev: PCI device to handle.
2411 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2412 *
2413 * The caller must verify that the device is capable of generating PME# before
2414 * calling this function with @enable equal to 'true'.
2415 */
2416void pci_pme_active(struct pci_dev *dev, bool enable)
2417{
2418        __pci_pme_active(dev, enable);
2419
2420        /*
2421         * PCI (as opposed to PCIe) PME requires that the device have
2422         * its PME# line hooked up correctly. Not all hardware vendors
2423         * do this, so the PME never gets delivered and the device
2424         * remains asleep. The easiest way around this is to
2425         * periodically walk the list of suspended devices and check
2426         * whether any have their PME flag set. The assumption is that
2427         * we'll wake up often enough anyway that this won't be a huge
2428         * hit, and the power savings from the devices will still be a
2429         * win.
2430         *
2431         * Although PCIe uses in-band PME message instead of PME# line
2432         * to report PME, PME does not work for some PCIe devices in
2433         * reality.  For example, there are devices that set their PME
2434         * status bits, but don't really bother to send a PME message;
2435         * there are PCI Express Root Ports that don't bother to
2436         * trigger interrupts when they receive PME messages from the
2437         * devices below.  So PME poll is used for PCIe devices too.
2438         */
2439
2440        if (dev->pme_poll) {
2441                struct pci_pme_device *pme_dev;
2442                if (enable) {
2443                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
2444                                          GFP_KERNEL);
2445                        if (!pme_dev) {
2446                                pci_warn(dev, "can't enable PME#\n");
2447                                return;
2448                        }
2449                        pme_dev->dev = dev;
2450                        mutex_lock(&pci_pme_list_mutex);
2451                        list_add(&pme_dev->list, &pci_pme_list);
2452                        if (list_is_singular(&pci_pme_list))
2453                                queue_delayed_work(system_freezable_wq,
2454                                                   &pci_pme_work,
2455                                                   msecs_to_jiffies(PME_TIMEOUT));
2456                        mutex_unlock(&pci_pme_list_mutex);
2457                } else {
2458                        mutex_lock(&pci_pme_list_mutex);
2459                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
2460                                if (pme_dev->dev == dev) {
2461                                        list_del(&pme_dev->list);
2462                                        kfree(pme_dev);
2463                                        break;
2464                                }
2465                        }
2466                        mutex_unlock(&pci_pme_list_mutex);
2467                }
2468        }
2469
2470        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2471}
2472EXPORT_SYMBOL(pci_pme_active);
2473
2474/**
2475 * __pci_enable_wake - enable PCI device as wakeup event source
2476 * @dev: PCI device affected
2477 * @state: PCI state from which device will issue wakeup events
2478 * @enable: True to enable event generation; false to disable
2479 *
2480 * This enables the device as a wakeup event source, or disables it.
2481 * When such events involves platform-specific hooks, those hooks are
2482 * called automatically by this routine.
2483 *
2484 * Devices with legacy power management (no standard PCI PM capabilities)
2485 * always require such platform hooks.
2486 *
2487 * RETURN VALUE:
2488 * 0 is returned on success
2489 * -EINVAL is returned if device is not supposed to wake up the system
2490 * Error code depending on the platform is returned if both the platform and
2491 * the native mechanism fail to enable the generation of wake-up events
2492 */
2493static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2494{
2495        int ret = 0;
2496
2497        /*
2498         * Bridges that are not power-manageable directly only signal
2499         * wakeup on behalf of subordinate devices which is set up
2500         * elsewhere, so skip them. However, bridges that are
2501         * power-manageable may signal wakeup for themselves (for example,
2502         * on a hotplug event) and they need to be covered here.
2503         */
2504        if (!pci_power_manageable(dev))
2505                return 0;
2506
2507        /* Don't do the same thing twice in a row for one device. */
2508        if (!!enable == !!dev->wakeup_prepared)
2509                return 0;
2510
2511        /*
2512         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2513         * Anderson we should be doing PME# wake enable followed by ACPI wake
2514         * enable.  To disable wake-up we call the platform first, for symmetry.
2515         */
2516
2517        if (enable) {
2518                int error;
2519
2520                /*
2521                 * Enable PME signaling if the device can signal PME from
2522                 * D3cold regardless of whether or not it can signal PME from
2523                 * the current target state, because that will allow it to
2524                 * signal PME when the hierarchy above it goes into D3cold and
2525                 * the device itself ends up in D3cold as a result of that.
2526                 */
2527                if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2528                        pci_pme_active(dev, true);
2529                else
2530                        ret = 1;
2531                error = platform_pci_set_wakeup(dev, true);
2532                if (ret)
2533                        ret = error;
2534                if (!ret)
2535                        dev->wakeup_prepared = true;
2536        } else {
2537                platform_pci_set_wakeup(dev, false);
2538                pci_pme_active(dev, false);
2539                dev->wakeup_prepared = false;
2540        }
2541
2542        return ret;
2543}
2544
2545/**
2546 * pci_enable_wake - change wakeup settings for a PCI device
2547 * @pci_dev: Target device
2548 * @state: PCI state from which device will issue wakeup events
2549 * @enable: Whether or not to enable event generation
2550 *
2551 * If @enable is set, check device_may_wakeup() for the device before calling
2552 * __pci_enable_wake() for it.
2553 */
2554int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2555{
2556        if (enable && !device_may_wakeup(&pci_dev->dev))
2557                return -EINVAL;
2558
2559        return __pci_enable_wake(pci_dev, state, enable);
2560}
2561EXPORT_SYMBOL(pci_enable_wake);
2562
2563/**
2564 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2565 * @dev: PCI device to prepare
2566 * @enable: True to enable wake-up event generation; false to disable
2567 *
2568 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2569 * and this function allows them to set that up cleanly - pci_enable_wake()
2570 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2571 * ordering constraints.
2572 *
2573 * This function only returns error code if the device is not allowed to wake
2574 * up the system from sleep or it is not capable of generating PME# from both
2575 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2576 */
2577int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2578{
2579        return pci_pme_capable(dev, PCI_D3cold) ?
2580                        pci_enable_wake(dev, PCI_D3cold, enable) :
2581                        pci_enable_wake(dev, PCI_D3hot, enable);
2582}
2583EXPORT_SYMBOL(pci_wake_from_d3);
2584
2585/**
2586 * pci_target_state - find an appropriate low power state for a given PCI dev
2587 * @dev: PCI device
2588 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2589 *
2590 * Use underlying platform code to find a supported low power state for @dev.
2591 * If the platform can't manage @dev, return the deepest state from which it
2592 * can generate wake events, based on any available PME info.
2593 */
2594static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2595{
2596        if (platform_pci_power_manageable(dev)) {
2597                /*
2598                 * Call the platform to find the target state for the device.
2599                 */
2600                pci_power_t state = platform_pci_choose_state(dev);
2601
2602                switch (state) {
2603                case PCI_POWER_ERROR:
2604                case PCI_UNKNOWN:
2605                        return PCI_D3hot;
2606
2607                case PCI_D1:
2608                case PCI_D2:
2609                        if (pci_no_d1d2(dev))
2610                                return PCI_D3hot;
2611                }
2612
2613                return state;
2614        }
2615
2616        /*
2617         * If the device is in D3cold even though it's not power-manageable by
2618         * the platform, it may have been powered down by non-standard means.
2619         * Best to let it slumber.
2620         */
2621        if (dev->current_state == PCI_D3cold)
2622                return PCI_D3cold;
2623        else if (!dev->pm_cap)
2624                return PCI_D0;
2625
2626        if (wakeup && dev->pme_support) {
2627                pci_power_t state = PCI_D3hot;
2628
2629                /*
2630                 * Find the deepest state from which the device can generate
2631                 * PME#.
2632                 */
2633                while (state && !(dev->pme_support & (1 << state)))
2634                        state--;
2635
2636                if (state)
2637                        return state;
2638                else if (dev->pme_support & 1)
2639                        return PCI_D0;
2640        }
2641
2642        return PCI_D3hot;
2643}
2644
2645/**
2646 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2647 *                        into a sleep state
2648 * @dev: Device to handle.
2649 *
2650 * Choose the power state appropriate for the device depending on whether
2651 * it can wake up the system and/or is power manageable by the platform
2652 * (PCI_D3hot is the default) and put the device into that state.
2653 */
2654int pci_prepare_to_sleep(struct pci_dev *dev)
2655{
2656        bool wakeup = device_may_wakeup(&dev->dev);
2657        pci_power_t target_state = pci_target_state(dev, wakeup);
2658        int error;
2659
2660        if (target_state == PCI_POWER_ERROR)
2661                return -EIO;
2662
2663        /*
2664         * There are systems (for example, Intel mobile chips since Coffee
2665         * Lake) where the power drawn while suspended can be significantly
2666         * reduced by disabling PTM on PCIe root ports as this allows the
2667         * port to enter a lower-power PM state and the SoC to reach a
2668         * lower-power idle state as a whole.
2669         */
2670        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2671                pci_disable_ptm(dev);
2672
2673        pci_enable_wake(dev, target_state, wakeup);
2674
2675        error = pci_set_power_state(dev, target_state);
2676
2677        if (error) {
2678                pci_enable_wake(dev, target_state, false);
2679                pci_restore_ptm_state(dev);
2680        }
2681
2682        return error;
2683}
2684EXPORT_SYMBOL(pci_prepare_to_sleep);
2685
2686/**
2687 * pci_back_from_sleep - turn PCI device on during system-wide transition
2688 *                       into working state
2689 * @dev: Device to handle.
2690 *
2691 * Disable device's system wake-up capability and put it into D0.
2692 */
2693int pci_back_from_sleep(struct pci_dev *dev)
2694{
2695        int ret = pci_set_power_state(dev, PCI_D0);
2696
2697        if (ret)
2698                return ret;
2699
2700        pci_enable_wake(dev, PCI_D0, false);
2701        return 0;
2702}
2703EXPORT_SYMBOL(pci_back_from_sleep);
2704
2705/**
2706 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2707 * @dev: PCI device being suspended.
2708 *
2709 * Prepare @dev to generate wake-up events at run time and put it into a low
2710 * power state.
2711 */
2712int pci_finish_runtime_suspend(struct pci_dev *dev)
2713{
2714        pci_power_t target_state;
2715        int error;
2716
2717        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2718        if (target_state == PCI_POWER_ERROR)
2719                return -EIO;
2720
2721        dev->runtime_d3cold = target_state == PCI_D3cold;
2722
2723        /*
2724         * There are systems (for example, Intel mobile chips since Coffee
2725         * Lake) where the power drawn while suspended can be significantly
2726         * reduced by disabling PTM on PCIe root ports as this allows the
2727         * port to enter a lower-power PM state and the SoC to reach a
2728         * lower-power idle state as a whole.
2729         */
2730        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2731                pci_disable_ptm(dev);
2732
2733        __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2734
2735        error = pci_set_power_state(dev, target_state);
2736
2737        if (error) {
2738                pci_enable_wake(dev, target_state, false);
2739                pci_restore_ptm_state(dev);
2740                dev->runtime_d3cold = false;
2741        }
2742
2743        return error;
2744}
2745
2746/**
2747 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2748 * @dev: Device to check.
2749 *
2750 * Return true if the device itself is capable of generating wake-up events
2751 * (through the platform or using the native PCIe PME) or if the device supports
2752 * PME and one of its upstream bridges can generate wake-up events.
2753 */
2754bool pci_dev_run_wake(struct pci_dev *dev)
2755{
2756        struct pci_bus *bus = dev->bus;
2757
2758        if (!dev->pme_support)
2759                return false;
2760
2761        /* PME-capable in principle, but not from the target power state */
2762        if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2763                return false;
2764
2765        if (device_can_wakeup(&dev->dev))
2766                return true;
2767
2768        while (bus->parent) {
2769                struct pci_dev *bridge = bus->self;
2770
2771                if (device_can_wakeup(&bridge->dev))
2772                        return true;
2773
2774                bus = bus->parent;
2775        }
2776
2777        /* We have reached the root bus. */
2778        if (bus->bridge)
2779                return device_can_wakeup(bus->bridge);
2780
2781        return false;
2782}
2783EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2784
2785/**
2786 * pci_dev_need_resume - Check if it is necessary to resume the device.
2787 * @pci_dev: Device to check.
2788 *
2789 * Return 'true' if the device is not runtime-suspended or it has to be
2790 * reconfigured due to wakeup settings difference between system and runtime
2791 * suspend, or the current power state of it is not suitable for the upcoming
2792 * (system-wide) transition.
2793 */
2794bool pci_dev_need_resume(struct pci_dev *pci_dev)
2795{
2796        struct device *dev = &pci_dev->dev;
2797        pci_power_t target_state;
2798
2799        if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2800                return true;
2801
2802        target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2803
2804        /*
2805         * If the earlier platform check has not triggered, D3cold is just power
2806         * removal on top of D3hot, so no need to resume the device in that
2807         * case.
2808         */
2809        return target_state != pci_dev->current_state &&
2810                target_state != PCI_D3cold &&
2811                pci_dev->current_state != PCI_D3hot;
2812}
2813
2814/**
2815 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2816 * @pci_dev: Device to check.
2817 *
2818 * If the device is suspended and it is not configured for system wakeup,
2819 * disable PME for it to prevent it from waking up the system unnecessarily.
2820 *
2821 * Note that if the device's power state is D3cold and the platform check in
2822 * pci_dev_need_resume() has not triggered, the device's configuration need not
2823 * be changed.
2824 */
2825void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2826{
2827        struct device *dev = &pci_dev->dev;
2828
2829        spin_lock_irq(&dev->power.lock);
2830
2831        if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2832            pci_dev->current_state < PCI_D3cold)
2833                __pci_pme_active(pci_dev, false);
2834
2835        spin_unlock_irq(&dev->power.lock);
2836}
2837
2838/**
2839 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2840 * @pci_dev: Device to handle.
2841 *
2842 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2843 * it might have been disabled during the prepare phase of system suspend if
2844 * the device was not configured for system wakeup.
2845 */
2846void pci_dev_complete_resume(struct pci_dev *pci_dev)
2847{
2848        struct device *dev = &pci_dev->dev;
2849
2850        if (!pci_dev_run_wake(pci_dev))
2851                return;
2852
2853        spin_lock_irq(&dev->power.lock);
2854
2855        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2856                __pci_pme_active(pci_dev, true);
2857
2858        spin_unlock_irq(&dev->power.lock);
2859}
2860
2861/**
2862 * pci_choose_state - Choose the power state of a PCI device.
2863 * @dev: Target PCI device.
2864 * @state: Target state for the whole system.
2865 *
2866 * Returns PCI power state suitable for @dev and @state.
2867 */
2868pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2869{
2870        if (state.event == PM_EVENT_ON)
2871                return PCI_D0;
2872
2873        return pci_target_state(dev, false);
2874}
2875EXPORT_SYMBOL(pci_choose_state);
2876
2877void pci_config_pm_runtime_get(struct pci_dev *pdev)
2878{
2879        struct device *dev = &pdev->dev;
2880        struct device *parent = dev->parent;
2881
2882        if (parent)
2883                pm_runtime_get_sync(parent);
2884        pm_runtime_get_noresume(dev);
2885        /*
2886         * pdev->current_state is set to PCI_D3cold during suspending,
2887         * so wait until suspending completes
2888         */
2889        pm_runtime_barrier(dev);
2890        /*
2891         * Only need to resume devices in D3cold, because config
2892         * registers are still accessible for devices suspended but
2893         * not in D3cold.
2894         */
2895        if (pdev->current_state == PCI_D3cold)
2896                pm_runtime_resume(dev);
2897}
2898
2899void pci_config_pm_runtime_put(struct pci_dev *pdev)
2900{
2901        struct device *dev = &pdev->dev;
2902        struct device *parent = dev->parent;
2903
2904        pm_runtime_put(dev);
2905        if (parent)
2906                pm_runtime_put_sync(parent);
2907}
2908
2909static const struct dmi_system_id bridge_d3_blacklist[] = {
2910#ifdef CONFIG_X86
2911        {
2912                /*
2913                 * Gigabyte X299 root port is not marked as hotplug capable
2914                 * which allows Linux to power manage it.  However, this
2915                 * confuses the BIOS SMI handler so don't power manage root
2916                 * ports on that system.
