linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include "misc.h"
  10#include "delayed-inode.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "ctree.h"
  14#include "qgroup.h"
  15#include "locking.h"
  16#include "inode-item.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK         512
  19#define BTRFS_DELAYED_BACKGROUND        128
  20#define BTRFS_DELAYED_BATCH             16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27                                        sizeof(struct btrfs_delayed_node),
  28                                        0,
  29                                        SLAB_MEM_SPREAD,
  30                                        NULL);
  31        if (!delayed_node_cache)
  32                return -ENOMEM;
  33        return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38        kmem_cache_destroy(delayed_node_cache);
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42                                struct btrfs_delayed_node *delayed_node,
  43                                struct btrfs_root *root, u64 inode_id)
  44{
  45        delayed_node->root = root;
  46        delayed_node->inode_id = inode_id;
  47        refcount_set(&delayed_node->refs, 0);
  48        delayed_node->ins_root = RB_ROOT_CACHED;
  49        delayed_node->del_root = RB_ROOT_CACHED;
  50        mutex_init(&delayed_node->mutex);
  51        INIT_LIST_HEAD(&delayed_node->n_list);
  52        INIT_LIST_HEAD(&delayed_node->p_list);
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56                                        struct btrfs_delayed_item *item1,
  57                                        struct btrfs_delayed_item *item2)
  58{
  59        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60            item1->key.objectid == item2->key.objectid &&
  61            item1->key.type == item2->key.type &&
  62            item1->key.offset + 1 == item2->key.offset)
  63                return 1;
  64        return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68                struct btrfs_inode *btrfs_inode)
  69{
  70        struct btrfs_root *root = btrfs_inode->root;
  71        u64 ino = btrfs_ino(btrfs_inode);
  72        struct btrfs_delayed_node *node;
  73
  74        node = READ_ONCE(btrfs_inode->delayed_node);
  75        if (node) {
  76                refcount_inc(&node->refs);
  77                return node;
  78        }
  79
  80        spin_lock(&root->inode_lock);
  81        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83        if (node) {
  84                if (btrfs_inode->delayed_node) {
  85                        refcount_inc(&node->refs);      /* can be accessed */
  86                        BUG_ON(btrfs_inode->delayed_node != node);
  87                        spin_unlock(&root->inode_lock);
  88                        return node;
  89                }
  90
  91                /*
  92                 * It's possible that we're racing into the middle of removing
  93                 * this node from the radix tree.  In this case, the refcount
  94                 * was zero and it should never go back to one.  Just return
  95                 * NULL like it was never in the radix at all; our release
  96                 * function is in the process of removing it.
  97                 *
  98                 * Some implementations of refcount_inc refuse to bump the
  99                 * refcount once it has hit zero.  If we don't do this dance
 100                 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101                 * of actually bumping the refcount.
 102                 *
 103                 * If this node is properly in the radix, we want to bump the
 104                 * refcount twice, once for the inode and once for this get
 105                 * operation.
 106                 */
 107                if (refcount_inc_not_zero(&node->refs)) {
 108                        refcount_inc(&node->refs);
 109                        btrfs_inode->delayed_node = node;
 110                } else {
 111                        node = NULL;
 112                }
 113
 114                spin_unlock(&root->inode_lock);
 115                return node;
 116        }
 117        spin_unlock(&root->inode_lock);
 118
 119        return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124                struct btrfs_inode *btrfs_inode)
 125{
 126        struct btrfs_delayed_node *node;
 127        struct btrfs_root *root = btrfs_inode->root;
 128        u64 ino = btrfs_ino(btrfs_inode);
 129        int ret;
 130
 131again:
 132        node = btrfs_get_delayed_node(btrfs_inode);
 133        if (node)
 134                return node;
 135
 136        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137        if (!node)
 138                return ERR_PTR(-ENOMEM);
 139        btrfs_init_delayed_node(node, root, ino);
 140
 141        /* cached in the btrfs inode and can be accessed */
 142        refcount_set(&node->refs, 2);
 143
 144        ret = radix_tree_preload(GFP_NOFS);
 145        if (ret) {
 146                kmem_cache_free(delayed_node_cache, node);
 147                return ERR_PTR(ret);
 148        }
 149
 150        spin_lock(&root->inode_lock);
 151        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152        if (ret == -EEXIST) {
 153                spin_unlock(&root->inode_lock);
 154                kmem_cache_free(delayed_node_cache, node);
 155                radix_tree_preload_end();
 156                goto again;
 157        }
 158        btrfs_inode->delayed_node = node;
 159        spin_unlock(&root->inode_lock);
 160        radix_tree_preload_end();
 161
 162        return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171                                     struct btrfs_delayed_node *node,
 172                                     int mod)
 173{
 174        spin_lock(&root->lock);
 175        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176                if (!list_empty(&node->p_list))
 177                        list_move_tail(&node->p_list, &root->prepare_list);
 178                else if (mod)
 179                        list_add_tail(&node->p_list, &root->prepare_list);
 180        } else {
 181                list_add_tail(&node->n_list, &root->node_list);
 182                list_add_tail(&node->p_list, &root->prepare_list);
 183                refcount_inc(&node->refs);      /* inserted into list */
 184                root->nodes++;
 185                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186        }
 187        spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192                                       struct btrfs_delayed_node *node)
 193{
 194        spin_lock(&root->lock);
 195        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196                root->nodes--;
 197                refcount_dec(&node->refs);      /* not in the list */
 198                list_del_init(&node->n_list);
 199                if (!list_empty(&node->p_list))
 200                        list_del_init(&node->p_list);
 201                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202        }
 203        spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207                        struct btrfs_delayed_root *delayed_root)
 208{
 209        struct list_head *p;
 210        struct btrfs_delayed_node *node = NULL;
 211
 212        spin_lock(&delayed_root->lock);
 213        if (list_empty(&delayed_root->node_list))
 214                goto out;
 215
 216        p = delayed_root->node_list.next;
 217        node = list_entry(p, struct btrfs_delayed_node, n_list);
 218        refcount_inc(&node->refs);
 219out:
 220        spin_unlock(&delayed_root->lock);
 221
 222        return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226                                                struct btrfs_delayed_node *node)
 227{
 228        struct btrfs_delayed_root *delayed_root;
 229        struct list_head *p;
 230        struct btrfs_delayed_node *next = NULL;
 231
 232        delayed_root = node->root->fs_info->delayed_root;
 233        spin_lock(&delayed_root->lock);
 234        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235                /* not in the list */
 236                if (list_empty(&delayed_root->node_list))
 237                        goto out;
 238                p = delayed_root->node_list.next;
 239        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240                goto out;
 241        else
 242                p = node->n_list.next;
 243
 244        next = list_entry(p, struct btrfs_delayed_node, n_list);
 245        refcount_inc(&next->refs);
 246out:
 247        spin_unlock(&delayed_root->lock);
 248
 249        return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253                                struct btrfs_delayed_node *delayed_node,
 254                                int mod)
 255{
 256        struct btrfs_delayed_root *delayed_root;
 257
 258        if (!delayed_node)
 259                return;
 260
 261        delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263        mutex_lock(&delayed_node->mutex);
 264        if (delayed_node->count)
 265                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266        else
 267                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268        mutex_unlock(&delayed_node->mutex);
 269
 270        if (refcount_dec_and_test(&delayed_node->refs)) {
 271                struct btrfs_root *root = delayed_node->root;
 272
 273                spin_lock(&root->inode_lock);
 274                /*
 275                 * Once our refcount goes to zero, nobody is allowed to bump it
 276                 * back up.  We can delete it now.
