linux/fs/btrfs/ioctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include <linux/fsverity.h>
  31#include <linux/sched/xacct.h>
  32#include "ctree.h"
  33#include "disk-io.h"
  34#include "export.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "print-tree.h"
  38#include "volumes.h"
  39#include "locking.h"
  40#include "backref.h"
  41#include "rcu-string.h"
  42#include "send.h"
  43#include "dev-replace.h"
  44#include "props.h"
  45#include "sysfs.h"
  46#include "qgroup.h"
  47#include "tree-log.h"
  48#include "compression.h"
  49#include "space-info.h"
  50#include "delalloc-space.h"
  51#include "block-group.h"
  52#include "subpage.h"
  53
  54#ifdef CONFIG_64BIT
  55/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  56 * structures are incorrect, as the timespec structure from userspace
  57 * is 4 bytes too small. We define these alternatives here to teach
  58 * the kernel about the 32-bit struct packing.
  59 */
  60struct btrfs_ioctl_timespec_32 {
  61        __u64 sec;
  62        __u32 nsec;
  63} __attribute__ ((__packed__));
  64
  65struct btrfs_ioctl_received_subvol_args_32 {
  66        char    uuid[BTRFS_UUID_SIZE];  /* in */
  67        __u64   stransid;               /* in */
  68        __u64   rtransid;               /* out */
  69        struct btrfs_ioctl_timespec_32 stime; /* in */
  70        struct btrfs_ioctl_timespec_32 rtime; /* out */
  71        __u64   flags;                  /* in */
  72        __u64   reserved[16];           /* in */
  73} __attribute__ ((__packed__));
  74
  75#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  76                                struct btrfs_ioctl_received_subvol_args_32)
  77#endif
  78
  79#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  80struct btrfs_ioctl_send_args_32 {
  81        __s64 send_fd;                  /* in */
  82        __u64 clone_sources_count;      /* in */
  83        compat_uptr_t clone_sources;    /* in */
  84        __u64 parent_root;              /* in */
  85        __u64 flags;                    /* in */
  86        __u32 version;                  /* in */
  87        __u8  reserved[28];             /* in */
  88} __attribute__ ((__packed__));
  89
  90#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  91                               struct btrfs_ioctl_send_args_32)
  92
  93struct btrfs_ioctl_encoded_io_args_32 {
  94        compat_uptr_t iov;
  95        compat_ulong_t iovcnt;
  96        __s64 offset;
  97        __u64 flags;
  98        __u64 len;
  99        __u64 unencoded_len;
 100        __u64 unencoded_offset;
 101        __u32 compression;
 102        __u32 encryption;
 103        __u8 reserved[64];
 104};
 105
 106#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
 107                                       struct btrfs_ioctl_encoded_io_args_32)
 108#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
 109                                        struct btrfs_ioctl_encoded_io_args_32)
 110#endif
 111
 112/* Mask out flags that are inappropriate for the given type of inode. */
 113static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
 114                unsigned int flags)
 115{
 116        if (S_ISDIR(inode->i_mode))
 117                return flags;
 118        else if (S_ISREG(inode->i_mode))
 119                return flags & ~FS_DIRSYNC_FL;
 120        else
 121                return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 122}
 123
 124/*
 125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 126 * ioctl.
 127 */
 128static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
 129{
 130        unsigned int iflags = 0;
 131        u32 flags = binode->flags;
 132        u32 ro_flags = binode->ro_flags;
 133
 134        if (flags & BTRFS_INODE_SYNC)
 135                iflags |= FS_SYNC_FL;
 136        if (flags & BTRFS_INODE_IMMUTABLE)
 137                iflags |= FS_IMMUTABLE_FL;
 138        if (flags & BTRFS_INODE_APPEND)
 139                iflags |= FS_APPEND_FL;
 140        if (flags & BTRFS_INODE_NODUMP)
 141                iflags |= FS_NODUMP_FL;
 142        if (flags & BTRFS_INODE_NOATIME)
 143                iflags |= FS_NOATIME_FL;
 144        if (flags & BTRFS_INODE_DIRSYNC)
 145                iflags |= FS_DIRSYNC_FL;
 146        if (flags & BTRFS_INODE_NODATACOW)
 147                iflags |= FS_NOCOW_FL;
 148        if (ro_flags & BTRFS_INODE_RO_VERITY)
 149                iflags |= FS_VERITY_FL;
 150
 151        if (flags & BTRFS_INODE_NOCOMPRESS)
 152                iflags |= FS_NOCOMP_FL;
 153        else if (flags & BTRFS_INODE_COMPRESS)
 154                iflags |= FS_COMPR_FL;
 155
 156        return iflags;
 157}
 158
 159/*
 160 * Update inode->i_flags based on the btrfs internal flags.
 161 */
 162void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 163{
 164        struct btrfs_inode *binode = BTRFS_I(inode);
 165        unsigned int new_fl = 0;
 166
 167        if (binode->flags & BTRFS_INODE_SYNC)
 168                new_fl |= S_SYNC;
 169        if (binode->flags & BTRFS_INODE_IMMUTABLE)
 170                new_fl |= S_IMMUTABLE;
 171        if (binode->flags & BTRFS_INODE_APPEND)
 172                new_fl |= S_APPEND;
 173        if (binode->flags & BTRFS_INODE_NOATIME)
 174                new_fl |= S_NOATIME;
 175        if (binode->flags & BTRFS_INODE_DIRSYNC)
 176                new_fl |= S_DIRSYNC;
 177        if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
 178                new_fl |= S_VERITY;
 179
 180        set_mask_bits(&inode->i_flags,
 181                      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
 182                      S_VERITY, new_fl);
 183}
 184
 185/*
 186 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 187 * the old and new flags are not conflicting
 188 */
 189static int check_fsflags(unsigned int old_flags, unsigned int flags)
 190{
 191        if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 192                      FS_NOATIME_FL | FS_NODUMP_FL | \
 193                      FS_SYNC_FL | FS_DIRSYNC_FL | \
 194                      FS_NOCOMP_FL | FS_COMPR_FL |
 195                      FS_NOCOW_FL))
 196                return -EOPNOTSUPP;
 197
 198        /* COMPR and NOCOMP on new/old are valid */
 199        if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 200                return -EINVAL;
 201
 202        if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 203                return -EINVAL;
 204
 205        /* NOCOW and compression options are mutually exclusive */
 206        if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 207                return -EINVAL;
 208        if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 209                return -EINVAL;
 210
 211        return 0;
 212}
 213
 214static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 215                                    unsigned int flags)
 216{
 217        if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 218                return -EPERM;
 219
 220        return 0;
 221}
 222
 223/*
 224 * Set flags/xflags from the internal inode flags. The remaining items of
 225 * fsxattr are zeroed.
 226 */
 227int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 228{
 229        struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 230
 231        fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
 232        return 0;
 233}
 234
 235int btrfs_fileattr_set(struct user_namespace *mnt_userns,
 236                       struct dentry *dentry, struct fileattr *fa)
 237{
 238        struct inode *inode = d_inode(dentry);
 239        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 240        struct btrfs_inode *binode = BTRFS_I(inode);
 241        struct btrfs_root *root = binode->root;
 242        struct btrfs_trans_handle *trans;
 243        unsigned int fsflags, old_fsflags;
 244        int ret;
 245        const char *comp = NULL;
 246        u32 binode_flags;
 247
 248        if (btrfs_root_readonly(root))
 249                return -EROFS;
 250
 251        if (fileattr_has_fsx(fa))
 252                return -EOPNOTSUPP;
 253
 254        fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 255        old_fsflags = btrfs_inode_flags_to_fsflags(binode);
 256        ret = check_fsflags(old_fsflags, fsflags);
 257        if (ret)
 258                return ret;
 259
 260        ret = check_fsflags_compatible(fs_info, fsflags);
 261        if (ret)
 262                return ret;
 263
 264        binode_flags = binode->flags;
 265        if (fsflags & FS_SYNC_FL)
 266                binode_flags |= BTRFS_INODE_SYNC;
 267        else
 268                binode_flags &= ~BTRFS_INODE_SYNC;
 269        if (fsflags & FS_IMMUTABLE_FL)
 270                binode_flags |= BTRFS_INODE_IMMUTABLE;
 271        else
 272                binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 273        if (fsflags & FS_APPEND_FL)
 274                binode_flags |= BTRFS_INODE_APPEND;
 275        else
 276                binode_flags &= ~BTRFS_INODE_APPEND;
 277        if (fsflags & FS_NODUMP_FL)
 278                binode_flags |= BTRFS_INODE_NODUMP;
 279        else
 280                binode_flags &= ~BTRFS_INODE_NODUMP;
 281        if (fsflags & FS_NOATIME_FL)
 282                binode_flags |= BTRFS_INODE_NOATIME;
 283        else
 284                binode_flags &= ~BTRFS_INODE_NOATIME;
 285
 286        /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 287        if (!fa->flags_valid) {
 288                /* 1 item for the inode */
 289                trans = btrfs_start_transaction(root, 1);
 290                if (IS_ERR(trans))
 291                        return PTR_ERR(trans);
 292                goto update_flags;
 293        }
 294
 295        if (fsflags & FS_DIRSYNC_FL)
 296                binode_flags |= BTRFS_INODE_DIRSYNC;
 297        else
 298                binode_flags &= ~BTRFS_INODE_DIRSYNC;
 299        if (fsflags & FS_NOCOW_FL) {
 300                if (S_ISREG(inode->i_mode)) {
 301                        /*
 302                         * It's safe to turn csums off here, no extents exist.
 303                         * Otherwise we want the flag to reflect the real COW
 304                         * status of the file and will not set it.
 305                         */
 306                        if (inode->i_size == 0)
 307                                binode_flags |= BTRFS_INODE_NODATACOW |
 308                                                BTRFS_INODE_NODATASUM;
 309                } else {
 310                        binode_flags |= BTRFS_INODE_NODATACOW;
 311                }
 312        } else {
 313                /*
 314                 * Revert back under same assumptions as above
 315                 */
 316                if (S_ISREG(inode->i_mode)) {
 317                        if (inode->i_size == 0)
 318                                binode_flags &= ~(BTRFS_INODE_NODATACOW |
 319                                                  BTRFS_INODE_NODATASUM);
 320                } else {
 321                        binode_flags &= ~BTRFS_INODE_NODATACOW;
 322                }
 323        }
 324
 325        /*
 326         * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 327         * flag may be changed automatically if compression code won't make
 328         * things smaller.
 329         */
 330        if (fsflags & FS_NOCOMP_FL) {
 331                binode_flags &= ~BTRFS_INODE_COMPRESS;
 332                binode_flags |= BTRFS_INODE_NOCOMPRESS;
 333        } else if (fsflags & FS_COMPR_FL) {
 334
 335                if (IS_SWAPFILE(inode))
 336                        return -ETXTBSY;
 337
 338                binode_flags |= BTRFS_INODE_COMPRESS;
 339                binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 340
 341                comp = btrfs_compress_type2str(fs_info->compress_type);
 342                if (!comp || comp[0] == 0)
 343                        comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 344        } else {
 345                binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 346        }
 347
 348        /*
 349         * 1 for inode item
 350         * 2 for properties
 351         */
 352        trans = btrfs_start_transaction(root, 3);
 353        if (IS_ERR(trans))
 354                return PTR_ERR(trans);
 355
 356        if (comp) {
 357                ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 358                                     strlen(comp), 0);
 359                if (ret) {
 360                        btrfs_abort_transaction(trans, ret);
 361                        goto out_end_trans;
 362                }
 363        } else {
 364                ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 365                                     0, 0);
 366                if (ret && ret != -ENODATA) {
 367                        btrfs_abort_transaction(trans, ret);
 368                        goto out_end_trans;
 369                }
 370        }
 371
 372update_flags:
 373        binode->flags = binode_flags;
 374        btrfs_sync_inode_flags_to_i_flags(inode);
 375        inode_inc_iversion(inode);
 376        inode->i_ctime = current_time(inode);
 377        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 378
 379 out_end_trans:
 380        btrfs_end_transaction(trans);
 381        return ret;
 382}
 383
 384/*
 385 * Start exclusive operation @type, return true on success
 386 */
 387bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 388                        enum btrfs_exclusive_operation type)
 389{
 390        bool ret = false;
 391
 392        spin_lock(&fs_info->super_lock);
 393        if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 394                fs_info->exclusive_operation = type;
 395                ret = true;
 396        }
 397        spin_unlock(&fs_info->super_lock);
 398
 399        return ret;
 400}
 401
 402/*
 403 * Conditionally allow to enter the exclusive operation in case it's compatible
 404 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 405 * btrfs_exclop_finish.