2917                 */
2918                .ident = "X299 DESIGNARE EX-CF",
2919                .matches = {
2920                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2921                        DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2922                },
2923                /*
2924                 * Downstream device is not accessible after putting a root port
2925                 * into D3cold and back into D0 on Elo i2.
2926                 */
2927                .ident = "Elo i2",
2928                .matches = {
2929                        DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2930                        DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2931                        DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2932                },
2933        },
2934#endif
2935        { }
2936};
2937
2938/**
2939 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2940 * @bridge: Bridge to check
2941 *
2942 * This function checks if it is possible to move the bridge to D3.
2943 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2944 */
2945bool pci_bridge_d3_possible(struct pci_dev *bridge)
2946{
2947        if (!pci_is_pcie(bridge))
2948                return false;
2949
2950        switch (pci_pcie_type(bridge)) {
2951        case PCI_EXP_TYPE_ROOT_PORT:
2952        case PCI_EXP_TYPE_UPSTREAM:
2953        case PCI_EXP_TYPE_DOWNSTREAM:
2954                if (pci_bridge_d3_disable)
2955                        return false;
2956
2957                /*
2958                 * Hotplug ports handled by firmware in System Management Mode
2959                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2960                 */
2961                if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2962                        return false;
2963
2964                if (pci_bridge_d3_force)
2965                        return true;
2966
2967                /* Even the oldest 2010 Thunderbolt controller supports D3. */
2968                if (bridge->is_thunderbolt)
2969                        return true;
2970
2971                /* Platform might know better if the bridge supports D3 */
2972                if (platform_pci_bridge_d3(bridge))
2973                        return true;
2974
2975                /*
2976                 * Hotplug ports handled natively by the OS were not validated
2977                 * by vendors for runtime D3 at least until 2018 because there
2978                 * was no OS support.
2979                 */
2980                if (bridge->is_hotplug_bridge)
2981                        return false;
2982
2983                if (dmi_check_system(bridge_d3_blacklist))
2984                        return false;
2985
2986                /*
2987                 * It should be safe to put PCIe ports from 2015 or newer
2988                 * to D3.
2989                 */
2990                if (dmi_get_bios_year() >= 2015)
2991                        return true;
2992                break;
2993        }
2994
2995        return false;
2996}
2997
2998static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2999{
3000        bool *d3cold_ok = data;
3001
3002        if (/* The device needs to be allowed to go D3cold ... */
3003            dev->no_d3cold || !dev->d3cold_allowed ||
3004
3005            /* ... and if it is wakeup capable to do so from D3cold. */
3006            (device_may_wakeup(&dev->dev) &&
3007             !pci_pme_capable(dev, PCI_D3cold)) ||
3008
3009            /* If it is a bridge it must be allowed to go to D3. */
3010            !pci_power_manageable(dev))
3011
3012                *d3cold_ok = false;
3013
3014        return !*d3cold_ok;
3015}
3016
3017/*
3018 * pci_bridge_d3_update - Update bridge D3 capabilities
3019 * @dev: PCI device which is changed
3020 *
3021 * Update upstream bridge PM capabilities accordingly depending on if the
3022 * device PM configuration was changed or the device is being removed.  The
3023 * change is also propagated upstream.
3024 */
3025void pci_bridge_d3_update(struct pci_dev *dev)
3026{
3027        bool remove = !device_is_registered(&dev->dev);
3028        struct pci_dev *bridge;
3029        bool d3cold_ok = true;
3030
3031        bridge = pci_upstream_bridge(dev);
3032        if (!bridge || !pci_bridge_d3_possible(bridge))
3033                return;
3034
3035        /*
3036         * If D3 is currently allowed for the bridge, removing one of its
3037         * children won't change that.
3038         */
3039        if (remove && bridge->bridge_d3)
3040                return;
3041
3042        /*
3043         * If D3 is currently allowed for the bridge and a child is added or
3044         * changed, disallowance of D3 can only be caused by that child, so
3045         * we only need to check that single device, not any of its siblings.
3046         *
3047         * If D3 is currently not allowed for the bridge, checking the device
3048         * first may allow us to skip checking its siblings.
3049         */
3050        if (!remove)
3051                pci_dev_check_d3cold(dev, &d3cold_ok);
3052
3053        /*
3054         * If D3 is currently not allowed for the bridge, this may be caused
3055         * either by the device being changed/removed or any of its siblings,
3056         * so we need to go through all children to find out if one of them
3057         * continues to block D3.
3058         */
3059        if (d3cold_ok && !bridge->bridge_d3)
3060                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3061                             &d3cold_ok);
3062
3063        if (bridge->bridge_d3 != d3cold_ok) {
3064                bridge->bridge_d3 = d3cold_ok;
3065                /* Propagate change to upstream bridges */
3066                pci_bridge_d3_update(bridge);
3067        }
3068}
3069
3070/**
3071 * pci_d3cold_enable - Enable D3cold for device
3072 * @dev: PCI device to handle
3073 *
3074 * This function can be used in drivers to enable D3cold from the device
3075 * they handle.  It also updates upstream PCI bridge PM capabilities
3076 * accordingly.
3077 */
3078void pci_d3cold_enable(struct pci_dev *dev)
3079{
3080        if (dev->no_d3cold) {
3081                dev->no_d3cold = false;
3082                pci_bridge_d3_update(dev);
3083        }
3084}
3085EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3086
3087/**
3088 * pci_d3cold_disable - Disable D3cold for device
3089 * @dev: PCI device to handle
3090 *
3091 * This function can be used in drivers to disable D3cold from the device
3092 * they handle.  It also updates upstream PCI bridge PM capabilities
3093 * accordingly.
3094 */
3095void pci_d3cold_disable(struct pci_dev *dev)
3096{
3097        if (!dev->no_d3cold) {
3098                dev->no_d3cold = true;
3099                pci_bridge_d3_update(dev);
3100        }
3101}
3102EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3103
3104/**
3105 * pci_pm_init - Initialize PM functions of given PCI device
3106 * @dev: PCI device to handle.
3107 */
3108void pci_pm_init(struct pci_dev *dev)
3109{
3110        int pm;
3111        u16 status;
3112        u16 pmc;
3113
3114        pm_runtime_forbid(&dev->dev);
3115        pm_runtime_set_active(&dev->dev);
3116        pm_runtime_enable(&dev->dev);
3117        device_enable_async_suspend(&dev->dev);
3118        dev->wakeup_prepared = false;
3119
3120        dev->pm_cap = 0;
3121        dev->pme_support = 0;
3122
3123        /* find PCI PM capability in list */
3124        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3125        if (!pm)
3126                return;
3127        /* Check device's ability to generate PME# */
3128        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3129
3130        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3131                pci_err(dev, "unsupported PM cap regs version (%u)\n",
3132                        pmc & PCI_PM_CAP_VER_MASK);
3133                return;
3134        }
3135
3136        dev->pm_cap = pm;
3137        dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3138        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3139        dev->bridge_d3 = pci_bridge_d3_possible(dev);
3140        dev->d3cold_allowed = true;
3141
3142        dev->d1_support = false;
3143        dev->d2_support = false;
3144        if (!pci_no_d1d2(dev)) {
3145                if (pmc & PCI_PM_CAP_D1)
3146                        dev->d1_support = true;
3147                if (pmc & PCI_PM_CAP_D2)
3148                        dev->d2_support = true;
3149
3150                if (dev->d1_support || dev->d2_support)
3151                        pci_info(dev, "supports%s%s\n",
3152                                   dev->d1_support ? " D1" : "",
3153                                   dev->d2_support ? " D2" : "");
3154        }
3155
3156        pmc &= PCI_PM_CAP_PME_MASK;
3157        if (pmc) {
3158                pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3159                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3160                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3161                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3162                         (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3163                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3164                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3165                dev->pme_poll = true;
3166                /*
3167                 * Make device's PM flags reflect the wake-up capability, but
3168                 * let the user space enable it to wake up the system as needed.
3169                 */
3170                device_set_wakeup_capable(&dev->dev, true);
3171                /* Disable the PME# generation functionality */
3172                pci_pme_active(dev, false);
3173        }
3174
3175        pci_read_config_word(dev, PCI_STATUS, &status);
3176        if (status & PCI_STATUS_IMM_READY)
3177                dev->imm_ready = 1;
3178}
3179
3180static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3181{
3182        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3183
3184        switch (prop) {
3185        case PCI_EA_P_MEM:
3186        case PCI_EA_P_VF_MEM:
3187                flags |= IORESOURCE_MEM;
3188                break;
3189        case PCI_EA_P_MEM_PREFETCH:
3190        case PCI_EA_P_VF_MEM_PREFETCH:
3191                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3192                break;
3193        case PCI_EA_P_IO:
3194                flags |= IORESOURCE_IO;
3195                break;
3196        default:
3197                return 0;
3198        }
3199
3200        return flags;
3201}
3202
3203static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3204                                            u8 prop)
3205{
3206        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3207                return &dev->resource[bei];
3208#ifdef CONFIG_PCI_IOV
3209        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3210                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3211                return &dev->resource[PCI_IOV_RESOURCES +
3212                                      bei - PCI_EA_BEI_VF_BAR0];
3213#endif
3214        else if (bei == PCI_EA_BEI_ROM)
3215                return &dev->resource[PCI_ROM_RESOURCE];
3216        else
3217                return NULL;
3218}
3219
3220/* Read an Enhanced Allocation (EA) entry */
3221static int pci_ea_read(struct pci_dev *dev, int offset)
3222{
3223        struct resource *res;
3224        int ent_size, ent_offset = offset;
3225        resource_size_t start, end;
3226        unsigned long flags;
3227        u32 dw0, bei, base, max_offset;
3228        u8 prop;
3229        bool support_64 = (sizeof(resource_size_t) >= 8);
3230
3231        pci_read_config_dword(dev, ent_offset, &dw0);
3232        ent_offset += 4;
3233
3234        /* Entry size field indicates DWORDs after 1st */
3235        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3236
3237        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3238                goto out;
3239
3240        bei = (dw0 & PCI_EA_BEI) >> 4;
3241        prop = (dw0 & PCI_EA_PP) >> 8;
3242
3243        /*
3244         * If the Property is in the reserved range, try the Secondary
3245         * Property instead.
3246         */
3247        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3248                prop = (dw0 & PCI_EA_SP) >> 16;
3249        if (prop > PCI_EA_P_BRIDGE_IO)
3250                goto out;
3251
3252        res = pci_ea_get_resource(dev, bei, prop);
3253        if (!res) {
3254                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3255                goto out;
3256        }
3257
3258        flags = pci_ea_flags(dev, prop);
3259        if (!flags) {
3260                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3261                goto out;
3262        }
3263
3264        /* Read Base */
3265        pci_read_config_dword(dev, ent_offset, &base);
3266        start = (base & PCI_EA_FIELD_MASK);
3267        ent_offset += 4;
3268
3269        /* Read MaxOffset */
3270        pci_read_config_dword(dev, ent_offset, &max_offset);
3271        ent_offset += 4;
3272
3273        /* Read Base MSBs (if 64-bit entry) */
3274        if (base & PCI_EA_IS_64) {
3275                u32 base_upper;
3276
3277                pci_read_config_dword(dev, ent_offset, &base_upper);
3278                ent_offset += 4;
3279
3280                flags |= IORESOURCE_MEM_64;
3281
3282                /* entry starts above 32-bit boundary, can't use */
3283                if (!support_64 && base_upper)
3284                        goto out;
3285
3286                if (support_64)
3287                        start |= ((u64)base_upper << 32);
3288        }
3289
3290        end = start + (max_offset | 0x03);
3291
3292        /* Read MaxOffset MSBs (if 64-bit entry) */
3293        if (max_offset & PCI_EA_IS_64) {
3294                u32 max_offset_upper;
3295
3296                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3297                ent_offset += 4;
3298
3299                flags |= IORESOURCE_MEM_64;
3300
3301                /* entry too big, can't use */
3302                if (!support_64 && max_offset_upper)
3303                        goto out;
3304
3305                if (support_64)
3306                        end += ((u64)max_offset_upper << 32);
3307        }
3308
3309        if (end < start) {
3310                pci_err(dev, "EA Entry crosses address boundary\n");
3311                goto out;
3312        }
3313
3314        if (ent_size != ent_offset - offset) {
3315                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3316                        ent_size, ent_offset - offset);
3317                goto out;
3318        }
3319
3320        res->name = pci_name(dev);
3321        res->start = start;
3322        res->end = end;
3323        res->flags = flags;
3324
3325        if (bei <= PCI_EA_BEI_BAR5)
3326                pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3327                           bei, res, prop);
3328        else if (bei == PCI_EA_BEI_ROM)
3329                pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3330                           res, prop);
3331        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3332                pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3333                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
3334        else
3335                pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3336                           bei, res, prop);
3337
3338out:
3339        return offset + ent_size;
3340}
3341
3342/* Enhanced Allocation Initialization */
3343void pci_ea_init(struct pci_dev *dev)
3344{
3345        int ea;
3346        u8 num_ent;
3347        int offset;
3348        int i;
3349
3350        /* find PCI EA capability in list */
3351        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3352        if (!ea)
3353                return;
3354
3355        /* determine the number of entries */
3356        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3357                                        &num_ent);
3358        num_ent &= PCI_EA_NUM_ENT_MASK;
3359
3360        offset = ea + PCI_EA_FIRST_ENT;
3361
3362        /* Skip DWORD 2 for type 1 functions */
3363        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3364                offset += 4;
3365
3366        /* parse each EA entry */
3367        for (i = 0; i < num_ent; ++i)
3368                offset = pci_ea_read(dev, offset);
3369}
3370
3371static void pci_add_saved_cap(struct pci_dev *pci_dev,
3372        struct pci_cap_saved_state *new_cap)
3373{
3374        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3375}
3376
3377/**
3378 * _pci_add_cap_save_buffer - allocate buffer for saving given
3379 *                            capability registers
3380 * @dev: the PCI device
3381 * @cap: the capability to allocate the buffer for
3382 * @extended: Standard or Extended capability ID
3383 * @size: requested size of the buffer
3384 */
3385static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3386                                    bool extended, unsigned int size)
3387{
3388        int pos;
3389        struct pci_cap_saved_state *save_state;
3390
3391        if (extended)
3392                pos = pci_find_ext_capability(dev, cap);
3393        else
3394                pos = pci_find_capability(dev, cap);
3395
3396        if (!pos)
3397                return 0;
3398
3399        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3400        if (!save_state)
3401                return -ENOMEM;
3402
3403        save_state->cap.cap_nr = cap;
3404        save_state->cap.cap_extended = extended;
3405        save_state->cap.size = size;
3406        pci_add_saved_cap(dev, save_state);
3407
3408        return 0;
3409}
3410
3411int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3412{
3413        return _pci_add_cap_save_buffer(dev, cap, false, size);
3414}
3415
3416int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3417{
3418        return _pci_add_cap_save_buffer(dev, cap, true, size);
3419}
3420
3421/**
3422 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3423 * @dev: the PCI device
3424 */
3425void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3426{
3427        int error;
3428
3429        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3430                                        PCI_EXP_SAVE_REGS * sizeof(u16));
3431        if (error)
3432                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3433
3434        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3435        if (error)
3436                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3437
3438        error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3439                                            2 * sizeof(u16));
3440        if (error)
3441                pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3442
3443        pci_allocate_vc_save_buffers(dev);
3444}
3445
3446void pci_free_cap_save_buffers(struct pci_dev *dev)
3447{
3448        struct pci_cap_saved_state *tmp;
3449        struct hlist_node *n;
3450
3451        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3452                kfree(tmp);
3453}
3454
3455/**
3456 * pci_configure_ari - enable or disable ARI forwarding
3457 * @dev: the PCI device
3458 *
3459 * If @dev and its upstream bridge both support ARI, enable ARI in the
3460 * bridge.  Otherwise, disable ARI in the bridge.
3461 */
3462void pci_configure_ari(struct pci_dev *dev)
3463{
3464        u32 cap;
3465        struct pci_dev *bridge;
3466
3467        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3468                return;
3469
3470        bridge = dev->bus->self;
3471        if (!bridge)
3472                return;
3473
3474        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3475        if (!(cap & PCI_EXP_DEVCAP2_ARI))
3476                return;
3477
3478        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3479                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3480                                         PCI_EXP_DEVCTL2_ARI);
3481                bridge->ari_enabled = 1;
3482        } else {
3483                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3484                                           PCI_EXP_DEVCTL2_ARI);
3485                bridge->ari_enabled = 0;
3486        }
3487}
3488
3489static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3490{
3491        int pos;
3492        u16 cap, ctrl;
3493
3494        pos = pdev->acs_cap;
3495        if (!pos)
3496                return false;
3497
3498        /*
3499         * Except for egress control, capabilities are either required
3500         * or only required if controllable.  Features missing from the
3501         * capability field can therefore be assumed as hard-wired enabled.