 277                 */
 278                ASSERT(refcount_read(&delayed_node->refs) == 0);
 279                radix_tree_delete(&root->delayed_nodes_tree,
 280                                  delayed_node->inode_id);
 281                spin_unlock(&root->inode_lock);
 282                kmem_cache_free(delayed_node_cache, delayed_node);
 283        }
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288        __btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292                                        struct btrfs_delayed_root *delayed_root)
 293{
 294        struct list_head *p;
 295        struct btrfs_delayed_node *node = NULL;
 296
 297        spin_lock(&delayed_root->lock);
 298        if (list_empty(&delayed_root->prepare_list))
 299                goto out;
 300
 301        p = delayed_root->prepare_list.next;
 302        list_del_init(p);
 303        node = list_entry(p, struct btrfs_delayed_node, p_list);
 304        refcount_inc(&node->refs);
 305out:
 306        spin_unlock(&delayed_root->lock);
 307
 308        return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312                                        struct btrfs_delayed_node *node)
 313{
 314        __btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319        struct btrfs_delayed_item *item;
 320        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321        if (item) {
 322                item->data_len = data_len;
 323                item->ins_or_del = 0;
 324                item->bytes_reserved = 0;
 325                item->delayed_node = NULL;
 326                refcount_set(&item->refs, 1);
 327        }
 328        return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:          the key to look up
 335 * @prev:         used to store the prev item if the right item isn't found
 336 * @next:         used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342                                struct rb_root *root,
 343                                struct btrfs_key *key,
 344                                struct btrfs_delayed_item **prev,
 345                                struct btrfs_delayed_item **next)
 346{
 347        struct rb_node *node, *prev_node = NULL;
 348        struct btrfs_delayed_item *delayed_item = NULL;
 349        int ret = 0;
 350
 351        node = root->rb_node;
 352
 353        while (node) {
 354                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355                                        rb_node);
 356                prev_node = node;
 357                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358                if (ret < 0)
 359                        node = node->rb_right;
 360                else if (ret > 0)
 361                        node = node->rb_left;
 362                else
 363                        return delayed_item;
 364        }
 365
 366        if (prev) {
 367                if (!prev_node)
 368                        *prev = NULL;
 369                else if (ret < 0)
 370                        *prev = delayed_item;
 371                else if ((node = rb_prev(prev_node)) != NULL) {
 372                        *prev = rb_entry(node, struct btrfs_delayed_item,
 373                                         rb_node);
 374                } else
 375                        *prev = NULL;
 376        }
 377
 378        if (next) {
 379                if (!prev_node)
 380                        *next = NULL;
 381                else if (ret > 0)
 382                        *next = delayed_item;
 383                else if ((node = rb_next(prev_node)) != NULL) {
 384                        *next = rb_entry(node, struct btrfs_delayed_item,
 385                                         rb_node);
 386                } else
 387                        *next = NULL;
 388        }
 389        return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 393                                        struct btrfs_delayed_node *delayed_node,
 394                                        struct btrfs_key *key)
 395{
 396        return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 397                                           NULL, NULL);
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401                                    struct btrfs_delayed_item *ins,
 402                                    int action)
 403{
 404        struct rb_node **p, *node;
 405        struct rb_node *parent_node = NULL;
 406        struct rb_root_cached *root;
 407        struct btrfs_delayed_item *item;
 408        int cmp;
 409        bool leftmost = true;
 410
 411        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412                root = &delayed_node->ins_root;
 413        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414                root = &delayed_node->del_root;
 415        else
 416                BUG();
 417        p = &root->rb_root.rb_node;
 418        node = &ins->rb_node;
 419
 420        while (*p) {
 421                parent_node = *p;
 422                item = rb_entry(parent_node, struct btrfs_delayed_item,
 423                                 rb_node);
 424
 425                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426                if (cmp < 0) {
 427                        p = &(*p)->rb_right;
 428                        leftmost = false;
 429                } else if (cmp > 0) {
 430                        p = &(*p)->rb_left;
 431                } else {
 432                        return -EEXIST;
 433                }
 434        }
 435
 436        rb_link_node(node, parent_node, p);
 437        rb_insert_color_cached(node, root, leftmost);
 438        ins->delayed_node = delayed_node;
 439        ins->ins_or_del = action;
 440
 441        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442            action == BTRFS_DELAYED_INSERTION_ITEM &&
 443            ins->key.offset >= delayed_node->index_cnt)
 444                        delayed_node->index_cnt = ins->key.offset + 1;
 445
 446        delayed_node->count++;
 447        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448        return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452                                              struct btrfs_delayed_item *item)
 453{
 454        return __btrfs_add_delayed_item(node, item,
 455                                        BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459                                             struct btrfs_delayed_item *item)
 460{
 461        return __btrfs_add_delayed_item(node, item,
 462                                        BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467        int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469        /* atomic_dec_return implies a barrier */
 470        if ((atomic_dec_return(&delayed_root->items) <
 471            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472                cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477        struct rb_root_cached *root;
 478        struct btrfs_delayed_root *delayed_root;
 479
 480        /* Not associated with any delayed_node */
 481        if (!delayed_item->delayed_node)
 482                return;
 483        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485        BUG_ON(!delayed_root);
 486        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490                root = &delayed_item->delayed_node->ins_root;
 491        else
 492                root = &delayed_item->delayed_node->del_root;
 493
 494        rb_erase_cached(&delayed_item->rb_node, root);
 495        delayed_item->delayed_node->count--;
 496
 497        finish_one_item(delayed_root);
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502        if (item) {
 503                __btrfs_remove_delayed_item(item);
 504                if (refcount_dec_and_test(&item->refs))
 505                        kfree(item);
 506        }
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510                                        struct btrfs_delayed_node *delayed_node)
 511{
 512        struct rb_node *p;
 513        struct btrfs_delayed_item *item = NULL;
 514
 515        p = rb_first_cached(&delayed_node->ins_root);
 516        if (p)
 517                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519        return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523                                        struct btrfs_delayed_node *delayed_node)
 524{
 525        struct rb_node *p;
 526        struct btrfs_delayed_item *item = NULL;
 527
 528        p = rb_first_cached(&delayed_node->del_root);
 529        if (p)
 530                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532        return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536                                                struct btrfs_delayed_item *item)
 537{
 538        struct rb_node *p;
 539        struct btrfs_delayed_item *next = NULL;
 540
 541        p = rb_next(&item->rb_node);
 542        if (p)
 543                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545        return next;
 546}
 547
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549                                               struct btrfs_root *root,
 550                                               struct btrfs_delayed_item *item)
 551{
 552        struct btrfs_block_rsv *src_rsv;
 553        struct btrfs_block_rsv *dst_rsv;
 554        struct btrfs_fs_info *fs_info = root->fs_info;
 555        u64 num_bytes;
 556        int ret;
 557
 558        if (!trans->bytes_reserved)
 559                return 0;
 560
 561        src_rsv = trans->block_rsv;
 562        dst_rsv = &fs_info->delayed_block_rsv;
 563
 564        num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566        /*
 567         * Here we migrate space rsv from transaction rsv, since have already
 568         * reserved space when starting a transaction.  So no need to reserve
 569         * qgroup space here.