 406 *
 407 * Compatibility:
 408 * - the same type is already running
 409 * - when trying to add a device and balance has been paused
 410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 411 *   must check the condition first that would allow none -> @type
 412 */
 413bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 414                                 enum btrfs_exclusive_operation type)
 415{
 416        spin_lock(&fs_info->super_lock);
 417        if (fs_info->exclusive_operation == type ||
 418            (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
 419             type == BTRFS_EXCLOP_DEV_ADD))
 420                return true;
 421
 422        spin_unlock(&fs_info->super_lock);
 423        return false;
 424}
 425
 426void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 427{
 428        spin_unlock(&fs_info->super_lock);
 429}
 430
 431void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 432{
 433        spin_lock(&fs_info->super_lock);
 434        WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 435        spin_unlock(&fs_info->super_lock);
 436        sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 437}
 438
 439void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
 440                          enum btrfs_exclusive_operation op)
 441{
 442        switch (op) {
 443        case BTRFS_EXCLOP_BALANCE_PAUSED:
 444                spin_lock(&fs_info->super_lock);
 445                ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
 446                       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
 447                fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
 448                spin_unlock(&fs_info->super_lock);
 449                break;
 450        case BTRFS_EXCLOP_BALANCE:
 451                spin_lock(&fs_info->super_lock);
 452                ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 453                fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
 454                spin_unlock(&fs_info->super_lock);
 455                break;
 456        default:
 457                btrfs_warn(fs_info,
 458                        "invalid exclop balance operation %d requested", op);
 459        }
 460}
 461
 462static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
 463{
 464        return put_user(inode->i_generation, arg);
 465}
 466
 467static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 468                                        void __user *arg)
 469{
 470        struct btrfs_device *device;
 471        struct request_queue *q;
 472        struct fstrim_range range;
 473        u64 minlen = ULLONG_MAX;
 474        u64 num_devices = 0;
 475        int ret;
 476
 477        if (!capable(CAP_SYS_ADMIN))
 478                return -EPERM;
 479
 480        /*
 481         * btrfs_trim_block_group() depends on space cache, which is not
 482         * available in zoned filesystem. So, disallow fitrim on a zoned
 483         * filesystem for now.
 484         */
 485        if (btrfs_is_zoned(fs_info))
 486                return -EOPNOTSUPP;
 487
 488        /*
 489         * If the fs is mounted with nologreplay, which requires it to be
 490         * mounted in RO mode as well, we can not allow discard on free space
 491         * inside block groups, because log trees refer to extents that are not
 492         * pinned in a block group's free space cache (pinning the extents is
 493         * precisely the first phase of replaying a log tree).
 494         */
 495        if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 496                return -EROFS;
 497
 498        rcu_read_lock();
 499        list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 500                                dev_list) {
 501                if (!device->bdev)
 502                        continue;
 503                q = bdev_get_queue(device->bdev);
 504                if (blk_queue_discard(q)) {
 505                        num_devices++;
 506                        minlen = min_t(u64, q->limits.discard_granularity,
 507                                     minlen);
 508                }
 509        }
 510        rcu_read_unlock();
 511
 512        if (!num_devices)
 513                return -EOPNOTSUPP;
 514        if (copy_from_user(&range, arg, sizeof(range)))
 515                return -EFAULT;
 516
 517        /*
 518         * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 519         * block group is in the logical address space, which can be any
 520         * sectorsize aligned bytenr in  the range [0, U64_MAX].
 521         */
 522        if (range.len < fs_info->sb->s_blocksize)
 523                return -EINVAL;
 524
 525        range.minlen = max(range.minlen, minlen);
 526        ret = btrfs_trim_fs(fs_info, &range);
 527        if (ret < 0)
 528                return ret;
 529
 530        if (copy_to_user(arg, &range, sizeof(range)))
 531                return -EFAULT;
 532
 533        return 0;
 534}
 535
 536int __pure btrfs_is_empty_uuid(u8 *uuid)
 537{
 538        int i;
 539
 540        for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 541                if (uuid[i])
 542                        return 0;
 543        }
 544        return 1;
 545}
 546
 547static noinline int create_subvol(struct user_namespace *mnt_userns,
 548                                  struct inode *dir, struct dentry *dentry,
 549                                  const char *name, int namelen,
 550                                  struct btrfs_qgroup_inherit *inherit)
 551{
 552        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 553        struct btrfs_trans_handle *trans;
 554        struct btrfs_key key;
 555        struct btrfs_root_item *root_item;
 556        struct btrfs_inode_item *inode_item;
 557        struct extent_buffer *leaf;
 558        struct btrfs_root *root = BTRFS_I(dir)->root;
 559        struct btrfs_root *new_root;
 560        struct btrfs_block_rsv block_rsv;
 561        struct timespec64 cur_time = current_time(dir);
 562        struct inode *inode;
 563        int ret;
 564        dev_t anon_dev = 0;
 565        u64 objectid;
 566        u64 index = 0;
 567
 568        root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 569        if (!root_item)
 570                return -ENOMEM;
 571
 572        ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 573        if (ret)
 574                goto fail_free;
 575
 576        ret = get_anon_bdev(&anon_dev);
 577        if (ret < 0)
 578                goto fail_free;
 579
 580        /*
 581         * Don't create subvolume whose level is not zero. Or qgroup will be
 582         * screwed up since it assumes subvolume qgroup's level to be 0.
 583         */
 584        if (btrfs_qgroup_level(objectid)) {
 585                ret = -ENOSPC;
 586                goto fail_free;
 587        }
 588
 589        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 590        /*
 591         * The same as the snapshot creation, please see the comment
 592         * of create_snapshot().
 593         */
 594        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 595        if (ret)
 596                goto fail_free;
 597
 598        trans = btrfs_start_transaction(root, 0);
 599        if (IS_ERR(trans)) {
 600                ret = PTR_ERR(trans);
 601                btrfs_subvolume_release_metadata(root, &block_rsv);
 602                goto fail_free;
 603        }
 604        trans->block_rsv = &block_rsv;
 605        trans->bytes_reserved = block_rsv.size;
 606
 607        ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 608        if (ret)
 609                goto fail;
 610
 611        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 612                                      BTRFS_NESTING_NORMAL);
 613        if (IS_ERR(leaf)) {
 614                ret = PTR_ERR(leaf);
 615                goto fail;
 616        }
 617
 618        btrfs_mark_buffer_dirty(leaf);
 619
 620        inode_item = &root_item->inode;
 621        btrfs_set_stack_inode_generation(inode_item, 1);
 622        btrfs_set_stack_inode_size(inode_item, 3);
 623        btrfs_set_stack_inode_nlink(inode_item, 1);
 624        btrfs_set_stack_inode_nbytes(inode_item,
 625                                     fs_info->nodesize);
 626        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 627
 628        btrfs_set_root_flags(root_item, 0);
 629        btrfs_set_root_limit(root_item, 0);
 630        btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 631
 632        btrfs_set_root_bytenr(root_item, leaf->start);
 633        btrfs_set_root_generation(root_item, trans->transid);
 634        btrfs_set_root_level(root_item, 0);
 635        btrfs_set_root_refs(root_item, 1);
 636        btrfs_set_root_used(root_item, leaf->len);
 637        btrfs_set_root_last_snapshot(root_item, 0);
 638
 639        btrfs_set_root_generation_v2(root_item,
 640                        btrfs_root_generation(root_item));
 641        generate_random_guid(root_item->uuid);
 642        btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 643        btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 644        root_item->ctime = root_item->otime;
 645        btrfs_set_root_ctransid(root_item, trans->transid);
 646        btrfs_set_root_otransid(root_item, trans->transid);
 647
 648        btrfs_tree_unlock(leaf);
 649
 650        btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 651
 652        key.objectid = objectid;
 653        key.offset = 0;
 654        key.type = BTRFS_ROOT_ITEM_KEY;
 655        ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 656                                root_item);
 657        if (ret) {
 658                /*
 659                 * Since we don't abort the transaction in this case, free the
 660                 * tree block so that we don't leak space and leave the
 661                 * filesystem in an inconsistent state (an extent item in the
 662                 * extent tree with a backreference for a root that does not
 663                 * exists).
 664                 */
 665                btrfs_tree_lock(leaf);
 666                btrfs_clean_tree_block(leaf);
 667                btrfs_tree_unlock(leaf);
 668                btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
 669                free_extent_buffer(leaf);
 670                goto fail;
 671        }
 672
 673        free_extent_buffer(leaf);
 674        leaf = NULL;
 675
 676        key.offset = (u64)-1;
 677        new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 678        if (IS_ERR(new_root)) {
 679                free_anon_bdev(anon_dev);
 680                ret = PTR_ERR(new_root);
 681                btrfs_abort_transaction(trans, ret);
 682                goto fail;
 683        }
 684        /* Freeing will be done in btrfs_put_root() of new_root */
 685        anon_dev = 0;
 686
 687        ret = btrfs_record_root_in_trans(trans, new_root);
 688        if (ret) {
 689                btrfs_put_root(new_root);
 690                btrfs_abort_transaction(trans, ret);
 691                goto fail;
 692        }
 693
 694        ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
 695        btrfs_put_root(new_root);
 696        if (ret) {
 697                /* We potentially lose an unused inode item here */
 698                btrfs_abort_transaction(trans, ret);
 699                goto fail;
 700        }
 701
 702        /*
 703         * insert the directory item
 704         */
 705        ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 706        if (ret) {
 707                btrfs_abort_transaction(trans, ret);
 708                goto fail;
 709        }
 710
 711        ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 712                                    BTRFS_FT_DIR, index);
 713        if (ret) {
 714                btrfs_abort_transaction(trans, ret);
 715                goto fail;
 716        }
 717
 718        btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 719        ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
 720        if (ret) {
 721                btrfs_abort_transaction(trans, ret);
 722                goto fail;
 723        }
 724
 725        ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 726                                 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 727        if (ret) {
 728                btrfs_abort_transaction(trans, ret);
 729                goto fail;
 730        }
 731
 732        ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 733                                  BTRFS_UUID_KEY_SUBVOL, objectid);
 734        if (ret)
 735                btrfs_abort_transaction(trans, ret);
 736
 737fail:
 738        kfree(root_item);
 739        trans->block_rsv = NULL;
 740        trans->bytes_reserved = 0;
 741        btrfs_subvolume_release_metadata(root, &block_rsv);
 742
 743        if (ret)
 744                btrfs_end_transaction(trans);
 745        else
 746                ret = btrfs_commit_transaction(trans);
 747
 748        if (!ret) {
 749                inode = btrfs_lookup_dentry(dir, dentry);
 750                if (IS_ERR(inode))
 751                        return PTR_ERR(inode);
 752                d_instantiate(dentry, inode);
 753        }
 754        return ret;
 755
 756fail_free:
 757        if (anon_dev)
 758                free_anon_bdev(anon_dev);
 759        kfree(root_item);
 760        return ret;
 761}
 762
 763static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 764                           struct dentry *dentry, bool readonly,
 765                           struct btrfs_qgroup_inherit *inherit)
 766{
 767        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 768        struct inode *inode;
 769        struct btrfs_pending_snapshot *pending_snapshot;
 770        struct btrfs_trans_handle *trans;
 771        int ret;
 772
 773        /* We do not support snapshotting right now. */
 774        if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
 775                btrfs_warn(fs_info,
 776                           "extent tree v2 doesn't support snapshotting yet");
 777                return -EOPNOTSUPP;
 778        }
 779
 780        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 781                return -EINVAL;
 782
 783        if (atomic_read(&root->nr_swapfiles)) {
 784                btrfs_warn(fs_info,
 785                           "cannot snapshot subvolume with active swapfile");
 786                return -ETXTBSY;
 787        }
 788
 789        pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 790        if (!pending_snapshot)
 791                return -ENOMEM;
 792
 793        ret = get_anon_bdev(&pending_snapshot->anon_dev);
 794        if (ret < 0)
 795                goto free_pending;
 796        pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 797                        GFP_KERNEL);
 798        pending_snapshot->path = btrfs_alloc_path();
 799        if (!pending_snapshot->root_item || !pending_snapshot->path) {
 800                ret = -ENOMEM;
 801                goto free_pending;
 802        }
 803
 804        btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 805                             BTRFS_BLOCK_RSV_TEMP);
 806        /*
 807         * 1 - parent dir inode
 808         * 2 - dir entries
 809         * 1 - root item
 810         * 2 - root ref/backref
 811         * 1 - root of snapshot
 812         * 1 - UUID item
 813         */
 814        ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 815                                        &pending_snapshot->block_rsv, 8,
 816                                        false);
 817        if (ret)
 818                goto free_pending;
 819
 820        pending_snapshot->dentry = dentry;
 821        pending_snapshot->root = root;
 822        pending_snapshot->readonly = readonly;
 823        pending_snapshot->dir = dir;
 824        pending_snapshot->inherit = inherit;
 825
 826        trans = btrfs_start_transaction(root, 0);
 827        if (IS_ERR(trans)) {
 828                ret = PTR_ERR(trans);
 829                goto fail;
 830        }
 831
 832        trans->pending_snapshot = pending_snapshot;
 833
 834        ret = btrfs_commit_transaction(trans);
 835        if (ret)
 836                goto fail;
 837
 838        ret = pending_snapshot->error;
 839        if (ret)
 840                goto fail;
 841
 842        ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 843        if (ret)
 844                goto fail;
 845
 846        inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 847        if (IS_ERR(inode)) {
 848                ret = PTR_ERR(inode);
 849                goto fail;
 850        }
 851
 852        d_instantiate(dentry, inode);
 853        ret = 0;
 854        pending_snapshot->anon_dev = 0;
 855fail:
 856        /* Prevent double freeing of anon_dev */
 857        if (ret && pending_snapshot->snap)
 858                pending_snapshot->snap->anon_dev = 0;
 859        btrfs_put_root(pending_snapshot->snap);
 860        btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 861free_pending:
 862        if (pending_snapshot->anon_dev)
 863                free_anon_bdev(pending_snapshot->anon_dev);
 864        kfree(pending_snapshot->root_item);
 865        btrfs_free_path(pending_snapshot->path);
 866        kfree(pending_snapshot);
 867
 868        return ret;
 869}
 870
 871/*  copy of may_delete in fs/namei.c()
 872 *      Check whether we can remove a link victim from directory dir, check
 873 *  whether the type of victim is right.
