linux/drivers/rtc/rtc-sun6i.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * An RTC driver for Allwinner A31/A23
   4 *
   5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
   6 *
   7 * based on rtc-sunxi.c
   8 *
   9 * An RTC driver for Allwinner A10/A20
  10 *
  11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/clk-provider.h>
  16#include <linux/clk/sunxi-ng.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/fs.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_device.h>
  28#include <linux/platform_device.h>
  29#include <linux/rtc.h>
  30#include <linux/slab.h>
  31#include <linux/types.h>
  32
  33/* Control register */
  34#define SUN6I_LOSC_CTRL                         0x0000
  35#define SUN6I_LOSC_CTRL_KEY                     (0x16aa << 16)
  36#define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS         BIT(15)
  37#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC            BIT(9)
  38#define SUN6I_LOSC_CTRL_RTC_HMS_ACC             BIT(8)
  39#define SUN6I_LOSC_CTRL_RTC_YMD_ACC             BIT(7)
  40#define SUN6I_LOSC_CTRL_EXT_LOSC_EN             BIT(4)
  41#define SUN6I_LOSC_CTRL_EXT_OSC                 BIT(0)
  42#define SUN6I_LOSC_CTRL_ACC_MASK                GENMASK(9, 7)
  43
  44#define SUN6I_LOSC_CLK_PRESCAL                  0x0008
  45
  46/* RTC */
  47#define SUN6I_RTC_YMD                           0x0010
  48#define SUN6I_RTC_HMS                           0x0014
  49
  50/* Alarm 0 (counter) */
  51#define SUN6I_ALRM_COUNTER                      0x0020
  52/* This holds the remaining alarm seconds on older SoCs (current value) */
  53#define SUN6I_ALRM_COUNTER_HMS                  0x0024
  54#define SUN6I_ALRM_EN                           0x0028
  55#define SUN6I_ALRM_EN_CNT_EN                    BIT(0)
  56#define SUN6I_ALRM_IRQ_EN                       0x002c
  57#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN            BIT(0)
  58#define SUN6I_ALRM_IRQ_STA                      0x0030
  59#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND         BIT(0)
  60
  61/* Alarm 1 (wall clock) */
  62#define SUN6I_ALRM1_EN                          0x0044
  63#define SUN6I_ALRM1_IRQ_EN                      0x0048
  64#define SUN6I_ALRM1_IRQ_STA                     0x004c
  65#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND       BIT(0)
  66
  67/* Alarm config */
  68#define SUN6I_ALARM_CONFIG                      0x0050
  69#define SUN6I_ALARM_CONFIG_WAKEUP               BIT(0)
  70
  71#define SUN6I_LOSC_OUT_GATING                   0x0060
  72#define SUN6I_LOSC_OUT_GATING_EN_OFFSET         0
  73
  74/*
  75 * Get date values
  76 */
  77#define SUN6I_DATE_GET_DAY_VALUE(x)             ((x)  & 0x0000001f)
  78#define SUN6I_DATE_GET_MON_VALUE(x)             (((x) & 0x00000f00) >> 8)
  79#define SUN6I_DATE_GET_YEAR_VALUE(x)            (((x) & 0x003f0000) >> 16)
  80#define SUN6I_LEAP_GET_VALUE(x)                 (((x) & 0x00400000) >> 22)
  81
  82/*
  83 * Get time values
  84 */
  85#define SUN6I_TIME_GET_SEC_VALUE(x)             ((x)  & 0x0000003f)
  86#define SUN6I_TIME_GET_MIN_VALUE(x)             (((x) & 0x00003f00) >> 8)
  87#define SUN6I_TIME_GET_HOUR_VALUE(x)            (((x) & 0x001f0000) >> 16)
  88
  89/*
  90 * Set date values
  91 */
  92#define SUN6I_DATE_SET_DAY_VALUE(x)             ((x)       & 0x0000001f)
  93#define SUN6I_DATE_SET_MON_VALUE(x)             ((x) <<  8 & 0x00000f00)
  94#define SUN6I_DATE_SET_YEAR_VALUE(x)            ((x) << 16 & 0x003f0000)
  95#define SUN6I_LEAP_SET_VALUE(x)                 ((x) << 22 & 0x00400000)
  96
  97/*
  98 * Set time values
  99 */
 100#define SUN6I_TIME_SET_SEC_VALUE(x)             ((x)       & 0x0000003f)
 101#define SUN6I_TIME_SET_MIN_VALUE(x)             ((x) <<  8 & 0x00003f00)
 102#define SUN6I_TIME_SET_HOUR_VALUE(x)            ((x) << 16 & 0x001f0000)
 103
 104/*
 105 * The year parameter passed to the driver is usually an offset relative to
 106 * the year 1900. This macro is used to convert this offset to another one
 107 * relative to the minimum year allowed by the hardware.