 570         */
 571        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572        if (!ret) {
 573                trace_btrfs_space_reservation(fs_info, "delayed_item",
 574                                              item->key.objectid,
 575                                              num_bytes, 1);
 576                item->bytes_reserved = num_bytes;
 577        }
 578
 579        return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583                                                struct btrfs_delayed_item *item)
 584{
 585        struct btrfs_block_rsv *rsv;
 586        struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588        if (!item->bytes_reserved)
 589                return;
 590
 591        rsv = &fs_info->delayed_block_rsv;
 592        /*
 593         * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594         * to release/reserve qgroup space.
 595         */
 596        trace_btrfs_space_reservation(fs_info, "delayed_item",
 597                                      item->key.objectid, item->bytes_reserved,
 598                                      0);
 599        btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603                                        struct btrfs_trans_handle *trans,
 604                                        struct btrfs_root *root,
 605                                        struct btrfs_delayed_node *node)
 606{
 607        struct btrfs_fs_info *fs_info = root->fs_info;
 608        struct btrfs_block_rsv *src_rsv;
 609        struct btrfs_block_rsv *dst_rsv;
 610        u64 num_bytes;
 611        int ret;
 612
 613        src_rsv = trans->block_rsv;
 614        dst_rsv = &fs_info->delayed_block_rsv;
 615
 616        num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 617
 618        /*
 619         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 620         * which doesn't reserve space for speed.  This is a problem since we
 621         * still need to reserve space for this update, so try to reserve the
 622         * space.
 623         *
 624         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 625         * we always reserve enough to update the inode item.
 626         */
 627        if (!src_rsv || (!trans->bytes_reserved &&
 628                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 629                ret = btrfs_qgroup_reserve_meta(root, num_bytes,
 630                                          BTRFS_QGROUP_RSV_META_PREALLOC, true);
 631                if (ret < 0)
 632                        return ret;
 633                ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
 634                                          BTRFS_RESERVE_NO_FLUSH);
 635                /* NO_FLUSH could only fail with -ENOSPC */
 636                ASSERT(ret == 0 || ret == -ENOSPC);
 637                if (ret)
 638                        btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 639        } else {
 640                ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 641        }
 642
 643        if (!ret) {
 644                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 645                                              node->inode_id, num_bytes, 1);
 646                node->bytes_reserved = num_bytes;
 647        }
 648
 649        return ret;
 650}
 651
 652static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 653                                                struct btrfs_delayed_node *node,
 654                                                bool qgroup_free)
 655{
 656        struct btrfs_block_rsv *rsv;
 657
 658        if (!node->bytes_reserved)
 659                return;
 660
 661        rsv = &fs_info->delayed_block_rsv;
 662        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 663                                      node->inode_id, node->bytes_reserved, 0);
 664        btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 665        if (qgroup_free)
 666                btrfs_qgroup_free_meta_prealloc(node->root,
 667                                node->bytes_reserved);
 668        else
 669                btrfs_qgroup_convert_reserved_meta(node->root,
 670                                node->bytes_reserved);
 671        node->bytes_reserved = 0;
 672}
 673
 674/*
 675 * Insert a single delayed item or a batch of delayed items that have consecutive
 676 * keys if they exist.
 677 */
 678static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 679                                     struct btrfs_root *root,
 680                                     struct btrfs_path *path,
 681                                     struct btrfs_delayed_item *first_item)
 682{
 683        LIST_HEAD(item_list);
 684        struct btrfs_delayed_item *curr;
 685        struct btrfs_delayed_item *next;
 686        const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
 687        struct btrfs_item_batch batch;
 688        int total_size;
 689        char *ins_data = NULL;
 690        int ret;
 691
 692        list_add_tail(&first_item->tree_list, &item_list);
 693        batch.total_data_size = first_item->data_len;
 694        batch.nr = 1;
 695        total_size = first_item->data_len + sizeof(struct btrfs_item);
 696        curr = first_item;
 697
 698        while (true) {
 699                int next_size;
 700
 701                next = __btrfs_next_delayed_item(curr);
 702                if (!next || !btrfs_is_continuous_delayed_item(curr, next))
 703                        break;
 704
 705                next_size = next->data_len + sizeof(struct btrfs_item);
 706                if (total_size + next_size > max_size)
 707                        break;
 708
 709                list_add_tail(&next->tree_list, &item_list);
 710                batch.nr++;
 711                total_size += next_size;
 712                batch.total_data_size += next->data_len;
 713                curr = next;
 714        }
 715
 716        if (batch.nr == 1) {
 717                batch.keys = &first_item->key;
 718                batch.data_sizes = &first_item->data_len;
 719        } else {
 720                struct btrfs_key *ins_keys;
 721                u32 *ins_sizes;
 722                int i = 0;
 723
 724                ins_data = kmalloc(batch.nr * sizeof(u32) +
 725                                   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
 726                if (!ins_data) {
 727                        ret = -ENOMEM;
 728                        goto out;
 729                }
 730                ins_sizes = (u32 *)ins_data;
 731                ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
 732                batch.keys = ins_keys;
 733                batch.data_sizes = ins_sizes;
 734                list_for_each_entry(curr, &item_list, tree_list) {
 735                        ins_keys[i] = curr->key;
 736                        ins_sizes[i] = curr->data_len;
 737                        i++;
 738                }
 739        }
 740
 741        ret = btrfs_insert_empty_items(trans, root, path, &batch);
 742        if (ret)
 743                goto out;
 744
 745        list_for_each_entry(curr, &item_list, tree_list) {
 746                char *data_ptr;
 747
 748                data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
 749                write_extent_buffer(path->nodes[0], &curr->data,
 750                                    (unsigned long)data_ptr, curr->data_len);
 751                path->slots[0]++;
 752        }
 753
 754        /*
 755         * Now release our path before releasing the delayed items and their
 756         * metadata reservations, so that we don't block other tasks for more
 757         * time than needed.
