linux/drivers/thermal/mtk_thermal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 MediaTek Inc.
   4 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
   5 *         Sascha Hauer <s.hauer@pengutronix.de>
   6 *         Dawei Chien <dawei.chien@mediatek.com>
   7 *         Louis Yu <louis.yu@mediatek.com>
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/nvmem-consumer.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/of_device.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/io.h>
  22#include <linux/thermal.h>
  23#include <linux/reset.h>
  24#include <linux/types.h>
  25
  26#include "thermal_hwmon.h"
  27
  28/* AUXADC Registers */
  29#define AUXADC_CON1_SET_V       0x008
  30#define AUXADC_CON1_CLR_V       0x00c
  31#define AUXADC_CON2_V           0x010
  32#define AUXADC_DATA(channel)    (0x14 + (channel) * 4)
  33
  34#define APMIXED_SYS_TS_CON1     0x604
  35
  36/* Thermal Controller Registers */
  37#define TEMP_MONCTL0            0x000
  38#define TEMP_MONCTL1            0x004
  39#define TEMP_MONCTL2            0x008
  40#define TEMP_MONIDET0           0x014
  41#define TEMP_MONIDET1           0x018
  42#define TEMP_MSRCTL0            0x038
  43#define TEMP_MSRCTL1            0x03c
  44#define TEMP_AHBPOLL            0x040
  45#define TEMP_AHBTO              0x044
  46#define TEMP_ADCPNP0            0x048
  47#define TEMP_ADCPNP1            0x04c
  48#define TEMP_ADCPNP2            0x050
  49#define TEMP_ADCPNP3            0x0b4
  50
  51#define TEMP_ADCMUX             0x054
  52#define TEMP_ADCEN              0x060
  53#define TEMP_PNPMUXADDR         0x064
  54#define TEMP_ADCMUXADDR         0x068
  55#define TEMP_ADCENADDR          0x074
  56#define TEMP_ADCVALIDADDR       0x078
  57#define TEMP_ADCVOLTADDR        0x07c
  58#define TEMP_RDCTRL             0x080
  59#define TEMP_ADCVALIDMASK       0x084
  60#define TEMP_ADCVOLTAGESHIFT    0x088
  61#define TEMP_ADCWRITECTRL       0x08c
  62#define TEMP_MSR0               0x090
  63#define TEMP_MSR1               0x094
  64#define TEMP_MSR2               0x098
  65#define TEMP_MSR3               0x0B8
  66
  67#define TEMP_SPARE0             0x0f0
  68
  69#define TEMP_ADCPNP0_1          0x148
  70#define TEMP_ADCPNP1_1          0x14c
  71#define TEMP_ADCPNP2_1          0x150
  72#define TEMP_MSR0_1             0x190
  73#define TEMP_MSR1_1             0x194
  74#define TEMP_MSR2_1             0x198
  75#define TEMP_ADCPNP3_1          0x1b4
  76#define TEMP_MSR3_1             0x1B8
  77
  78#define PTPCORESEL              0x400
  79
  80#define TEMP_MONCTL1_PERIOD_UNIT(x)     ((x) & 0x3ff)
  81
  82#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16)
  83#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff)
  84
  85#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)       (x)
  86
  87#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE         BIT(0)
  88#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE         BIT(1)
  89
  90#define TEMP_ADCVALIDMASK_VALID_HIGH            BIT(5)
  91#define TEMP_ADCVALIDMASK_VALID_POS(bit)        (bit)
  92
  93/* MT8173 thermal sensors */
  94#define MT8173_TS1      0
  95#define MT8173_TS2      1
  96#define MT8173_TS3      2
  97#define MT8173_TS4      3
  98#define MT8173_TSABB    4
  99
 100/* AUXADC channel 11 is used for the temperature sensors */
 101#define MT8173_TEMP_AUXADC_CHANNEL      11
 102
 103/* The total number of temperature sensors in the MT8173 */
 104#define MT8173_NUM_SENSORS              5
 105
 106/* The number of banks in the MT8173 */
 107#define MT8173_NUM_ZONES                4
 108
 109/* The number of sensing points per bank */
 110#define MT8173_NUM_SENSORS_PER_ZONE     4
 111
 112/* The number of controller in the MT8173 */
 113#define MT8173_NUM_CONTROLLER           1
 114
 115/* The calibration coefficient of sensor  */
 116#define MT8173_CALIBRATION      165
 117
 118/*
 119 * Layout of the fuses providing the calibration data
 120 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
 121 * MT8183 has 6 sensors and needs 6 VTS calibration data.
 122 * MT8173 has 5 sensors and needs 5 VTS calibration data.
 123 * MT2701 has 3 sensors and needs 3 VTS calibration data.
 124 * MT2712 has 4 sensors and needs 4 VTS calibration data.