 108 *
 109 * The year range is 1970 - 2033. This range is selected to match Allwinner's
 110 * driver, even though it is somewhat limited.
 111 */
 112#define SUN6I_YEAR_MIN                          1970
 113#define SUN6I_YEAR_OFF                          (SUN6I_YEAR_MIN - 1900)
 114
 115#define SECS_PER_DAY                            (24 * 3600ULL)
 116
 117/*
 118 * There are other differences between models, including:
 119 *
 120 *   - number of GPIO pins that can be configured to hold a certain level
 121 *   - crypto-key related registers (H5, H6)
 122 *   - boot process related (super standby, secondary processor entry address)
 123 *     registers (R40, H6)
 124 *   - SYS power domain controls (R40)
 125 *   - DCXO controls (H6)
 126 *   - RC oscillator calibration (H6)
 127 *
 128 * These functions are not covered by this driver.
 129 */
 130struct sun6i_rtc_clk_data {
 131        unsigned long rc_osc_rate;
 132        unsigned int fixed_prescaler : 16;
 133        unsigned int has_prescaler : 1;
 134        unsigned int has_out_clk : 1;
 135        unsigned int export_iosc : 1;
 136        unsigned int has_losc_en : 1;
 137        unsigned int has_auto_swt : 1;
 138};
 139
 140#define RTC_LINEAR_DAY  BIT(0)
 141
 142struct sun6i_rtc_dev {
 143        struct rtc_device *rtc;
 144        const struct sun6i_rtc_clk_data *data;
 145        void __iomem *base;
 146        int irq;
 147        time64_t alarm;
 148        unsigned long flags;
 149
 150        struct clk_hw hw;
 151        struct clk_hw *int_osc;
 152        struct clk *losc;
 153        struct clk *ext_losc;
 154
 155        spinlock_t lock;
 156};
 157
 158static struct sun6i_rtc_dev *sun6i_rtc;
 159
 160static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
 161                                               unsigned long parent_rate)
 162{
 163        struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
 164        u32 val = 0;
 165
 166        val = readl(rtc->base + SUN6I_LOSC_CTRL);
 167        if (val & SUN6I_LOSC_CTRL_EXT_OSC)
 168                return parent_rate;
 169
 170        if (rtc->data->fixed_prescaler)
 171                parent_rate /= rtc->data->fixed_prescaler;
 172
 173        if (rtc->data->has_prescaler) {
 174                val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
 175                val &= GENMASK(4, 0);
 176        }
 177
 178        return parent_rate / (val + 1);
 179}
 180
 181static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
 182{
 183        struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
 184
 185        return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
 186}
 187
 188static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
 189{
 190        struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
 191        unsigned long flags;
 192        u32 val;
 193
 194        if (index > 1)
 195                return -EINVAL;
 196
 197        spin_lock_irqsave(&rtc->lock, flags);
 198        val = readl(rtc->base + SUN6I_LOSC_CTRL);
 199        val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
 200        val |= SUN6I_LOSC_CTRL_KEY;
 201        val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
 202        if (rtc->data->has_losc_en) {
 203                val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
 204                val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
 205        }
 206        writel(val, rtc->base + SUN6I_LOSC_CTRL);
 207        spin_unlock_irqrestore(&rtc->lock, flags);
 208
 209        return 0;
 210}
 211
 212static const struct clk_ops sun6i_rtc_osc_ops = {
 213        .recalc_rate    = sun6i_rtc_osc_recalc_rate,
 214
 215        .get_parent     = sun6i_rtc_osc_get_parent,
 216        .set_parent     = sun6i_rtc_osc_set_parent,
 217};
 218
 219static void __init sun6i_rtc_clk_init(struct device_node *node,
 220                                      const struct sun6i_rtc_clk_data *data)
 221{
 222        struct clk_hw_onecell_data *clk_data;
 223        struct sun6i_rtc_dev *rtc;
 224        struct clk_init_data init = {
 225                .ops            = &sun6i_rtc_osc_ops,
 226                .name           = "losc",
 227        };
 228        const char *iosc_name = "rtc-int-osc";
 229        const char *clkout_name = "osc32k-out";
 230        const char *parents[2];
 231        u32 reg;
 232
 233        rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
 234        if (!rtc)
 235                return;
 236
 237        rtc->data = data;
 238        clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
 239        if (!clk_data) {
 240                kfree(rtc);
 241                return;
 242        }
 243