 758         */
 759        btrfs_release_path(path);
 760
 761        list_for_each_entry_safe(curr, next, &item_list, tree_list) {
 762                list_del(&curr->tree_list);
 763                btrfs_delayed_item_release_metadata(root, curr);
 764                btrfs_release_delayed_item(curr);
 765        }
 766out:
 767        kfree(ins_data);
 768        return ret;
 769}
 770
 771static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 772                                      struct btrfs_path *path,
 773                                      struct btrfs_root *root,
 774                                      struct btrfs_delayed_node *node)
 775{
 776        int ret = 0;
 777
 778        while (ret == 0) {
 779                struct btrfs_delayed_item *curr;
 780
 781                mutex_lock(&node->mutex);
 782                curr = __btrfs_first_delayed_insertion_item(node);
 783                if (!curr) {
 784                        mutex_unlock(&node->mutex);
 785                        break;
 786                }
 787                ret = btrfs_insert_delayed_item(trans, root, path, curr);
 788                mutex_unlock(&node->mutex);
 789        }
 790
 791        return ret;
 792}
 793
 794static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 795                                    struct btrfs_root *root,
 796                                    struct btrfs_path *path,
 797                                    struct btrfs_delayed_item *item)
 798{
 799        struct btrfs_delayed_item *curr, *next;
 800        struct extent_buffer *leaf;
 801        struct btrfs_key key;
 802        struct list_head head;
 803        int nitems, i, last_item;
 804        int ret = 0;
 805
 806        BUG_ON(!path->nodes[0]);
 807
 808        leaf = path->nodes[0];
 809
 810        i = path->slots[0];
 811        last_item = btrfs_header_nritems(leaf) - 1;
 812        if (i > last_item)
 813                return -ENOENT; /* FIXME: Is errno suitable? */
 814
 815        next = item;
 816        INIT_LIST_HEAD(&head);
 817        btrfs_item_key_to_cpu(leaf, &key, i);
 818        nitems = 0;
 819        /*
 820         * count the number of the dir index items that we can delete in batch
 821         */
 822        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 823                list_add_tail(&next->tree_list, &head);
 824                nitems++;
 825
 826                curr = next;
 827                next = __btrfs_next_delayed_item(curr);
 828                if (!next)
 829                        break;
 830
 831                if (!btrfs_is_continuous_delayed_item(curr, next))
 832                        break;
 833
 834                i++;
 835                if (i > last_item)
 836                        break;
 837                btrfs_item_key_to_cpu(leaf, &key, i);
 838        }
 839
 840        if (!nitems)
 841                return 0;
 842
 843        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 844        if (ret)
 845                goto out;
 846
 847        list_for_each_entry_safe(curr, next, &head, tree_list) {
 848                btrfs_delayed_item_release_metadata(root, curr);
 849                list_del(&curr->tree_list);
 850                btrfs_release_delayed_item(curr);
 851        }
 852
 853out:
 854        return ret;
 855}
 856
 857static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 858                                      struct btrfs_path *path,
 859                                      struct btrfs_root *root,
 860                                      struct btrfs_delayed_node *node)
 861{
 862        struct btrfs_delayed_item *curr, *prev;
 863        int ret = 0;
 864
 865do_again:
 866        mutex_lock(&node->mutex);
 867        curr = __btrfs_first_delayed_deletion_item(node);
 868        if (!curr)
 869                goto delete_fail;
 870
 871        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 872        if (ret < 0)
 873                goto delete_fail;
 874        else if (ret > 0) {
 875                /*
 876                 * can't find the item which the node points to, so this node
 877                 * is invalid, just drop it.
 878                 */
 879                prev = curr;
 880                curr = __btrfs_next_delayed_item(prev);
 881                btrfs_release_delayed_item(prev);
 882                ret = 0;
 883                btrfs_release_path(path);
 884                if (curr) {
 885                        mutex_unlock(&node->mutex);
 886                        goto do_again;
 887                } else
 888                        goto delete_fail;
 889        }
 890
 891        btrfs_batch_delete_items(trans, root, path, curr);
 892        btrfs_release_path(path);
 893        mutex_unlock(&node->mutex);
 894        goto do_again;
 895
 896delete_fail:
 897        btrfs_release_path(path);
 898        mutex_unlock(&node->mutex);
 899        return ret;
 900}
 901
 902static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 903{
 904        struct btrfs_delayed_root *delayed_root;
 905
 906        if (delayed_node &&
 907            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 908                BUG_ON(!delayed_node->root);
 909                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 910                delayed_node->count--;
 911
 912                delayed_root = delayed_node->root->fs_info->delayed_root;
 913                finish_one_item(delayed_root);
 914        }
 915}
 916
 917static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 918{
 919
 920        if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
 921                struct btrfs_delayed_root *delayed_root;
 922
 923                ASSERT(delayed_node->root);
 924                delayed_node->count--;
 925
 926                delayed_root = delayed_node->root->fs_info->delayed_root;
 927                finish_one_item(delayed_root);
 928        }
 929}
 930
 931static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 932                                        struct btrfs_root *root,
 933                                        struct btrfs_path *path,
 934                                        struct btrfs_delayed_node *node)
 935{
 936        struct btrfs_fs_info *fs_info = root->fs_info;
 937        struct btrfs_key key;
 938        struct btrfs_inode_item *inode_item;
 939        struct extent_buffer *leaf;
 940        int mod;
 941        int ret;
 942
 943        key.objectid = node->inode_id;
 944        key.type = BTRFS_INODE_ITEM_KEY;
 945        key.offset = 0;
 946
 947        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
 948                mod = -1;
 949        else
 950                mod = 1;
 951
 952        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
 953        if (ret > 0)
 954                ret = -ENOENT;
 955        if (ret < 0)
 956                goto out;
 957
 958        leaf = path->nodes[0];
 959        inode_item = btrfs_item_ptr(leaf, path->slots[0],
 960                                    struct btrfs_inode_item);
 961        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
 962                            sizeof(struct btrfs_inode_item));
 963        btrfs_mark_buffer_dirty(leaf);
 964
 965        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
 966                goto out;
 967
 968        path->slots[0]++;
 969        if (path->slots[0] >= btrfs_header_nritems(leaf))
 970                goto search;
 971again:
 972        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 973        if (key.objectid != node->inode_id)
 974                goto out;
 975
 976        if (key.type != BTRFS_INODE_REF_KEY &&
 977            key.type != BTRFS_INODE_EXTREF_KEY)
 978                goto out;
 979
 980        /*
 981         * Delayed iref deletion is for the inode who has only one link,
 982         * so there is only one iref. The case that several irefs are
 983         * in the same item doesn't exist.