 125 */
 126#define CALIB_BUF0_VALID_V1             BIT(0)
 127#define CALIB_BUF1_ADC_GE_V1(x)         (((x) >> 22) & 0x3ff)
 128#define CALIB_BUF0_VTS_TS1_V1(x)        (((x) >> 17) & 0x1ff)
 129#define CALIB_BUF0_VTS_TS2_V1(x)        (((x) >> 8) & 0x1ff)
 130#define CALIB_BUF1_VTS_TS3_V1(x)        (((x) >> 0) & 0x1ff)
 131#define CALIB_BUF2_VTS_TS4_V1(x)        (((x) >> 23) & 0x1ff)
 132#define CALIB_BUF2_VTS_TS5_V1(x)        (((x) >> 5) & 0x1ff)
 133#define CALIB_BUF2_VTS_TSABB_V1(x)      (((x) >> 14) & 0x1ff)
 134#define CALIB_BUF0_DEGC_CALI_V1(x)      (((x) >> 1) & 0x3f)
 135#define CALIB_BUF0_O_SLOPE_V1(x)        (((x) >> 26) & 0x3f)
 136#define CALIB_BUF0_O_SLOPE_SIGN_V1(x)   (((x) >> 7) & 0x1)
 137#define CALIB_BUF1_ID_V1(x)             (((x) >> 9) & 0x1)
 138
 139/*
 140 * Layout of the fuses providing the calibration data
 141 * These macros could be used for MT7622.
 142 */
 143#define CALIB_BUF0_ADC_OE_V2(x)         (((x) >> 22) & 0x3ff)
 144#define CALIB_BUF0_ADC_GE_V2(x)         (((x) >> 12) & 0x3ff)
 145#define CALIB_BUF0_DEGC_CALI_V2(x)      (((x) >> 6) & 0x3f)
 146#define CALIB_BUF0_O_SLOPE_V2(x)        (((x) >> 0) & 0x3f)
 147#define CALIB_BUF1_VTS_TS1_V2(x)        (((x) >> 23) & 0x1ff)
 148#define CALIB_BUF1_VTS_TS2_V2(x)        (((x) >> 14) & 0x1ff)
 149#define CALIB_BUF1_VTS_TSABB_V2(x)      (((x) >> 5) & 0x1ff)
 150#define CALIB_BUF1_VALID_V2(x)          (((x) >> 4) & 0x1)
 151#define CALIB_BUF1_O_SLOPE_SIGN_V2(x)   (((x) >> 3) & 0x1)
 152
 153enum {
 154        VTS1,
 155        VTS2,
 156        VTS3,
 157        VTS4,
 158        VTS5,
 159        VTSABB,
 160        MAX_NUM_VTS,
 161};
 162
 163enum mtk_thermal_version {
 164        MTK_THERMAL_V1 = 1,
 165        MTK_THERMAL_V2,
 166};
 167
 168/* MT2701 thermal sensors */
 169#define MT2701_TS1      0
 170#define MT2701_TS2      1
 171#define MT2701_TSABB    2
 172
 173/* AUXADC channel 11 is used for the temperature sensors */
 174#define MT2701_TEMP_AUXADC_CHANNEL      11
 175
 176/* The total number of temperature sensors in the MT2701 */
 177#define MT2701_NUM_SENSORS      3
 178
 179/* The number of sensing points per bank */
 180#define MT2701_NUM_SENSORS_PER_ZONE     3
 181
 182/* The number of controller in the MT2701 */
 183#define MT2701_NUM_CONTROLLER           1
 184
 185/* The calibration coefficient of sensor  */
 186#define MT2701_CALIBRATION      165
 187
 188/* MT2712 thermal sensors */
 189#define MT2712_TS1      0
 190#define MT2712_TS2      1
 191#define MT2712_TS3      2
 192#define MT2712_TS4      3
 193
 194/* AUXADC channel 11 is used for the temperature sensors */
 195#define MT2712_TEMP_AUXADC_CHANNEL      11
 196
 197/* The total number of temperature sensors in the MT2712 */
 198#define MT2712_NUM_SENSORS      4
 199
 200/* The number of sensing points per bank */
 201#define MT2712_NUM_SENSORS_PER_ZONE     4
 202
 203/* The number of controller in the MT2712 */
 204#define MT2712_NUM_CONTROLLER           1
 205
 206/* The calibration coefficient of sensor  */
 207#define MT2712_CALIBRATION      165
 208
 209#define MT7622_TEMP_AUXADC_CHANNEL      11
 210#define MT7622_NUM_SENSORS              1
 211#define MT7622_NUM_ZONES                1
 212#define MT7622_NUM_SENSORS_PER_ZONE     1
 213#define MT7622_TS1      0
 214#define MT7622_NUM_CONTROLLER           1
 215
 216/* The maximum number of banks */
 217#define MAX_NUM_ZONES           8
 218
 219/* The calibration coefficient of sensor  */
 220#define MT7622_CALIBRATION      165
 221
 222/* MT8183 thermal sensors */
 223#define MT8183_TS1      0
 224#define MT8183_TS2      1
 225#define MT8183_TS3      2
 226#define MT8183_TS4      3
 227#define MT8183_TS5      4
 228#define MT8183_TSABB    5
 229
 230/* AUXADC channel  is used for the temperature sensors */
 231#define MT8183_TEMP_AUXADC_CHANNEL      11
 232
 233/* The total number of temperature sensors in the MT8183 */
 234#define MT8183_NUM_SENSORS      6
 235
 236/* The number of banks in the MT8183 */
 237#define MT8183_NUM_ZONES               1
 238
 239/* The number of sensing points per bank */
 240#define MT8183_NUM_SENSORS_PER_ZONE      6
 241
 242/* The number of controller in the MT8183 */
 243#define MT8183_NUM_CONTROLLER           2
 244
 245/* The calibration coefficient of sensor  */
 246#define MT8183_CALIBRATION      153
 247
 248struct mtk_thermal;
 249
 250struct thermal_bank_cfg {
 251        unsigned int num_sensors;
 252        const int *sensors;
 253};
 254
 255struct mtk_thermal_bank {
 256        struct mtk_thermal *mt;
 257        int id;
 258};
 259
 260struct mtk_thermal_data {
 261        s32 num_banks;
 262        s32 num_sensors;
 263        s32 auxadc_channel;
 264        const int *vts_index;
 265        const int *sensor_mux_values;
 266        const int *msr;
 267        const int *adcpnp;
 268        const int cali_val;
 269        const int num_controller;