 874 *  1. We can't do it if dir is read-only (done in permission())
 875 *  2. We should have write and exec permissions on dir
 876 *  3. We can't remove anything from append-only dir
 877 *  4. We can't do anything with immutable dir (done in permission())
 878 *  5. If the sticky bit on dir is set we should either
 879 *      a. be owner of dir, or
 880 *      b. be owner of victim, or
 881 *      c. have CAP_FOWNER capability
 882 *  6. If the victim is append-only or immutable we can't do anything with
 883 *     links pointing to it.
 884 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 885 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 886 *  9. We can't remove a root or mountpoint.
 887 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 888 *     nfs_async_unlink().
 889 */
 890
 891static int btrfs_may_delete(struct user_namespace *mnt_userns,
 892                            struct inode *dir, struct dentry *victim, int isdir)
 893{
 894        int error;
 895
 896        if (d_really_is_negative(victim))
 897                return -ENOENT;
 898
 899        BUG_ON(d_inode(victim->d_parent) != dir);
 900        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 901
 902        error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
 903        if (error)
 904                return error;
 905        if (IS_APPEND(dir))
 906                return -EPERM;
 907        if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
 908            IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 909            IS_SWAPFILE(d_inode(victim)))
 910                return -EPERM;
 911        if (isdir) {
 912                if (!d_is_dir(victim))
 913                        return -ENOTDIR;
 914                if (IS_ROOT(victim))
 915                        return -EBUSY;
 916        } else if (d_is_dir(victim))
 917                return -EISDIR;
 918        if (IS_DEADDIR(dir))
 919                return -ENOENT;
 920        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 921                return -EBUSY;
 922        return 0;
 923}
 924
 925/* copy of may_create in fs/namei.c() */
 926static inline int btrfs_may_create(struct user_namespace *mnt_userns,
 927                                   struct inode *dir, struct dentry *child)
 928{
 929        if (d_really_is_positive(child))
 930                return -EEXIST;
 931        if (IS_DEADDIR(dir))
 932                return -ENOENT;
 933        if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
 934                return -EOVERFLOW;
 935        return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
 936}
 937
 938/*
 939 * Create a new subvolume below @parent.  This is largely modeled after
 940 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 941 * inside this filesystem so it's quite a bit simpler.
 942 */
 943static noinline int btrfs_mksubvol(const struct path *parent,
 944                                   struct user_namespace *mnt_userns,
 945                                   const char *name, int namelen,
 946                                   struct btrfs_root *snap_src,
 947                                   bool readonly,
 948                                   struct btrfs_qgroup_inherit *inherit)
 949{
 950        struct inode *dir = d_inode(parent->dentry);
 951        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 952        struct dentry *dentry;
 953        int error;
 954
 955        error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 956        if (error == -EINTR)
 957                return error;
 958
 959        dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
 960        error = PTR_ERR(dentry);
 961        if (IS_ERR(dentry))
 962                goto out_unlock;
 963
 964        error = btrfs_may_create(mnt_userns, dir, dentry);
 965        if (error)
 966                goto out_dput;
 967
 968        /*
 969         * even if this name doesn't exist, we may get hash collisions.
 970         * check for them now when we can safely fail
 971         */
 972        error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 973                                               dir->i_ino, name,
 974                                               namelen);
 975        if (error)
 976                goto out_dput;
 977
 978        down_read(&fs_info->subvol_sem);
 979
 980        if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 981                goto out_up_read;
 982
 983        if (snap_src)
 984                error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 985        else
 986                error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
 987
 988        if (!error)
 989                fsnotify_mkdir(dir, dentry);
 990out_up_read:
 991        up_read(&fs_info->subvol_sem);
 992out_dput:
 993        dput(dentry);
 994out_unlock:
 995        btrfs_inode_unlock(dir, 0);
 996        return error;
 997}
 998
 999static noinline int btrfs_mksnapshot(const struct path *parent,
1000                                   struct user_namespace *mnt_userns,
1001                                   const char *name, int namelen,
1002                                   struct btrfs_root *root,
1003                                   bool readonly,
1004                                   struct btrfs_qgroup_inherit *inherit)
1005{
1006        int ret;
1007        bool snapshot_force_cow = false;
1008
1009        /*
1010         * Force new buffered writes to reserve space even when NOCOW is
1011         * possible. This is to avoid later writeback (running dealloc) to
1012         * fallback to COW mode and unexpectedly fail with ENOSPC.
1013         */
1014        btrfs_drew_read_lock(&root->snapshot_lock);
1015
1016        ret = btrfs_start_delalloc_snapshot(root, false);
1017        if (ret)
1018                goto out;
1019
1020        /*
1021         * All previous writes have started writeback in NOCOW mode, so now
1022         * we force future writes to fallback to COW mode during snapshot
1023         * creation.
1024         */
1025        atomic_inc(&root->snapshot_force_cow);
1026        snapshot_force_cow = true;
1027
1028        btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1029
1030        ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1031                             root, readonly, inherit);
1032out:
1033        if (snapshot_force_cow)
1034                atomic_dec(&root->snapshot_force_cow);
1035        btrfs_drew_read_unlock(&root->snapshot_lock);
1036        return ret;
1037}
1038
1039/*
1040 * Defrag specific helper to get an extent map.
1041 *
1042 * Differences between this and btrfs_get_extent() are:
1043 *
1044 * - No extent_map will be added to inode->extent_tree
1045 *   To reduce memory usage in the long run.
1046 *
1047 * - Extra optimization to skip file extents older than @newer_than
1048 *   By using btrfs_search_forward() we can skip entire file ranges that
1049 *   have extents created in past transactions, because btrfs_search_forward()
1050 *   will not visit leaves and nodes with a generation smaller than given
1051 *   minimal generation threshold (@newer_than).
1052 *
1053 * Return valid em if we find a file extent matching the requirement.
1054 * Return NULL if we can not find a file extent matching the requirement.
1055 *
1056 * Return ERR_PTR() for error.
1057 */
1058static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1059                                            u64 start, u64 newer_than)
1060{
1061        struct btrfs_root *root = inode->root;
1062        struct btrfs_file_extent_item *fi;
1063        struct btrfs_path path = { 0 };
1064        struct extent_map *em;
1065        struct btrfs_key key;
1066        u64 ino = btrfs_ino(inode);
1067        int ret;
1068
1069        em = alloc_extent_map();
1070        if (!em) {
1071                ret = -ENOMEM;
1072                goto err;
1073        }
1074
1075        key.objectid = ino;
1076        key.type = BTRFS_EXTENT_DATA_KEY;
1077        key.offset = start;
1078
1079        if (newer_than) {
1080                ret = btrfs_search_forward(root, &key, &path, newer_than);
1081                if (ret < 0)
1082                        goto err;
1083                /* Can't find anything newer */
1084                if (ret > 0)
1085                        goto not_found;
1086        } else {
1087                ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1088                if (ret < 0)
1089                        goto err;
1090        }
1091        if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1092                /*
1093                 * If btrfs_search_slot() makes path to point beyond nritems,
1094                 * we should not have an empty leaf, as this inode must at
1095                 * least have its INODE_ITEM.
1096                 */
1097                ASSERT(btrfs_header_nritems(path.nodes[0]));
1098                path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1099        }
1100        btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1101        /* Perfect match, no need to go one slot back */
1102        if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1103            key.offset == start)
1104                goto iterate;
1105
1106        /* We didn't find a perfect match, needs to go one slot back */
1107        if (path.slots[0] > 0) {
1108                btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1109                if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1110                        path.slots[0]--;
1111        }
1112
1113iterate:
1114        /* Iterate through the path to find a file extent covering @start */
1115        while (true) {
1116                u64 extent_end;
1117
1118                if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1119                        goto next;
1120
1121                btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1122
1123                /*
1124                 * We may go one slot back to INODE_REF/XATTR item, then
1125                 * need to go forward until we reach an EXTENT_DATA.
1126                 * But we should still has the correct ino as key.objectid.
1127                 */
1128                if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1129                        goto next;
1130
1131                /* It's beyond our target range, definitely not extent found */
1132                if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1133                        goto not_found;
1134
1135                /*
1136                 *      |       |<- File extent ->|
1137                 *      \- start
1138                 *
1139                 * This means there is a hole between start and key.offset.
1140                 */
1141                if (key.offset > start) {
1142                        em->start = start;
1143                        em->orig_start = start;
1144                        em->block_start = EXTENT_MAP_HOLE;
1145                        em->len = key.offset - start;
1146                        break;
1147                }
1148
1149                fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1150                                    struct btrfs_file_extent_item);
1151                extent_end = btrfs_file_extent_end(&path);
1152
1153                /*
1154                 *      |<- file extent ->|     |
1155                 *                              \- start
1156                 *
1157                 * We haven't reached start, search next slot.
1158                 */
1159                if (extent_end <= start)
1160                        goto next;
1161
1162                /* Now this extent covers @start, convert it to em */
1163                btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1164                break;
1165next:
1166                ret = btrfs_next_item(root, &path);
1167                if (ret < 0)
1168                        goto err;
1169                if (ret > 0)
1170                        goto not_found;
1171        }
1172        btrfs_release_path(&path);
1173        return em;
1174
1175not_found:
1176        btrfs_release_path(&path);
1177        free_extent_map(em);
1178        return NULL;
1179
1180err:
1181        btrfs_release_path(&path);
1182        free_extent_map(em);
1183        return ERR_PTR(ret);
1184}
1185
1186static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1187                                               u64 newer_than, bool locked)
1188{
1189        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1190        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1191        struct extent_map *em;
1192        const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1193
1194        /*
1195         * hopefully we have this extent in the tree already, try without
1196         * the full extent lock
1197         */
1198        read_lock(&em_tree->lock);
1199        em = lookup_extent_mapping(em_tree, start, sectorsize);
1200        read_unlock(&em_tree->lock);
1201
1202        /*
1203         * We can get a merged extent, in that case, we need to re-search
1204         * tree to get the original em for defrag.
1205         *
1206         * If @newer_than is 0 or em::generation < newer_than, we can trust
1207         * this em, as either we don't care about the generation, or the
1208         * merged extent map will be rejected anyway.
1209         */
1210        if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1211            newer_than && em->generation >= newer_than) {
1212                free_extent_map(em);
1213                em = NULL;
1214        }
1215
1216        if (!em) {
1217                struct extent_state *cached = NULL;
1218                u64 end = start + sectorsize - 1;
1219
1220                /* get the big lock and read metadata off disk */
1221                if (!locked)
1222                        lock_extent_bits(io_tree, start, end, &cached);
1223                em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1224                if (!locked)
1225                        unlock_extent_cached(io_tree, start, end, &cached);
1226
1227                if (IS_ERR(em))
1228                        return NULL;
1229        }
1230
1231        return em;
1232}
1233
1234static u32 get_extent_max_capacity(const struct extent_map *em)
1235{
1236        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1237                return BTRFS_MAX_COMPRESSED;
1238        return BTRFS_MAX_EXTENT_SIZE;
1239}
1240
1241static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1242                                     u32 extent_thresh, u64 newer_than, bool locked)
1243{
1244        struct extent_map *next;
1245        bool ret = false;
1246
1247        /* this is the last extent */
1248        if (em->start + em->len >= i_size_read(inode))
1249                return false;
1250
1251        /*
1252         * Here we need to pass @newer_then when checking the next extent, or
1253         * we will hit a case we mark current extent for defrag, but the next
1254         * one will not be a target.
1255         * This will just cause extra IO without really reducing the fragments.
1256         */
1257        next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1258        /* No more em or hole */
1259        if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1260                goto out;
1261        if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1262                goto out;
1263        /*
1264         * If the next extent is at its max capacity, defragging current extent
1265         * makes no sense, as the total number of extents won't change.
1266         */
1267        if (next->len >= get_extent_max_capacity(em))
1268                goto out;
1269        /* Skip older extent */
1270        if (next->generation < newer_than)
1271                goto out;
1272        /* Also check extent size */
1273        if (next->len >= extent_thresh)
1274                goto out;
1275
1276        ret = true;
1277out:
1278        free_extent_map(next);
1279        return ret;
1280}
1281
1282/*
1283 * Prepare one page to be defragged.
1284 *
1285 * This will ensure:
1286 *
1287 * - Returned page is locked and has been set up properly.
1288 * - No ordered extent exists in the page.
1289 * - The page is uptodate.
1290 *
1291 * NOTE: Caller should also wait for page writeback after the cluster is
1292 * prepared, here we don't do writeback wait for each page.
1293 */
1294static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1295                                            pgoff_t index)
1296{
1297        struct address_space *mapping = inode->vfs_inode.i_mapping;
1298        gfp_t mask = btrfs_alloc_write_mask(mapping);
1299        u64 page_start = (u64)index << PAGE_SHIFT;
1300        u64 page_end = page_start + PAGE_SIZE - 1;
1301        struct extent_state *cached_state = NULL;
1302        struct page *page;
1303        int ret;
1304
1305again:
1306        page = find_or_create_page(mapping, index, mask);
1307        if (!page)
1308                return ERR_PTR(-ENOMEM);
1309
1310        /*
1311         * Since we can defragment files opened read-only, we can encounter
1312         * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1313         * can't do I/O using huge pages yet, so return an error for now.