 984         */
 985        btrfs_del_item(trans, root, path);
 986out:
 987        btrfs_release_delayed_iref(node);
 988        btrfs_release_path(path);
 989err_out:
 990        btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
 991        btrfs_release_delayed_inode(node);
 992
 993        /*
 994         * If we fail to update the delayed inode we need to abort the
 995         * transaction, because we could leave the inode with the improper
 996         * counts behind.
 997         */
 998        if (ret && ret != -ENOENT)
 999                btrfs_abort_transaction(trans, ret);
1000
1001        return ret;
1002
1003search:
1004        btrfs_release_path(path);
1005
1006        key.type = BTRFS_INODE_EXTREF_KEY;
1007        key.offset = -1;
1008
1009        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1010        if (ret < 0)
1011                goto err_out;
1012        ASSERT(ret);
1013
1014        ret = 0;
1015        leaf = path->nodes[0];
1016        path->slots[0]--;
1017        goto again;
1018}
1019
1020static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1021                                             struct btrfs_root *root,
1022                                             struct btrfs_path *path,
1023                                             struct btrfs_delayed_node *node)
1024{
1025        int ret;
1026
1027        mutex_lock(&node->mutex);
1028        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1029                mutex_unlock(&node->mutex);
1030                return 0;
1031        }
1032
1033        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1034        mutex_unlock(&node->mutex);
1035        return ret;
1036}
1037
1038static inline int
1039__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1040                                   struct btrfs_path *path,
1041                                   struct btrfs_delayed_node *node)
1042{
1043        int ret;
1044
1045        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1046        if (ret)
1047                return ret;
1048
1049        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1050        if (ret)
1051                return ret;
1052
1053        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1054        return ret;
1055}
1056
1057/*
1058 * Called when committing the transaction.
1059 * Returns 0 on success.
1060 * Returns < 0 on error and returns with an aborted transaction with any
1061 * outstanding delayed items cleaned up.
1062 */
1063static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1064{
1065        struct btrfs_fs_info *fs_info = trans->fs_info;
1066        struct btrfs_delayed_root *delayed_root;
1067        struct btrfs_delayed_node *curr_node, *prev_node;
1068        struct btrfs_path *path;
1069        struct btrfs_block_rsv *block_rsv;
1070        int ret = 0;
1071        bool count = (nr > 0);
1072
1073        if (TRANS_ABORTED(trans))
1074                return -EIO;
1075
1076        path = btrfs_alloc_path();
1077        if (!path)
1078                return -ENOMEM;
1079
1080        block_rsv = trans->block_rsv;
1081        trans->block_rsv = &fs_info->delayed_block_rsv;
1082
1083        delayed_root = fs_info->delayed_root;
1084
1085        curr_node = btrfs_first_delayed_node(delayed_root);
1086        while (curr_node && (!count || nr--)) {
1087                ret = __btrfs_commit_inode_delayed_items(trans, path,
1088                                                         curr_node);
1089                if (ret) {
1090                        btrfs_release_delayed_node(curr_node);
1091                        curr_node = NULL;
1092                        btrfs_abort_transaction(trans, ret);
1093                        break;
1094                }
1095
1096                prev_node = curr_node;
1097                curr_node = btrfs_next_delayed_node(curr_node);
1098                btrfs_release_delayed_node(prev_node);
1099        }
1100
1101        if (curr_node)
1102                btrfs_release_delayed_node(curr_node);
1103        btrfs_free_path(path);
1104        trans->block_rsv = block_rsv;
1105
1106        return ret;
1107}
1108
1109int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1110{
1111        return __btrfs_run_delayed_items(trans, -1);
1112}
1113
1114int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1115{
1116        return __btrfs_run_delayed_items(trans, nr);
1117}
1118
1119int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120                                     struct btrfs_inode *inode)
1121{
1122        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1123        struct btrfs_path *path;
1124        struct btrfs_block_rsv *block_rsv;
1125        int ret;
1126
1127        if (!delayed_node)
1128                return 0;
1129
1130        mutex_lock(&delayed_node->mutex);
1131        if (!delayed_node->count) {
1132                mutex_unlock(&delayed_node->mutex);
1133                btrfs_release_delayed_node(delayed_node);
1134                return 0;
1135        }
1136        mutex_unlock(&delayed_node->mutex);
1137
1138        path = btrfs_alloc_path();
1139        if (!path) {
1140                btrfs_release_delayed_node(delayed_node);
1141                return -ENOMEM;
1142        }
1143
1144        block_rsv = trans->block_rsv;
1145        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1146
1147        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1148
1149        btrfs_release_delayed_node(delayed_node);
1150        btrfs_free_path(path);
1151        trans->block_rsv = block_rsv;
1152
1153        return ret;
1154}
1155
1156int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1157{
1158        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1159        struct btrfs_trans_handle *trans;
1160        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1161        struct btrfs_path *path;
1162        struct btrfs_block_rsv *block_rsv;
1163        int ret;
1164
1165        if (!delayed_node)
1166                return 0;
1167
1168        mutex_lock(&delayed_node->mutex);
1169        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1170                mutex_unlock(&delayed_node->mutex);
1171                btrfs_release_delayed_node(delayed_node);
1172                return 0;
1173        }
1174        mutex_unlock(&delayed_node->mutex);
1175
1176        trans = btrfs_join_transaction(delayed_node->root);
1177        if (IS_ERR(trans)) {
1178                ret = PTR_ERR(trans);
1179                goto out;
1180        }
1181
1182        path = btrfs_alloc_path();
1183        if (!path) {
1184                ret = -ENOMEM;
1185                goto trans_out;
1186        }
1187
1188        block_rsv = trans->block_rsv;
1189        trans->block_rsv = &fs_info->delayed_block_rsv;
1190
1191        mutex_lock(&delayed_node->mutex);
1192        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1193                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1194                                                   path, delayed_node);
1195        else
1196                ret = 0;
1197        mutex_unlock(&delayed_node->mutex);
1198
1199        btrfs_free_path(path);
1200        trans->block_rsv = block_rsv;
1201trans_out:
1202        btrfs_end_transaction(trans);
1203        btrfs_btree_balance_dirty(fs_info);
1204out:
1205        btrfs_release_delayed_node(delayed_node);
1206
1207        return ret;
1208}
1209
1210void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1211{
1212        struct btrfs_delayed_node *delayed_node;
1213
1214        delayed_node = READ_ONCE(inode->delayed_node);
1215        if (!delayed_node)
1216                return;
1217
1218        inode->delayed_node = NULL;
1219        btrfs_release_delayed_node(delayed_node);
1220}
1221
1222struct btrfs_async_delayed_work {
1223        struct btrfs_delayed_root *delayed_root;
1224        int nr;
1225        struct btrfs_work work;
1226};
1227
1228static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1229{
1230        struct btrfs_async_delayed_work *async_work;
1231        struct btrfs_delayed_root *delayed_root;
1232        struct btrfs_trans_handle *trans;
1233        struct btrfs_path *path;
1234        struct btrfs_delayed_node *delayed_node = NULL;
1235        struct btrfs_root *root;
1236        struct btrfs_block_rsv *block_rsv;
1237        int total_done = 0;
1238
1239        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1240        delayed_root = async_work->delayed_root;
1241
1242        path = btrfs_alloc_path();
1243        if (!path)
1244                goto out;
1245
1246        do {
1247                if (atomic_read(&delayed_root->items) <
1248                    BTRFS_DELAYED_BACKGROUND / 2)
1249                        break;
1250
1251                delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1252                if (!delayed_node)