 270        const int *controller_offset;
 271        bool need_switch_bank;
 272        struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
 273        enum mtk_thermal_version version;
 274};
 275
 276struct mtk_thermal {
 277        struct device *dev;
 278        void __iomem *thermal_base;
 279
 280        struct clk *clk_peri_therm;
 281        struct clk *clk_auxadc;
 282        /* lock: for getting and putting banks */
 283        struct mutex lock;
 284
 285        /* Calibration values */
 286        s32 adc_ge;
 287        s32 adc_oe;
 288        s32 degc_cali;
 289        s32 o_slope;
 290        s32 o_slope_sign;
 291        s32 vts[MAX_NUM_VTS];
 292
 293        const struct mtk_thermal_data *conf;
 294        struct mtk_thermal_bank banks[MAX_NUM_ZONES];
 295};
 296
 297/* MT8183 thermal sensor data */
 298static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
 299        MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
 300};
 301
 302static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
 303        TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
 304};
 305
 306static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
 307        TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
 308        TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
 309};
 310
 311static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
 312static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
 313
 314static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
 315        VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
 316};
 317
 318/* MT8173 thermal sensor data */
 319static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
 320        { MT8173_TS2, MT8173_TS3 },
 321        { MT8173_TS2, MT8173_TS4 },
 322        { MT8173_TS1, MT8173_TS2, MT8173_TSABB },
 323        { MT8173_TS2 },
 324};
 325
 326static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
 327        TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 328};
 329
 330static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
 331        TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 332};
 333
 334static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
 335static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
 336
 337static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
 338        VTS1, VTS2, VTS3, VTS4, VTSABB
 339};
 340
 341/* MT2701 thermal sensor data */
 342static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
 343        MT2701_TS1, MT2701_TS2, MT2701_TSABB
 344};
 345
 346static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
 347        TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
 348};
 349
 350static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
 351        TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
 352};
 353
 354static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
 355static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
 356
 357static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
 358        VTS1, VTS2, VTS3
 359};
 360
 361/* MT2712 thermal sensor data */
 362static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
 363        MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
 364};
 365
 366static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
 367        TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 368};
 369
 370static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
 371        TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 372};
 373
 374static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
 375static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
 376
 377static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
 378        VTS1, VTS2, VTS3, VTS4
 379};
 380
 381/* MT7622 thermal sensor data */
 382static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
 383static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
 384static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
 385static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
 386static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
 387static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
 388
 389/*
 390 * The MT8173 thermal controller has four banks. Each bank can read up to
 391 * four temperature sensors simultaneously. The MT8173 has a total of 5
 392 * temperature sensors. We use each bank to measure a certain area of the
 393 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
 394 * areas, hence is used in different banks.
 395 *
 396 * The thermal core only gets the maximum temperature of all banks, so
 397 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 398 * Voltage Scaling) unit makes its decisions based on the same bank
 399 * data, and this indeed needs the temperatures of the individual banks
 400 * for making better decisions.