1314         * Filesystem transparent huge pages are typically only used for
1315         * executables that explicitly enable them, so this isn't very
1316         * restrictive.
1317         */
1318        if (PageCompound(page)) {
1319                unlock_page(page);
1320                put_page(page);
1321                return ERR_PTR(-ETXTBSY);
1322        }
1323
1324        ret = set_page_extent_mapped(page);
1325        if (ret < 0) {
1326                unlock_page(page);
1327                put_page(page);
1328                return ERR_PTR(ret);
1329        }
1330
1331        /* Wait for any existing ordered extent in the range */
1332        while (1) {
1333                struct btrfs_ordered_extent *ordered;
1334
1335                lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1336                ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1337                unlock_extent_cached(&inode->io_tree, page_start, page_end,
1338                                     &cached_state);
1339                if (!ordered)
1340                        break;
1341
1342                unlock_page(page);
1343                btrfs_start_ordered_extent(ordered, 1);
1344                btrfs_put_ordered_extent(ordered);
1345                lock_page(page);
1346                /*
1347                 * We unlocked the page above, so we need check if it was
1348                 * released or not.
1349                 */
1350                if (page->mapping != mapping || !PagePrivate(page)) {
1351                        unlock_page(page);
1352                        put_page(page);
1353                        goto again;
1354                }
1355        }
1356
1357        /*
1358         * Now the page range has no ordered extent any more.  Read the page to
1359         * make it uptodate.
1360         */
1361        if (!PageUptodate(page)) {
1362                btrfs_readpage(NULL, page);
1363                lock_page(page);
1364                if (page->mapping != mapping || !PagePrivate(page)) {
1365                        unlock_page(page);
1366                        put_page(page);
1367                        goto again;
1368                }
1369                if (!PageUptodate(page)) {
1370                        unlock_page(page);
1371                        put_page(page);
1372                        return ERR_PTR(-EIO);
1373                }
1374        }
1375        return page;
1376}
1377
1378struct defrag_target_range {
1379        struct list_head list;
1380        u64 start;
1381        u64 len;
1382};
1383
1384/*
1385 * Collect all valid target extents.
1386 *
1387 * @start:         file offset to lookup
1388 * @len:           length to lookup
1389 * @extent_thresh: file extent size threshold, any extent size >= this value
1390 *                 will be ignored
1391 * @newer_than:    only defrag extents newer than this value
1392 * @do_compress:   whether the defrag is doing compression
1393 *                 if true, @extent_thresh will be ignored and all regular
1394 *                 file extents meeting @newer_than will be targets.
1395 * @locked:        if the range has already held extent lock
1396 * @target_list:   list of targets file extents
1397 */
1398static int defrag_collect_targets(struct btrfs_inode *inode,
1399                                  u64 start, u64 len, u32 extent_thresh,
1400                                  u64 newer_than, bool do_compress,
1401                                  bool locked, struct list_head *target_list,
1402                                  u64 *last_scanned_ret)
1403{
1404        bool last_is_target = false;
1405        u64 cur = start;
1406        int ret = 0;
1407
1408        while (cur < start + len) {
1409                struct extent_map *em;
1410                struct defrag_target_range *new;
1411                bool next_mergeable = true;
1412                u64 range_len;
1413
1414                last_is_target = false;
1415                em = defrag_lookup_extent(&inode->vfs_inode, cur,
1416                                          newer_than, locked);
1417                if (!em)
1418                        break;
1419
1420                /* Skip hole/inline/preallocated extents */
1421                if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1422                    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1423                        goto next;
1424
1425                /* Skip older extent */
1426                if (em->generation < newer_than)
1427                        goto next;
1428
1429                /* This em is under writeback, no need to defrag */
1430                if (em->generation == (u64)-1)
1431                        goto next;
1432
1433                /*
1434                 * Our start offset might be in the middle of an existing extent
1435                 * map, so take that into account.
1436                 */
1437                range_len = em->len - (cur - em->start);
1438                /*
1439                 * If this range of the extent map is already flagged for delalloc,
1440                 * skip it, because:
1441                 *
1442                 * 1) We could deadlock later, when trying to reserve space for
1443                 *    delalloc, because in case we can't immediately reserve space
1444                 *    the flusher can start delalloc and wait for the respective
1445                 *    ordered extents to complete. The deadlock would happen
1446                 *    because we do the space reservation while holding the range
1447                 *    locked, and starting writeback, or finishing an ordered
1448                 *    extent, requires locking the range;
1449                 *
1450                 * 2) If there's delalloc there, it means there's dirty pages for
1451                 *    which writeback has not started yet (we clean the delalloc
1452                 *    flag when starting writeback and after creating an ordered
1453                 *    extent). If we mark pages in an adjacent range for defrag,
1454                 *    then we will have a larger contiguous range for delalloc,
1455                 *    very likely resulting in a larger extent after writeback is
1456                 *    triggered (except in a case of free space fragmentation).
1457                 */
1458                if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1459                                   EXTENT_DELALLOC, 0, NULL))
1460                        goto next;
1461
1462                /*
1463                 * For do_compress case, we want to compress all valid file
1464                 * extents, thus no @extent_thresh or mergeable check.
1465                 */
1466                if (do_compress)
1467                        goto add;
1468
1469                /* Skip too large extent */
1470                if (range_len >= extent_thresh)
1471                        goto next;
1472
1473                /*
1474                 * Skip extents already at its max capacity, this is mostly for
1475                 * compressed extents, which max cap is only 128K.
1476                 */
1477                if (em->len >= get_extent_max_capacity(em))
1478                        goto next;
1479
1480                next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1481                                                extent_thresh, newer_than, locked);
1482                if (!next_mergeable) {
1483                        struct defrag_target_range *last;
1484
1485                        /* Empty target list, no way to merge with last entry */
1486                        if (list_empty(target_list))
1487                                goto next;
1488                        last = list_entry(target_list->prev,
1489                                          struct defrag_target_range, list);
1490                        /* Not mergeable with last entry */
1491                        if (last->start + last->len != cur)
1492                                goto next;
1493
1494                        /* Mergeable, fall through to add it to @target_list. */
1495                }
1496
1497add:
1498                last_is_target = true;
1499                range_len = min(extent_map_end(em), start + len) - cur;
1500                /*
1501                 * This one is a good target, check if it can be merged into
1502                 * last range of the target list.
1503                 */
1504                if (!list_empty(target_list)) {
1505                        struct defrag_target_range *last;
1506
1507                        last = list_entry(target_list->prev,
1508                                          struct defrag_target_range, list);
1509                        ASSERT(last->start + last->len <= cur);
1510                        if (last->start + last->len == cur) {
1511                                /* Mergeable, enlarge the last entry */
1512                                last->len += range_len;
1513                                goto next;
1514                        }
1515                        /* Fall through to allocate a new entry */
1516                }
1517
1518                /* Allocate new defrag_target_range */
1519                new = kmalloc(sizeof(*new), GFP_NOFS);
1520                if (!new) {
1521                        free_extent_map(em);
1522                        ret = -ENOMEM;
1523                        break;
1524                }
1525                new->start = cur;
1526                new->len = range_len;
1527                list_add_tail(&new->list, target_list);
1528
1529next:
1530                cur = extent_map_end(em);
1531                free_extent_map(em);
1532        }
1533        if (ret < 0) {
1534                struct defrag_target_range *entry;
1535                struct defrag_target_range *tmp;
1536
1537                list_for_each_entry_safe(entry, tmp, target_list, list) {
1538                        list_del_init(&entry->list);
1539                        kfree(entry);
1540                }
1541        }
1542        if (!ret && last_scanned_ret) {
1543                /*
1544                 * If the last extent is not a target, the caller can skip to
1545                 * the end of that extent.
1546                 * Otherwise, we can only go the end of the specified range.
1547                 */
1548                if (!last_is_target)
1549                        *last_scanned_ret = max(cur, *last_scanned_ret);
1550                else
1551                        *last_scanned_ret = max(start + len, *last_scanned_ret);
1552        }
1553        return ret;
1554}
1555
1556#define CLUSTER_SIZE    (SZ_256K)
1557static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1558
1559/*
1560 * Defrag one contiguous target range.
1561 *
1562 * @inode:      target inode
1563 * @target:     target range to defrag
1564 * @pages:      locked pages covering the defrag range
1565 * @nr_pages:   number of locked pages
1566 *
1567 * Caller should ensure:
1568 *
1569 * - Pages are prepared
1570 *   Pages should be locked, no ordered extent in the pages range,
1571 *   no writeback.
1572 *
1573 * - Extent bits are locked
1574 */
1575static int defrag_one_locked_target(struct btrfs_inode *inode,
1576                                    struct defrag_target_range *target,
1577                                    struct page **pages, int nr_pages,
1578                                    struct extent_state **cached_state)
1579{
1580        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1581        struct extent_changeset *data_reserved = NULL;
1582        const u64 start = target->start;
1583        const u64 len = target->len;
1584        unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1585        unsigned long start_index = start >> PAGE_SHIFT;
1586        unsigned long first_index = page_index(pages[0]);
1587        int ret = 0;
1588        int i;
1589
1590        ASSERT(last_index - first_index + 1 <= nr_pages);
1591
1592        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1593        if (ret < 0)
1594                return ret;
1595        clear_extent_bit(&inode->io_tree, start, start + len - 1,
1596                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1597                         EXTENT_DEFRAG, 0, 0, cached_state);
1598        set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1599
1600        /* Update the page status */
1601        for (i = start_index - first_index; i <= last_index - first_index; i++) {
1602                ClearPageChecked(pages[i]);
1603                btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1604        }
1605        btrfs_delalloc_release_extents(inode, len);
1606        extent_changeset_free(data_reserved);
1607
1608        return ret;
1609}
1610
1611static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1612                            u32 extent_thresh, u64 newer_than, bool do_compress,
1613                            u64 *last_scanned_ret)
1614{
1615        struct extent_state *cached_state = NULL;
1616        struct defrag_target_range *entry;
1617        struct defrag_target_range *tmp;
1618        LIST_HEAD(target_list);
1619        struct page **pages;
1620        const u32 sectorsize = inode->root->fs_info->sectorsize;
1621        u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1622        u64 start_index = start >> PAGE_SHIFT;
1623        unsigned int nr_pages = last_index - start_index + 1;
1624        int ret = 0;
1625        int i;
1626
1627        ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1628        ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1629
1630        pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1631        if (!pages)
1632                return -ENOMEM;
1633
1634        /* Prepare all pages */
1635        for (i = 0; i < nr_pages; i++) {
1636                pages[i] = defrag_prepare_one_page(inode, start_index + i);
1637                if (IS_ERR(pages[i])) {
1638                        ret = PTR_ERR(pages[i]);
1639                        pages[i] = NULL;
1640                        goto free_pages;
1641                }
1642        }
1643        for (i = 0; i < nr_pages; i++)
1644                wait_on_page_writeback(pages[i]);
1645
1646        /* Lock the pages range */
1647        lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1648                         (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1649                         &cached_state);
1650        /*
1651         * Now we have a consistent view about the extent map, re-check
1652         * which range really needs to be defragged.
1653         *
1654         * And this time we have extent locked already, pass @locked = true
1655         * so that we won't relock the extent range and cause deadlock.
1656         */
1657        ret = defrag_collect_targets(inode, start, len, extent_thresh,
1658                                     newer_than, do_compress, true,
1659                                     &target_list, last_scanned_ret);
1660        if (ret < 0)
1661                goto unlock_extent;
1662
1663        list_for_each_entry(entry, &target_list, list) {
1664                ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1665                                               &cached_state);
1666                if (ret < 0)
1667                        break;
1668        }
1669
1670        list_for_each_entry_safe(entry, tmp, &target_list, list) {
1671                list_del_init(&entry->list);
1672                kfree(entry);
1673        }
1674unlock_extent:
1675        unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1676                             (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1677                             &cached_state);
1678free_pages:
1679        for (i = 0; i < nr_pages; i++) {
1680                if (pages[i]) {
1681                        unlock_page(pages[i]);
1682                        put_page(pages[i]);
1683                }
1684        }
1685        kfree(pages);
1686        return ret;
1687}
1688
1689static int defrag_one_cluster(struct btrfs_inode *inode,
1690                              struct file_ra_state *ra,
1691                              u64 start, u32 len, u32 extent_thresh,
1692                              u64 newer_than, bool do_compress,
1693                              unsigned long *sectors_defragged,
1694                              unsigned long max_sectors,
1695                              u64 *last_scanned_ret)
1696{
1697        const u32 sectorsize = inode->root->fs_info->sectorsize;
1698        struct defrag_target_range *entry;
1699        struct defrag_target_range *tmp;
1700        LIST_HEAD(target_list);
1701        int ret;
1702
1703        ret = defrag_collect_targets(inode, start, len, extent_thresh,
1704                                     newer_than, do_compress, false,
1705                                     &target_list, NULL);
1706        if (ret < 0)
1707                goto out;
1708
1709        list_for_each_entry(entry, &target_list, list) {
1710                u32 range_len = entry->len;
1711
1712                /* Reached or beyond the limit */
1713                if (max_sectors && *sectors_defragged >= max_sectors) {
1714                        ret = 1;
1715                        break;
1716                }
1717
1718                if (max_sectors)
1719                        range_len = min_t(u32, range_len,
1720                                (max_sectors - *sectors_defragged) * sectorsize);
1721
1722                /*
1723                 * If defrag_one_range() has updated last_scanned_ret,
1724                 * our range may already be invalid (e.g. hole punched).