1253                        break;
1254
1255                root = delayed_node->root;
1256
1257                trans = btrfs_join_transaction(root);
1258                if (IS_ERR(trans)) {
1259                        btrfs_release_path(path);
1260                        btrfs_release_prepared_delayed_node(delayed_node);
1261                        total_done++;
1262                        continue;
1263                }
1264
1265                block_rsv = trans->block_rsv;
1266                trans->block_rsv = &root->fs_info->delayed_block_rsv;
1267
1268                __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1269
1270                trans->block_rsv = block_rsv;
1271                btrfs_end_transaction(trans);
1272                btrfs_btree_balance_dirty_nodelay(root->fs_info);
1273
1274                btrfs_release_path(path);
1275                btrfs_release_prepared_delayed_node(delayed_node);
1276                total_done++;
1277
1278        } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1279                 || total_done < async_work->nr);
1280
1281        btrfs_free_path(path);
1282out:
1283        wake_up(&delayed_root->wait);
1284        kfree(async_work);
1285}
1286
1287
1288static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1289                                     struct btrfs_fs_info *fs_info, int nr)
1290{
1291        struct btrfs_async_delayed_work *async_work;
1292
1293        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1294        if (!async_work)
1295                return -ENOMEM;
1296
1297        async_work->delayed_root = delayed_root;
1298        btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1299                        NULL);
1300        async_work->nr = nr;
1301
1302        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1303        return 0;
1304}
1305
1306void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1307{
1308        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1309}
1310
1311static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1312{
1313        int val = atomic_read(&delayed_root->items_seq);
1314
1315        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1316                return 1;
1317
1318        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1319                return 1;
1320
1321        return 0;
1322}
1323
1324void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1325{
1326        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1327
1328        if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1329                btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1330                return;
1331
1332        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1333                int seq;
1334                int ret;
1335
1336                seq = atomic_read(&delayed_root->items_seq);
1337
1338                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1339                if (ret)
1340                        return;
1341
1342                wait_event_interruptible(delayed_root->wait,
1343                                         could_end_wait(delayed_root, seq));
1344                return;
1345        }
1346
1347        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1348}
1349
1350/* Will return 0 or -ENOMEM */
1351int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1352                                   const char *name, int name_len,
1353                                   struct btrfs_inode *dir,
1354                                   struct btrfs_disk_key *disk_key, u8 type,
1355                                   u64 index)
1356{
1357        struct btrfs_delayed_node *delayed_node;
1358        struct btrfs_delayed_item *delayed_item;
1359        struct btrfs_dir_item *dir_item;
1360        int ret;
1361
1362        delayed_node = btrfs_get_or_create_delayed_node(dir);
1363        if (IS_ERR(delayed_node))
1364                return PTR_ERR(delayed_node);
1365
1366        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1367        if (!delayed_item) {
1368                ret = -ENOMEM;
1369                goto release_node;
1370        }
1371
1372        delayed_item->key.objectid = btrfs_ino(dir);
1373        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1374        delayed_item->key.offset = index;
1375
1376        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1377        dir_item->location = *disk_key;
1378        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1379        btrfs_set_stack_dir_data_len(dir_item, 0);
1380        btrfs_set_stack_dir_name_len(dir_item, name_len);
1381        btrfs_set_stack_dir_type(dir_item, type);
1382        memcpy((char *)(dir_item + 1), name, name_len);
1383
1384        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1385        /*
1386         * we have reserved enough space when we start a new transaction,
1387         * so reserving metadata failure is impossible
1388         */
1389        BUG_ON(ret);
1390
1391        mutex_lock(&delayed_node->mutex);
1392        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1393        if (unlikely(ret)) {
1394                btrfs_err(trans->fs_info,
1395                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1396                          name_len, name, delayed_node->root->root_key.objectid,
1397                          delayed_node->inode_id, ret);
1398                BUG();
1399        }
1400        mutex_unlock(&delayed_node->mutex);
1401
1402release_node:
1403        btrfs_release_delayed_node(delayed_node);
1404        return ret;
1405}
1406
1407static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1408                                               struct btrfs_delayed_node *node,
1409                                               struct btrfs_key *key)
1410{
1411        struct btrfs_delayed_item *item;
1412
1413        mutex_lock(&node->mutex);
1414        item = __btrfs_lookup_delayed_insertion_item(node, key);
1415        if (!item) {
1416                mutex_unlock(&node->mutex);
1417                return 1;
1418        }
1419
1420        btrfs_delayed_item_release_metadata(node->root, item);
1421        btrfs_release_delayed_item(item);
1422        mutex_unlock(&node->mutex);
1423        return 0;
1424}
1425
1426int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1427                                   struct btrfs_inode *dir, u64 index)
1428{
1429        struct btrfs_delayed_node *node;
1430        struct btrfs_delayed_item *item;
1431        struct btrfs_key item_key;
1432        int ret;
1433
1434        node = btrfs_get_or_create_delayed_node(dir);
1435        if (IS_ERR(node))
1436                return PTR_ERR(node);
1437
1438        item_key.objectid = btrfs_ino(dir);
1439        item_key.type = BTRFS_DIR_INDEX_KEY;
1440        item_key.offset = index;
1441
1442        ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1443                                                  &item_key);
1444        if (!ret)
1445                goto end;
1446
1447        item = btrfs_alloc_delayed_item(0);
1448        if (!item) {
1449                ret = -ENOMEM;
1450                goto end;
1451        }
1452
1453        item->key = item_key;
1454
1455        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1456        /*
1457         * we have reserved enough space when we start a new transaction,
1458         * so reserving metadata failure is impossible.
1459         */
1460        if (ret < 0) {
1461                btrfs_err(trans->fs_info,
1462"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1463                btrfs_release_delayed_item(item);
1464                goto end;
1465        }
1466
1467        mutex_lock(&node->mutex);
1468        ret = __btrfs_add_delayed_deletion_item(node, item);
1469        if (unlikely(ret)) {
1470                btrfs_err(trans->fs_info,
1471                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1472                          index, node->root->root_key.objectid,
1473                          node->inode_id, ret);
1474                btrfs_delayed_item_release_metadata(dir->root, item);
1475                btrfs_release_delayed_item(item);
1476        }
1477        mutex_unlock(&node->mutex);
1478end:
1479        btrfs_release_delayed_node(node);
1480        return ret;
1481}
1482
1483int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1484{
1485        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1486
1487        if (!delayed_node)
1488                return -ENOENT;
1489
1490        /*
1491         * Since we have held i_mutex of this directory, it is impossible that
1492         * a new directory index is added into the delayed node and index_cnt
1493         * is updated now. So we needn't lock the delayed node.