 401 */
 402static const struct mtk_thermal_data mt8173_thermal_data = {
 403        .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
 404        .num_banks = MT8173_NUM_ZONES,
 405        .num_sensors = MT8173_NUM_SENSORS,
 406        .vts_index = mt8173_vts_index,
 407        .cali_val = MT8173_CALIBRATION,
 408        .num_controller = MT8173_NUM_CONTROLLER,
 409        .controller_offset = mt8173_tc_offset,
 410        .need_switch_bank = true,
 411        .bank_data = {
 412                {
 413                        .num_sensors = 2,
 414                        .sensors = mt8173_bank_data[0],
 415                }, {
 416                        .num_sensors = 2,
 417                        .sensors = mt8173_bank_data[1],
 418                }, {
 419                        .num_sensors = 3,
 420                        .sensors = mt8173_bank_data[2],
 421                }, {
 422                        .num_sensors = 1,
 423                        .sensors = mt8173_bank_data[3],
 424                },
 425        },
 426        .msr = mt8173_msr,
 427        .adcpnp = mt8173_adcpnp,
 428        .sensor_mux_values = mt8173_mux_values,
 429        .version = MTK_THERMAL_V1,
 430};
 431
 432/*
 433 * The MT2701 thermal controller has one bank, which can read up to
 434 * three temperature sensors simultaneously. The MT2701 has a total of 3
 435 * temperature sensors.
 436 *
 437 * The thermal core only gets the maximum temperature of this one bank,
 438 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 439 * Voltage Scaling) unit makes its decisions based on the same bank
 440 * data.
 441 */
 442static const struct mtk_thermal_data mt2701_thermal_data = {
 443        .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
 444        .num_banks = 1,
 445        .num_sensors = MT2701_NUM_SENSORS,
 446        .vts_index = mt2701_vts_index,
 447        .cali_val = MT2701_CALIBRATION,
 448        .num_controller = MT2701_NUM_CONTROLLER,
 449        .controller_offset = mt2701_tc_offset,
 450        .need_switch_bank = true,
 451        .bank_data = {
 452                {
 453                        .num_sensors = 3,
 454                        .sensors = mt2701_bank_data,
 455                },
 456        },
 457        .msr = mt2701_msr,
 458        .adcpnp = mt2701_adcpnp,
 459        .sensor_mux_values = mt2701_mux_values,
 460        .version = MTK_THERMAL_V1,
 461};
 462
 463/*
 464 * The MT2712 thermal controller has one bank, which can read up to
 465 * four temperature sensors simultaneously. The MT2712 has a total of 4
 466 * temperature sensors.
 467 *
 468 * The thermal core only gets the maximum temperature of this one bank,
 469 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 470 * Voltage Scaling) unit makes its decisions based on the same bank
 471 * data.
 472 */
 473static const struct mtk_thermal_data mt2712_thermal_data = {
 474        .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
 475        .num_banks = 1,
 476        .num_sensors = MT2712_NUM_SENSORS,
 477        .vts_index = mt2712_vts_index,
 478        .cali_val = MT2712_CALIBRATION,
 479        .num_controller = MT2712_NUM_CONTROLLER,
 480        .controller_offset = mt2712_tc_offset,
 481        .need_switch_bank = true,
 482        .bank_data = {
 483                {
 484                        .num_sensors = 4,
 485                        .sensors = mt2712_bank_data,
 486                },
 487        },
 488        .msr = mt2712_msr,
 489        .adcpnp = mt2712_adcpnp,
 490        .sensor_mux_values = mt2712_mux_values,
 491        .version = MTK_THERMAL_V1,
 492};
 493
 494/*
 495 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
 496 * access.
 497 */
 498static const struct mtk_thermal_data mt7622_thermal_data = {
 499        .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
 500        .num_banks = MT7622_NUM_ZONES,
 501        .num_sensors = MT7622_NUM_SENSORS,
 502        .vts_index = mt7622_vts_index,
 503        .cali_val = MT7622_CALIBRATION,
 504        .num_controller = MT7622_NUM_CONTROLLER,
 505        .controller_offset = mt7622_tc_offset,
 506        .need_switch_bank = true,
 507        .bank_data = {
 508                {
 509                        .num_sensors = 1,
 510                        .sensors = mt7622_bank_data,
 511                },
 512        },
 513        .msr = mt7622_msr,
 514        .adcpnp = mt7622_adcpnp,
 515        .sensor_mux_values = mt7622_mux_values,
 516        .version = MTK_THERMAL_V2,
 517};
 518
 519/*
 520 * The MT8183 thermal controller has one bank for the current SW framework.
 521 * The MT8183 has a total of 6 temperature sensors.
 522 * There are two thermal controller to control the six sensor.