 244        spin_lock_init(&rtc->lock);
 245
 246        rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
 247        if (IS_ERR(rtc->base)) {
 248                pr_crit("Can't map RTC registers");
 249                goto err;
 250        }
 251
 252        reg = SUN6I_LOSC_CTRL_KEY;
 253        if (rtc->data->has_auto_swt) {
 254                /* Bypass auto-switch to int osc, on ext losc failure */
 255                reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
 256                writel(reg, rtc->base + SUN6I_LOSC_CTRL);
 257        }
 258
 259        /* Switch to the external, more precise, oscillator, if present */
 260        if (of_get_property(node, "clocks", NULL)) {
 261                reg |= SUN6I_LOSC_CTRL_EXT_OSC;
 262                if (rtc->data->has_losc_en)
 263                        reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
 264        }
 265        writel(reg, rtc->base + SUN6I_LOSC_CTRL);
 266
 267        /* Yes, I know, this is ugly. */
 268        sun6i_rtc = rtc;
 269
 270        /* Only read IOSC name from device tree if it is exported */
 271        if (rtc->data->export_iosc)
 272                of_property_read_string_index(node, "clock-output-names", 2,
 273                                              &iosc_name);
 274
 275        rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
 276                                                                iosc_name,
 277                                                                NULL, 0,
 278                                                                rtc->data->rc_osc_rate,
 279                                                                300000000);
 280        if (IS_ERR(rtc->int_osc)) {
 281                pr_crit("Couldn't register the internal oscillator\n");
 282                goto err;
 283        }
 284
 285        parents[0] = clk_hw_get_name(rtc->int_osc);
 286        /* If there is no external oscillator, this will be NULL and ... */
 287        parents[1] = of_clk_get_parent_name(node, 0);
 288
 289        rtc->hw.init = &init;
 290
 291        init.parent_names = parents;
 292        /* ... number of clock parents will be 1. */
 293        init.num_parents = of_clk_get_parent_count(node) + 1;
 294        of_property_read_string_index(node, "clock-output-names", 0,
 295                                      &init.name);
 296
 297        rtc->losc = clk_register(NULL, &rtc->hw);
 298        if (IS_ERR(rtc->losc)) {
 299                pr_crit("Couldn't register the LOSC clock\n");
 300                goto err_register;
 301        }
 302
 303        of_property_read_string_index(node, "clock-output-names", 1,
 304                                      &clkout_name);
 305        rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
 306                                          0, rtc->base + SUN6I_LOSC_OUT_GATING,
 307                                          SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
 308                                          &rtc->lock);
 309        if (IS_ERR(rtc->ext_losc)) {
 310                pr_crit("Couldn't register the LOSC external gate\n");
 311                goto err_register;
 312        }
 313
 314        clk_data->num = 2;
 315        clk_data->hws[0] = &rtc->hw;
 316        clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
 317        if (rtc->data->export_iosc) {
 318                clk_data->hws[2] = rtc->int_osc;
 319                clk_data->num = 3;
 320        }
 321        of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
 322        return;
 323
 324err_register:
 325        clk_hw_unregister_fixed_rate(rtc->int_osc);
 326err:
 327        kfree(clk_data);
 328}
 329
 330static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
 331        .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
 332        .has_prescaler = 1,
 333};
 334
 335static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
 336{
 337        sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
 338}
 339CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
 340                      sun6i_a31_rtc_clk_init);
 341
 342static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
 343        .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
 344        .has_prescaler = 1,
 345        .has_out_clk = 1,
 346};
 347
 348static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
 349{
 350        sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
 351}
 352CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
 353                      sun8i_a23_rtc_clk_init);
 354
 355static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
 356        .rc_osc_rate = 16000000,