3502         */
3503        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3504        acs_flags &= (cap | PCI_ACS_EC);
3505
3506        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3507        return (ctrl & acs_flags) == acs_flags;
3508}
3509
3510/**
3511 * pci_acs_enabled - test ACS against required flags for a given device
3512 * @pdev: device to test
3513 * @acs_flags: required PCI ACS flags
3514 *
3515 * Return true if the device supports the provided flags.  Automatically
3516 * filters out flags that are not implemented on multifunction devices.
3517 *
3518 * Note that this interface checks the effective ACS capabilities of the
3519 * device rather than the actual capabilities.  For instance, most single
3520 * function endpoints are not required to support ACS because they have no
3521 * opportunity for peer-to-peer access.  We therefore return 'true'
3522 * regardless of whether the device exposes an ACS capability.  This makes
3523 * it much easier for callers of this function to ignore the actual type
3524 * or topology of the device when testing ACS support.
3525 */
3526bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3527{
3528        int ret;
3529
3530        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3531        if (ret >= 0)
3532                return ret > 0;
3533
3534        /*
3535         * Conventional PCI and PCI-X devices never support ACS, either
3536         * effectively or actually.  The shared bus topology implies that
3537         * any device on the bus can receive or snoop DMA.
3538         */
3539        if (!pci_is_pcie(pdev))
3540                return false;
3541
3542        switch (pci_pcie_type(pdev)) {
3543        /*
3544         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3545         * but since their primary interface is PCI/X, we conservatively
3546         * handle them as we would a non-PCIe device.
3547         */
3548        case PCI_EXP_TYPE_PCIE_BRIDGE:
3549        /*
3550         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3551         * applicable... must never implement an ACS Extended Capability...".
3552         * This seems arbitrary, but we take a conservative interpretation
3553         * of this statement.
3554         */
3555        case PCI_EXP_TYPE_PCI_BRIDGE:
3556        case PCI_EXP_TYPE_RC_EC:
3557                return false;
3558        /*
3559         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3560         * implement ACS in order to indicate their peer-to-peer capabilities,
3561         * regardless of whether they are single- or multi-function devices.
3562         */
3563        case PCI_EXP_TYPE_DOWNSTREAM:
3564        case PCI_EXP_TYPE_ROOT_PORT:
3565                return pci_acs_flags_enabled(pdev, acs_flags);
3566        /*
3567         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3568         * implemented by the remaining PCIe types to indicate peer-to-peer
3569         * capabilities, but only when they are part of a multifunction
3570         * device.  The footnote for section 6.12 indicates the specific
3571         * PCIe types included here.
3572         */
3573        case PCI_EXP_TYPE_ENDPOINT:
3574        case PCI_EXP_TYPE_UPSTREAM:
3575        case PCI_EXP_TYPE_LEG_END:
3576        case PCI_EXP_TYPE_RC_END:
3577                if (!pdev->multifunction)
3578                        break;
3579
3580                return pci_acs_flags_enabled(pdev, acs_flags);
3581        }
3582
3583        /*
3584         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3585         * to single function devices with the exception of downstream ports.
3586         */
3587        return true;
3588}
3589
3590/**
3591 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3592 * @start: starting downstream device
3593 * @end: ending upstream device or NULL to search to the root bus
3594 * @acs_flags: required flags
3595 *
3596 * Walk up a device tree from start to end testing PCI ACS support.  If
3597 * any step along the way does not support the required flags, return false.
3598 */
3599bool pci_acs_path_enabled(struct pci_dev *start,
3600                          struct pci_dev *end, u16 acs_flags)
3601{
3602        struct pci_dev *pdev, *parent = start;
3603
3604        do {
3605                pdev = parent;
3606
3607                if (!pci_acs_enabled(pdev, acs_flags))
3608                        return false;
3609
3610                if (pci_is_root_bus(pdev->bus))
3611                        return (end == NULL);
3612
3613                parent = pdev->bus->self;
3614        } while (pdev != end);
3615
3616        return true;
3617}
3618
3619/**
3620 * pci_acs_init - Initialize ACS if hardware supports it
3621 * @dev: the PCI device
3622 */
3623void pci_acs_init(struct pci_dev *dev)
3624{
3625        dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3626
3627        /*
3628         * Attempt to enable ACS regardless of capability because some Root
3629         * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3630         * the standard ACS capability but still support ACS via those
3631         * quirks.
3632         */
3633        pci_enable_acs(dev);
3634}
3635
3636/**
3637 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3638 * @pdev: PCI device
3639 * @bar: BAR to find
3640 *
3641 * Helper to find the position of the ctrl register for a BAR.
3642 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3643 * Returns -ENOENT if no ctrl register for the BAR could be found.
3644 */
3645static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3646{
3647        unsigned int pos, nbars, i;
3648        u32 ctrl;
3649
3650        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3651        if (!pos)
3652                return -ENOTSUPP;
3653
3654        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3655        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3656                    PCI_REBAR_CTRL_NBAR_SHIFT;
3657
3658        for (i = 0; i < nbars; i++, pos += 8) {
3659                int bar_idx;
3660
3661                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3662                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3663                if (bar_idx == bar)
3664                        return pos;
3665        }
3666
3667        return -ENOENT;
3668}
3669
3670/**
3671 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3672 * @pdev: PCI device
3673 * @bar: BAR to query
3674 *
3675 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3676 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3677 */
3678u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3679{
3680        int pos;
3681        u32 cap;
3682
3683        pos = pci_rebar_find_pos(pdev, bar);
3684        if (pos < 0)
3685                return 0;
3686
3687        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3688        cap &= PCI_REBAR_CAP_SIZES;
3689
3690        /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3691        if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3692            bar == 0 && cap == 0x7000)
3693                cap = 0x3f000;
3694
3695        return cap >> 4;
3696}
3697EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3698
3699/**
3700 * pci_rebar_get_current_size - get the current size of a BAR
3701 * @pdev: PCI device
3702 * @bar: BAR to set size to
3703 *
3704 * Read the size of a BAR from the resizable BAR config.
3705 * Returns size if found or negative error code.
3706 */
3707int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3708{
3709        int pos;
3710        u32 ctrl;
3711
3712        pos = pci_rebar_find_pos(pdev, bar);
3713        if (pos < 0)
3714                return pos;
3715
3716        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3717        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3718}
3719
3720/**
3721 * pci_rebar_set_size - set a new size for a BAR
3722 * @pdev: PCI device
3723 * @bar: BAR to set size to
3724 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3725 *
3726 * Set the new size of a BAR as defined in the spec.
3727 * Returns zero if resizing was successful, error code otherwise.
3728 */
3729int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3730{
3731        int pos;
3732        u32 ctrl;
3733
3734        pos = pci_rebar_find_pos(pdev, bar);
3735        if (pos < 0)
3736                return pos;
3737
3738        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3739        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3740        ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3741        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3742        return 0;
3743}
3744
3745/**
3746 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3747 * @dev: the PCI device
3748 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3749 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3750 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3751 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3752 *
3753 * Return 0 if all upstream bridges support AtomicOp routing, egress
3754 * blocking is disabled on all upstream ports, and the root port supports
3755 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3756 * AtomicOp completion), or negative otherwise.
3757 */
3758int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3759{
3760        struct pci_bus *bus = dev->bus;
3761        struct pci_dev *bridge;
3762        u32 cap, ctl2;
3763
3764        /*
3765         * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3766         * in Device Control 2 is reserved in VFs and the PF value applies
3767         * to all associated VFs.
3768         */
3769        if (dev->is_virtfn)
3770                return -EINVAL;
3771
3772        if (!pci_is_pcie(dev))
3773                return -EINVAL;
3774
3775        /*
3776         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3777         * AtomicOp requesters.  For now, we only support endpoints as
3778         * requesters and root ports as completers.  No endpoints as
3779         * completers, and no peer-to-peer.
3780         */
3781
3782        switch (pci_pcie_type(dev)) {
3783        case PCI_EXP_TYPE_ENDPOINT:
3784        case PCI_EXP_TYPE_LEG_END:
3785        case PCI_EXP_TYPE_RC_END:
3786                break;
3787        default:
3788                return -EINVAL;
3789        }
3790
3791        while (bus->parent) {
3792                bridge = bus->self;
3793
3794                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3795
3796                switch (pci_pcie_type(bridge)) {
3797                /* Ensure switch ports support AtomicOp routing */
3798                case PCI_EXP_TYPE_UPSTREAM:
3799                case PCI_EXP_TYPE_DOWNSTREAM:
3800                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3801                                return -EINVAL;
3802                        break;
3803
3804                /* Ensure root port supports all the sizes we care about */
3805                case PCI_EXP_TYPE_ROOT_PORT:
3806                        if ((cap & cap_mask) != cap_mask)
3807                                return -EINVAL;
3808                        break;
3809                }
3810
3811                /* Ensure upstream ports don't block AtomicOps on egress */
3812                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3813                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3814                                                   &ctl2);
3815                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3816                                return -EINVAL;
3817                }
3818
3819                bus = bus->parent;
3820        }
3821
3822        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3823                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3824        return 0;
3825}
3826EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3827
3828/**
3829 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3830 * @dev: the PCI device
3831 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3832 *
3833 * Perform INTx swizzling for a device behind one level of bridge.  This is
3834 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3835 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3836 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3837 * the PCI Express Base Specification, Revision 2.1)
3838 */
3839u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3840{
3841        int slot;
3842
3843        if (pci_ari_enabled(dev->bus))
3844                slot = 0;
3845        else
3846                slot = PCI_SLOT(dev->devfn);
3847
3848        return (((pin - 1) + slot) % 4) + 1;
3849}
3850
3851int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3852{
3853        u8 pin;
3854
3855        pin = dev->pin;
3856        if (!pin)
3857                return -1;
3858
3859        while (!pci_is_root_bus(dev->bus)) {
3860                pin = pci_swizzle_interrupt_pin(dev, pin);
3861                dev = dev->bus->self;
3862        }
3863        *bridge = dev;
3864        return pin;
3865}
3866
3867/**
3868 * pci_common_swizzle - swizzle INTx all the way to root bridge
3869 * @dev: the PCI device
3870 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3871 *
3872 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3873 * bridges all the way up to a PCI root bus.
3874 */
3875u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3876{
3877        u8 pin = *pinp;
3878
3879        while (!pci_is_root_bus(dev->bus)) {
3880                pin = pci_swizzle_interrupt_pin(dev, pin);
3881                dev = dev->bus->self;
3882        }
3883        *pinp = pin;
3884        return PCI_SLOT(dev->devfn);
3885}
3886EXPORT_SYMBOL_GPL(pci_common_swizzle);
3887
3888/**
3889 * pci_release_region - Release a PCI bar
3890 * @pdev: PCI device whose resources were previously reserved by
3891 *        pci_request_region()
3892 * @bar: BAR to release
3893 *
3894 * Releases the PCI I/O and memory resources previously reserved by a
3895 * successful call to pci_request_region().  Call this function only
3896 * after all use of the PCI regions has ceased.
3897 */
3898void pci_release_region(struct pci_dev *pdev, int bar)
3899{
3900        struct pci_devres *dr;
3901
3902        if (pci_resource_len(pdev, bar) == 0)
3903                return;
3904        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3905                release_region(pci_resource_start(pdev, bar),
3906                                pci_resource_len(pdev, bar));
3907        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3908                release_mem_region(pci_resource_start(pdev, bar),
3909                                pci_resource_len(pdev, bar));
3910
3911        dr = find_pci_dr(pdev);
3912        if (dr)
3913                dr->region_mask &= ~(1 << bar);
3914}
3915EXPORT_SYMBOL(pci_release_region);
3916
3917/**
3918 * __pci_request_region - Reserved PCI I/O and memory resource
3919 * @pdev: PCI device whose resources are to be reserved
3920 * @bar: BAR to be reserved
3921 * @res_name: Name to be associated with resource.
3922 * @exclusive: whether the region access is exclusive or not
3923 *
3924 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3925 * being reserved by owner @res_name.  Do not access any
3926 * address inside the PCI regions unless this call returns
3927 * successfully.
3928 *
3929 * If @exclusive is set, then the region is marked so that userspace
3930 * is explicitly not allowed to map the resource via /dev/mem or
3931 * sysfs MMIO access.
3932 *
3933 * Returns 0 on success, or %EBUSY on error.  A warning
3934 * message is also printed on failure.
3935 */
3936static int __pci_request_region(struct pci_dev *pdev, int bar,
3937                                const char *res_name, int exclusive)
3938{
3939        struct pci_devres *dr;
3940
3941        if (pci_resource_len(pdev, bar) == 0)
3942                return 0;
3943
3944        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3945                if (!request_region(pci_resource_start(pdev, bar),
3946                            pci_resource_len(pdev, bar), res_name))
3947                        goto err_out;
3948        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3949                if (!__request_mem_region(pci_resource_start(pdev, bar),
3950                                        pci_resource_len(pdev, bar), res_name,
3951                                        exclusive))
3952                        goto err_out;
3953        }
3954
3955        dr = find_pci_dr(pdev);
3956        if (dr)
3957                dr->region_mask |= 1 << bar;
3958
3959        return 0;
3960
3961err_out:
3962        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3963                 &pdev->resource[bar]);
3964        return -EBUSY;
3965}
3966
3967/**
3968 * pci_request_region - Reserve PCI I/O and memory resource
3969 * @pdev: PCI device whose resources are to be reserved
3970 * @bar: BAR to be reserved
3971 * @res_name: Name to be associated with resource
3972 *
3973 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3974 * being reserved by owner @res_name.  Do not access any
3975 * address inside the PCI regions unless this call returns
3976 * successfully.
3977 *
3978 * Returns 0 on success, or %EBUSY on error.  A warning
3979 * message is also printed on failure.
3980 */
3981int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3982{
3983        return __pci_request_region(pdev, bar, res_name, 0);
3984}
3985EXPORT_SYMBOL(pci_request_region);
3986
3987/**
3988 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3989 * @pdev: PCI device whose resources were previously reserved
3990 * @bars: Bitmask of BARs to be released
3991 *
3992 * Release selected PCI I/O and memory resources previously reserved.
3993 * Call this function only after all use of the PCI regions has ceased.
3994 */
3995void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3996{
3997        int i;
3998
3999        for (i = 0; i < PCI_STD_NUM_BARS; i++)
4000                if (bars & (1 << i))
4001                        pci_release_region(pdev, i);
4002}
4003EXPORT_SYMBOL(pci_release_selected_regions);
4004
4005static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4006                                          const char *res_name, int excl)
4007{
4008        int i;
4009
4010        for (i = 0; i < PCI_STD_NUM_BARS; i++)
4011                if (bars & (1 << i))
4012                        if (__pci_request_region(pdev, i, res_name, excl))
4013                                goto err_out;
4014        return 0;
4015
4016err_out:
4017        while (--i >= 0)
4018                if (bars & (1 << i))
4019                        pci_release_region(pdev, i);
4020
4021        return -EBUSY;
4022}
4023
4024
4025/**
4026 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4027 * @pdev: PCI device whose resources are to be reserved
4028 * @bars: Bitmask of BARs to be requested
4029 * @res_name: Name to be associated with resource
4030 */
4031int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4032                                 const char *res_name)
4033{
4034        return __pci_request_selected_regions(pdev, bars, res_name, 0);
4035}
4036EXPORT_SYMBOL(pci_request_selected_regions);
4037
4038int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4039                                           const char *res_name)
4040{
4041        return __pci_request_selected_regions(pdev, bars, res_name,
4042                        IORESOURCE_EXCLUSIVE);
4043}
4044EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4045
4046/**
4047 * pci_release_regions - Release reserved PCI I/O and memory resources
4048 * @pdev: PCI device whose resources were previously reserved by
4049 *        pci_request_regions()
4050 *
4051 * Releases all PCI I/O and memory resources previously reserved by a
4052 * successful call to pci_request_regions().  Call this function only
4053 * after all use of the PCI regions has ceased.
