linux/drivers/pwm/pwm-sifive.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2017-2018 SiFive
   4 * For SiFive's PWM IP block documentation please refer Chapter 14 of
   5 * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
   6 *
   7 * Limitations:
   8 * - When changing both duty cycle and period, we cannot prevent in
   9 *   software that the output might produce a period with mixed
  10 *   settings (new period length and old duty cycle).
  11 * - The hardware cannot generate a 100% duty cycle.
  12 * - The hardware generates only inverted output.
  13 */
  14#include <linux/clk.h>
  15#include <linux/io.h>
  16#include <linux/module.h>
  17#include <linux/platform_device.h>
  18#include <linux/pwm.h>
  19#include <linux/slab.h>
  20#include <linux/bitfield.h>
  21
  22/* Register offsets */
  23#define PWM_SIFIVE_PWMCFG               0x0
  24#define PWM_SIFIVE_PWMCOUNT             0x8
  25#define PWM_SIFIVE_PWMS                 0x10
  26#define PWM_SIFIVE_PWMCMP0              0x20
  27
  28/* PWMCFG fields */
  29#define PWM_SIFIVE_PWMCFG_SCALE         GENMASK(3, 0)
  30#define PWM_SIFIVE_PWMCFG_STICKY        BIT(8)
  31#define PWM_SIFIVE_PWMCFG_ZERO_CMP      BIT(9)
  32#define PWM_SIFIVE_PWMCFG_DEGLITCH      BIT(10)
  33#define PWM_SIFIVE_PWMCFG_EN_ALWAYS     BIT(12)
  34#define PWM_SIFIVE_PWMCFG_EN_ONCE       BIT(13)
  35#define PWM_SIFIVE_PWMCFG_CENTER        BIT(16)
  36#define PWM_SIFIVE_PWMCFG_GANG          BIT(24)
  37#define PWM_SIFIVE_PWMCFG_IP            BIT(28)
  38
  39/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
  40#define PWM_SIFIVE_SIZE_PWMCMP          4
  41#define PWM_SIFIVE_CMPWIDTH             16
  42#define PWM_SIFIVE_DEFAULT_PERIOD       10000000
  43
  44struct pwm_sifive_ddata {
  45        struct pwm_chip chip;
  46        struct mutex lock; /* lock to protect user_count */
  47        struct notifier_block notifier;
  48        struct clk *clk;
  49        void __iomem *regs;
  50        unsigned int real_period;
  51        unsigned int approx_period;
  52        int user_count;
  53};
  54
  55static inline
  56struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
  57{
  58        return container_of(c, struct pwm_sifive_ddata, chip);
  59}
  60
  61static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
  62{
  63        struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
  64
  65        mutex_lock(&ddata->lock);
  66        ddata->user_count++;
  67        mutex_unlock(&ddata->lock);
  68
  69        return 0;
  70}
  71
  72static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
  73{
  74        struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
  75
  76        mutex_lock(&ddata->lock);
  77        ddata->user_count--;
  78        mutex_unlock(&ddata->lock);
  79}
  80
  81static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
  82                                    unsigned long rate)
  83{
  84        unsigned long long num;
  85        unsigned long scale_pow;
  86        int scale;
  87        u32 val;
  88        /*
  89         * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
  90         * period length is using pwmscale which provides the number of bits the
  91         * counter is shifted before being feed to the comparators. A period
  92         * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
  93         * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
  94         */
  95        scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
  96        scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
  97
  98        val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
  99              FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
 100        writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
 101
 102        /* As scale <= 15 the shift operation cannot overflow. */
 103        num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
 104        ddata->real_period = div64_ul(num, rate);
 105        dev_dbg(ddata->chip.dev,
 106                "New real_period = %u ns\n", ddata->real_period);
 107}
 108
 109static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 110                                 struct pwm_state *state)
 111{
 112        struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
 113        u32 duty, val;
 114
 115        duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
 116                     pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
 117
 118        state->enabled = duty > 0;
 119
 120        val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
 121        if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
 122                state->enabled = false;
 123
 124        state->period = ddata->real_period;
 125        state->duty_cycle =
 126                (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
 127        state->polarity = PWM_POLARITY_INVERSED;
 128}
 129
 130static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
 131{
 132        struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
 133        int ret;
 134
 135        if (enable) {
 136                ret = clk_enable(ddata->clk);
 137                if (ret) {
 138                        dev_err(ddata->chip.dev, "Enable clk failed\n");
 139                        return ret;
 140                }
 141        }
 142
 143        if (!enable)
 144                clk_disable(ddata->clk);
 145
 146        return 0;
 147}
 148
 149static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 150                            const struct pwm_state *state)
 151{
 152        struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
 153        struct pwm_state cur_state;
 154        unsigned int duty_cycle;
 155        unsigned long long num;
 156        bool enabled;
 157        int ret = 0;
 158        u32 frac;
 159
 160        if (state->polarity != PWM_POLARITY_INVERSED)