 523 * The first one bind 2 sensor, and the other bind 4 sensors.
 524 * The thermal core only gets the maximum temperature of all sensor, so
 525 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 526 * Voltage Scaling) unit makes its decisions based on the same bank
 527 * data, and this indeed needs the temperatures of the individual banks
 528 * for making better decisions.
 529 */
 530static const struct mtk_thermal_data mt8183_thermal_data = {
 531        .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
 532        .num_banks = MT8183_NUM_ZONES,
 533        .num_sensors = MT8183_NUM_SENSORS,
 534        .vts_index = mt8183_vts_index,
 535        .cali_val = MT8183_CALIBRATION,
 536        .num_controller = MT8183_NUM_CONTROLLER,
 537        .controller_offset = mt8183_tc_offset,
 538        .need_switch_bank = false,
 539        .bank_data = {
 540                {
 541                        .num_sensors = 6,
 542                        .sensors = mt8183_bank_data,
 543                },
 544        },
 545
 546        .msr = mt8183_msr,
 547        .adcpnp = mt8183_adcpnp,
 548        .sensor_mux_values = mt8183_mux_values,
 549        .version = MTK_THERMAL_V1,
 550};
 551
 552/**
 553 * raw_to_mcelsius - convert a raw ADC value to mcelsius
 554 * @mt: The thermal controller
 555 * @sensno:     sensor number
 556 * @raw:        raw ADC value
 557 *
 558 * This converts the raw ADC value to mcelsius using the SoC specific
 559 * calibration constants
 560 */
 561static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
 562{
 563        s32 tmp;
 564
 565        raw &= 0xfff;
 566
 567        tmp = 203450520 << 3;
 568        tmp /= mt->conf->cali_val + mt->o_slope;
 569        tmp /= 10000 + mt->adc_ge;
 570        tmp *= raw - mt->vts[sensno] - 3350;
 571        tmp >>= 3;
 572
 573        return mt->degc_cali * 500 - tmp;
 574}
 575
 576static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
 577{
 578        s32 format_1;
 579        s32 format_2;
 580        s32 g_oe;
 581        s32 g_gain;
 582        s32 g_x_roomt;
 583        s32 tmp;
 584
 585        if (raw == 0)
 586                return 0;
 587
 588        raw &= 0xfff;
 589        g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
 590        g_oe = mt->adc_oe - 512;
 591        format_1 = mt->vts[VTS2] + 3105 - g_oe;
 592        format_2 = (mt->degc_cali * 10) >> 1;
 593        g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
 594
 595        tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
 596        tmp = tmp * 10 * 100 / 11;
 597
 598        if (mt->o_slope_sign == 0)
 599                tmp = tmp / (165 - mt->o_slope);
 600        else
 601                tmp = tmp / (165 + mt->o_slope);
 602
 603        return (format_2 - tmp) * 100;
 604}
 605
 606/**
 607 * mtk_thermal_get_bank - get bank
 608 * @bank:       The bank
 609 *
 610 * The bank registers are banked, we have to select a bank in the
 611 * PTPCORESEL register to access it.
 612 */
 613static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
 614{
 615        struct mtk_thermal *mt = bank->mt;
 616        u32 val;
 617
 618        if (mt->conf->need_switch_bank) {
 619                mutex_lock(&mt->lock);
 620
 621                val = readl(mt->thermal_base + PTPCORESEL);
 622                val &= ~0xf;
 623                val |= bank->id;
 624                writel(val, mt->thermal_base + PTPCORESEL);
 625        }
 626}
 627
 628/**
 629 * mtk_thermal_put_bank - release bank
 630 * @bank:       The bank
 631 *
 632 * release a bank previously taken with mtk_thermal_get_bank,
 633 */
 634static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
 635{
 636        struct mtk_thermal *mt = bank->mt;
 637
 638        if (mt->conf->need_switch_bank)
 639                mutex_unlock(&mt->lock);
 640}
 641
 642/**
 643 * mtk_thermal_bank_temperature - get the temperature of a bank
 644 * @bank:       The bank
 645 *
 646 * The temperature of a bank is considered the maximum temperature of
 647 * the sensors associated to the bank.
 648 */
 649static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
 650{
 651        struct mtk_thermal *mt = bank->mt;
 652        const struct mtk_thermal_data *conf = mt->conf;
 653        int i, temp = INT_MIN, max = INT_MIN;
 654        u32 raw;
 655
 656        for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
 657                raw = readl(mt->thermal_base + conf->msr[i]);
 658
 659                if (mt->conf->version == MTK_THERMAL_V1) {
 660                        temp = raw_to_mcelsius_v1(
 661                                mt, conf->bank_data[bank->id].sensors[i], raw);
 662                } else {
 663                        temp = raw_to_mcelsius_v2(
 664                                mt, conf->bank_data[bank->id].sensors[i], raw);
 665                }
 666
 667                /*
 668                 * The first read of a sensor often contains very high bogus
 669                 * temperature value. Filter these out so that the system does
 670                 * not immediately shut down.