4054 */
4055
4056void pci_release_regions(struct pci_dev *pdev)
4057{
4058        pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4059}
4060EXPORT_SYMBOL(pci_release_regions);
4061
4062/**
4063 * pci_request_regions - Reserve PCI I/O and memory resources
4064 * @pdev: PCI device whose resources are to be reserved
4065 * @res_name: Name to be associated with resource.
4066 *
4067 * Mark all PCI regions associated with PCI device @pdev as
4068 * being reserved by owner @res_name.  Do not access any
4069 * address inside the PCI regions unless this call returns
4070 * successfully.
4071 *
4072 * Returns 0 on success, or %EBUSY on error.  A warning
4073 * message is also printed on failure.
4074 */
4075int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4076{
4077        return pci_request_selected_regions(pdev,
4078                        ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4079}
4080EXPORT_SYMBOL(pci_request_regions);
4081
4082/**
4083 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4084 * @pdev: PCI device whose resources are to be reserved
4085 * @res_name: Name to be associated with resource.
4086 *
4087 * Mark all PCI regions associated with PCI device @pdev as being reserved
4088 * by owner @res_name.  Do not access any address inside the PCI regions
4089 * unless this call returns successfully.
4090 *
4091 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4092 * and the sysfs MMIO access will not be allowed.
4093 *
4094 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4095 * printed on failure.
4096 */
4097int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4098{
4099        return pci_request_selected_regions_exclusive(pdev,
4100                                ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4101}
4102EXPORT_SYMBOL(pci_request_regions_exclusive);
4103
4104/*
4105 * Record the PCI IO range (expressed as CPU physical address + size).
4106 * Return a negative value if an error has occurred, zero otherwise
4107 */
4108int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4109                        resource_size_t size)
4110{
4111        int ret = 0;
4112#ifdef PCI_IOBASE
4113        struct logic_pio_hwaddr *range;
4114
4115        if (!size || addr + size < addr)
4116                return -EINVAL;
4117
4118        range = kzalloc(sizeof(*range), GFP_ATOMIC);
4119        if (!range)
4120                return -ENOMEM;
4121
4122        range->fwnode = fwnode;
4123        range->size = size;
4124        range->hw_start = addr;
4125        range->flags = LOGIC_PIO_CPU_MMIO;
4126
4127        ret = logic_pio_register_range(range);
4128        if (ret)
4129                kfree(range);
4130
4131        /* Ignore duplicates due to deferred probing */
4132        if (ret == -EEXIST)
4133                ret = 0;
4134#endif
4135
4136        return ret;
4137}
4138
4139phys_addr_t pci_pio_to_address(unsigned long pio)
4140{
4141        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4142
4143#ifdef PCI_IOBASE
4144        if (pio >= MMIO_UPPER_LIMIT)
4145                return address;
4146
4147        address = logic_pio_to_hwaddr(pio);
4148#endif
4149
4150        return address;
4151}
4152EXPORT_SYMBOL_GPL(pci_pio_to_address);
4153
4154unsigned long __weak pci_address_to_pio(phys_addr_t address)
4155{
4156#ifdef PCI_IOBASE
4157        return logic_pio_trans_cpuaddr(address);
4158#else
4159        if (address > IO_SPACE_LIMIT)
4160                return (unsigned long)-1;
4161
4162        return (unsigned long) address;
4163#endif
4164}
4165
4166/**
4167 * pci_remap_iospace - Remap the memory mapped I/O space
4168 * @res: Resource describing the I/O space
4169 * @phys_addr: physical address of range to be mapped
4170 *
4171 * Remap the memory mapped I/O space described by the @res and the CPU
4172 * physical address @phys_addr into virtual address space.  Only
4173 * architectures that have memory mapped IO functions defined (and the
4174 * PCI_IOBASE value defined) should call this function.
4175 */
4176#ifndef pci_remap_iospace
4177int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4178{
4179#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4180        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4181
4182        if (!(res->flags & IORESOURCE_IO))
4183                return -EINVAL;
4184
4185        if (res->end > IO_SPACE_LIMIT)
4186                return -EINVAL;
4187
4188        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4189                                  pgprot_device(PAGE_KERNEL));
4190#else
4191        /*
4192         * This architecture does not have memory mapped I/O space,
4193         * so this function should never be called
4194         */
4195        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4196        return -ENODEV;
4197#endif
4198}
4199EXPORT_SYMBOL(pci_remap_iospace);
4200#endif
4201
4202/**
4203 * pci_unmap_iospace - Unmap the memory mapped I/O space
4204 * @res: resource to be unmapped
4205 *
4206 * Unmap the CPU virtual address @res from virtual address space.  Only
4207 * architectures that have memory mapped IO functions defined (and the
4208 * PCI_IOBASE value defined) should call this function.
4209 */
4210void pci_unmap_iospace(struct resource *res)
4211{
4212#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4213        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4214
4215        vunmap_range(vaddr, vaddr + resource_size(res));
4216#endif
4217}
4218EXPORT_SYMBOL(pci_unmap_iospace);
4219
4220static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4221{
4222        struct resource **res = ptr;
4223
4224        pci_unmap_iospace(*res);
4225}
4226
4227/**
4228 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4229 * @dev: Generic device to remap IO address for
4230 * @res: Resource describing the I/O space
4231 * @phys_addr: physical address of range to be mapped
4232 *
4233 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4234 * detach.
4235 */
4236int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4237                           phys_addr_t phys_addr)
4238{
4239        const struct resource **ptr;
4240        int error;
4241
4242        ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4243        if (!ptr)
4244                return -ENOMEM;
4245
4246        error = pci_remap_iospace(res, phys_addr);
4247        if (error) {
4248                devres_free(ptr);
4249        } else  {
4250                *ptr = res;
4251                devres_add(dev, ptr);
4252        }
4253
4254        return error;
4255}
4256EXPORT_SYMBOL(devm_pci_remap_iospace);
4257
4258/**
4259 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4260 * @dev: Generic device to remap IO address for
4261 * @offset: Resource address to map
4262 * @size: Size of map
4263 *
4264 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4265 * detach.
4266 */
4267void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4268                                      resource_size_t offset,
4269                                      resource_size_t size)
4270{
4271        void __iomem **ptr, *addr;
4272
4273        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4274        if (!ptr)
4275                return NULL;
4276
4277        addr = pci_remap_cfgspace(offset, size);
4278        if (addr) {
4279                *ptr = addr;
4280                devres_add(dev, ptr);
4281        } else
4282                devres_free(ptr);
4283
4284        return addr;
4285}
4286EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4287
4288/**
4289 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4290 * @dev: generic device to handle the resource for
4291 * @res: configuration space resource to be handled
4292 *
4293 * Checks that a resource is a valid memory region, requests the memory
4294 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4295 * proper PCI configuration space memory attributes are guaranteed.
4296 *
4297 * All operations are managed and will be undone on driver detach.
4298 *
4299 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4300 * on failure. Usage example::
4301 *
4302 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4303 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4304 *      if (IS_ERR(base))
4305 *              return PTR_ERR(base);
4306 */
4307void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4308                                          struct resource *res)
4309{
4310        resource_size_t size;
4311        const char *name;
4312        void __iomem *dest_ptr;
4313
4314        BUG_ON(!dev);
4315
4316        if (!res || resource_type(res) != IORESOURCE_MEM) {
4317                dev_err(dev, "invalid resource\n");
4318                return IOMEM_ERR_PTR(-EINVAL);
4319        }
4320
4321        size = resource_size(res);
4322
4323        if (res->name)
4324                name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4325                                      res->name);
4326        else
4327                name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4328        if (!name)
4329                return IOMEM_ERR_PTR(-ENOMEM);
4330
4331        if (!devm_request_mem_region(dev, res->start, size, name)) {
4332                dev_err(dev, "can't request region for resource %pR\n", res);
4333                return IOMEM_ERR_PTR(-EBUSY);
4334        }
4335
4336        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4337        if (!dest_ptr) {
4338                dev_err(dev, "ioremap failed for resource %pR\n", res);
4339                devm_release_mem_region(dev, res->start, size);
4340                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4341        }
4342
4343        return dest_ptr;
4344}
4345EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4346
4347static void __pci_set_master(struct pci_dev *dev, bool enable)
4348{
4349        u16 old_cmd, cmd;
4350
4351        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4352        if (enable)
4353                cmd = old_cmd | PCI_COMMAND_MASTER;
4354        else
4355                cmd = old_cmd & ~PCI_COMMAND_MASTER;
4356        if (cmd != old_cmd) {
4357                pci_dbg(dev, "%s bus mastering\n",
4358                        enable ? "enabling" : "disabling");
4359                pci_write_config_word(dev, PCI_COMMAND, cmd);
4360        }
4361        dev->is_busmaster = enable;
4362}
4363
4364/**
4365 * pcibios_setup - process "pci=" kernel boot arguments
4366 * @str: string used to pass in "pci=" kernel boot arguments
4367 *
4368 * Process kernel boot arguments.  This is the default implementation.
4369 * Architecture specific implementations can override this as necessary.
4370 */
4371char * __weak __init pcibios_setup(char *str)
4372{
4373        return str;
4374}
4375
4376/**
4377 * pcibios_set_master - enable PCI bus-mastering for device dev
4378 * @dev: the PCI device to enable
4379 *
4380 * Enables PCI bus-mastering for the device.  This is the default
4381 * implementation.  Architecture specific implementations can override
4382 * this if necessary.
4383 */
4384void __weak pcibios_set_master(struct pci_dev *dev)
4385{
4386        u8 lat;
4387
4388        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4389        if (pci_is_pcie(dev))
4390                return;
4391
4392        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4393        if (lat < 16)
4394                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4395        else if (lat > pcibios_max_latency)
4396                lat = pcibios_max_latency;
4397        else
4398                return;
4399
4400        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4401}
4402
4403/**
4404 * pci_set_master - enables bus-mastering for device dev
4405 * @dev: the PCI device to enable
4406 *
4407 * Enables bus-mastering on the device and calls pcibios_set_master()
4408 * to do the needed arch specific settings.
4409 */
4410void pci_set_master(struct pci_dev *dev)
4411{
4412        __pci_set_master(dev, true);
4413        pcibios_set_master(dev);
4414}
4415EXPORT_SYMBOL(pci_set_master);
4416
4417/**
4418 * pci_clear_master - disables bus-mastering for device dev
4419 * @dev: the PCI device to disable
4420 */
4421void pci_clear_master(struct pci_dev *dev)
4422{
4423        __pci_set_master(dev, false);
4424}
4425EXPORT_SYMBOL(pci_clear_master);
4426
4427/**
4428 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4429 * @dev: the PCI device for which MWI is to be enabled
4430 *
4431 * Helper function for pci_set_mwi.
4432 * Originally copied from drivers/net/acenic.c.
4433 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4434 *
4435 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4436 */
4437int pci_set_cacheline_size(struct pci_dev *dev)
4438{
4439        u8 cacheline_size;
4440
4441        if (!pci_cache_line_size)
4442                return -EINVAL;
4443
4444        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4445           equal to or multiple of the right value. */
4446        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4447        if (cacheline_size >= pci_cache_line_size &&
4448            (cacheline_size % pci_cache_line_size) == 0)
4449                return 0;
4450
4451        /* Write the correct value. */
4452        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4453        /* Read it back. */
4454        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4455        if (cacheline_size == pci_cache_line_size)
4456                return 0;
4457
4458        pci_dbg(dev, "cache line size of %d is not supported\n",
4459                   pci_cache_line_size << 2);
4460
4461        return -EINVAL;
4462}
4463EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4464
4465/**
4466 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4467 * @dev: the PCI device for which MWI is enabled
4468 *
4469 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4470 *
4471 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4472 */
4473int pci_set_mwi(struct pci_dev *dev)
4474{
4475#ifdef PCI_DISABLE_MWI
4476        return 0;
4477#else
4478        int rc;
4479        u16 cmd;
4480
4481        rc = pci_set_cacheline_size(dev);
4482        if (rc)
4483                return rc;
4484
4485        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4487                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4488                cmd |= PCI_COMMAND_INVALIDATE;
4489                pci_write_config_word(dev, PCI_COMMAND, cmd);
4490        }
4491        return 0;
4492#endif
4493}
4494EXPORT_SYMBOL(pci_set_mwi);
4495
4496/**
4497 * pcim_set_mwi - a device-managed pci_set_mwi()
4498 * @dev: the PCI device for which MWI is enabled
4499 *
4500 * Managed pci_set_mwi().
4501 *
4502 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4503 */
4504int pcim_set_mwi(struct pci_dev *dev)
4505{
4506        struct pci_devres *dr;
4507
4508        dr = find_pci_dr(dev);
4509        if (!dr)
4510                return -ENOMEM;
4511
4512        dr->mwi = 1;
4513        return pci_set_mwi(dev);
4514}
4515EXPORT_SYMBOL(pcim_set_mwi);
4516
4517/**
4518 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4519 * @dev: the PCI device for which MWI is enabled
4520 *
4521 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4522 * Callers are not required to check the return value.
4523 *
4524 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4525 */
4526int pci_try_set_mwi(struct pci_dev *dev)
4527{
4528#ifdef PCI_DISABLE_MWI
4529        return 0;
4530#else
4531        return pci_set_mwi(dev);
4532#endif
4533}
4534EXPORT_SYMBOL(pci_try_set_mwi);
4535
4536/**
4537 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4538 * @dev: the PCI device to disable
4539 *
4540 * Disables PCI Memory-Write-Invalidate transaction on the device
4541 */
4542void pci_clear_mwi(struct pci_dev *dev)
4543{
4544#ifndef PCI_DISABLE_MWI
4545        u16 cmd;
4546
4547        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4548        if (cmd & PCI_COMMAND_INVALIDATE) {
4549                cmd &= ~PCI_COMMAND_INVALIDATE;
4550                pci_write_config_word(dev, PCI_COMMAND, cmd);
4551        }
4552#endif
4553}
4554EXPORT_SYMBOL(pci_clear_mwi);
4555
4556/**
4557 * pci_disable_parity - disable parity checking for device
4558 * @dev: the PCI device to operate on
4559 *
4560 * Disable parity checking for device @dev
4561 */
4562void pci_disable_parity(struct pci_dev *dev)
4563{
4564        u16 cmd;
4565
4566        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4567        if (cmd & PCI_COMMAND_PARITY) {
4568                cmd &= ~PCI_COMMAND_PARITY;
4569                pci_write_config_word(dev, PCI_COMMAND, cmd);
4570        }
4571}
4572
4573/**
4574 * pci_intx - enables/disables PCI INTx for device dev
4575 * @pdev: the PCI device to operate on
4576 * @enable: boolean: whether to enable or disable PCI INTx
4577 *
4578 * Enables/disables PCI INTx for device @pdev
4579 */
4580void pci_intx(struct pci_dev *pdev, int enable)
4581{
4582        u16 pci_command, new;
4583
4584        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4585
4586        if (enable)
4587                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4588        else
4589                new = pci_command | PCI_COMMAND_INTX_DISABLE;
4590
4591        if (new != pci_command) {
4592                struct pci_devres *dr;
4593
4594                pci_write_config_word(pdev, PCI_COMMAND, new);
4595
4596                dr = find_pci_dr(pdev);
4597                if (dr && !dr->restore_intx) {
4598                        dr->restore_intx = 1;
4599                        dr->orig_intx = !enable;
4600                }
4601        }
4602}
4603EXPORT_SYMBOL_GPL(pci_intx);
4604
4605static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4606{
4607        struct pci_bus *bus = dev->bus;
4608        bool mask_updated = true;
4609        u32 cmd_status_dword;
4610        u16 origcmd, newcmd;
4611        unsigned long flags;
4612        bool irq_pending;
4613
4614        /*
4615         * We do a single dword read to retrieve both command and status.
4616         * Document assumptions that make this possible.
4617         */
4618        BUILD_BUG_ON(PCI_COMMAND % 4);
4619        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4620
4621        raw_spin_lock_irqsave(&pci_lock, flags);
4622
4623        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4624
4625        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4626
4627        /*
4628         * Check interrupt status register to see whether our device
4629         * triggered the interrupt (when masking) or the next IRQ is
4630         * already pending (when unmasking).