1725                 * Skip if our range is before last_scanned_ret, as there is
1726                 * no need to defrag the range anymore.
1727                 */
1728                if (entry->start + range_len <= *last_scanned_ret)
1729                        continue;
1730
1731                if (ra)
1732                        page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1733                                ra, NULL, entry->start >> PAGE_SHIFT,
1734                                ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1735                                (entry->start >> PAGE_SHIFT) + 1);
1736                /*
1737                 * Here we may not defrag any range if holes are punched before
1738                 * we locked the pages.
1739                 * But that's fine, it only affects the @sectors_defragged
1740                 * accounting.
1741                 */
1742                ret = defrag_one_range(inode, entry->start, range_len,
1743                                       extent_thresh, newer_than, do_compress,
1744                                       last_scanned_ret);
1745                if (ret < 0)
1746                        break;
1747                *sectors_defragged += range_len >>
1748                                      inode->root->fs_info->sectorsize_bits;
1749        }
1750out:
1751        list_for_each_entry_safe(entry, tmp, &target_list, list) {
1752                list_del_init(&entry->list);
1753                kfree(entry);
1754        }
1755        if (ret >= 0)
1756                *last_scanned_ret = max(*last_scanned_ret, start + len);
1757        return ret;
1758}
1759
1760/*
1761 * Entry point to file defragmentation.
1762 *
1763 * @inode:         inode to be defragged
1764 * @ra:            readahead state (can be NUL)
1765 * @range:         defrag options including range and flags
1766 * @newer_than:    minimum transid to defrag
1767 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1768 *                 will be defragged.
1769 *
1770 * Return <0 for error.
1771 * Return >=0 for the number of sectors defragged, and range->start will be updated
1772 * to indicate the file offset where next defrag should be started at.
1773 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1774 *  defragging all the range).
1775 */
1776int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1777                      struct btrfs_ioctl_defrag_range_args *range,
1778                      u64 newer_than, unsigned long max_to_defrag)
1779{
1780        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1781        unsigned long sectors_defragged = 0;
1782        u64 isize = i_size_read(inode);
1783        u64 cur;
1784        u64 last_byte;
1785        bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1786        bool ra_allocated = false;
1787        int compress_type = BTRFS_COMPRESS_ZLIB;
1788        int ret = 0;
1789        u32 extent_thresh = range->extent_thresh;
1790        pgoff_t start_index;
1791
1792        if (isize == 0)
1793                return 0;
1794
1795        if (range->start >= isize)
1796                return -EINVAL;
1797
1798        if (do_compress) {
1799                if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1800                        return -EINVAL;
1801                if (range->compress_type)
1802                        compress_type = range->compress_type;
1803        }
1804
1805        if (extent_thresh == 0)
1806                extent_thresh = SZ_256K;
1807
1808        if (range->start + range->len > range->start) {
1809                /* Got a specific range */
1810                last_byte = min(isize, range->start + range->len);
1811        } else {
1812                /* Defrag until file end */
1813                last_byte = isize;
1814        }
1815
1816        /* Align the range */
1817        cur = round_down(range->start, fs_info->sectorsize);
1818        last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1819
1820        /*
1821         * If we were not given a ra, allocate a readahead context. As
1822         * readahead is just an optimization, defrag will work without it so
1823         * we don't error out.
1824         */
1825        if (!ra) {
1826                ra_allocated = true;
1827                ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1828                if (ra)
1829                        file_ra_state_init(ra, inode->i_mapping);
1830        }
1831
1832        /*
1833         * Make writeback start from the beginning of the range, so that the
1834         * defrag range can be written sequentially.
1835         */
1836        start_index = cur >> PAGE_SHIFT;
1837        if (start_index < inode->i_mapping->writeback_index)
1838                inode->i_mapping->writeback_index = start_index;
1839
1840        while (cur < last_byte) {
1841                const unsigned long prev_sectors_defragged = sectors_defragged;
1842                u64 last_scanned = cur;
1843                u64 cluster_end;
1844
1845                if (btrfs_defrag_cancelled(fs_info)) {
1846                        ret = -EAGAIN;
1847                        break;
1848                }
1849
1850                /* We want the cluster end at page boundary when possible */
1851                cluster_end = (((cur >> PAGE_SHIFT) +
1852                               (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1853                cluster_end = min(cluster_end, last_byte);
1854
1855                btrfs_inode_lock(inode, 0);
1856                if (IS_SWAPFILE(inode)) {
1857                        ret = -ETXTBSY;
1858                        btrfs_inode_unlock(inode, 0);
1859                        break;
1860                }
1861                if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1862                        btrfs_inode_unlock(inode, 0);
1863                        break;
1864                }
1865                if (do_compress)
1866                        BTRFS_I(inode)->defrag_compress = compress_type;
1867                ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1868                                cluster_end + 1 - cur, extent_thresh,
1869                                newer_than, do_compress, &sectors_defragged,
1870                                max_to_defrag, &last_scanned);
1871
1872                if (sectors_defragged > prev_sectors_defragged)
1873                        balance_dirty_pages_ratelimited(inode->i_mapping);
1874
1875                btrfs_inode_unlock(inode, 0);
1876                if (ret < 0)
1877                        break;
1878                cur = max(cluster_end + 1, last_scanned);
1879                if (ret > 0) {
1880                        ret = 0;
1881                        break;
1882                }
1883                cond_resched();
1884        }
1885
1886        if (ra_allocated)
1887                kfree(ra);
1888        /*
1889         * Update range.start for autodefrag, this will indicate where to start
1890         * in next run.
1891         */
1892        range->start = cur;
1893        if (sectors_defragged) {
1894                /*
1895                 * We have defragged some sectors, for compression case they
1896                 * need to be written back immediately.
1897                 */
1898                if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1899                        filemap_flush(inode->i_mapping);
1900                        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1901                                     &BTRFS_I(inode)->runtime_flags))
1902                                filemap_flush(inode->i_mapping);
1903                }
1904                if (range->compress_type == BTRFS_COMPRESS_LZO)
1905                        btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1906                else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1907                        btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1908                ret = sectors_defragged;
1909        }
1910        if (do_compress) {
1911                btrfs_inode_lock(inode, 0);
1912                BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1913                btrfs_inode_unlock(inode, 0);
1914        }
1915        return ret;
1916}
1917
1918/*
1919 * Try to start exclusive operation @type or cancel it if it's running.
1920 *
1921 * Return:
1922 *   0        - normal mode, newly claimed op started
1923 *  >0        - normal mode, something else is running,
1924 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1925 * ECANCELED  - cancel mode, successful cancel
1926 * ENOTCONN   - cancel mode, operation not running anymore
1927 */
1928static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1929                        enum btrfs_exclusive_operation type, bool cancel)
1930{
1931        if (!cancel) {
1932                /* Start normal op */
1933                if (!btrfs_exclop_start(fs_info, type))
1934                        return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1935                /* Exclusive operation is now claimed */
1936                return 0;
1937        }
1938
1939        /* Cancel running op */
1940        if (btrfs_exclop_start_try_lock(fs_info, type)) {
1941                /*
1942                 * This blocks any exclop finish from setting it to NONE, so we
1943                 * request cancellation. Either it runs and we will wait for it,
1944                 * or it has finished and no waiting will happen.
1945                 */
1946                atomic_inc(&fs_info->reloc_cancel_req);
1947                btrfs_exclop_start_unlock(fs_info);
1948
1949                if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1950                        wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1951                                    TASK_INTERRUPTIBLE);
1952
1953                return -ECANCELED;
1954        }
1955
1956        /* Something else is running or none */
1957        return -ENOTCONN;
1958}
1959
1960static noinline int btrfs_ioctl_resize(struct file *file,
1961                                        void __user *arg)
1962{
1963        BTRFS_DEV_LOOKUP_ARGS(args);
1964        struct inode *inode = file_inode(file);
1965        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1966        u64 new_size;
1967        u64 old_size;
1968        u64 devid = 1;
1969        struct btrfs_root *root = BTRFS_I(inode)->root;
1970        struct btrfs_ioctl_vol_args *vol_args;
1971        struct btrfs_trans_handle *trans;
1972        struct btrfs_device *device = NULL;
1973        char *sizestr;
1974        char *retptr;
1975        char *devstr = NULL;
1976        int ret = 0;
1977        int mod = 0;
1978        bool cancel;
1979
1980        if (!capable(CAP_SYS_ADMIN))
1981                return -EPERM;
1982
1983        ret = mnt_want_write_file(file);
1984        if (ret)
1985                return ret;
1986
1987        /*
1988         * Read the arguments before checking exclusivity to be able to
1989         * distinguish regular resize and cancel
1990         */
1991        vol_args = memdup_user(arg, sizeof(*vol_args));
1992        if (IS_ERR(vol_args)) {
1993                ret = PTR_ERR(vol_args);
1994                goto out_drop;
1995        }
1996        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1997        sizestr = vol_args->name;
1998        cancel = (strcmp("cancel", sizestr) == 0);
1999        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2000        if (ret)
2001                goto out_free;
2002        /* Exclusive operation is now claimed */
2003
2004        devstr = strchr(sizestr, ':');
2005        if (devstr) {
2006                sizestr = devstr + 1;
2007                *devstr = '\0';
2008                devstr = vol_args->name;
2009                ret = kstrtoull(devstr, 10, &devid);
2010                if (ret)
2011                        goto out_finish;
2012                if (!devid) {
2013                        ret = -EINVAL;
2014                        goto out_finish;
2015                }
2016                btrfs_info(fs_info, "resizing devid %llu", devid);
2017        }
2018
2019        args.devid = devid;
2020        device = btrfs_find_device(fs_info->fs_devices, &args);
2021        if (!device) {
2022                btrfs_info(fs_info, "resizer unable to find device %llu",
2023                           devid);
2024                ret = -ENODEV;
2025                goto out_finish;
2026        }
2027
2028        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2029                btrfs_info(fs_info,
2030                           "resizer unable to apply on readonly device %llu",
2031                       devid);
2032                ret = -EPERM;
2033                goto out_finish;
2034        }
2035
2036        if (!strcmp(sizestr, "max"))
2037                new_size = bdev_nr_bytes(device->bdev);
2038        else {
2039                if (sizestr[0] == '-') {
2040                        mod = -1;
2041                        sizestr++;
2042                } else if (sizestr[0] == '+') {
2043                        mod = 1;
2044                        sizestr++;
2045                }
2046                new_size = memparse(sizestr, &retptr);
2047                if (*retptr != '\0' || new_size == 0) {
2048                        ret = -EINVAL;
2049                        goto out_finish;
2050                }
2051        }
2052
2053        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2054                ret = -EPERM;
2055                goto out_finish;
2056        }
2057
2058        old_size = btrfs_device_get_total_bytes(device);
2059
2060        if (mod < 0) {
2061                if (new_size > old_size) {
2062                        ret = -EINVAL;
2063                        goto out_finish;
2064                }
2065                new_size = old_size - new_size;
2066        } else if (mod > 0) {
2067                if (new_size > ULLONG_MAX - old_size) {
2068                        ret = -ERANGE;
2069                        goto out_finish;
2070                }
2071                new_size = old_size + new_size;
2072        }
2073
2074        if (new_size < SZ_256M) {
2075                ret = -EINVAL;
2076                goto out_finish;
2077        }
2078        if (new_size > bdev_nr_bytes(device->bdev)) {
2079                ret = -EFBIG;
2080                goto out_finish;
2081        }
2082
2083        new_size = round_down(new_size, fs_info->sectorsize);
2084
2085        if (new_size > old_size) {
2086                trans = btrfs_start_transaction(root, 0);
2087                if (IS_ERR(trans)) {
2088                        ret = PTR_ERR(trans);
2089                        goto out_finish;
2090                }
2091                ret = btrfs_grow_device(trans, device, new_size);
2092                btrfs_commit_transaction(trans);
2093        } else if (new_size < old_size) {
2094                ret = btrfs_shrink_device(device, new_size);
2095        } /* equal, nothing need to do */
2096
2097        if (ret == 0 && new_size != old_size)
2098                btrfs_info_in_rcu(fs_info,
2099                        "resize device %s (devid %llu) from %llu to %llu",
2100                        rcu_str_deref(device->name), device->devid,
2101                        old_size, new_size);
2102out_finish:
2103        btrfs_exclop_finish(fs_info);
2104out_free:
2105        kfree(vol_args);
2106out_drop:
2107        mnt_drop_write_file(file);
2108        return ret;
2109}
2110
2111static noinline int __btrfs_ioctl_snap_create(struct file *file,
2112                                struct user_namespace *mnt_userns,
2113                                const char *name, unsigned long fd, int subvol,
2114                                bool readonly,
2115                                struct btrfs_qgroup_inherit *inherit)
2116{
2117        int namelen;
2118        int ret = 0;
2119
2120        if (!S_ISDIR(file_inode(file)->i_mode))
2121                return -ENOTDIR;
2122
2123        ret = mnt_want_write_file(file);
2124        if (ret)
2125                goto out;
2126
2127        namelen = strlen(name);
2128        if (strchr(name, '/')) {
2129                ret = -EINVAL;
2130                goto out_drop_write;
2131        }
2132
2133        if (name[0] == '.' &&
2134           (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2135                ret = -EEXIST;
2136                goto out_drop_write;
2137        }
2138
2139        if (subvol) {
2140                ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2141                                     namelen, NULL, readonly, inherit);
2142        } else {
2143                struct fd src = fdget(fd);
2144                struct inode *src_inode;
2145                if (!src.file) {
2146                        ret = -EINVAL;
2147                        goto out_drop_write;
2148                }
2149
2150                src_inode = file_inode(src.file);
2151                if (src_inode->i_sb != file_inode(file)->i_sb) {
2152                        btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2153                                   "Snapshot src from another FS");