 671                 */
 672                if (temp > 200000)
 673                        temp = 0;
 674
 675                if (temp > max)
 676                        max = temp;
 677        }
 678
 679        return max;
 680}
 681
 682static int mtk_read_temp(void *data, int *temperature)
 683{
 684        struct mtk_thermal *mt = data;
 685        int i;
 686        int tempmax = INT_MIN;
 687
 688        for (i = 0; i < mt->conf->num_banks; i++) {
 689                struct mtk_thermal_bank *bank = &mt->banks[i];
 690
 691                mtk_thermal_get_bank(bank);
 692
 693                tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
 694
 695                mtk_thermal_put_bank(bank);
 696        }
 697
 698        *temperature = tempmax;
 699
 700        return 0;
 701}
 702
 703static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
 704        .get_temp = mtk_read_temp,
 705};
 706
 707static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
 708                                  u32 apmixed_phys_base, u32 auxadc_phys_base,
 709                                  int ctrl_id)
 710{
 711        struct mtk_thermal_bank *bank = &mt->banks[num];
 712        const struct mtk_thermal_data *conf = mt->conf;
 713        int i;
 714
 715        int offset = mt->conf->controller_offset[ctrl_id];
 716        void __iomem *controller_base = mt->thermal_base + offset;
 717
 718        bank->id = num;
 719        bank->mt = mt;
 720
 721        mtk_thermal_get_bank(bank);
 722
 723        /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
 724        writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
 725
 726        /*
 727         * filt interval is 1 * 46.540us = 46.54us,
 728         * sen interval is 429 * 46.540us = 19.96ms
 729         */
 730        writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
 731                        TEMP_MONCTL2_SENSOR_INTERVAL(429),
 732                        controller_base + TEMP_MONCTL2);
 733
 734        /* poll is set to 10u */
 735        writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
 736               controller_base + TEMP_AHBPOLL);
 737
 738        /* temperature sampling control, 1 sample */
 739        writel(0x0, controller_base + TEMP_MSRCTL0);
 740
 741        /* exceed this polling time, IRQ would be inserted */
 742        writel(0xffffffff, controller_base + TEMP_AHBTO);
 743
 744        /* number of interrupts per event, 1 is enough */
 745        writel(0x0, controller_base + TEMP_MONIDET0);
 746        writel(0x0, controller_base + TEMP_MONIDET1);
 747
 748        /*
 749         * The MT8173 thermal controller does not have its own ADC. Instead it
 750         * uses AHB bus accesses to control the AUXADC. To do this the thermal
 751         * controller has to be programmed with the physical addresses of the
 752         * AUXADC registers and with the various bit positions in the AUXADC.
 753         * Also the thermal controller controls a mux in the APMIXEDSYS register
 754         * space.
 755         */
 756
 757        /*
 758         * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
 759         * automatically by hw
 760         */
 761        writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
 762
 763        /* AHB address for auxadc mux selection */
 764        writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
 765               controller_base + TEMP_ADCMUXADDR);
 766
 767        if (mt->conf->version == MTK_THERMAL_V1) {
 768                /* AHB address for pnp sensor mux selection */
 769                writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
 770                       controller_base + TEMP_PNPMUXADDR);
 771        }
 772
 773        /* AHB value for auxadc enable */
 774        writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
 775
 776        /* AHB address for auxadc enable (channel 0 immediate mode selected) */
 777        writel(auxadc_phys_base + AUXADC_CON1_SET_V,
 778               controller_base + TEMP_ADCENADDR);
 779
 780        /* AHB address for auxadc valid bit */
 781        writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 782               controller_base + TEMP_ADCVALIDADDR);
 783
 784        /* AHB address for auxadc voltage output */
 785        writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 786               controller_base + TEMP_ADCVOLTADDR);
 787
 788        /* read valid & voltage are at the same register */
 789        writel(0x0, controller_base + TEMP_RDCTRL);
 790
 791        /* indicate where the valid bit is */
 792        writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
 793               controller_base + TEMP_ADCVALIDMASK);
 794
 795        /* no shift */
 796        writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
 797
 798        /* enable auxadc mux write transaction */
 799        writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 800                controller_base + TEMP_ADCWRITECTRL);
 801
 802        for (i = 0; i < conf->bank_data[num].num_sensors; i++)
 803                writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
 804                       mt->thermal_base + conf->adcpnp[i]);
 805
 806        writel((1 << conf->bank_data[num].num_sensors) - 1,
 807               controller_base + TEMP_MONCTL0);
 808
 809        writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
 810               TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 811               controller_base + TEMP_ADCWRITECTRL);
 812
 813        mtk_thermal_put_bank(bank);
 814}
 815