4631         */
4632        if (mask != irq_pending) {
4633                mask_updated = false;
4634                goto done;
4635        }
4636
4637        origcmd = cmd_status_dword;
4638        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4639        if (mask)
4640                newcmd |= PCI_COMMAND_INTX_DISABLE;
4641        if (newcmd != origcmd)
4642                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4643
4644done:
4645        raw_spin_unlock_irqrestore(&pci_lock, flags);
4646
4647        return mask_updated;
4648}
4649
4650/**
4651 * pci_check_and_mask_intx - mask INTx on pending interrupt
4652 * @dev: the PCI device to operate on
4653 *
4654 * Check if the device dev has its INTx line asserted, mask it and return
4655 * true in that case. False is returned if no interrupt was pending.
4656 */
4657bool pci_check_and_mask_intx(struct pci_dev *dev)
4658{
4659        return pci_check_and_set_intx_mask(dev, true);
4660}
4661EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4662
4663/**
4664 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4665 * @dev: the PCI device to operate on
4666 *
4667 * Check if the device dev has its INTx line asserted, unmask it if not and
4668 * return true. False is returned and the mask remains active if there was
4669 * still an interrupt pending.
4670 */
4671bool pci_check_and_unmask_intx(struct pci_dev *dev)
4672{
4673        return pci_check_and_set_intx_mask(dev, false);
4674}
4675EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4676
4677/**
4678 * pci_wait_for_pending_transaction - wait for pending transaction
4679 * @dev: the PCI device to operate on
4680 *
4681 * Return 0 if transaction is pending 1 otherwise.
4682 */
4683int pci_wait_for_pending_transaction(struct pci_dev *dev)
4684{
4685        if (!pci_is_pcie(dev))
4686                return 1;
4687
4688        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4689                                    PCI_EXP_DEVSTA_TRPND);
4690}
4691EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4692
4693/**
4694 * pcie_flr - initiate a PCIe function level reset
4695 * @dev: device to reset
4696 *
4697 * Initiate a function level reset unconditionally on @dev without
4698 * checking any flags and DEVCAP
4699 */
4700int pcie_flr(struct pci_dev *dev)
4701{
4702        if (!pci_wait_for_pending_transaction(dev))
4703                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4704
4705        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4706
4707        if (dev->imm_ready)
4708                return 0;
4709
4710        /*
4711         * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4712         * 100ms, but may silently discard requests while the FLR is in
4713         * progress.  Wait 100ms before trying to access the device.
4714         */
4715        msleep(100);
4716
4717        return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4718}
4719EXPORT_SYMBOL_GPL(pcie_flr);
4720
4721/**
4722 * pcie_reset_flr - initiate a PCIe function level reset
4723 * @dev: device to reset
4724 * @probe: if true, return 0 if device can be reset this way
4725 *
4726 * Initiate a function level reset on @dev.
4727 */
4728int pcie_reset_flr(struct pci_dev *dev, bool probe)
4729{
4730        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4731                return -ENOTTY;
4732
4733        if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4734                return -ENOTTY;
4735
4736        if (probe)
4737                return 0;
4738
4739        return pcie_flr(dev);
4740}
4741EXPORT_SYMBOL_GPL(pcie_reset_flr);
4742
4743static int pci_af_flr(struct pci_dev *dev, bool probe)
4744{
4745        int pos;
4746        u8 cap;
4747
4748        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4749        if (!pos)
4750                return -ENOTTY;
4751
4752        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4753                return -ENOTTY;
4754
4755        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4756        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4757                return -ENOTTY;
4758
4759        if (probe)
4760                return 0;
4761
4762        /*
4763         * Wait for Transaction Pending bit to clear.  A word-aligned test
4764         * is used, so we use the control offset rather than status and shift
4765         * the test bit to match.
4766         */
4767        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4768                                 PCI_AF_STATUS_TP << 8))
4769                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4770
4771        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4772
4773        if (dev->imm_ready)
4774                return 0;
4775
4776        /*
4777         * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4778         * updated 27 July 2006; a device must complete an FLR within
4779         * 100ms, but may silently discard requests while the FLR is in
4780         * progress.  Wait 100ms before trying to access the device.
4781         */
4782        msleep(100);
4783
4784        return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4785}
4786
4787/**
4788 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4789 * @dev: Device to reset.
4790 * @probe: if true, return 0 if the device can be reset this way.
4791 *
4792 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4793 * unset, it will be reinitialized internally when going from PCI_D3hot to
4794 * PCI_D0.  If that's the case and the device is not in a low-power state
4795 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4796 *
4797 * NOTE: This causes the caller to sleep for twice the device power transition
4798 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4799 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4800 * Moreover, only devices in D0 can be reset by this function.
4801 */
4802static int pci_pm_reset(struct pci_dev *dev, bool probe)
4803{
4804        u16 csr;
4805
4806        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4807                return -ENOTTY;
4808
4809        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4810        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4811                return -ENOTTY;
4812
4813        if (probe)
4814                return 0;
4815
4816        if (dev->current_state != PCI_D0)
4817                return -EINVAL;
4818
4819        csr &= ~PCI_PM_CTRL_STATE_MASK;
4820        csr |= PCI_D3hot;
4821        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4822        pci_dev_d3_sleep(dev);
4823
4824        csr &= ~PCI_PM_CTRL_STATE_MASK;
4825        csr |= PCI_D0;
4826        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4827        pci_dev_d3_sleep(dev);
4828
4829        return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4830}
4831
4832/**
4833 * pcie_wait_for_link_delay - Wait until link is active or inactive
4834 * @pdev: Bridge device
4835 * @active: waiting for active or inactive?
4836 * @delay: Delay to wait after link has become active (in ms)
4837 *
4838 * Use this to wait till link becomes active or inactive.
4839 */
4840static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4841                                     int delay)
4842{
4843        int timeout = 1000;
4844        bool ret;
4845        u16 lnk_status;
4846
4847        /*
4848         * Some controllers might not implement link active reporting. In this
4849         * case, we wait for 1000 ms + any delay requested by the caller.
4850         */
4851        if (!pdev->link_active_reporting) {
4852                msleep(timeout + delay);
4853                return true;
4854        }
4855
4856        /*
4857         * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4858         * after which we should expect an link active if the reset was
4859         * successful. If so, software must wait a minimum 100ms before sending
4860         * configuration requests to devices downstream this port.
4861         *
4862         * If the link fails to activate, either the device was physically
4863         * removed or the link is permanently failed.
4864         */
4865        if (active)
4866                msleep(20);
4867        for (;;) {
4868                pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4869                ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4870                if (ret == active)
4871                        break;
4872                if (timeout <= 0)
4873                        break;
4874                msleep(10);
4875                timeout -= 10;
4876        }
4877        if (active && ret)
4878                msleep(delay);
4879
4880        return ret == active;
4881}
4882
4883/**
4884 * pcie_wait_for_link - Wait until link is active or inactive
4885 * @pdev: Bridge device
4886 * @active: waiting for active or inactive?
4887 *
4888 * Use this to wait till link becomes active or inactive.
4889 */
4890bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4891{
4892        return pcie_wait_for_link_delay(pdev, active, 100);
4893}
4894
4895/*
4896 * Find maximum D3cold delay required by all the devices on the bus.  The
4897 * spec says 100 ms, but firmware can lower it and we allow drivers to
4898 * increase it as well.
4899 *
4900 * Called with @pci_bus_sem locked for reading.
4901 */
4902static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4903{
4904        const struct pci_dev *pdev;
4905        int min_delay = 100;
4906        int max_delay = 0;
4907
4908        list_for_each_entry(pdev, &bus->devices, bus_list) {
4909                if (pdev->d3cold_delay < min_delay)
4910                        min_delay = pdev->d3cold_delay;
4911                if (pdev->d3cold_delay > max_delay)
4912                        max_delay = pdev->d3cold_delay;
4913        }
4914
4915        return max(min_delay, max_delay);
4916}
4917
4918/**
4919 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4920 * @dev: PCI bridge
4921 *
4922 * Handle necessary delays before access to the devices on the secondary
4923 * side of the bridge are permitted after D3cold to D0 transition.
4924 *
4925 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4926 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4927 * 4.3.2.
4928 */
4929void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4930{
4931        struct pci_dev *child;
4932        int delay;
4933
4934        if (pci_dev_is_disconnected(dev))
4935                return;
4936
4937        if (!pci_is_bridge(dev) || !dev->bridge_d3)
4938                return;
4939
4940        down_read(&pci_bus_sem);
4941
4942        /*
4943         * We only deal with devices that are present currently on the bus.
4944         * For any hot-added devices the access delay is handled in pciehp
4945         * board_added(). In case of ACPI hotplug the firmware is expected
4946         * to configure the devices before OS is notified.
4947         */
4948        if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4949                up_read(&pci_bus_sem);
4950                return;
4951        }
4952
4953        /* Take d3cold_delay requirements into account */
4954        delay = pci_bus_max_d3cold_delay(dev->subordinate);
4955        if (!delay) {
4956                up_read(&pci_bus_sem);
4957                return;
4958        }
4959
4960        child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4961                                 bus_list);
4962        up_read(&pci_bus_sem);
4963
4964        /*
4965         * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4966         * accessing the device after reset (that is 1000 ms + 100 ms). In
4967         * practice this should not be needed because we don't do power
4968         * management for them (see pci_bridge_d3_possible()).
4969         */
4970        if (!pci_is_pcie(dev)) {
4971                pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4972                msleep(1000 + delay);
4973                return;
4974        }
4975
4976        /*
4977         * For PCIe downstream and root ports that do not support speeds
4978         * greater than 5 GT/s need to wait minimum 100 ms. For higher
4979         * speeds (gen3) we need to wait first for the data link layer to
4980         * become active.
4981         *
4982         * However, 100 ms is the minimum and the PCIe spec says the
4983         * software must allow at least 1s before it can determine that the
4984         * device that did not respond is a broken device. There is
4985         * evidence that 100 ms is not always enough, for example certain
4986         * Titan Ridge xHCI controller does not always respond to
4987         * configuration requests if we only wait for 100 ms (see
4988         * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4989         *
4990         * Therefore we wait for 100 ms and check for the device presence.
4991         * If it is still not present give it an additional 100 ms.
4992         */
4993        if (!pcie_downstream_port(dev))
4994                return;
4995
4996        if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4997                pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4998                msleep(delay);
4999        } else {
5000                pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5001                        delay);
5002                if (!pcie_wait_for_link_delay(dev, true, delay)) {
5003                        /* Did not train, no need to wait any further */
5004                        pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5005                        return;
5006                }
5007        }
5008
5009        if (!pci_device_is_present(child)) {
5010                pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5011                msleep(delay);
5012        }
5013}
5014
5015void pci_reset_secondary_bus(struct pci_dev *dev)
5016{
5017        u16 ctrl;
5018
5019        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5020        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5021        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5022
5023        /*
5024         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5025         * this to 2ms to ensure that we meet the minimum requirement.
5026         */
5027        msleep(2);
5028
5029        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5030        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5031
5032        /*
5033         * Trhfa for conventional PCI is 2^25 clock cycles.
5034         * Assuming a minimum 33MHz clock this results in a 1s
5035         * delay before we can consider subordinate devices to
5036         * be re-initialized.  PCIe has some ways to shorten this,
5037         * but we don't make use of them yet.
5038         */
5039        ssleep(1);
5040}
5041
5042void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5043{
5044        pci_reset_secondary_bus(dev);
5045}
5046
5047/**
5048 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5049 * @dev: Bridge device
5050 *
5051 * Use the bridge control register to assert reset on the secondary bus.
5052 * Devices on the secondary bus are left in power-on state.
5053 */
5054int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5055{
5056        pcibios_reset_secondary_bus(dev);
5057
5058        return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5059}
5060EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5061
5062static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5063{
5064        struct pci_dev *pdev;
5065
5066        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5067            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5068                return -ENOTTY;
5069
5070        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5071                if (pdev != dev)
5072                        return -ENOTTY;
5073
5074        if (probe)
5075                return 0;
5076
5077        return pci_bridge_secondary_bus_reset(dev->bus->self);
5078}
5079
5080static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5081{
5082        int rc = -ENOTTY;
5083
5084        if (!hotplug || !try_module_get(hotplug->owner))
5085                return rc;
5086
5087        if (hotplug->ops->reset_slot)
5088                rc = hotplug->ops->reset_slot(hotplug, probe);
5089
5090        module_put(hotplug->owner);
5091
5092        return rc;
5093}
5094
5095static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5096{
5097        if (dev->multifunction || dev->subordinate || !dev->slot ||
5098            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5099                return -ENOTTY;
5100
5101        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5102}
5103
5104static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5105{
5106        int rc;
5107
5108        rc = pci_dev_reset_slot_function(dev, probe);
5109        if (rc != -ENOTTY)
5110                return rc;
5111        return pci_parent_bus_reset(dev, probe);
5112}
5113
5114void pci_dev_lock(struct pci_dev *dev)
5115{
5116        pci_cfg_access_lock(dev);
5117        /* block PM suspend, driver probe, etc. */
5118        device_lock(&dev->dev);
5119}
5120EXPORT_SYMBOL_GPL(pci_dev_lock);
5121
5122/* Return 1 on successful lock, 0 on contention */
5123int pci_dev_trylock(struct pci_dev *dev)
5124{
5125        if (pci_cfg_access_trylock(dev)) {
5126                if (device_trylock(&dev->dev))
5127                        return 1;
5128                pci_cfg_access_unlock(dev);
5129        }
5130
5131        return 0;
5132}
5133EXPORT_SYMBOL_GPL(pci_dev_trylock);
5134
5135void pci_dev_unlock(struct pci_dev *dev)
5136{
5137        device_unlock(&dev->dev);
5138        pci_cfg_access_unlock(dev);
5139}
5140EXPORT_SYMBOL_GPL(pci_dev_unlock);
5141
5142static void pci_dev_save_and_disable(struct pci_dev *dev)
5143{
5144        const struct pci_error_handlers *err_handler =
5145                        dev->driver ? dev->driver->err_handler : NULL;
5146
5147        /*
5148         * dev->driver->err_handler->reset_prepare() is protected against
5149         * races with ->remove() by the device lock, which must be held by
5150         * the caller.
5151         */
5152        if (err_handler && err_handler->reset_prepare)
5153                err_handler->reset_prepare(dev);
5154
5155        /*
5156         * Wake-up device prior to save.  PM registers default to D0 after
5157         * reset and a simple register restore doesn't reliably return
5158         * to a non-D0 state anyway.
5159         */
5160        pci_set_power_state(dev, PCI_D0);
5161
5162        pci_save_state(dev);
5163        /*
5164         * Disable the device by clearing the Command register, except for
5165         * INTx-disable which is set.  This not only disables MMIO and I/O port
5166         * BARs, but also prevents the device from being Bus Master, preventing
5167         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5168         * compliant devices, INTx-disable prevents legacy interrupts.
5169         */
5170        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5171}
5172
5173static void pci_dev_restore(struct pci_dev *dev)
5174{
5175        const struct pci_error_handlers *err_handler =
5176                        dev->driver ? dev->driver->err_handler : NULL;
5177
5178        pci_restore_state(dev);
5179
5180        /*
5181         * dev->driver->err_handler->reset_done() is protected against
5182         * races with ->remove() by the device lock, which must be held by
5183         * the caller.