 161                return -EINVAL;
 162
 163        ret = clk_enable(ddata->clk);
 164        if (ret) {
 165                dev_err(ddata->chip.dev, "Enable clk failed\n");
 166                return ret;
 167        }
 168
 169        mutex_lock(&ddata->lock);
 170        cur_state = pwm->state;
 171        enabled = cur_state.enabled;
 172
 173        duty_cycle = state->duty_cycle;
 174        if (!state->enabled)
 175                duty_cycle = 0;
 176
 177        /*
 178         * The problem of output producing mixed setting as mentioned at top,
 179         * occurs here. To minimize the window for this problem, we are
 180         * calculating the register values first and then writing them
 181         * consecutively
 182         */
 183        num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
 184        frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
 185        /* The hardware cannot generate a 100% duty cycle */
 186        frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
 187
 188        if (state->period != ddata->approx_period) {
 189                if (ddata->user_count != 1) {
 190                        ret = -EBUSY;
 191                        goto exit;
 192                }
 193                ddata->approx_period = state->period;
 194                pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
 195        }
 196
 197        writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
 198               pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
 199
 200        if (state->enabled != enabled)
 201                pwm_sifive_enable(chip, state->enabled);
 202
 203exit:
 204        clk_disable(ddata->clk);
 205        mutex_unlock(&ddata->lock);
 206        return ret;
 207}
 208
 209static const struct pwm_ops pwm_sifive_ops = {
 210        .request = pwm_sifive_request,
 211        .free = pwm_sifive_free,
 212        .get_state = pwm_sifive_get_state,
 213        .apply = pwm_sifive_apply,
 214        .owner = THIS_MODULE,
 215};
 216
 217static int pwm_sifive_clock_notifier(struct notifier_block *nb,
 218                                     unsigned long event, void *data)
 219{
 220        struct clk_notifier_data *ndata = data;
 221        struct pwm_sifive_ddata *ddata =
 222                container_of(nb, struct pwm_sifive_ddata, notifier);
 223
 224        if (event == POST_RATE_CHANGE)
 225                pwm_sifive_update_clock(ddata, ndata->new_rate);
 226
 227        return NOTIFY_OK;
 228}
 229
 230static int pwm_sifive_probe(struct platform_device *pdev)
 231{
 232        struct device *dev = &pdev->dev;
 233        struct pwm_sifive_ddata *ddata;
 234        struct pwm_chip *chip;
 235        int ret;
 236
 237        ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
 238        if (!ddata)
 239                return -ENOMEM;
 240
 241        mutex_init(&ddata->lock);
 242        chip = &ddata->chip;
 243        chip->dev = dev;
 244        chip->ops = &pwm_sifive_ops;
 245        chip->npwm = 4;
 246
 247        ddata->regs = devm_platform_ioremap_resource(pdev, 0);
 248        if (IS_ERR(ddata->regs))
 249                return PTR_ERR(ddata->regs);
 250
 251        ddata->clk = devm_clk_get(dev, NULL);
 252        if (IS_ERR(ddata->clk))
 253                return dev_err_probe(dev, PTR_ERR(ddata->clk),
 254                                     "Unable to find controller clock\n");
 255
 256        ret = clk_prepare_enable(ddata->clk);
 257        if (ret) {
 258                dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
 259                return ret;
 260        }
 261
 262        /* Watch for changes to underlying clock frequency */
 263        ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
 264        ret = clk_notifier_register(ddata->clk, &ddata->notifier);
 265        if (ret) {
 266                dev_err(dev, "failed to register clock notifier: %d\n", ret);
 267                goto disable_clk;
 268        }
 269
 270        ret = pwmchip_add(chip);
 271        if (ret < 0) {
 272                dev_err(dev, "cannot register PWM: %d\n", ret);
 273                goto unregister_clk;
 274        }
 275
 276        platform_set_drvdata(pdev, ddata);
 277        dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
 278
 279        return 0;
 280
 281unregister_clk:
 282        clk_notifier_unregister(ddata->clk, &ddata->notifier);
 283disable_clk:
 284        clk_disable_unprepare(ddata->clk);
 285
 286        return ret;
 287}
 288
 289static int pwm_sifive_remove(struct platform_device *dev)
 290{
 291        struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
 292        bool is_enabled = false;
 293        struct pwm_device *pwm;
 294        int ch;
 295
 296        for (ch = 0; ch < ddata->chip.npwm; ch++) {
 297                pwm = &ddata->chip.pwms[ch];
 298                if (pwm->state.enabled) {
 299                        is_enabled = true;
 300                        break;
 301                }
 302        }
 303        if (is_enabled)
 304                clk_disable(ddata->clk);
 305
 306        clk_disable_unprepare(ddata->clk);
 307        pwmchip_remove(&ddata->chip);
 308        clk_notifier_unregister(ddata->clk, &ddata->notifier);
 309
 310        return 0;
 311}
 312
 313static const struct of_device_id pwm_sifive_of_match[] = {
 314        { .compatible = "sifive,pwm0" },
 315        {},
 316};
 317MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
 318
 319static struct platform_driver pwm_sifive_driver = {
 320        .probe = pwm_sifive_probe,
 321        .remove = pwm_sifive_remove,
 322        .driver = {
 323                .name = "pwm-sifive",
 324                .of_match_table = pwm_sifive_of_match,
 325        },
 326};
 327module_platform_driver(pwm_sifive_driver);
 328
 329MODULE_DESCRIPTION("SiFive PWM driver");
 330MODULE_LICENSE("GPL v2");
 331