2154                        ret = -EXDEV;
2155                } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2156                        /*
2157                         * Subvolume creation is not restricted, but snapshots
2158                         * are limited to own subvolumes only
2159                         */
2160                        ret = -EPERM;
2161                } else {
2162                        ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2163                                               name, namelen,
2164                                               BTRFS_I(src_inode)->root,
2165                                               readonly, inherit);
2166                }
2167                fdput(src);
2168        }
2169out_drop_write:
2170        mnt_drop_write_file(file);
2171out:
2172        return ret;
2173}
2174
2175static noinline int btrfs_ioctl_snap_create(struct file *file,
2176                                            void __user *arg, int subvol)
2177{
2178        struct btrfs_ioctl_vol_args *vol_args;
2179        int ret;
2180
2181        if (!S_ISDIR(file_inode(file)->i_mode))
2182                return -ENOTDIR;
2183
2184        vol_args = memdup_user(arg, sizeof(*vol_args));
2185        if (IS_ERR(vol_args))
2186                return PTR_ERR(vol_args);
2187        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2188
2189        ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2190                                        vol_args->name, vol_args->fd, subvol,
2191                                        false, NULL);
2192
2193        kfree(vol_args);
2194        return ret;
2195}
2196
2197static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2198                                               void __user *arg, int subvol)
2199{
2200        struct btrfs_ioctl_vol_args_v2 *vol_args;
2201        int ret;
2202        bool readonly = false;
2203        struct btrfs_qgroup_inherit *inherit = NULL;
2204
2205        if (!S_ISDIR(file_inode(file)->i_mode))
2206                return -ENOTDIR;
2207
2208        vol_args = memdup_user(arg, sizeof(*vol_args));
2209        if (IS_ERR(vol_args))
2210                return PTR_ERR(vol_args);
2211        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2212
2213        if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2214                ret = -EOPNOTSUPP;
2215                goto free_args;
2216        }
2217
2218        if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2219                readonly = true;
2220        if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2221                u64 nums;
2222
2223                if (vol_args->size < sizeof(*inherit) ||
2224                    vol_args->size > PAGE_SIZE) {
2225                        ret = -EINVAL;
2226                        goto free_args;
2227                }
2228                inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2229                if (IS_ERR(inherit)) {
2230                        ret = PTR_ERR(inherit);
2231                        goto free_args;
2232                }
2233
2234                if (inherit->num_qgroups > PAGE_SIZE ||
2235                    inherit->num_ref_copies > PAGE_SIZE ||
2236                    inherit->num_excl_copies > PAGE_SIZE) {
2237                        ret = -EINVAL;
2238                        goto free_inherit;
2239                }
2240
2241                nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2242                       2 * inherit->num_excl_copies;
2243                if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2244                        ret = -EINVAL;
2245                        goto free_inherit;
2246                }
2247        }
2248
2249        ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2250                                        vol_args->name, vol_args->fd, subvol,
2251                                        readonly, inherit);
2252        if (ret)
2253                goto free_inherit;
2254free_inherit:
2255        kfree(inherit);
2256free_args:
2257        kfree(vol_args);
2258        return ret;
2259}
2260
2261static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2262                                                void __user *arg)
2263{
2264        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265        struct btrfs_root *root = BTRFS_I(inode)->root;
2266        int ret = 0;
2267        u64 flags = 0;
2268
2269        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2270                return -EINVAL;
2271
2272        down_read(&fs_info->subvol_sem);
2273        if (btrfs_root_readonly(root))
2274                flags |= BTRFS_SUBVOL_RDONLY;
2275        up_read(&fs_info->subvol_sem);
2276
2277        if (copy_to_user(arg, &flags, sizeof(flags)))
2278                ret = -EFAULT;
2279
2280        return ret;
2281}
2282
2283static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2284                                              void __user *arg)
2285{
2286        struct inode *inode = file_inode(file);
2287        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2288        struct btrfs_root *root = BTRFS_I(inode)->root;
2289        struct btrfs_trans_handle *trans;
2290        u64 root_flags;
2291        u64 flags;
2292        int ret = 0;
2293
2294        if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2295                return -EPERM;
2296
2297        ret = mnt_want_write_file(file);
2298        if (ret)
2299                goto out;
2300
2301        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2302                ret = -EINVAL;
2303                goto out_drop_write;
2304        }
2305
2306        if (copy_from_user(&flags, arg, sizeof(flags))) {
2307                ret = -EFAULT;
2308                goto out_drop_write;
2309        }
2310
2311        if (flags & ~BTRFS_SUBVOL_RDONLY) {
2312                ret = -EOPNOTSUPP;
2313                goto out_drop_write;
2314        }
2315
2316        down_write(&fs_info->subvol_sem);
2317
2318        /* nothing to do */
2319        if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2320                goto out_drop_sem;
2321
2322        root_flags = btrfs_root_flags(&root->root_item);
2323        if (flags & BTRFS_SUBVOL_RDONLY) {
2324                btrfs_set_root_flags(&root->root_item,
2325                                     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2326        } else {
2327                /*
2328                 * Block RO -> RW transition if this subvolume is involved in
2329                 * send
2330                 */
2331                spin_lock(&root->root_item_lock);
2332                if (root->send_in_progress == 0) {
2333                        btrfs_set_root_flags(&root->root_item,
2334                                     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2335                        spin_unlock(&root->root_item_lock);
2336                } else {
2337                        spin_unlock(&root->root_item_lock);
2338                        btrfs_warn(fs_info,
2339                                   "Attempt to set subvolume %llu read-write during send",
2340                                   root->root_key.objectid);
2341                        ret = -EPERM;
2342                        goto out_drop_sem;
2343                }
2344        }
2345
2346        trans = btrfs_start_transaction(root, 1);
2347        if (IS_ERR(trans)) {
2348                ret = PTR_ERR(trans);
2349                goto out_reset;
2350        }
2351
2352        ret = btrfs_update_root(trans, fs_info->tree_root,
2353                                &root->root_key, &root->root_item);
2354        if (ret < 0) {
2355                btrfs_end_transaction(trans);
2356                goto out_reset;
2357        }
2358
2359        ret = btrfs_commit_transaction(trans);
2360
2361out_reset:
2362        if (ret)
2363                btrfs_set_root_flags(&root->root_item, root_flags);
2364out_drop_sem:
2365        up_write(&fs_info->subvol_sem);
2366out_drop_write:
2367        mnt_drop_write_file(file);
2368out:
2369        return ret;
2370}
2371
2372static noinline int key_in_sk(struct btrfs_key *key,
2373                              struct btrfs_ioctl_search_key *sk)
2374{
2375        struct btrfs_key test;
2376        int ret;
2377
2378        test.objectid = sk->min_objectid;
2379        test.type = sk->min_type;
2380        test.offset = sk->min_offset;
2381
2382        ret = btrfs_comp_cpu_keys(key, &test);
2383        if (ret < 0)
2384                return 0;
2385
2386        test.objectid = sk->max_objectid;
2387        test.type = sk->max_type;
2388        test.offset = sk->max_offset;
2389
2390        ret = btrfs_comp_cpu_keys(key, &test);
2391        if (ret > 0)
2392                return 0;
2393        return 1;
2394}
2395
2396static noinline int copy_to_sk(struct btrfs_path *path,
2397                               struct btrfs_key *key,
2398                               struct btrfs_ioctl_search_key *sk,
2399                               size_t *buf_size,
2400                               char __user *ubuf,
2401                               unsigned long *sk_offset,
2402                               int *num_found)
2403{
2404        u64 found_transid;
2405        struct extent_buffer *leaf;
2406        struct btrfs_ioctl_search_header sh;
2407        struct btrfs_key test;
2408        unsigned long item_off;
2409        unsigned long item_len;
2410        int nritems;
2411        int i;
2412        int slot;
2413        int ret = 0;
2414
2415        leaf = path->nodes[0];
2416        slot = path->slots[0];
2417        nritems = btrfs_header_nritems(leaf);
2418
2419        if (btrfs_header_generation(leaf) > sk->max_transid) {
2420                i = nritems;
2421                goto advance_key;
2422        }
2423        found_transid = btrfs_header_generation(leaf);
2424
2425        for (i = slot; i < nritems; i++) {
2426                item_off = btrfs_item_ptr_offset(leaf, i);
2427                item_len = btrfs_item_size(leaf, i);
2428
2429                btrfs_item_key_to_cpu(leaf, key, i);
2430                if (!key_in_sk(key, sk))
2431                        continue;
2432
2433                if (sizeof(sh) + item_len > *buf_size) {
2434                        if (*num_found) {
2435                                ret = 1;
2436                                goto out;
2437                        }
2438
2439                        /*
2440                         * return one empty item back for v1, which does not
2441                         * handle -EOVERFLOW
2442                         */
2443
2444                        *buf_size = sizeof(sh) + item_len;
2445                        item_len = 0;
2446                        ret = -EOVERFLOW;
2447                }
2448
2449                if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2450                        ret = 1;
2451                        goto out;
2452                }
2453
2454                sh.objectid = key->objectid;
2455                sh.offset = key->offset;
2456                sh.type = key->type;
2457                sh.len = item_len;
2458                sh.transid = found_transid;
2459
2460                /*
2461                 * Copy search result header. If we fault then loop again so we
2462                 * can fault in the pages and -EFAULT there if there's a
2463                 * problem. Otherwise we'll fault and then copy the buffer in
2464                 * properly this next time through
2465                 */
2466                if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2467                        ret = 0;
2468                        goto out;
2469                }
2470
2471                *sk_offset += sizeof(sh);
2472
2473                if (item_len) {
2474                        char __user *up = ubuf + *sk_offset;
2475                        /*
2476                         * Copy the item, same behavior as above, but reset the
2477                         * * sk_offset so we copy the full thing again.
2478                         */
2479                        if (read_extent_buffer_to_user_nofault(leaf, up,
2480                                                item_off, item_len)) {
2481                                ret = 0;
2482                                *sk_offset -= sizeof(sh);
2483                                goto out;
2484                        }
2485
2486                        *sk_offset += item_len;
2487                }
2488                (*num_found)++;
2489
2490                if (ret) /* -EOVERFLOW from above */
2491                        goto out;
2492
2493                if (*num_found >= sk->nr_items) {
2494                        ret = 1;
2495                        goto out;
2496                }
2497        }
2498advance_key:
2499        ret = 0;
2500        test.objectid = sk->max_objectid;
2501        test.type = sk->max_type;
2502        test.offset = sk->max_offset;
2503        if (btrfs_comp_cpu_keys(key, &test) >= 0)
2504                ret = 1;
2505        else if (key->offset < (u64)-1)
2506                key->offset++;
2507        else if (key->type < (u8)-1) {
2508                key->offset = 0;
2509                key->type++;
2510        } else if (key->objectid < (u64)-1) {
2511                key->offset = 0;
2512                key->type = 0;
2513                key->objectid++;
2514        } else
2515                ret = 1;
2516out:
2517        /*
2518         *  0: all items from this leaf copied, continue with next
2519         *  1: * more items can be copied, but unused buffer is too small
2520         *     * all items were found
2521         *     Either way, it will stops the loop which iterates to the next
2522         *     leaf
2523         *  -EOVERFLOW: item was to large for buffer
2524         *  -EFAULT: could not copy extent buffer back to userspace
2525         */
2526        return ret;
2527}
2528
2529static noinline int search_ioctl(struct inode *inode,
2530                                 struct btrfs_ioctl_search_key *sk,
2531                                 size_t *buf_size,
2532                                 char __user *ubuf)
2533{
2534        struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2535        struct btrfs_root *root;
2536        struct btrfs_key key;
2537        struct btrfs_path *path;
2538        int ret;
2539        int num_found = 0;
2540        unsigned long sk_offset = 0;
2541
2542        if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2543                *buf_size = sizeof(struct btrfs_ioctl_search_header);
2544                return -EOVERFLOW;
2545        }
2546
2547        path = btrfs_alloc_path();
2548        if (!path)
2549                return -ENOMEM;
2550
2551        if (sk->tree_id == 0) {
2552                /* search the root of the inode that was passed */
2553                root = btrfs_grab_root(BTRFS_I(inode)->root);
2554        } else {
2555                root = btrfs_get_fs_root(info, sk->tree_id, true);
2556                if (IS_ERR(root)) {
2557                        btrfs_free_path(path);
2558                        return PTR_ERR(root);
2559                }
2560        }
2561
2562        key.objectid = sk->min_objectid;
2563        key.type = sk->min_type;
2564        key.offset = sk->min_offset;
2565
2566        while (1) {
2567                ret = -EFAULT;
2568                if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2569                        break;
2570
2571                ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2572                if (ret != 0) {
2573                        if (ret > 0)
2574                                ret = 0;
2575                        goto err;
2576                }
2577                ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2578                                 &sk_offset, &num_found);
2579                btrfs_release_path(path);
2580                if (ret)
2581                        break;
2582
2583        }
2584        if (ret > 0)
2585                ret = 0;
2586err:
2587        sk->nr_items = num_found;
2588        btrfs_put_root(root);
2589        btrfs_free_path(path);
2590        return ret;
2591}
2592
2593static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2594                                            void __user *argp)
2595{
2596        struct btrfs_ioctl_search_args __user *uargs;
2597        struct btrfs_ioctl_search_key sk;
2598        int ret;
2599        size_t buf_size;
2600
2601        if (!capable(CAP_SYS_ADMIN))
2602                return -EPERM;
2603
2604        uargs = (struct btrfs_ioctl_search_args __user *)argp;
2605
2606        if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2607                return -EFAULT;
2608
2609        buf_size = sizeof(uargs->buf);
2610
2611        ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2612
2613        /*
2614         * In the origin implementation an overflow is handled by returning a
2615         * search header with a len of zero, so reset ret.