5184         */
5185        if (err_handler && err_handler->reset_done)
5186                err_handler->reset_done(dev);
5187}
5188
5189/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5190static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5191        { },
5192        { pci_dev_specific_reset, .name = "device_specific" },
5193        { pci_dev_acpi_reset, .name = "acpi" },
5194        { pcie_reset_flr, .name = "flr" },
5195        { pci_af_flr, .name = "af_flr" },
5196        { pci_pm_reset, .name = "pm" },
5197        { pci_reset_bus_function, .name = "bus" },
5198};
5199
5200static ssize_t reset_method_show(struct device *dev,
5201                                 struct device_attribute *attr, char *buf)
5202{
5203        struct pci_dev *pdev = to_pci_dev(dev);
5204        ssize_t len = 0;
5205        int i, m;
5206
5207        for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5208                m = pdev->reset_methods[i];
5209                if (!m)
5210                        break;
5211
5212                len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5213                                     pci_reset_fn_methods[m].name);
5214        }
5215
5216        if (len)
5217                len += sysfs_emit_at(buf, len, "\n");
5218
5219        return len;
5220}
5221
5222static int reset_method_lookup(const char *name)
5223{
5224        int m;
5225
5226        for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5227                if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5228                        return m;
5229        }
5230
5231        return 0;       /* not found */
5232}
5233
5234static ssize_t reset_method_store(struct device *dev,
5235                                  struct device_attribute *attr,
5236                                  const char *buf, size_t count)
5237{
5238        struct pci_dev *pdev = to_pci_dev(dev);
5239        char *options, *name;
5240        int m, n;
5241        u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5242
5243        if (sysfs_streq(buf, "")) {
5244                pdev->reset_methods[0] = 0;
5245                pci_warn(pdev, "All device reset methods disabled by user");
5246                return count;
5247        }
5248
5249        if (sysfs_streq(buf, "default")) {
5250                pci_init_reset_methods(pdev);
5251                return count;
5252        }
5253
5254        options = kstrndup(buf, count, GFP_KERNEL);
5255        if (!options)
5256                return -ENOMEM;
5257
5258        n = 0;
5259        while ((name = strsep(&options, " ")) != NULL) {
5260                if (sysfs_streq(name, ""))
5261                        continue;
5262
5263                name = strim(name);
5264
5265                m = reset_method_lookup(name);
5266                if (!m) {
5267                        pci_err(pdev, "Invalid reset method '%s'", name);
5268                        goto error;
5269                }
5270
5271                if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5272                        pci_err(pdev, "Unsupported reset method '%s'", name);
5273                        goto error;
5274                }
5275
5276                if (n == PCI_NUM_RESET_METHODS - 1) {
5277                        pci_err(pdev, "Too many reset methods\n");
5278                        goto error;
5279                }
5280
5281                reset_methods[n++] = m;
5282        }
5283
5284        reset_methods[n] = 0;
5285
5286        /* Warn if dev-specific supported but not highest priority */
5287        if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5288            reset_methods[0] != 1)
5289                pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5290        memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5291        kfree(options);
5292        return count;
5293
5294error:
5295        /* Leave previous methods unchanged */
5296        kfree(options);
5297        return -EINVAL;
5298}
5299static DEVICE_ATTR_RW(reset_method);
5300
5301static struct attribute *pci_dev_reset_method_attrs[] = {
5302        &dev_attr_reset_method.attr,
5303        NULL,
5304};
5305
5306static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5307                                                    struct attribute *a, int n)
5308{
5309        struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5310
5311        if (!pci_reset_supported(pdev))
5312                return 0;
5313
5314        return a->mode;
5315}
5316
5317const struct attribute_group pci_dev_reset_method_attr_group = {
5318        .attrs = pci_dev_reset_method_attrs,
5319        .is_visible = pci_dev_reset_method_attr_is_visible,
5320};
5321
5322/**
5323 * __pci_reset_function_locked - reset a PCI device function while holding
5324 * the @dev mutex lock.
5325 * @dev: PCI device to reset
5326 *
5327 * Some devices allow an individual function to be reset without affecting
5328 * other functions in the same device.  The PCI device must be responsive
5329 * to PCI config space in order to use this function.
5330 *
5331 * The device function is presumed to be unused and the caller is holding
5332 * the device mutex lock when this function is called.
5333 *
5334 * Resetting the device will make the contents of PCI configuration space
5335 * random, so any caller of this must be prepared to reinitialise the
5336 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5337 * etc.
5338 *
5339 * Returns 0 if the device function was successfully reset or negative if the
5340 * device doesn't support resetting a single function.
5341 */
5342int __pci_reset_function_locked(struct pci_dev *dev)
5343{
5344        int i, m, rc;
5345
5346        might_sleep();
5347
5348        /*
5349         * A reset method returns -ENOTTY if it doesn't support this device and
5350         * we should try the next method.
5351         *
5352         * If it returns 0 (success), we're finished.  If it returns any other
5353         * error, we're also finished: this indicates that further reset
5354         * mechanisms might be broken on the device.
5355         */
5356        for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5357                m = dev->reset_methods[i];
5358                if (!m)
5359                        return -ENOTTY;
5360
5361                rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5362                if (!rc)
5363                        return 0;
5364                if (rc != -ENOTTY)
5365                        return rc;
5366        }
5367
5368        return -ENOTTY;
5369}
5370EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5371
5372/**
5373 * pci_init_reset_methods - check whether device can be safely reset
5374 * and store supported reset mechanisms.
5375 * @dev: PCI device to check for reset mechanisms
5376 *
5377 * Some devices allow an individual function to be reset without affecting
5378 * other functions in the same device.  The PCI device must be in D0-D3hot
5379 * state.
5380 *
5381 * Stores reset mechanisms supported by device in reset_methods byte array
5382 * which is a member of struct pci_dev.
5383 */
5384void pci_init_reset_methods(struct pci_dev *dev)
5385{
5386        int m, i, rc;
5387
5388        BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5389
5390        might_sleep();
5391
5392        i = 0;
5393        for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5394                rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5395                if (!rc)
5396                        dev->reset_methods[i++] = m;
5397                else if (rc != -ENOTTY)
5398                        break;
5399        }
5400
5401        dev->reset_methods[i] = 0;
5402}
5403
5404/**
5405 * pci_reset_function - quiesce and reset a PCI device function
5406 * @dev: PCI device to reset
5407 *
5408 * Some devices allow an individual function to be reset without affecting
5409 * other functions in the same device.  The PCI device must be responsive
5410 * to PCI config space in order to use this function.
5411 *
5412 * This function does not just reset the PCI portion of a device, but
5413 * clears all the state associated with the device.  This function differs
5414 * from __pci_reset_function_locked() in that it saves and restores device state
5415 * over the reset and takes the PCI device lock.
5416 *
5417 * Returns 0 if the device function was successfully reset or negative if the
5418 * device doesn't support resetting a single function.
5419 */
5420int pci_reset_function(struct pci_dev *dev)
5421{
5422        int rc;
5423
5424        if (!pci_reset_supported(dev))
5425                return -ENOTTY;
5426
5427        pci_dev_lock(dev);
5428        pci_dev_save_and_disable(dev);
5429
5430        rc = __pci_reset_function_locked(dev);
5431
5432        pci_dev_restore(dev);
5433        pci_dev_unlock(dev);
5434
5435        return rc;
5436}
5437EXPORT_SYMBOL_GPL(pci_reset_function);
5438
5439/**
5440 * pci_reset_function_locked - quiesce and reset a PCI device function
5441 * @dev: PCI device to reset
5442 *
5443 * Some devices allow an individual function to be reset without affecting
5444 * other functions in the same device.  The PCI device must be responsive
5445 * to PCI config space in order to use this function.
5446 *
5447 * This function does not just reset the PCI portion of a device, but
5448 * clears all the state associated with the device.  This function differs
5449 * from __pci_reset_function_locked() in that it saves and restores device state
5450 * over the reset.  It also differs from pci_reset_function() in that it
5451 * requires the PCI device lock to be held.
5452 *
5453 * Returns 0 if the device function was successfully reset or negative if the
5454 * device doesn't support resetting a single function.
5455 */
5456int pci_reset_function_locked(struct pci_dev *dev)
5457{
5458        int rc;
5459
5460        if (!pci_reset_supported(dev))
5461                return -ENOTTY;
5462
5463        pci_dev_save_and_disable(dev);
5464
5465        rc = __pci_reset_function_locked(dev);
5466
5467        pci_dev_restore(dev);
5468
5469        return rc;
5470}
5471EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5472
5473/**
5474 * pci_try_reset_function - quiesce and reset a PCI device function
5475 * @dev: PCI device to reset
5476 *
5477 * Same as above, except return -EAGAIN if unable to lock device.
5478 */
5479int pci_try_reset_function(struct pci_dev *dev)
5480{
5481        int rc;
5482
5483        if (!pci_reset_supported(dev))
5484                return -ENOTTY;
5485
5486        if (!pci_dev_trylock(dev))
5487                return -EAGAIN;
5488
5489        pci_dev_save_and_disable(dev);
5490        rc = __pci_reset_function_locked(dev);
5491        pci_dev_restore(dev);
5492        pci_dev_unlock(dev);
5493
5494        return rc;
5495}
5496EXPORT_SYMBOL_GPL(pci_try_reset_function);
5497
5498/* Do any devices on or below this bus prevent a bus reset? */
5499static bool pci_bus_resetable(struct pci_bus *bus)
5500{
5501        struct pci_dev *dev;
5502
5503
5504        if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5505                return false;
5506
5507        list_for_each_entry(dev, &bus->devices, bus_list) {
5508                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5509                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5510                        return false;
5511        }
5512
5513        return true;
5514}
5515
5516/* Lock devices from the top of the tree down */
5517static void pci_bus_lock(struct pci_bus *bus)
5518{
5519        struct pci_dev *dev;
5520
5521        list_for_each_entry(dev, &bus->devices, bus_list) {
5522                pci_dev_lock(dev);
5523                if (dev->subordinate)
5524                        pci_bus_lock(dev->subordinate);
5525        }
5526}
5527
5528/* Unlock devices from the bottom of the tree up */
5529static void pci_bus_unlock(struct pci_bus *bus)
5530{
5531        struct pci_dev *dev;
5532
5533        list_for_each_entry(dev, &bus->devices, bus_list) {
5534                if (dev->subordinate)
5535                        pci_bus_unlock(dev->subordinate);
5536                pci_dev_unlock(dev);
5537        }
5538}
5539
5540/* Return 1 on successful lock, 0 on contention */
5541static int pci_bus_trylock(struct pci_bus *bus)
5542{
5543        struct pci_dev *dev;
5544
5545        list_for_each_entry(dev, &bus->devices, bus_list) {
5546                if (!pci_dev_trylock(dev))
5547                        goto unlock;
5548                if (dev->subordinate) {
5549                        if (!pci_bus_trylock(dev->subordinate)) {
5550                                pci_dev_unlock(dev);
5551                                goto unlock;
5552                        }
5553                }
5554        }
5555        return 1;
5556
5557unlock:
5558        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5559                if (dev->subordinate)
5560                        pci_bus_unlock(dev->subordinate);
5561                pci_dev_unlock(dev);
5562        }
5563        return 0;
5564}
5565
5566/* Do any devices on or below this slot prevent a bus reset? */
5567static bool pci_slot_resetable(struct pci_slot *slot)
5568{
5569        struct pci_dev *dev;
5570
5571        if (slot->bus->self &&
5572            (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5573                return false;
5574
5575        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5576                if (!dev->slot || dev->slot != slot)
5577                        continue;
5578                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5579                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5580                        return false;
5581        }
5582
5583        return true;
5584}
5585
5586/* Lock devices from the top of the tree down */
5587static void pci_slot_lock(struct pci_slot *slot)
5588{
5589        struct pci_dev *dev;
5590
5591        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5592                if (!dev->slot || dev->slot != slot)
5593                        continue;
5594                pci_dev_lock(dev);
5595                if (dev->subordinate)
5596                        pci_bus_lock(dev->subordinate);
5597        }
5598}
5599
5600/* Unlock devices from the bottom of the tree up */
5601static void pci_slot_unlock(struct pci_slot *slot)
5602{
5603        struct pci_dev *dev;
5604
5605        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606                if (!dev->slot || dev->slot != slot)
5607                        continue;
5608                if (dev->subordinate)
5609                        pci_bus_unlock(dev->subordinate);
5610                pci_dev_unlock(dev);
5611        }
5612}
5613
5614/* Return 1 on successful lock, 0 on contention */
5615static int pci_slot_trylock(struct pci_slot *slot)
5616{
5617        struct pci_dev *dev;
5618
5619        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5620                if (!dev->slot || dev->slot != slot)
5621                        continue;
5622                if (!pci_dev_trylock(dev))
5623                        goto unlock;
5624                if (dev->subordinate) {
5625                        if (!pci_bus_trylock(dev->subordinate)) {
5626                                pci_dev_unlock(dev);
5627                                goto unlock;
5628                        }
5629                }
5630        }
5631        return 1;
5632
5633unlock:
5634        list_for_each_entry_continue_reverse(dev,
5635                                             &slot->bus->devices, bus_list) {
5636                if (!dev->slot || dev->slot != slot)
5637                        continue;
5638                if (dev->subordinate)
5639                        pci_bus_unlock(dev->subordinate);
5640                pci_dev_unlock(dev);
5641        }
5642        return 0;
5643}
5644
5645/*
5646 * Save and disable devices from the top of the tree down while holding
5647 * the @dev mutex lock for the entire tree.
5648 */
5649static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5650{
5651        struct pci_dev *dev;
5652
5653        list_for_each_entry(dev, &bus->devices, bus_list) {
5654                pci_dev_save_and_disable(dev);
5655                if (dev->subordinate)
5656                        pci_bus_save_and_disable_locked(dev->subordinate);
5657        }
5658}
5659
5660/*
5661 * Restore devices from top of the tree down while holding @dev mutex lock
5662 * for the entire tree.  Parent bridges need to be restored before we can
5663 * get to subordinate devices.
5664 */
5665static void pci_bus_restore_locked(struct pci_bus *bus)
5666{
5667        struct pci_dev *dev;
5668
5669        list_for_each_entry(dev, &bus->devices, bus_list) {
5670                pci_dev_restore(dev);
5671                if (dev->subordinate)
5672                        pci_bus_restore_locked(dev->subordinate);
5673        }
5674}
5675
5676/*
5677 * Save and disable devices from the top of the tree down while holding
5678 * the @dev mutex lock for the entire tree.
5679 */
5680static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5681{
5682        struct pci_dev *dev;
5683
5684        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5685                if (!dev->slot || dev->slot != slot)
5686                        continue;
5687                pci_dev_save_and_disable(dev);
5688                if (dev->subordinate)
5689                        pci_bus_save_and_disable_locked(dev->subordinate);
5690        }
5691}
5692
5693/*
5694 * Restore devices from top of the tree down while holding @dev mutex lock
5695 * for the entire tree.  Parent bridges need to be restored before we can
5696 * get to subordinate devices.
5697 */
5698static void pci_slot_restore_locked(struct pci_slot *slot)
5699{
5700        struct pci_dev *dev;
5701
5702        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5703                if (!dev->slot || dev->slot != slot)
5704                        continue;
5705                pci_dev_restore(dev);
5706                if (dev->subordinate)
5707                        pci_bus_restore_locked(dev->subordinate);
5708        }
5709}
5710
5711static int pci_slot_reset(struct pci_slot *slot, bool probe)
5712{
5713        int rc;
5714
5715        if (!slot || !pci_slot_resetable(slot))
5716                return -ENOTTY;
5717
5718        if (!probe)
5719                pci_slot_lock(slot);
5720
5721        might_sleep();
5722
5723        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5724
5725        if (!probe)
5726                pci_slot_unlock(slot);
5727
5728        return rc;
5729}
5730
5731/**
5732 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5733 * @slot: PCI slot to probe
5734 *
5735 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5736 */
5737int pci_probe_reset_slot(struct pci_slot *slot)
5738{
5739        return pci_slot_reset(slot, PCI_RESET_PROBE);
5740}
5741EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5742
5743/**
5744 * __pci_reset_slot - Try to reset a PCI slot
5745 * @slot: PCI slot to reset
5746 *
5747 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5748 * independent of other slots.  For instance, some slots may support slot power
5749 * control.  In the case of a 1:1 bus to slot architecture, this function may
5750 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5751 * Generally a slot reset should be attempted before a bus reset.  All of the
5752 * function of the slot and any subordinate buses behind the slot are reset
5753 * through this function.  PCI config space of all devices in the slot and
5754 * behind the slot is saved before and restored after reset.
5755 *
5756 * Same as above except return -EAGAIN if the slot cannot be locked
5757 */
5758static int __pci_reset_slot(struct pci_slot *slot)
5759{
5760        int rc;
5761
5762        rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5763        if (rc)
5764                return rc;
5765
5766        if (pci_slot_trylock(slot)) {
5767                pci_slot_save_and_disable_locked(slot);
5768                might_sleep();
5769                rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5770                pci_slot_restore_locked(slot);
5771                pci_slot_unlock(slot);
5772        } else
5773                rc = -EAGAIN;
5774
5775        return rc;
5776}
5777
5778static int pci_bus_reset(struct pci_bus *bus, bool probe)
5779{
5780        int ret;
5781
5782        if (!bus->self || !pci_bus_resetable(bus))
5783                return -ENOTTY;
5784
5785        if (probe)
5786                return 0;
5787
5788        pci_bus_lock(bus);
5789
5790        might_sleep();
5791
5792        ret = pci_bridge_secondary_bus_reset(bus->self);
5793
5794        pci_bus_unlock(bus);
5795
5796        return ret;
5797}
5798
5799/**
5800 * pci_bus_error_reset - reset the bridge's subordinate bus
5801 * @bridge: The parent device that connects to the bus to reset
5802 *
5803 * This function will first try to reset the slots on this bus if the method is
5804 * available. If slot reset fails or is not available, this will fall back to a
5805 * secondary bus reset.