 816static u64 of_get_phys_base(struct device_node *np)
 817{
 818        u64 size64;
 819        const __be32 *regaddr_p;
 820
 821        regaddr_p = of_get_address(np, 0, &size64, NULL);
 822        if (!regaddr_p)
 823                return OF_BAD_ADDR;
 824
 825        return of_translate_address(np, regaddr_p);
 826}
 827
 828static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
 829{
 830        int i;
 831
 832        if (!(buf[0] & CALIB_BUF0_VALID_V1))
 833                return -EINVAL;
 834
 835        mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
 836
 837        for (i = 0; i < mt->conf->num_sensors; i++) {
 838                switch (mt->conf->vts_index[i]) {
 839                case VTS1:
 840                        mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
 841                        break;
 842                case VTS2:
 843                        mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
 844                        break;
 845                case VTS3:
 846                        mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
 847                        break;
 848                case VTS4:
 849                        mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
 850                        break;
 851                case VTS5:
 852                        mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
 853                        break;
 854                case VTSABB:
 855                        mt->vts[VTSABB] =
 856                                CALIB_BUF2_VTS_TSABB_V1(buf[2]);
 857                        break;
 858                default:
 859                        break;
 860                }
 861        }
 862
 863        mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
 864        if (CALIB_BUF1_ID_V1(buf[1]) &
 865            CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
 866                mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
 867        else
 868                mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
 869
 870        return 0;
 871}
 872
 873static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
 874{
 875        if (!CALIB_BUF1_VALID_V2(buf[1]))
 876                return -EINVAL;
 877
 878        mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
 879        mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
 880        mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
 881        mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
 882        mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
 883        mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
 884        mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
 885        mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
 886
 887        return 0;
 888}
 889
 890static int mtk_thermal_get_calibration_data(struct device *dev,
 891                                            struct mtk_thermal *mt)
 892{
 893        struct nvmem_cell *cell;
 894        u32 *buf;
 895        size_t len;
 896        int i, ret = 0;
 897
 898        /* Start with default values */
 899        mt->adc_ge = 512;
 900        for (i = 0; i < mt->conf->num_sensors; i++)
 901                mt->vts[i] = 260;
 902        mt->degc_cali = 40;
 903        mt->o_slope = 0;
 904
 905        cell = nvmem_cell_get(dev, "calibration-data");
 906        if (IS_ERR(cell)) {
 907                if (PTR_ERR(cell) == -EPROBE_DEFER)
 908                        return PTR_ERR(cell);
 909                return 0;
 910        }
 911
 912        buf = (u32 *)nvmem_cell_read(cell, &len);
 913
 914        nvmem_cell_put(cell);
 915
 916        if (IS_ERR(buf))
 917                return PTR_ERR(buf);
 918
 919        if (len < 3 * sizeof(u32)) {
 920                dev_warn(dev, "invalid calibration data\n");
 921                ret = -EINVAL;
 922                goto out;
 923        }
 924
 925        if (mt->conf->version == MTK_THERMAL_V1)
 926                ret = mtk_thermal_extract_efuse_v1(mt, buf);
 927        else
 928                ret = mtk_thermal_extract_efuse_v2(mt, buf);
 929
 930        if (ret) {
 931                dev_info(dev, "Device not calibrated, using default calibration values\n");
 932                ret = 0;
 933        }
 934
 935out:
 936        kfree(buf);
 937
 938        return ret;
 939}
 940
 941static const struct of_device_id mtk_thermal_of_match[] = {
 942        {
 943                .compatible = "mediatek,mt8173-thermal",
 944                .data = (void *)&mt8173_thermal_data,
 945        },
 946        {
 947                .compatible = "mediatek,mt2701-thermal",
 948                .data = (void *)&mt2701_thermal_data,
 949        },
 950        {
 951                .compatible = "mediatek,mt2712-thermal",
 952                .data = (void *)&mt2712_thermal_data,
 953        },
 954        {
 955                .compatible = "mediatek,mt7622-thermal",
 956                .data = (void *)&mt7622_thermal_data,
 957        },
 958        {
 959                .compatible = "mediatek,mt8183-thermal",
 960                .data = (void *)&mt8183_thermal_data,
 961        }, {
 962        },
 963};
 964MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
 965
 966static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
 967{
 968        int tmp;
 969
 970        tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
 971        tmp &= ~(0x37);
 972        tmp |= 0x1;
 973        writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
 974        udelay(200);
 975}
 976
 977static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