 357        .fixed_prescaler = 32,
 358        .has_prescaler = 1,
 359        .has_out_clk = 1,
 360        .export_iosc = 1,
 361};
 362
 363static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
 364{
 365        sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
 366}
 367CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
 368                      sun8i_h3_rtc_clk_init);
 369/* As far as we are concerned, clocks for H5 are the same as H3 */
 370CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
 371                      sun8i_h3_rtc_clk_init);
 372
 373static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
 374        .rc_osc_rate = 16000000,
 375        .fixed_prescaler = 32,
 376        .has_prescaler = 1,
 377        .has_out_clk = 1,
 378        .export_iosc = 1,
 379        .has_losc_en = 1,
 380        .has_auto_swt = 1,
 381};
 382
 383static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
 384{
 385        sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
 386}
 387CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
 388                      sun50i_h6_rtc_clk_init);
 389
 390/*
 391 * The R40 user manual is self-conflicting on whether the prescaler is
 392 * fixed or configurable. The clock diagram shows it as fixed, but there
 393 * is also a configurable divider in the RTC block.
 394 */
 395static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
 396        .rc_osc_rate = 16000000,
 397        .fixed_prescaler = 512,
 398};
 399static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
 400{
 401        sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
 402}
 403CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
 404                      sun8i_r40_rtc_clk_init);
 405
 406static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
 407        .rc_osc_rate = 32000,
 408        .has_out_clk = 1,
 409};
 410
 411static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
 412{
 413        sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
 414}
 415CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
 416                      sun8i_v3_rtc_clk_init);
 417
 418static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
 419{
 420        struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
 421        irqreturn_t ret = IRQ_NONE;
 422        u32 val;
 423
 424        spin_lock(&chip->lock);
 425        val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
 426
 427        if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
 428                val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
 429                writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
 430
 431                rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
 432
 433                ret = IRQ_HANDLED;
 434        }
 435        spin_unlock(&chip->lock);
 436
 437        return ret;
 438}
 439
 440static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
 441{
 442        u32 alrm_val = 0;
 443        u32 alrm_irq_val = 0;
 444        u32 alrm_wake_val = 0;
 445        unsigned long flags;
 446
 447        if (to) {
 448                alrm_val = SUN6I_ALRM_EN_CNT_EN;
 449                alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
 450                alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
 451        } else {
 452                writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
 453                       chip->base + SUN6I_ALRM_IRQ_STA);
 454        }
 455
 456        spin_lock_irqsave(&chip->lock, flags);
 457        writel(alrm_val, chip->base + SUN6I_ALRM_EN);
 458        writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
 459        writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
 460        spin_unlock_irqrestore(&chip->lock, flags);
 461}
 462
 463static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
 464{
 465        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 466        u32 date, time;
 467
 468        /*
 469         * read again in case it changes
 470         */
 471        do {
 472                date = readl(chip->base + SUN6I_RTC_YMD);
 473                time = readl(chip->base + SUN6I_RTC_HMS);
 474        } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
 475                 (time != readl(chip->base + SUN6I_RTC_HMS)));
 476
 477        if (chip->flags & RTC_LINEAR_DAY) {
 478                /*
 479                 * Newer chips store a linear day number, the manual
 480                 * does not mandate any epoch base. The BSP driver uses
 481                 * the UNIX epoch, let's just copy that, as it's the
 482                 * easiest anyway.