5806 */
5807int pci_bus_error_reset(struct pci_dev *bridge)
5808{
5809        struct pci_bus *bus = bridge->subordinate;
5810        struct pci_slot *slot;
5811
5812        if (!bus)
5813                return -ENOTTY;
5814
5815        mutex_lock(&pci_slot_mutex);
5816        if (list_empty(&bus->slots))
5817                goto bus_reset;
5818
5819        list_for_each_entry(slot, &bus->slots, list)
5820                if (pci_probe_reset_slot(slot))
5821                        goto bus_reset;
5822
5823        list_for_each_entry(slot, &bus->slots, list)
5824                if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5825                        goto bus_reset;
5826
5827        mutex_unlock(&pci_slot_mutex);
5828        return 0;
5829bus_reset:
5830        mutex_unlock(&pci_slot_mutex);
5831        return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5832}
5833
5834/**
5835 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5836 * @bus: PCI bus to probe
5837 *
5838 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5839 */
5840int pci_probe_reset_bus(struct pci_bus *bus)
5841{
5842        return pci_bus_reset(bus, PCI_RESET_PROBE);
5843}
5844EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5845
5846/**
5847 * __pci_reset_bus - Try to reset a PCI bus
5848 * @bus: top level PCI bus to reset
5849 *
5850 * Same as above except return -EAGAIN if the bus cannot be locked
5851 */
5852static int __pci_reset_bus(struct pci_bus *bus)
5853{
5854        int rc;
5855
5856        rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5857        if (rc)
5858                return rc;
5859
5860        if (pci_bus_trylock(bus)) {
5861                pci_bus_save_and_disable_locked(bus);
5862                might_sleep();
5863                rc = pci_bridge_secondary_bus_reset(bus->self);
5864                pci_bus_restore_locked(bus);
5865                pci_bus_unlock(bus);
5866        } else
5867                rc = -EAGAIN;
5868
5869        return rc;
5870}
5871
5872/**
5873 * pci_reset_bus - Try to reset a PCI bus
5874 * @pdev: top level PCI device to reset via slot/bus
5875 *
5876 * Same as above except return -EAGAIN if the bus cannot be locked
5877 */
5878int pci_reset_bus(struct pci_dev *pdev)
5879{
5880        return (!pci_probe_reset_slot(pdev->slot)) ?
5881            __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5882}
5883EXPORT_SYMBOL_GPL(pci_reset_bus);
5884
5885/**
5886 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5887 * @dev: PCI device to query
5888 *
5889 * Returns mmrbc: maximum designed memory read count in bytes or
5890 * appropriate error value.
5891 */
5892int pcix_get_max_mmrbc(struct pci_dev *dev)
5893{
5894        int cap;
5895        u32 stat;
5896
5897        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5898        if (!cap)
5899                return -EINVAL;
5900
5901        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5902                return -EINVAL;
5903
5904        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5905}
5906EXPORT_SYMBOL(pcix_get_max_mmrbc);
5907
5908/**
5909 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5913 * value.
5914 */
5915int pcix_get_mmrbc(struct pci_dev *dev)
5916{
5917        int cap;
5918        u16 cmd;
5919
5920        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921        if (!cap)
5922                return -EINVAL;
5923
5924        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5925                return -EINVAL;
5926
5927        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5928}
5929EXPORT_SYMBOL(pcix_get_mmrbc);
5930
5931/**
5932 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 * @mmrbc: maximum memory read count in bytes
5935 *    valid values are 512, 1024, 2048, 4096
5936 *
5937 * If possible sets maximum memory read byte count, some bridges have errata
5938 * that prevent this.
5939 */
5940int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5941{
5942        int cap;
5943        u32 stat, v, o;
5944        u16 cmd;
5945
5946        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5947                return -EINVAL;
5948
5949        v = ffs(mmrbc) - 10;
5950
5951        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5952        if (!cap)
5953                return -EINVAL;
5954
5955        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5956                return -EINVAL;
5957
5958        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5959                return -E2BIG;
5960
5961        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5962                return -EINVAL;
5963
5964        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5965        if (o != v) {
5966                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5967                        return -EIO;
5968
5969                cmd &= ~PCI_X_CMD_MAX_READ;
5970                cmd |= v << 2;
5971                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5972                        return -EIO;
5973        }
5974        return 0;
5975}
5976EXPORT_SYMBOL(pcix_set_mmrbc);
5977
5978/**
5979 * pcie_get_readrq - get PCI Express read request size
5980 * @dev: PCI device to query
5981 *
5982 * Returns maximum memory read request in bytes or appropriate error value.
5983 */
5984int pcie_get_readrq(struct pci_dev *dev)
5985{
5986        u16 ctl;
5987
5988        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5989
5990        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5991}
5992EXPORT_SYMBOL(pcie_get_readrq);
5993
5994/**
5995 * pcie_set_readrq - set PCI Express maximum memory read request
5996 * @dev: PCI device to query
5997 * @rq: maximum memory read count in bytes
5998 *    valid values are 128, 256, 512, 1024, 2048, 4096
5999 *
6000 * If possible sets maximum memory read request in bytes
6001 */
6002int pcie_set_readrq(struct pci_dev *dev, int rq)
6003{
6004        u16 v;
6005        int ret;
6006
6007        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6008                return -EINVAL;
6009
6010        /*
6011         * If using the "performance" PCIe config, we clamp the read rq
6012         * size to the max packet size to keep the host bridge from
6013         * generating requests larger than we can cope with.
6014         */
6015        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6016                int mps = pcie_get_mps(dev);
6017
6018                if (mps < rq)
6019                        rq = mps;
6020        }
6021
6022        v = (ffs(rq) - 8) << 12;
6023
6024        ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6025                                                  PCI_EXP_DEVCTL_READRQ, v);
6026
6027        return pcibios_err_to_errno(ret);
6028}
6029EXPORT_SYMBOL(pcie_set_readrq);
6030
6031/**
6032 * pcie_get_mps - get PCI Express maximum payload size
6033 * @dev: PCI device to query
6034 *
6035 * Returns maximum payload size in bytes
6036 */
6037int pcie_get_mps(struct pci_dev *dev)
6038{
6039        u16 ctl;
6040
6041        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6042
6043        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6044}
6045EXPORT_SYMBOL(pcie_get_mps);
6046
6047/**
6048 * pcie_set_mps - set PCI Express maximum payload size
6049 * @dev: PCI device to query
6050 * @mps: maximum payload size in bytes
6051 *    valid values are 128, 256, 512, 1024, 2048, 4096
6052 *
6053 * If possible sets maximum payload size
6054 */
6055int pcie_set_mps(struct pci_dev *dev, int mps)
6056{
6057        u16 v;
6058        int ret;
6059
6060        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6061                return -EINVAL;
6062
6063        v = ffs(mps) - 8;
6064        if (v > dev->pcie_mpss)
6065                return -EINVAL;
6066        v <<= 5;
6067
6068        ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6069                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
6070
6071        return pcibios_err_to_errno(ret);
6072}
6073EXPORT_SYMBOL(pcie_set_mps);
6074
6075/**
6076 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6077 *                            device and its bandwidth limitation
6078 * @dev: PCI device to query
6079 * @limiting_dev: storage for device causing the bandwidth limitation
6080 * @speed: storage for speed of limiting device
6081 * @width: storage for width of limiting device
6082 *
6083 * Walk up the PCI device chain and find the point where the minimum
6084 * bandwidth is available.  Return the bandwidth available there and (if
6085 * limiting_dev, speed, and width pointers are supplied) information about
6086 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6087 * raw bandwidth.
6088 */
6089u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6090                             enum pci_bus_speed *speed,
6091                             enum pcie_link_width *width)
6092{
6093        u16 lnksta;
6094        enum pci_bus_speed next_speed;
6095        enum pcie_link_width next_width;
6096        u32 bw, next_bw;
6097
6098        if (speed)
6099                *speed = PCI_SPEED_UNKNOWN;
6100        if (width)
6101                *width = PCIE_LNK_WIDTH_UNKNOWN;
6102
6103        bw = 0;
6104
6105        while (dev) {
6106                pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6107
6108                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6109                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6110                        PCI_EXP_LNKSTA_NLW_SHIFT;
6111
6112                next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6113
6114                /* Check if current device limits the total bandwidth */
6115                if (!bw || next_bw <= bw) {
6116                        bw = next_bw;
6117
6118                        if (limiting_dev)
6119                                *limiting_dev = dev;
6120                        if (speed)
6121                                *speed = next_speed;
6122                        if (width)
6123                                *width = next_width;
6124                }
6125
6126                dev = pci_upstream_bridge(dev);
6127        }
6128
6129        return bw;
6130}
6131EXPORT_SYMBOL(pcie_bandwidth_available);
6132
6133/**
6134 * pcie_get_speed_cap - query for the PCI device's link speed capability
6135 * @dev: PCI device to query
6136 *
6137 * Query the PCI device speed capability.  Return the maximum link speed
6138 * supported by the device.
6139 */
6140enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6141{
6142        u32 lnkcap2, lnkcap;
6143
6144        /*
6145         * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6146         * implementation note there recommends using the Supported Link
6147         * Speeds Vector in Link Capabilities 2 when supported.
6148         *
6149         * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6150         * should use the Supported Link Speeds field in Link Capabilities,
6151         * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6152         */
6153        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6154
6155        /* PCIe r3.0-compliant */
6156        if (lnkcap2)
6157                return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6158
6159        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6160        if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6161                return PCIE_SPEED_5_0GT;
6162        else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6163                return PCIE_SPEED_2_5GT;
6164
6165        return PCI_SPEED_UNKNOWN;
6166}
6167EXPORT_SYMBOL(pcie_get_speed_cap);
6168
6169/**
6170 * pcie_get_width_cap - query for the PCI device's link width capability
6171 * @dev: PCI device to query
6172 *
6173 * Query the PCI device width capability.  Return the maximum link width
6174 * supported by the device.
6175 */
6176enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6177{
6178        u32 lnkcap;
6179
6180        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6181        if (lnkcap)
6182                return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6183
6184        return PCIE_LNK_WIDTH_UNKNOWN;
6185}
6186EXPORT_SYMBOL(pcie_get_width_cap);
6187
6188/**
6189 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6190 * @dev: PCI device
6191 * @speed: storage for link speed
6192 * @width: storage for link width
6193 *
6194 * Calculate a PCI device's link bandwidth by querying for its link speed
6195 * and width, multiplying them, and applying encoding overhead.  The result
6196 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6197 */
6198u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6199                           enum pcie_link_width *width)
6200{
6201        *speed = pcie_get_speed_cap(dev);
6202        *width = pcie_get_width_cap(dev);
6203
6204        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6205                return 0;
6206
6207        return *width * PCIE_SPEED2MBS_ENC(*speed);
6208}
6209
6210/**
6211 * __pcie_print_link_status - Report the PCI device's link speed and width
6212 * @dev: PCI device to query
6213 * @verbose: Print info even when enough bandwidth is available
6214 *
6215 * If the available bandwidth at the device is less than the device is
6216 * capable of, report the device's maximum possible bandwidth and the
6217 * upstream link that limits its performance.  If @verbose, always print
6218 * the available bandwidth, even if the device isn't constrained.
6219 */
6220void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6221{
6222        enum pcie_link_width width, width_cap;
6223        enum pci_bus_speed speed, speed_cap;
6224        struct pci_dev *limiting_dev = NULL;
6225        u32 bw_avail, bw_cap;
6226
6227        bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6228        bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6229
6230        if (bw_avail >= bw_cap && verbose)
6231                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6232                         bw_cap / 1000, bw_cap % 1000,
6233                         pci_speed_string(speed_cap), width_cap);
6234        else if (bw_avail < bw_cap)
6235                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6236                         bw_avail / 1000, bw_avail % 1000,
6237                         pci_speed_string(speed), width,
6238                         limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6239                         bw_cap / 1000, bw_cap % 1000,
6240                         pci_speed_string(speed_cap), width_cap);
6241}
6242
6243/**
6244 * pcie_print_link_status - Report the PCI device's link speed and width
6245 * @dev: PCI device to query
6246 *
6247 * Report the available bandwidth at the device.
6248 */
6249void pcie_print_link_status(struct pci_dev *dev)
6250{
6251        __pcie_print_link_status(dev, true);
6252}
6253EXPORT_SYMBOL(pcie_print_link_status);
6254
6255/**
6256 * pci_select_bars - Make BAR mask from the type of resource
6257 * @dev: the PCI device for which BAR mask is made
6258 * @flags: resource type mask to be selected
6259 *
6260 * This helper routine makes bar mask from the type of resource.
6261 */
6262int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6263{
6264        int i, bars = 0;
6265        for (i = 0; i < PCI_NUM_RESOURCES; i++)
6266                if (pci_resource_flags(dev, i) & flags)
6267                        bars |= (1 << i);
6268        return bars;
6269}
6270EXPORT_SYMBOL(pci_select_bars);
6271
6272/* Some architectures require additional programming to enable VGA */
6273static arch_set_vga_state_t arch_set_vga_state;
6274
6275void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6276{
6277        arch_set_vga_state = func;      /* NULL disables */
6278}
6279
6280static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6281                                  unsigned int command_bits, u32 flags)
6282{
6283        if (arch_set_vga_state)
6284                return arch_set_vga_state(dev, decode, command_bits,
6285                                                flags);
6286        return 0;
6287}
6288
6289/**
6290 * pci_set_vga_state - set VGA decode state on device and parents if requested
6291 * @dev: the PCI device
6292 * @decode: true = enable decoding, false = disable decoding
6293 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6294 * @flags: traverse ancestors and change bridges
6295 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6296 */
6297int pci_set_vga_state(struct pci_dev *dev, bool decode,
6298                      unsigned int command_bits, u32 flags)
6299{
6300        struct pci_bus *bus;
6301        struct pci_dev *bridge;
6302        u16 cmd;
6303        int rc;
6304
6305        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6306
6307        /* ARCH specific VGA enables */
6308        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6309        if (rc)
6310                return rc;
6311
6312        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6313                pci_read_config_word(dev, PCI_COMMAND, &cmd);
6314                if (decode)
6315                        cmd |= command_bits;
6316                else
6317                        cmd &= ~command_bits;
6318                pci_write_config_word(dev, PCI_COMMAND, cmd);
6319        }
6320
6321        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6322                return 0;
6323
6324        bus = dev->bus;
6325        while (bus) {
6326                bridge = bus->self;
6327                if (bridge) {
6328                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6329                                             &cmd);
6330                        if (decode)
6331                                cmd |= PCI_BRIDGE_CTL_VGA;
6332                        else
6333                                cmd &= ~PCI_BRIDGE_CTL_VGA;
6334                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6335                                              cmd);
6336                }
6337                bus = bus->parent;
6338        }
6339        return 0;
6340}
6341
6342#ifdef CONFIG_ACPI
6343bool pci_pr3_present(struct pci_dev *pdev)
6344{
6345        struct acpi_device *adev;
6346
6347        if (acpi_disabled)
6348                return false;
6349
6350        adev = ACPI_COMPANION(&pdev->dev);
6351        if (!adev)
6352                return false;
6353
6354        return adev->power.flags.power_resources &&
6355                acpi_has_method(adev->handle, "_PR3");
6356}
6357EXPORT_SYMBOL_GPL(pci_pr3_present);
6358#endif
6359
6360/**
6361 * pci_add_dma_alias - Add a DMA devfn alias for a device
6362 * @dev: the PCI device for which alias is added
6363 * @devfn_from: alias slot and function
6364 * @nr_devfns: number of subsequent devfns to alias
6365 *
6366 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6367 * which is used to program permissible bus-devfn source addresses for DMA
6368 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6369 * and are useful for devices generating DMA requests beyond or different
6370 * from their logical bus-devfn.  Examples include device quirks where the
6371 * device simply uses the wrong devfn, as well as non-transparent bridges
6372 * where the alias may be a proxy for devices in another domain.