1494         */
1495        if (!delayed_node->index_cnt) {
1496                btrfs_release_delayed_node(delayed_node);
1497                return -EINVAL;
1498        }
1499
1500        inode->index_cnt = delayed_node->index_cnt;
1501        btrfs_release_delayed_node(delayed_node);
1502        return 0;
1503}
1504
1505bool btrfs_readdir_get_delayed_items(struct inode *inode,
1506                                     struct list_head *ins_list,
1507                                     struct list_head *del_list)
1508{
1509        struct btrfs_delayed_node *delayed_node;
1510        struct btrfs_delayed_item *item;
1511
1512        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1513        if (!delayed_node)
1514                return false;
1515
1516        /*
1517         * We can only do one readdir with delayed items at a time because of
1518         * item->readdir_list.
1519         */
1520        btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1521        btrfs_inode_lock(inode, 0);
1522
1523        mutex_lock(&delayed_node->mutex);
1524        item = __btrfs_first_delayed_insertion_item(delayed_node);
1525        while (item) {
1526                refcount_inc(&item->refs);
1527                list_add_tail(&item->readdir_list, ins_list);
1528                item = __btrfs_next_delayed_item(item);
1529        }
1530
1531        item = __btrfs_first_delayed_deletion_item(delayed_node);
1532        while (item) {
1533                refcount_inc(&item->refs);
1534                list_add_tail(&item->readdir_list, del_list);
1535                item = __btrfs_next_delayed_item(item);
1536        }
1537        mutex_unlock(&delayed_node->mutex);
1538        /*
1539         * This delayed node is still cached in the btrfs inode, so refs
1540         * must be > 1 now, and we needn't check it is going to be freed
1541         * or not.
1542         *
1543         * Besides that, this function is used to read dir, we do not
1544         * insert/delete delayed items in this period. So we also needn't
1545         * requeue or dequeue this delayed node.
1546         */
1547        refcount_dec(&delayed_node->refs);
1548
1549        return true;
1550}
1551
1552void btrfs_readdir_put_delayed_items(struct inode *inode,
1553                                     struct list_head *ins_list,
1554                                     struct list_head *del_list)
1555{
1556        struct btrfs_delayed_item *curr, *next;
1557
1558        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1559                list_del(&curr->readdir_list);
1560                if (refcount_dec_and_test(&curr->refs))
1561                        kfree(curr);
1562        }
1563
1564        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1565                list_del(&curr->readdir_list);
1566                if (refcount_dec_and_test(&curr->refs))
1567                        kfree(curr);
1568        }
1569
1570        /*
1571         * The VFS is going to do up_read(), so we need to downgrade back to a
1572         * read lock.
1573         */
1574        downgrade_write(&inode->i_rwsem);
1575}
1576
1577int btrfs_should_delete_dir_index(struct list_head *del_list,
1578                                  u64 index)
1579{
1580        struct btrfs_delayed_item *curr;
1581        int ret = 0;
1582
1583        list_for_each_entry(curr, del_list, readdir_list) {
1584                if (curr->key.offset > index)
1585                        break;
1586                if (curr->key.offset == index) {
1587                        ret = 1;
1588                        break;
1589                }
1590        }
1591        return ret;
1592}
1593
1594/*
1595 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1596 *
1597 */
1598int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1599                                    struct list_head *ins_list)
1600{
1601        struct btrfs_dir_item *di;
1602        struct btrfs_delayed_item *curr, *next;
1603        struct btrfs_key location;
1604        char *name;
1605        int name_len;
1606        int over = 0;
1607        unsigned char d_type;
1608
1609        if (list_empty(ins_list))
1610                return 0;
1611
1612        /*
1613         * Changing the data of the delayed item is impossible. So
1614         * we needn't lock them. And we have held i_mutex of the
1615         * directory, nobody can delete any directory indexes now.
1616         */
1617        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1618                list_del(&curr->readdir_list);
1619
1620                if (curr->key.offset < ctx->pos) {
1621                        if (refcount_dec_and_test(&curr->refs))
1622                                kfree(curr);
1623                        continue;
1624                }
1625
1626                ctx->pos = curr->key.offset;
1627
1628                di = (struct btrfs_dir_item *)curr->data;
1629                name = (char *)(di + 1);
1630                name_len = btrfs_stack_dir_name_len(di);
1631
1632                d_type = fs_ftype_to_dtype(di->type);
1633                btrfs_disk_key_to_cpu(&location, &di->location);
1634
1635                over = !dir_emit(ctx, name, name_len,
1636                               location.objectid, d_type);
1637
1638                if (refcount_dec_and_test(&curr->refs))
1639                        kfree(curr);
1640
1641                if (over)
1642                        return 1;
1643                ctx->pos++;
1644        }
1645        return 0;
1646}
1647
1648static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1649                                  struct btrfs_inode_item *inode_item,
1650                                  struct inode *inode)
1651{
1652        u64 flags;
1653
1654        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1655        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1656        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1657        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1658        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1659        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1660        btrfs_set_stack_inode_generation(inode_item,
1661                                         BTRFS_I(inode)->generation);
1662        btrfs_set_stack_inode_sequence(inode_item,
1663                                       inode_peek_iversion(inode));
1664        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1665        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1666        flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1667                                          BTRFS_I(inode)->ro_flags);
1668        btrfs_set_stack_inode_flags(inode_item, flags);
1669        btrfs_set_stack_inode_block_group(inode_item, 0);
1670
1671        btrfs_set_stack_timespec_sec(&inode_item->atime,
1672                                     inode->i_atime.tv_sec);
1673        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1674                                      inode->i_atime.tv_nsec);
1675
1676        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1677                                     inode->i_mtime.tv_sec);
1678        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1679                                      inode->i_mtime.tv_nsec);
1680
1681        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1682                                     inode->i_ctime.tv_sec);
1683        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1684                                      inode->i_ctime.tv_nsec);
1685
1686        btrfs_set_stack_timespec_sec(&inode_item->otime,
1687                                     BTRFS_I(inode)->i_otime.tv_sec);
1688        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1689                                     BTRFS_I(inode)->i_otime.tv_nsec);
1690}
1691
1692int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1693{
1694        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1695        struct btrfs_delayed_node *delayed_node;
1696        struct btrfs_inode_item *inode_item;
1697
1698        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1699        if (!delayed_node)
1700                return -ENOENT;
1701
1702        mutex_lock(&delayed_node->mutex);
1703        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1704                mutex_unlock(&delayed_node->mutex);
1705                btrfs_release_delayed_node(delayed_node);
1706                return -ENOENT;
1707        }
1708
1709        inode_item = &delayed_node->inode_item;
1710
1711        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1712        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1713        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1714        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1715                        round_up(i_size_read(inode), fs_info->sectorsize));