2616         */
2617        if (ret == -EOVERFLOW)
2618                ret = 0;
2619
2620        if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2621                ret = -EFAULT;
2622        return ret;
2623}
2624
2625static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2626                                               void __user *argp)
2627{
2628        struct btrfs_ioctl_search_args_v2 __user *uarg;
2629        struct btrfs_ioctl_search_args_v2 args;
2630        int ret;
2631        size_t buf_size;
2632        const size_t buf_limit = SZ_16M;
2633
2634        if (!capable(CAP_SYS_ADMIN))
2635                return -EPERM;
2636
2637        /* copy search header and buffer size */
2638        uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2639        if (copy_from_user(&args, uarg, sizeof(args)))
2640                return -EFAULT;
2641
2642        buf_size = args.buf_size;
2643
2644        /* limit result size to 16MB */
2645        if (buf_size > buf_limit)
2646                buf_size = buf_limit;
2647
2648        ret = search_ioctl(inode, &args.key, &buf_size,
2649                           (char __user *)(&uarg->buf[0]));
2650        if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2651                ret = -EFAULT;
2652        else if (ret == -EOVERFLOW &&
2653                copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2654                ret = -EFAULT;
2655
2656        return ret;
2657}
2658
2659/*
2660 * Search INODE_REFs to identify path name of 'dirid' directory
2661 * in a 'tree_id' tree. and sets path name to 'name'.
2662 */
2663static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2664                                u64 tree_id, u64 dirid, char *name)
2665{
2666        struct btrfs_root *root;
2667        struct btrfs_key key;
2668        char *ptr;
2669        int ret = -1;
2670        int slot;
2671        int len;
2672        int total_len = 0;
2673        struct btrfs_inode_ref *iref;
2674        struct extent_buffer *l;
2675        struct btrfs_path *path;
2676
2677        if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2678                name[0]='\0';
2679                return 0;
2680        }
2681
2682        path = btrfs_alloc_path();
2683        if (!path)
2684                return -ENOMEM;
2685
2686        ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2687
2688        root = btrfs_get_fs_root(info, tree_id, true);
2689        if (IS_ERR(root)) {
2690                ret = PTR_ERR(root);
2691                root = NULL;
2692                goto out;
2693        }
2694
2695        key.objectid = dirid;
2696        key.type = BTRFS_INODE_REF_KEY;
2697        key.offset = (u64)-1;
2698
2699        while (1) {
2700                ret = btrfs_search_backwards(root, &key, path);
2701                if (ret < 0)
2702                        goto out;
2703                else if (ret > 0) {
2704                        ret = -ENOENT;
2705                        goto out;
2706                }
2707
2708                l = path->nodes[0];
2709                slot = path->slots[0];
2710
2711                iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2712                len = btrfs_inode_ref_name_len(l, iref);
2713                ptr -= len + 1;
2714                total_len += len + 1;
2715                if (ptr < name) {
2716                        ret = -ENAMETOOLONG;
2717                        goto out;
2718                }
2719
2720                *(ptr + len) = '/';
2721                read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2722
2723                if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2724                        break;
2725
2726                btrfs_release_path(path);
2727                key.objectid = key.offset;
2728                key.offset = (u64)-1;
2729                dirid = key.objectid;
2730        }
2731        memmove(name, ptr, total_len);
2732        name[total_len] = '\0';
2733        ret = 0;
2734out:
2735        btrfs_put_root(root);
2736        btrfs_free_path(path);
2737        return ret;
2738}
2739
2740static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2741                                struct inode *inode,
2742                                struct btrfs_ioctl_ino_lookup_user_args *args)
2743{
2744        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2745        struct super_block *sb = inode->i_sb;
2746        struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2747        u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2748        u64 dirid = args->dirid;
2749        unsigned long item_off;
2750        unsigned long item_len;
2751        struct btrfs_inode_ref *iref;
2752        struct btrfs_root_ref *rref;
2753        struct btrfs_root *root = NULL;
2754        struct btrfs_path *path;
2755        struct btrfs_key key, key2;
2756        struct extent_buffer *leaf;
2757        struct inode *temp_inode;
2758        char *ptr;
2759        int slot;
2760        int len;
2761        int total_len = 0;
2762        int ret;
2763
2764        path = btrfs_alloc_path();
2765        if (!path)
2766                return -ENOMEM;
2767
2768        /*
2769         * If the bottom subvolume does not exist directly under upper_limit,
2770         * construct the path in from the bottom up.
2771         */
2772        if (dirid != upper_limit.objectid) {
2773                ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2774
2775                root = btrfs_get_fs_root(fs_info, treeid, true);
2776                if (IS_ERR(root)) {
2777                        ret = PTR_ERR(root);
2778                        goto out;
2779                }
2780
2781                key.objectid = dirid;
2782                key.type = BTRFS_INODE_REF_KEY;
2783                key.offset = (u64)-1;
2784                while (1) {
2785                        ret = btrfs_search_backwards(root, &key, path);
2786                        if (ret < 0)
2787                                goto out_put;
2788                        else if (ret > 0) {
2789                                ret = -ENOENT;
2790                                goto out_put;
2791                        }
2792
2793                        leaf = path->nodes[0];
2794                        slot = path->slots[0];
2795
2796                        iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2797                        len = btrfs_inode_ref_name_len(leaf, iref);
2798                        ptr -= len + 1;
2799                        total_len += len + 1;
2800                        if (ptr < args->path) {
2801                                ret = -ENAMETOOLONG;
2802                                goto out_put;
2803                        }
2804
2805                        *(ptr + len) = '/';
2806                        read_extent_buffer(leaf, ptr,
2807                                        (unsigned long)(iref + 1), len);
2808
2809                        /* Check the read+exec permission of this directory */
2810                        ret = btrfs_previous_item(root, path, dirid,
2811                                                  BTRFS_INODE_ITEM_KEY);
2812                        if (ret < 0) {
2813                                goto out_put;
2814                        } else if (ret > 0) {
2815                                ret = -ENOENT;
2816                                goto out_put;
2817                        }
2818
2819                        leaf = path->nodes[0];
2820                        slot = path->slots[0];
2821                        btrfs_item_key_to_cpu(leaf, &key2, slot);
2822                        if (key2.objectid != dirid) {
2823                                ret = -ENOENT;
2824                                goto out_put;
2825                        }
2826
2827                        temp_inode = btrfs_iget(sb, key2.objectid, root);
2828                        if (IS_ERR(temp_inode)) {
2829                                ret = PTR_ERR(temp_inode);
2830                                goto out_put;
2831                        }
2832                        ret = inode_permission(mnt_userns, temp_inode,
2833                                               MAY_READ | MAY_EXEC);
2834                        iput(temp_inode);
2835                        if (ret) {
2836                                ret = -EACCES;
2837                                goto out_put;
2838                        }
2839
2840                        if (key.offset == upper_limit.objectid)
2841                                break;
2842                        if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2843                                ret = -EACCES;
2844                                goto out_put;
2845                        }
2846
2847                        btrfs_release_path(path);
2848                        key.objectid = key.offset;
2849                        key.offset = (u64)-1;
2850                        dirid = key.objectid;
2851                }
2852
2853                memmove(args->path, ptr, total_len);
2854                args->path[total_len] = '\0';
2855                btrfs_put_root(root);
2856                root = NULL;
2857                btrfs_release_path(path);
2858        }
2859
2860        /* Get the bottom subvolume's name from ROOT_REF */
2861        key.objectid = treeid;
2862        key.type = BTRFS_ROOT_REF_KEY;
2863        key.offset = args->treeid;
2864        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2865        if (ret < 0) {
2866                goto out;
2867        } else if (ret > 0) {
2868                ret = -ENOENT;
2869                goto out;
2870        }
2871
2872        leaf = path->nodes[0];
2873        slot = path->slots[0];
2874        btrfs_item_key_to_cpu(leaf, &key, slot);
2875
2876        item_off = btrfs_item_ptr_offset(leaf, slot);
2877        item_len = btrfs_item_size(leaf, slot);
2878        /* Check if dirid in ROOT_REF corresponds to passed dirid */
2879        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2880        if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2881                ret = -EINVAL;
2882                goto out;
2883        }
2884
2885        /* Copy subvolume's name */
2886        item_off += sizeof(struct btrfs_root_ref);
2887        item_len -= sizeof(struct btrfs_root_ref);
2888        read_extent_buffer(leaf, args->name, item_off, item_len);
2889        args->name[item_len] = 0;
2890
2891out_put:
2892        btrfs_put_root(root);
2893out:
2894        btrfs_free_path(path);
2895        return ret;
2896}
2897
2898static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2899                                           void __user *argp)
2900{
2901        struct btrfs_ioctl_ino_lookup_args *args;
2902        int ret = 0;
2903
2904        args = memdup_user(argp, sizeof(*args));
2905        if (IS_ERR(args))
2906                return PTR_ERR(args);
2907
2908        /*
2909         * Unprivileged query to obtain the containing subvolume root id. The
2910         * path is reset so it's consistent with btrfs_search_path_in_tree.
2911         */
2912        if (args->treeid == 0)
2913                args->treeid = root->root_key.objectid;
2914
2915        if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2916                args->name[0] = 0;
2917                goto out;
2918        }
2919
2920        if (!capable(CAP_SYS_ADMIN)) {
2921                ret = -EPERM;
2922                goto out;
2923        }
2924
2925        ret = btrfs_search_path_in_tree(root->fs_info,
2926                                        args->treeid, args->objectid,
2927                                        args->name);
2928
2929out:
2930        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2931                ret = -EFAULT;
2932
2933        kfree(args);
2934        return ret;
2935}
2936
2937/*
2938 * Version of ino_lookup ioctl (unprivileged)
2939 *
2940 * The main differences from ino_lookup ioctl are:
2941 *
2942 *   1. Read + Exec permission will be checked using inode_permission() during
2943 *      path construction. -EACCES will be returned in case of failure.
2944 *   2. Path construction will be stopped at the inode number which corresponds
2945 *      to the fd with which this ioctl is called. If constructed path does not
2946 *      exist under fd's inode, -EACCES will be returned.
2947 *   3. The name of bottom subvolume is also searched and filled.