6373 *
6374 * IOMMU group creation is performed during device discovery or addition,
6375 * prior to any potential DMA mapping and therefore prior to driver probing
6376 * (especially for userspace assigned devices where IOMMU group definition
6377 * cannot be left as a userspace activity).  DMA aliases should therefore
6378 * be configured via quirks, such as the PCI fixup header quirk.
6379 */
6380void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6381                       unsigned int nr_devfns)
6382{
6383        int devfn_to;
6384
6385        nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6386        devfn_to = devfn_from + nr_devfns - 1;
6387
6388        if (!dev->dma_alias_mask)
6389                dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6390        if (!dev->dma_alias_mask) {
6391                pci_warn(dev, "Unable to allocate DMA alias mask\n");
6392                return;
6393        }
6394
6395        bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6396
6397        if (nr_devfns == 1)
6398                pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6399                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6400        else if (nr_devfns > 1)
6401                pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6402                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6403                                PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6404}
6405
6406bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6407{
6408        return (dev1->dma_alias_mask &&
6409                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6410               (dev2->dma_alias_mask &&
6411                test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6412               pci_real_dma_dev(dev1) == dev2 ||
6413               pci_real_dma_dev(dev2) == dev1;
6414}
6415
6416bool pci_device_is_present(struct pci_dev *pdev)
6417{
6418        u32 v;
6419
6420        if (pci_dev_is_disconnected(pdev))
6421                return false;
6422        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6423}
6424EXPORT_SYMBOL_GPL(pci_device_is_present);
6425
6426void pci_ignore_hotplug(struct pci_dev *dev)
6427{
6428        struct pci_dev *bridge = dev->bus->self;
6429
6430        dev->ignore_hotplug = 1;
6431        /* Propagate the "ignore hotplug" setting to the parent bridge. */
6432        if (bridge)
6433                bridge->ignore_hotplug = 1;
6434}
6435EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6436
6437/**
6438 * pci_real_dma_dev - Get PCI DMA device for PCI device
6439 * @dev: the PCI device that may have a PCI DMA alias
6440 *
6441 * Permits the platform to provide architecture-specific functionality to
6442 * devices needing to alias DMA to another PCI device on another PCI bus. If
6443 * the PCI device is on the same bus, it is recommended to use
6444 * pci_add_dma_alias(). This is the default implementation. Architecture
6445 * implementations can override this.
6446 */
6447struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6448{
6449        return dev;
6450}
6451
6452resource_size_t __weak pcibios_default_alignment(void)
6453{
6454        return 0;
6455}
6456
6457/*
6458 * Arches that don't want to expose struct resource to userland as-is in
6459 * sysfs and /proc can implement their own pci_resource_to_user().
6460 */
6461void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6462                                 const struct resource *rsrc,
6463                                 resource_size_t *start, resource_size_t *end)
6464{
6465        *start = rsrc->start;
6466        *end = rsrc->end;
6467}
6468
6469static char *resource_alignment_param;
6470static DEFINE_SPINLOCK(resource_alignment_lock);
6471
6472/**
6473 * pci_specified_resource_alignment - get resource alignment specified by user.
6474 * @dev: the PCI device to get
6475 * @resize: whether or not to change resources' size when reassigning alignment
6476 *
6477 * RETURNS: Resource alignment if it is specified.
6478 *          Zero if it is not specified.
6479 */
6480static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6481                                                        bool *resize)
6482{
6483        int align_order, count;
6484        resource_size_t align = pcibios_default_alignment();
6485        const char *p;
6486        int ret;
6487
6488        spin_lock(&resource_alignment_lock);
6489        p = resource_alignment_param;
6490        if (!p || !*p)
6491                goto out;
6492        if (pci_has_flag(PCI_PROBE_ONLY)) {
6493                align = 0;
6494                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6495                goto out;
6496        }
6497
6498        while (*p) {
6499                count = 0;
6500                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6501                    p[count] == '@') {
6502                        p += count + 1;
6503                        if (align_order > 63) {
6504                                pr_err("PCI: Invalid requested alignment (order %d)\n",
6505                                       align_order);
6506                                align_order = PAGE_SHIFT;
6507                        }
6508                } else {
6509                        align_order = PAGE_SHIFT;
6510                }
6511
6512                ret = pci_dev_str_match(dev, p, &p);
6513                if (ret == 1) {
6514                        *resize = true;
6515                        align = 1ULL << align_order;
6516                        break;
6517                } else if (ret < 0) {
6518                        pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6519                               p);
6520                        break;
6521                }
6522
6523                if (*p != ';' && *p != ',') {
6524                        /* End of param or invalid format */
6525                        break;
6526                }
6527                p++;
6528        }
6529out:
6530        spin_unlock(&resource_alignment_lock);
6531        return align;
6532}
6533
6534static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6535                                           resource_size_t align, bool resize)
6536{
6537        struct resource *r = &dev->resource[bar];
6538        resource_size_t size;
6539
6540        if (!(r->flags & IORESOURCE_MEM))
6541                return;
6542
6543        if (r->flags & IORESOURCE_PCI_FIXED) {
6544                pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6545                         bar, r, (unsigned long long)align);
6546                return;
6547        }
6548
6549        size = resource_size(r);
6550        if (size >= align)
6551                return;
6552
6553        /*
6554         * Increase the alignment of the resource.  There are two ways we
6555         * can do this:
6556         *
6557         * 1) Increase the size of the resource.  BARs are aligned on their
6558         *    size, so when we reallocate space for this resource, we'll
6559         *    allocate it with the larger alignment.  This also prevents
6560         *    assignment of any other BARs inside the alignment region, so
6561         *    if we're requesting page alignment, this means no other BARs
6562         *    will share the page.
6563         *
6564         *    The disadvantage is that this makes the resource larger than
6565         *    the hardware BAR, which may break drivers that compute things
6566         *    based on the resource size, e.g., to find registers at a
6567         *    fixed offset before the end of the BAR.
6568         *
6569         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6570         *    set r->start to the desired alignment.  By itself this
6571         *    doesn't prevent other BARs being put inside the alignment
6572         *    region, but if we realign *every* resource of every device in
6573         *    the system, none of them will share an alignment region.
6574         *
6575         * When the user has requested alignment for only some devices via
6576         * the "pci=resource_alignment" argument, "resize" is true and we
6577         * use the first method.  Otherwise we assume we're aligning all
6578         * devices and we use the second.
6579         */
6580
6581        pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6582                 bar, r, (unsigned long long)align);
6583
6584        if (resize) {
6585                r->start = 0;
6586                r->end = align - 1;
6587        } else {
6588                r->flags &= ~IORESOURCE_SIZEALIGN;
6589                r->flags |= IORESOURCE_STARTALIGN;
6590                r->start = align;
6591                r->end = r->start + size - 1;
6592        }
6593        r->flags |= IORESOURCE_UNSET;
6594}
6595
6596/*
6597 * This function disables memory decoding and releases memory resources
6598 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6599 * It also rounds up size to specified alignment.
6600 * Later on, the kernel will assign page-aligned memory resource back
6601 * to the device.
6602 */
6603void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6604{
6605        int i;
6606        struct resource *r;
6607        resource_size_t align;
6608        u16 command;
6609        bool resize = false;
6610
6611        /*
6612         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6613         * 3.4.1.11.  Their resources are allocated from the space
6614         * described by the VF BARx register in the PF's SR-IOV capability.
6615         * We can't influence their alignment here.
6616         */
6617        if (dev->is_virtfn)
6618                return;
6619
6620        /* check if specified PCI is target device to reassign */
6621        align = pci_specified_resource_alignment(dev, &resize);
6622        if (!align)
6623                return;
6624
6625        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6626            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6627                pci_warn(dev, "Can't reassign resources to host bridge\n");
6628                return;
6629        }
6630
6631        pci_read_config_word(dev, PCI_COMMAND, &command);
6632        command &= ~PCI_COMMAND_MEMORY;
6633        pci_write_config_word(dev, PCI_COMMAND, command);
6634
6635        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6636                pci_request_resource_alignment(dev, i, align, resize);
6637
6638        /*
6639         * Need to disable bridge's resource window,
6640         * to enable the kernel to reassign new resource
6641         * window later on.
6642         */
6643        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6644                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6645                        r = &dev->resource[i];
6646                        if (!(r->flags & IORESOURCE_MEM))
6647                                continue;
6648                        r->flags |= IORESOURCE_UNSET;
6649                        r->end = resource_size(r) - 1;
6650                        r->start = 0;
6651                }
6652                pci_disable_bridge_window(dev);
6653        }
6654}
6655
6656static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6657{
6658        size_t count = 0;
6659
6660        spin_lock(&resource_alignment_lock);
6661        if (resource_alignment_param)
6662                count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6663        spin_unlock(&resource_alignment_lock);
6664
6665        return count;
6666}
6667
6668static ssize_t resource_alignment_store(struct bus_type *bus,
6669                                        const char *buf, size_t count)
6670{
6671        char *param, *old, *end;
6672
6673        if (count >= (PAGE_SIZE - 1))
6674                return -EINVAL;
6675
6676        param = kstrndup(buf, count, GFP_KERNEL);
6677        if (!param)
6678                return -ENOMEM;
6679
6680        end = strchr(param, '\n');
6681        if (end)
6682                *end = '\0';
6683
6684        spin_lock(&resource_alignment_lock);
6685        old = resource_alignment_param;
6686        if (strlen(param)) {
6687                resource_alignment_param = param;
6688        } else {
6689                kfree(param);
6690                resource_alignment_param = NULL;
6691        }
6692        spin_unlock(&resource_alignment_lock);
6693
6694        kfree(old);
6695
6696        return count;
6697}
6698
6699static BUS_ATTR_RW(resource_alignment);
6700
6701static int __init pci_resource_alignment_sysfs_init(void)
6702{
6703        return bus_create_file(&pci_bus_type,
6704                                        &bus_attr_resource_alignment);
6705}
6706late_initcall(pci_resource_alignment_sysfs_init);
6707
6708static void pci_no_domains(void)
6709{
6710#ifdef CONFIG_PCI_DOMAINS
6711        pci_domains_supported = 0;
6712#endif
6713}
6714
6715#ifdef CONFIG_PCI_DOMAINS_GENERIC
6716static atomic_t __domain_nr = ATOMIC_INIT(-1);
6717
6718static int pci_get_new_domain_nr(void)
6719{
6720        return atomic_inc_return(&__domain_nr);
6721}
6722
6723static int of_pci_bus_find_domain_nr(struct device *parent)
6724{
6725        static int use_dt_domains = -1;
6726        int domain = -1;
6727
6728        if (parent)
6729                domain = of_get_pci_domain_nr(parent->of_node);
6730
6731        /*
6732         * Check DT domain and use_dt_domains values.
6733         *
6734         * If DT domain property is valid (domain >= 0) and
6735         * use_dt_domains != 0, the DT assignment is valid since this means
6736         * we have not previously allocated a domain number by using
6737         * pci_get_new_domain_nr(); we should also update use_dt_domains to
6738         * 1, to indicate that we have just assigned a domain number from
6739         * DT.
6740         *
6741         * If DT domain property value is not valid (ie domain < 0), and we
6742         * have not previously assigned a domain number from DT
6743         * (use_dt_domains != 1) we should assign a domain number by
6744         * using the:
6745         *
6746         * pci_get_new_domain_nr()
6747         *
6748         * API and update the use_dt_domains value to keep track of method we
6749         * are using to assign domain numbers (use_dt_domains = 0).
6750         *
6751         * All other combinations imply we have a platform that is trying
6752         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6753         * which is a recipe for domain mishandling and it is prevented by
6754         * invalidating the domain value (domain = -1) and printing a
6755         * corresponding error.
6756         */
6757        if (domain >= 0 && use_dt_domains) {
6758                use_dt_domains = 1;
6759        } else if (domain < 0 && use_dt_domains != 1) {
6760                use_dt_domains = 0;
6761                domain = pci_get_new_domain_nr();
6762        } else {
6763                if (parent)
6764                        pr_err("Node %pOF has ", parent->of_node);
6765                pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6766                domain = -1;
6767        }
6768
6769        return domain;
6770}
6771
6772int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6773{
6774        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6775                               acpi_pci_bus_find_domain_nr(bus);
6776}
6777#endif
6778
6779/**
6780 * pci_ext_cfg_avail - can we access extended PCI config space?
6781 *
6782 * Returns 1 if we can access PCI extended config space (offsets
6783 * greater than 0xff). This is the default implementation. Architecture
6784 * implementations can override this.
6785 */
6786int __weak pci_ext_cfg_avail(void)
6787{
6788        return 1;
6789}
6790
6791void __weak pci_fixup_cardbus(struct pci_bus *bus)
6792{
6793}
6794EXPORT_SYMBOL(pci_fixup_cardbus);
6795
6796static int __init pci_setup(char *str)
6797{
6798        while (str) {
6799                char *k = strchr(str, ',');
6800                if (k)
6801                        *k++ = 0;
6802                if (*str && (str = pcibios_setup(str)) && *str) {
6803                        if (!strcmp(str, "nomsi")) {
6804                                pci_no_msi();
6805                        } else if (!strncmp(str, "noats", 5)) {
6806                                pr_info("PCIe: ATS is disabled\n");
6807                                pcie_ats_disabled = true;
6808                        } else if (!strcmp(str, "noaer")) {
6809                                pci_no_aer();
6810                        } else if (!strcmp(str, "earlydump")) {
6811                                pci_early_dump = true;
6812                        } else if (!strncmp(str, "realloc=", 8)) {
6813                                pci_realloc_get_opt(str + 8);
6814                        } else if (!strncmp(str, "realloc", 7)) {
6815                                pci_realloc_get_opt("on");
6816                        } else if (!strcmp(str, "nodomains")) {
6817                                pci_no_domains();
6818                        } else if (!strncmp(str, "noari", 5)) {
6819                                pcie_ari_disabled = true;
6820                        } else if (!strncmp(str, "cbiosize=", 9)) {
6821                                pci_cardbus_io_size = memparse(str + 9, &str);
6822                        } else if (!strncmp(str, "cbmemsize=", 10)) {
6823                                pci_cardbus_mem_size = memparse(str + 10, &str);
6824                        } else if (!strncmp(str, "resource_alignment=", 19)) {
6825                                resource_alignment_param = str + 19;
6826                        } else if (!strncmp(str, "ecrc=", 5)) {
6827                                pcie_ecrc_get_policy(str + 5);
6828                        } else if (!strncmp(str, "hpiosize=", 9)) {
6829                                pci_hotplug_io_size = memparse(str + 9, &str);
6830                        } else if (!strncmp(str, "hpmmiosize=", 11)) {
6831                                pci_hotplug_mmio_size = memparse(str + 11, &str);
6832                        } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6833                                pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6834                        } else if (!strncmp(str, "hpmemsize=", 10)) {
6835                                pci_hotplug_mmio_size = memparse(str + 10, &str);
6836                                pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6837                        } else if (!strncmp(str, "hpbussize=", 10)) {
6838                                pci_hotplug_bus_size =
6839                                        simple_strtoul(str + 10, &str, 0);
6840                                if (pci_hotplug_bus_size > 0xff)
6841                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6842                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6843                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
6844                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6845                                pcie_bus_config = PCIE_BUS_SAFE;
6846                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6847                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
6848                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6849                                pcie_bus_config = PCIE_BUS_PEER2PEER;
6850                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
6851                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6852                        } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6853                                disable_acs_redir_param = str + 18;
6854                        } else {
6855                                pr_err("PCI: Unknown option `%s'\n", str);
6856                        }
6857                }
6858                str = k;
6859        }
6860        return 0;
6861}
6862early_param("pci", pci_setup);
6863
6864/*
6865 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6866 * in pci_setup(), above, to point to data in the __initdata section which
6867 * will be freed after the init sequence is complete. We can't allocate memory
6868 * in pci_setup() because some architectures do not have any memory allocation
6869 * service available during an early_param() call. So we allocate memory and
6870 * copy the variable here before the init section is freed.
6871 *
6872 */
6873static int __init pci_realloc_setup_params(void)
6874{
6875        resource_alignment_param = kstrdup(resource_alignment_param,
6876                                           GFP_KERNEL);
6877        disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6878
6879        return 0;
6880}
6881pure_initcall(pci_realloc_setup_params);
6882