1716        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1717        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1718        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1719        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1720        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1721
1722        inode_set_iversion_queried(inode,
1723                                   btrfs_stack_inode_sequence(inode_item));
1724        inode->i_rdev = 0;
1725        *rdev = btrfs_stack_inode_rdev(inode_item);
1726        btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1727                                &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1728
1729        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1730        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1731
1732        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1733        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1734
1735        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1736        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1737
1738        BTRFS_I(inode)->i_otime.tv_sec =
1739                btrfs_stack_timespec_sec(&inode_item->otime);
1740        BTRFS_I(inode)->i_otime.tv_nsec =
1741                btrfs_stack_timespec_nsec(&inode_item->otime);
1742
1743        inode->i_generation = BTRFS_I(inode)->generation;
1744        BTRFS_I(inode)->index_cnt = (u64)-1;
1745
1746        mutex_unlock(&delayed_node->mutex);
1747        btrfs_release_delayed_node(delayed_node);
1748        return 0;
1749}
1750
1751int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1752                               struct btrfs_root *root,
1753                               struct btrfs_inode *inode)
1754{
1755        struct btrfs_delayed_node *delayed_node;
1756        int ret = 0;
1757
1758        delayed_node = btrfs_get_or_create_delayed_node(inode);
1759        if (IS_ERR(delayed_node))
1760                return PTR_ERR(delayed_node);
1761
1762        mutex_lock(&delayed_node->mutex);
1763        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1764                fill_stack_inode_item(trans, &delayed_node->inode_item,
1765                                      &inode->vfs_inode);
1766                goto release_node;
1767        }
1768
1769        ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1770        if (ret)
1771                goto release_node;
1772
1773        fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1774        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1775        delayed_node->count++;
1776        atomic_inc(&root->fs_info->delayed_root->items);
1777release_node:
1778        mutex_unlock(&delayed_node->mutex);
1779        btrfs_release_delayed_node(delayed_node);
1780        return ret;
1781}
1782
1783int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1784{
1785        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1786        struct btrfs_delayed_node *delayed_node;
1787
1788        /*
1789         * we don't do delayed inode updates during log recovery because it
1790         * leads to enospc problems.  This means we also can't do
1791         * delayed inode refs
1792         */
1793        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1794                return -EAGAIN;
1795
1796        delayed_node = btrfs_get_or_create_delayed_node(inode);
1797        if (IS_ERR(delayed_node))
1798                return PTR_ERR(delayed_node);
1799
1800        /*
1801         * We don't reserve space for inode ref deletion is because:
1802         * - We ONLY do async inode ref deletion for the inode who has only
1803         *   one link(i_nlink == 1), it means there is only one inode ref.
1804         *   And in most case, the inode ref and the inode item are in the
1805         *   same leaf, and we will deal with them at the same time.
1806         *   Since we are sure we will reserve the space for the inode item,
1807         *   it is unnecessary to reserve space for inode ref deletion.
1808         * - If the inode ref and the inode item are not in the same leaf,
1809         *   We also needn't worry about enospc problem, because we reserve
1810         *   much more space for the inode update than it needs.
1811         * - At the worst, we can steal some space from the global reservation.
1812         *   It is very rare.
1813         */
1814        mutex_lock(&delayed_node->mutex);
1815        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1816                goto release_node;
1817
1818        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1819        delayed_node->count++;
1820        atomic_inc(&fs_info->delayed_root->items);
1821release_node:
1822        mutex_unlock(&delayed_node->mutex);
1823        btrfs_release_delayed_node(delayed_node);
1824        return 0;
1825}
1826
1827static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1828{
1829        struct btrfs_root *root = delayed_node->root;
1830        struct btrfs_fs_info *fs_info = root->fs_info;
1831        struct btrfs_delayed_item *curr_item, *prev_item;
1832
1833        mutex_lock(&delayed_node->mutex);
1834        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1835        while (curr_item) {
1836                btrfs_delayed_item_release_metadata(root, curr_item);
1837                prev_item = curr_item;
1838                curr_item = __btrfs_next_delayed_item(prev_item);
1839                btrfs_release_delayed_item(prev_item);
1840        }
1841
1842        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1843        while (curr_item) {
1844                btrfs_delayed_item_release_metadata(root, curr_item);
1845                prev_item = curr_item;
1846                curr_item = __btrfs_next_delayed_item(prev_item);
1847                btrfs_release_delayed_item(prev_item);
1848        }
1849
1850        btrfs_release_delayed_iref(delayed_node);
1851
1852        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1853                btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1854                btrfs_release_delayed_inode(delayed_node);
1855        }
1856        mutex_unlock(&delayed_node->mutex);
1857}
1858
1859void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1860{
1861        struct btrfs_delayed_node *delayed_node;
1862
1863        delayed_node = btrfs_get_delayed_node(inode);
1864        if (!delayed_node)
1865                return;
1866
1867        __btrfs_kill_delayed_node(delayed_node);
1868        btrfs_release_delayed_node(delayed_node);
1869}
1870
1871void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1872{
1873        u64 inode_id = 0;
1874        struct btrfs_delayed_node *delayed_nodes[8];
1875        int i, n;
1876
1877        while (1) {
1878                spin_lock(&root->inode_lock);
1879                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1880                                           (void **)delayed_nodes, inode_id,
1881                                           ARRAY_SIZE(delayed_nodes));
1882                if (!n) {
1883                        spin_unlock(&root->inode_lock);
1884                        break;
1885                }
1886
1887                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1888                for (i = 0; i < n; i++) {
1889                        /*
1890                         * Don't increase refs in case the node is dead and
1891                         * about to be removed from the tree in the loop below
1892                         */
1893                        if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1894                                delayed_nodes[i] = NULL;
1895                }
1896                spin_unlock(&root->inode_lock);
1897
1898                for (i = 0; i < n; i++) {
1899                        if (!delayed_nodes[i])
1900                                continue;
1901                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1902                        btrfs_release_delayed_node(delayed_nodes[i]);
1903                }
1904        }
1905}
1906
1907void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1908{
1909        struct btrfs_delayed_node *curr_node, *prev_node;
1910
1911        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1912        while (curr_node) {
1913                __btrfs_kill_delayed_node(curr_node);
1914
1915                prev_node = curr_node;
1916                curr_node = btrfs_next_delayed_node(curr_node);
1917                btrfs_release_delayed_node(prev_node);
1918        }
1919}
1920
1921