 978                                            void __iomem *auxadc_base)
 979{
 980        int tmp;
 981
 982        writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
 983        writel(0x1, mt->thermal_base + TEMP_MONCTL0);
 984        tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
 985        writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
 986}
 987
 988static int mtk_thermal_probe(struct platform_device *pdev)
 989{
 990        int ret, i, ctrl_id;
 991        struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
 992        struct mtk_thermal *mt;
 993        struct resource *res;
 994        u64 auxadc_phys_base, apmixed_phys_base;
 995        struct thermal_zone_device *tzdev;
 996        void __iomem *apmixed_base, *auxadc_base;
 997
 998        mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
 999        if (!mt)
1000                return -ENOMEM;
1001
1002        mt->conf = of_device_get_match_data(&pdev->dev);
1003
1004        mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
1005        if (IS_ERR(mt->clk_peri_therm))
1006                return PTR_ERR(mt->clk_peri_therm);
1007
1008        mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
1009        if (IS_ERR(mt->clk_auxadc))
1010                return PTR_ERR(mt->clk_auxadc);
1011
1012        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1013        mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
1014        if (IS_ERR(mt->thermal_base))
1015                return PTR_ERR(mt->thermal_base);
1016
1017        ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1018        if (ret)
1019                return ret;
1020
1021        mutex_init(&mt->lock);
1022
1023        mt->dev = &pdev->dev;
1024
1025        auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1026        if (!auxadc) {
1027                dev_err(&pdev->dev, "missing auxadc node\n");
1028                return -ENODEV;
1029        }
1030
1031        auxadc_base = of_iomap(auxadc, 0);
1032        auxadc_phys_base = of_get_phys_base(auxadc);
1033
1034        of_node_put(auxadc);
1035
1036        if (auxadc_phys_base == OF_BAD_ADDR) {
1037                dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1038                return -EINVAL;
1039        }
1040
1041        apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1042        if (!apmixedsys) {
1043                dev_err(&pdev->dev, "missing apmixedsys node\n");
1044                return -ENODEV;
1045        }
1046
1047        apmixed_base = of_iomap(apmixedsys, 0);
1048        apmixed_phys_base = of_get_phys_base(apmixedsys);
1049
1050        of_node_put(apmixedsys);
1051
1052        if (apmixed_phys_base == OF_BAD_ADDR) {
1053                dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1054                return -EINVAL;
1055        }
1056
1057        ret = device_reset_optional(&pdev->dev);
1058        if (ret)
1059                return ret;
1060
1061        ret = clk_prepare_enable(mt->clk_auxadc);
1062        if (ret) {
1063                dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1064                return ret;
1065        }
1066
1067        ret = clk_prepare_enable(mt->clk_peri_therm);
1068        if (ret) {
1069                dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1070                goto err_disable_clk_auxadc;
1071        }
1072
1073        if (mt->conf->version == MTK_THERMAL_V2) {
1074                mtk_thermal_turn_on_buffer(apmixed_base);
1075                mtk_thermal_release_periodic_ts(mt, auxadc_base);
1076        }
1077
1078        for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1079                for (i = 0; i < mt->conf->num_banks; i++)
1080                        mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1081                                              auxadc_phys_base, ctrl_id);
1082
1083        platform_set_drvdata(pdev, mt);
1084
1085        tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
1086                                                     &mtk_thermal_ops);
1087        if (IS_ERR(tzdev)) {
1088                ret = PTR_ERR(tzdev);
1089                goto err_disable_clk_peri_therm;
1090        }
1091
1092        ret = devm_thermal_add_hwmon_sysfs(tzdev);
1093        if (ret)
1094                dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
1095
1096        return 0;
1097
1098err_disable_clk_peri_therm:
1099        clk_disable_unprepare(mt->clk_peri_therm);
1100err_disable_clk_auxadc:
1101        clk_disable_unprepare(mt->clk_auxadc);
1102
1103        return ret;
1104}
1105
1106static int mtk_thermal_remove(struct platform_device *pdev)
1107{
1108        struct mtk_thermal *mt = platform_get_drvdata(pdev);
1109
1110        clk_disable_unprepare(mt->clk_peri_therm);
1111        clk_disable_unprepare(mt->clk_auxadc);
1112
1113        return 0;
1114}
1115
1116static struct platform_driver mtk_thermal_driver = {
1117        .probe = mtk_thermal_probe,
1118        .remove = mtk_thermal_remove,
1119        .driver = {
1120                .name = "mtk-thermal",
1121                .of_match_table = mtk_thermal_of_match,
1122        },
1123};
1124
1125module_platform_driver(mtk_thermal_driver);
1126
1127MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1128MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1129MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1130MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1131MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1132MODULE_DESCRIPTION("Mediatek thermal driver");
1133MODULE_LICENSE("GPL v2");
1134