 483                 */
 484                rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
 485        } else {
 486                rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
 487                rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
 488                rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
 489
 490                /*
 491                 * switch from (data_year->min)-relative offset to
 492                 * a (1900)-relative one
 493                 */
 494                rtc_tm->tm_year += SUN6I_YEAR_OFF;
 495        }
 496
 497        rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
 498        rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
 499        rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
 500
 501        return 0;
 502}
 503
 504static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
 505{
 506        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 507        unsigned long flags;
 508        u32 alrm_st;
 509        u32 alrm_en;
 510
 511        spin_lock_irqsave(&chip->lock, flags);
 512        alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
 513        alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
 514        spin_unlock_irqrestore(&chip->lock, flags);
 515
 516        wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
 517        wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
 518        rtc_time64_to_tm(chip->alarm, &wkalrm->time);
 519
 520        return 0;
 521}
 522
 523static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
 524{
 525        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 526        struct rtc_time *alrm_tm = &wkalrm->time;
 527        struct rtc_time tm_now;
 528        time64_t time_set;
 529        u32 counter_val, counter_val_hms;
 530        int ret;
 531
 532        time_set = rtc_tm_to_time64(alrm_tm);
 533
 534        if (chip->flags & RTC_LINEAR_DAY) {
 535                /*
 536                 * The alarm registers hold the actual alarm time, encoded
 537                 * in the same way (linear day + HMS) as the current time.
 538                 */
 539                counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
 540                                  SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
 541                                  SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
 542                /* The division will cut off the H:M:S part of alrm_tm. */
 543                counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
 544        } else {
 545                /* The alarm register holds the number of seconds left. */
 546                time64_t time_now;
 547
 548                ret = sun6i_rtc_gettime(dev, &tm_now);
 549                if (ret < 0) {
 550                        dev_err(dev, "Error in getting time\n");
 551                        return -EINVAL;
 552                }
 553
 554                time_now = rtc_tm_to_time64(&tm_now);
 555                if (time_set <= time_now) {
 556                        dev_err(dev, "Date to set in the past\n");
 557                        return -EINVAL;
 558                }
 559                if ((time_set - time_now) > U32_MAX) {
 560                        dev_err(dev, "Date too far in the future\n");
 561                        return -EINVAL;
 562                }
 563
 564                counter_val = time_set - time_now;
 565        }
 566
 567        sun6i_rtc_setaie(0, chip);
 568        writel(0, chip->base + SUN6I_ALRM_COUNTER);
 569        if (chip->flags & RTC_LINEAR_DAY)
 570                writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
 571        usleep_range(100, 300);
 572
 573        writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
 574        if (chip->flags & RTC_LINEAR_DAY)
 575                writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
 576        chip->alarm = time_set;
 577
 578        sun6i_rtc_setaie(wkalrm->enabled, chip);
 579
 580        return 0;
 581}
 582
 583static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
 584                          unsigned int mask, unsigned int ms_timeout)
 585{
 586        const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
 587        u32 reg;
 588
 589        do {
 590                reg = readl(chip->base + offset);
 591                reg &= mask;
 592
 593                if (!reg)
 594                        return 0;
 595
 596        } while (time_before(jiffies, timeout));
 597
 598        return -ETIMEDOUT;
 599}
 600
 601static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
 602{
 603        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 604        u32 date = 0;
 605        u32 time = 0;
 606
 607        time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
 608                SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
 609                SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
 610
 611        if (chip->flags & RTC_LINEAR_DAY) {
 612                /* The division will cut off the H:M:S part of rtc_tm. */
 613                date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
 614        } else {
 615                rtc_tm->tm_year -= SUN6I_YEAR_OFF;
 616                rtc_tm->tm_mon += 1;
 617
 618                date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
 619                        SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
 620                        SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
 621
 622                if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
 623                        date |= SUN6I_LEAP_SET_VALUE(1);
 624        }
 625
 626        /* Check whether registers are writable */
 627        if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
 628                           SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
 629                dev_err(dev, "rtc is still busy.\n");
 630                return -EBUSY;
 631        }
 632
 633        writel(time, chip->base + SUN6I_RTC_HMS);
 634
 635        /*
 636         * After writing the RTC HH-MM-SS register, the
 637         * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
 638         * be cleared until the real writing operation is finished
 639         */
 640
 641        if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
 642                           SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
 643                dev_err(dev, "Failed to set rtc time.\n");
 644                return -ETIMEDOUT;
 645        }
 646
 647        writel(date, chip->base + SUN6I_RTC_YMD);
 648
 649        /*
 650         * After writing the RTC YY-MM-DD register, the
 651         * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
 652         * be cleared until the real writing operation is finished
 653         */
 654
 655        if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
 656                           SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
 657                dev_err(dev, "Failed to set rtc time.\n");
 658                return -ETIMEDOUT;
 659        }
 660
 661        return 0;
 662}
 663
 664static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 665{
 666        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 667
 668        if (!enabled)
 669                sun6i_rtc_setaie(enabled, chip);
 670
 671        return 0;
 672}
 673
 674static const struct rtc_class_ops sun6i_rtc_ops = {
 675        .read_time              = sun6i_rtc_gettime,
 676        .set_time               = sun6i_rtc_settime,
 677        .read_alarm             = sun6i_rtc_getalarm,
 678        .set_alarm              = sun6i_rtc_setalarm,
 679        .alarm_irq_enable       = sun6i_rtc_alarm_irq_enable
 680};
 681
 682#ifdef CONFIG_PM_SLEEP
 683/* Enable IRQ wake on suspend, to wake up from RTC. */
 684static int sun6i_rtc_suspend(struct device *dev)
 685{
 686        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 687
 688        if (device_may_wakeup(dev))
 689                enable_irq_wake(chip->irq);
 690
 691        return 0;
 692}
 693
 694/* Disable IRQ wake on resume. */
 695static int sun6i_rtc_resume(struct device *dev)
 696{
 697        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 698
 699        if (device_may_wakeup(dev))
 700                disable_irq_wake(chip->irq);
 701
 702        return 0;
 703}
 704#endif
 705
 706static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
 707        sun6i_rtc_suspend, sun6i_rtc_resume);
 708
 709static void sun6i_rtc_bus_clk_cleanup(void *data)
 710{
 711        struct clk *bus_clk = data;
 712
 713        clk_disable_unprepare(bus_clk);
 714}
 715
 716static int sun6i_rtc_probe(struct platform_device *pdev)
 717{
 718        struct sun6i_rtc_dev *chip = sun6i_rtc;
 719        struct device *dev = &pdev->dev;
 720        struct clk *bus_clk;
 721        int ret;
 722
 723        bus_clk = devm_clk_get_optional(dev, "bus");
 724        if (IS_ERR(bus_clk))
 725                return PTR_ERR(bus_clk);
 726
 727        if (bus_clk) {
 728                ret = clk_prepare_enable(bus_clk);
 729                if (ret)
 730                        return ret;
 731
 732                ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
 733                                               bus_clk);
 734                if (ret)
 735                        return ret;
 736        }
 737
 738        if (!chip) {
 739                chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
 740                if (!chip)
 741                        return -ENOMEM;
 742
 743                spin_lock_init(&chip->lock);
 744
 745                chip->base = devm_platform_ioremap_resource(pdev, 0);
 746                if (IS_ERR(chip->base))
 747                        return PTR_ERR(chip->base);
 748
 749                if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
 750                        ret = sun6i_rtc_ccu_probe(dev, chip->base);
 751                        if (ret)
 752                                return ret;
 753                }
 754        }
 755
 756        platform_set_drvdata(pdev, chip);
 757
 758        chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
 759
 760        chip->irq = platform_get_irq(pdev, 0);
 761        if (chip->irq < 0)
 762                return chip->irq;
 763
 764        ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
 765                               0, dev_name(&pdev->dev), chip);
 766        if (ret) {
 767                dev_err(&pdev->dev, "Could not request IRQ\n");
 768                return ret;
 769        }
 770
 771        /* clear the alarm counter value */
 772        writel(0, chip->base + SUN6I_ALRM_COUNTER);
 773
 774        /* disable counter alarm */
 775        writel(0, chip->base + SUN6I_ALRM_EN);
 776
 777        /* disable counter alarm interrupt */
 778        writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
 779
 780        /* disable week alarm */
 781        writel(0, chip->base + SUN6I_ALRM1_EN);
 782
 783        /* disable week alarm interrupt */
 784        writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
 785
 786        /* clear counter alarm pending interrupts */
 787        writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
 788               chip->base + SUN6I_ALRM_IRQ_STA);
 789
 790        /* clear week alarm pending interrupts */
 791        writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
 792               chip->base + SUN6I_ALRM1_IRQ_STA);
 793
 794        /* disable alarm wakeup */
 795        writel(0, chip->base + SUN6I_ALARM_CONFIG);
 796
 797        clk_prepare_enable(chip->losc);
 798
 799        device_init_wakeup(&pdev->dev, 1);
 800
 801        chip->rtc = devm_rtc_allocate_device(&pdev->dev);
 802        if (IS_ERR(chip->rtc))
 803                return PTR_ERR(chip->rtc);
 804
 805        chip->rtc->ops = &sun6i_rtc_ops;
 806        if (chip->flags & RTC_LINEAR_DAY)
 807                chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
 808        else
 809                chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
 810
 811        ret = devm_rtc_register_device(chip->rtc);
 812        if (ret)
 813                return ret;
 814
 815        dev_info(&pdev->dev, "RTC enabled\n");
 816
 817        return 0;
 818}
 819
 820/*
 821 * As far as RTC functionality goes, all models are the same. The
 822 * datasheets claim that different models have different number of
 823 * registers available for non-volatile storage, but experiments show
 824 * that all SoCs have 16 registers available for this purpose.
 825 */
 826static const struct of_device_id sun6i_rtc_dt_ids[] = {
 827        { .compatible = "allwinner,sun6i-a31-rtc" },
 828        { .compatible = "allwinner,sun8i-a23-rtc" },
 829        { .compatible = "allwinner,sun8i-h3-rtc" },
 830        { .compatible = "allwinner,sun8i-r40-rtc" },
 831        { .compatible = "allwinner,sun8i-v3-rtc" },
 832        { .compatible = "allwinner,sun50i-h5-rtc" },
 833        { .compatible = "allwinner,sun50i-h6-rtc" },
 834        { .compatible = "allwinner,sun50i-h616-rtc",
 835                .data = (void *)RTC_LINEAR_DAY },
 836        { /* sentinel */ },
 837};
 838MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
 839
 840static struct platform_driver sun6i_rtc_driver = {
 841        .probe          = sun6i_rtc_probe,
 842        .driver         = {
 843                .name           = "sun6i-rtc",
 844                .of_match_table = sun6i_rtc_dt_ids,
 845                .pm = &sun6i_rtc_pm_ops,
 846        },
 847};
 848builtin_platform_driver(sun6i_rtc_driver);
 849