2948 */
2949static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2950{
2951        struct btrfs_ioctl_ino_lookup_user_args *args;
2952        struct inode *inode;
2953        int ret;
2954
2955        args = memdup_user(argp, sizeof(*args));
2956        if (IS_ERR(args))
2957                return PTR_ERR(args);
2958
2959        inode = file_inode(file);
2960
2961        if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2962            BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2963                /*
2964                 * The subvolume does not exist under fd with which this is
2965                 * called
2966                 */
2967                kfree(args);
2968                return -EACCES;
2969        }
2970
2971        ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2972
2973        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2974                ret = -EFAULT;
2975
2976        kfree(args);
2977        return ret;
2978}
2979
2980/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2981static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2982{
2983        struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2984        struct btrfs_fs_info *fs_info;
2985        struct btrfs_root *root;
2986        struct btrfs_path *path;
2987        struct btrfs_key key;
2988        struct btrfs_root_item *root_item;
2989        struct btrfs_root_ref *rref;
2990        struct extent_buffer *leaf;
2991        unsigned long item_off;
2992        unsigned long item_len;
2993        int slot;
2994        int ret = 0;
2995
2996        path = btrfs_alloc_path();
2997        if (!path)
2998                return -ENOMEM;
2999
3000        subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3001        if (!subvol_info) {
3002                btrfs_free_path(path);
3003                return -ENOMEM;
3004        }
3005
3006        fs_info = BTRFS_I(inode)->root->fs_info;
3007
3008        /* Get root_item of inode's subvolume */
3009        key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3010        root = btrfs_get_fs_root(fs_info, key.objectid, true);
3011        if (IS_ERR(root)) {
3012                ret = PTR_ERR(root);
3013                goto out_free;
3014        }
3015        root_item = &root->root_item;
3016
3017        subvol_info->treeid = key.objectid;
3018
3019        subvol_info->generation = btrfs_root_generation(root_item);
3020        subvol_info->flags = btrfs_root_flags(root_item);
3021
3022        memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3023        memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3024                                                    BTRFS_UUID_SIZE);
3025        memcpy(subvol_info->received_uuid, root_item->received_uuid,
3026                                                    BTRFS_UUID_SIZE);
3027
3028        subvol_info->ctransid = btrfs_root_ctransid(root_item);
3029        subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3030        subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3031
3032        subvol_info->otransid = btrfs_root_otransid(root_item);
3033        subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3034        subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3035
3036        subvol_info->stransid = btrfs_root_stransid(root_item);
3037        subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3038        subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3039
3040        subvol_info->rtransid = btrfs_root_rtransid(root_item);
3041        subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3042        subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3043
3044        if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3045                /* Search root tree for ROOT_BACKREF of this subvolume */
3046                key.type = BTRFS_ROOT_BACKREF_KEY;
3047                key.offset = 0;
3048                ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3049                if (ret < 0) {
3050                        goto out;
3051                } else if (path->slots[0] >=
3052                           btrfs_header_nritems(path->nodes[0])) {
3053                        ret = btrfs_next_leaf(fs_info->tree_root, path);
3054                        if (ret < 0) {
3055                                goto out;
3056                        } else if (ret > 0) {
3057                                ret = -EUCLEAN;
3058                                goto out;
3059                        }
3060                }
3061
3062                leaf = path->nodes[0];
3063                slot = path->slots[0];
3064                btrfs_item_key_to_cpu(leaf, &key, slot);
3065                if (key.objectid == subvol_info->treeid &&
3066                    key.type == BTRFS_ROOT_BACKREF_KEY) {
3067                        subvol_info->parent_id = key.offset;
3068
3069                        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3070                        subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3071
3072                        item_off = btrfs_item_ptr_offset(leaf, slot)
3073                                        + sizeof(struct btrfs_root_ref);
3074                        item_len = btrfs_item_size(leaf, slot)
3075                                        - sizeof(struct btrfs_root_ref);
3076                        read_extent_buffer(leaf, subvol_info->name,
3077                                           item_off, item_len);
3078                } else {
3079                        ret = -ENOENT;
3080                        goto out;
3081                }
3082        }
3083
3084        if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3085                ret = -EFAULT;
3086
3087out:
3088        btrfs_put_root(root);
3089out_free:
3090        btrfs_free_path(path);
3091        kfree(subvol_info);
3092        return ret;
3093}
3094
3095/*
3096 * Return ROOT_REF information of the subvolume containing this inode
3097 * except the subvolume name.
3098 */
3099static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3100                                          void __user *argp)
3101{
3102        struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3103        struct btrfs_root_ref *rref;
3104        struct btrfs_path *path;
3105        struct btrfs_key key;
3106        struct extent_buffer *leaf;
3107        u64 objectid;
3108        int slot;
3109        int ret;
3110        u8 found;
3111
3112        path = btrfs_alloc_path();
3113        if (!path)
3114                return -ENOMEM;
3115
3116        rootrefs = memdup_user(argp, sizeof(*rootrefs));
3117        if (IS_ERR(rootrefs)) {
3118                btrfs_free_path(path);
3119                return PTR_ERR(rootrefs);
3120        }
3121
3122        objectid = root->root_key.objectid;
3123        key.objectid = objectid;
3124        key.type = BTRFS_ROOT_REF_KEY;
3125        key.offset = rootrefs->min_treeid;
3126        found = 0;
3127
3128        root = root->fs_info->tree_root;
3129        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3130        if (ret < 0) {
3131                goto out;
3132        } else if (path->slots[0] >=
3133                   btrfs_header_nritems(path->nodes[0])) {
3134                ret = btrfs_next_leaf(root, path);
3135                if (ret < 0) {
3136                        goto out;
3137                } else if (ret > 0) {
3138                        ret = -EUCLEAN;
3139                        goto out;
3140                }
3141        }
3142        while (1) {
3143                leaf = path->nodes[0];
3144                slot = path->slots[0];
3145
3146                btrfs_item_key_to_cpu(leaf, &key, slot);
3147                if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3148                        ret = 0;
3149                        goto out;
3150                }
3151
3152                if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3153                        ret = -EOVERFLOW;
3154                        goto out;
3155                }
3156
3157                rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3158                rootrefs->rootref[found].treeid = key.offset;
3159                rootrefs->rootref[found].dirid =
3160                                  btrfs_root_ref_dirid(leaf, rref);
3161                found++;
3162
3163                ret = btrfs_next_item(root, path);
3164                if (ret < 0) {
3165                        goto out;
3166                } else if (ret > 0) {
3167                        ret = -EUCLEAN;
3168                        goto out;
3169                }
3170        }
3171
3172out:
3173        if (!ret || ret == -EOVERFLOW) {
3174                rootrefs->num_items = found;
3175                /* update min_treeid for next search */
3176                if (found)
3177                        rootrefs->min_treeid =
3178                                rootrefs->rootref[found - 1].treeid + 1;
3179                if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3180                        ret = -EFAULT;
3181        }
3182
3183        kfree(rootrefs);
3184        btrfs_free_path(path);
3185
3186        return ret;
3187}
3188
3189static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3190                                             void __user *arg,
3191                                             bool destroy_v2)
3192{
3193        struct dentry *parent = file->f_path.dentry;
3194        struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3195        struct dentry *dentry;
3196        struct inode *dir = d_inode(parent);
3197        struct inode *inode;
3198        struct btrfs_root *root = BTRFS_I(dir)->root;
3199        struct btrfs_root *dest = NULL;
3200        struct btrfs_ioctl_vol_args *vol_args = NULL;
3201        struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3202        struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3203        char *subvol_name, *subvol_name_ptr = NULL;
3204        int subvol_namelen;
3205        int err = 0;
3206        bool destroy_parent = false;
3207
3208        /* We don't support snapshots with extent tree v2 yet. */
3209        if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3210                btrfs_err(fs_info,
3211                          "extent tree v2 doesn't support snapshot deletion yet");
3212                return -EOPNOTSUPP;
3213        }
3214
3215        if (destroy_v2) {
3216                vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3217                if (IS_ERR(vol_args2))
3218                        return PTR_ERR(vol_args2);
3219
3220                if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3221                        err = -EOPNOTSUPP;
3222                        goto out;
3223                }
3224
3225                /*
3226                 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3227                 * name, same as v1 currently does.
3228                 */
3229                if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3230                        vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3231                        subvol_name = vol_args2->name;
3232
3233                        err = mnt_want_write_file(file);
3234                        if (err)
3235                                goto out;
3236                } else {
3237                        struct inode *old_dir;
3238
3239                        if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3240                                err = -EINVAL;
3241                                goto out;
3242                        }
3243
3244                        err = mnt_want_write_file(file);
3245                        if (err)
3246                                goto out;
3247
3248                        dentry = btrfs_get_dentry(fs_info->sb,
3249                                        BTRFS_FIRST_FREE_OBJECTID,
3250                                        vol_args2->subvolid, 0, 0);
3251                        if (IS_ERR(dentry)) {
3252                                err = PTR_ERR(dentry);
3253                                goto out_drop_write;
3254                        }
3255
3256                        /*
3257                         * Change the default parent since the subvolume being
3258                         * deleted can be outside of the current mount point.
3259                         */
3260                        parent = btrfs_get_parent(dentry);
3261
3262                        /*
3263                         * At this point dentry->d_name can point to '/' if the
3264                         * subvolume we want to destroy is outsite of the
3265                         * current mount point, so we need to release the
3266                         * current dentry and execute the lookup to return a new
3267                         * one with ->d_name pointing to the
3268                         * <mount point>/subvol_name.
3269                         */
3270                        dput(dentry);
3271                        if (IS_ERR(parent)) {
3272                                err = PTR_ERR(parent);
3273                                goto out_drop_write;
3274                        }
3275                        old_dir = dir;
3276                        dir = d_inode(parent);
3277
3278                        /*
3279                         * If v2 was used with SPEC_BY_ID, a new parent was
3280                         * allocated since the subvolume can be outside of the
3281                         * current mount point. Later on we need to release this
3282                         * new parent dentry.
3283                         */
3284                        destroy_parent = true;
3285
3286                        /*
3287                         * On idmapped mounts, deletion via subvolid is
3288                         * restricted to subvolumes that are immediate
3289                         * ancestors of the inode referenced by the file
3290                         * descriptor in the ioctl. Otherwise the idmapping
3291                         * could potentially be abused to delete subvolumes
3292                         * anywhere in the filesystem the user wouldn't be able
3293                         * to delete without an idmapped mount.
3294                         */
3295                        if (old_dir != dir && mnt_userns != &init_user_ns) {
3296                                err = -EOPNOTSUPP;
3297                                goto free_parent;
3298                        }
3299
3300                        subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3301                                                fs_info, vol_args2->subvolid);
3302                        if (IS_ERR(subvol_name_ptr)) {
3303                                err = PTR_ERR(subvol_name_ptr);
3304                                goto free_parent;
3305                        }
3306                        /* subvol_name_ptr is already nul terminated */
3307                        subvol_name = (char *)kbasename(subvol_name_ptr);
3308                }
3309        } else {
3310                vol_args = memdup_user(arg, sizeof(*vol_args));
3311                if (IS_ERR(vol_args))
3312                        return PTR_ERR(vol_args);
3313
3314                vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3315                subvol_name = vol_args->name;
3316
3317                err = mnt_want_write_file(file);
3318                if (err)
3319                        goto out;
3320        }
3321
3322        subvol_namelen = strlen(subvol_name);
3323
3324        if (strchr(subvol_name, '/') ||
3325            strncmp(subvol_name, "..", subvol_namelen) == 0) {
3326                err = -EINVAL;
3327                goto free_subvol_name;
3328        }
3329
3330        if (!S_ISDIR(dir->i_mode)) {
3331                err = -ENOTDIR;
3332                goto free_subvol_name;
3333        }
3334
3335        err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3336        if (err == -EINTR)
3337                goto free_subvol_name;
3338        dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3339        if (IS_ERR(dentry)) {
3340                err = PTR_ERR(dentry);
3341                goto out_unlock_dir;
3342        }
3343
3344        if (d_really_is_negative(dentry)) {
3345                err = -ENOENT;
3346                goto out_dput;
3347        }
3348
3349        inode = d_inode(dentry);
3350        dest = BTRFS_I(inode)->root;
3351        if (!capable(CAP_SYS_ADMIN)) {
3352                /*
3353                 * Regular user.  Only allow this with a special mount
3354                 * option, when the user has write+exec access to the
3355                 * subvol root, and when rmdir(2) would have been
3356                 * allowed.
3357                 *
3358                 * Note that this is _not_ check that the subvol is
3359                 * empty or doesn't contain data that we wouldn't
3360                 * otherwise be able to delete.
3361                 *
3362                 * Users who want to delete empty subvols should try
3363                 * rmdir(2).
3364                 */
3365                err = -EPERM;
3366                if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3367                        goto out_dput;
3368
3369                /*
3370                 * Do not allow deletion if the parent dir is the same
3371                 * as the dir to be deleted.  That means the ioctl
3372                 * must be called on the dentry referencing the root
3373                 * of the subvol, not a random directory contained
3374                 * within it.
3375                 */
3376                err = -EINVAL;
3377                if (root == dest)
3378                        goto out_dput;
3379
3380                err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3381                if (err)
3382                        goto out_dput;
3383        }
3384
3385        /* check if subvolume may be deleted by a user */
3386        err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3387        if (err)
3388                goto out_dput;
3389
3390        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3391                err = -EINVAL;
3392                goto out_dput;
3393        }
3394
3395        btrfs_inode_lock(inode, 0);
3396        err = btrfs_delete_subvolume(dir, dentry);
3397        btrfs_inode_unlock(inode, 0);
3398        if (!err)
3399                d_delete_notify(dir, dentry);
3400
3401out_dput:
3402        dput(dentry);
3403out_unlock_dir:
3404        btrfs_inode_unlock(dir, 0);
3405free_subvol_name:
3406        kfree(subvol_name_ptr);
3407free_parent:
3408        if (destroy_parent)
3409                dput(parent);
3410out_drop_write:
3411        mnt_drop_write_file(file);
3412out:
3413        kfree(vol_args2);
3414        kfree(vol_args);
3415        return err;
3416}
3417
3418static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3419{
3420        struct inode *inode = file_inode(file);
3421        struct btrfs_root *root = BTRFS_I(inode)->root;
3422        struct btrfs_ioctl_defrag_range_args range = {0};
3423        int ret;
3424
3425        ret = mnt_want_write_file(file);
3426        if (ret)
3427                return ret;
3428
3429        if (btrfs_root_readonly(root)) {
3430                ret = -EROFS;
3431                goto out;
3432        }
3433
3434        switch (inode->i_mode & S_IFMT) {
3435        case S_IFDIR:
3436                if (!capable(CAP_SYS_ADMIN)) {
3437                        ret = -EPERM;
3438                        goto out;
3439                }
3440                ret = btrfs_defrag_root(root);
3441                break;
3442        case S_IFREG:
3443                /*
3444                 * Note that this does not check the file descriptor for write
3445                 * access. This prevents defragmenting executables that are
3446                 * running and allows defrag on files open in read-only mode.
3447                 */
3448                if (!capable(CAP_SYS_ADMIN) &&
3449                    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3450                        ret = -EPERM;
3451                        goto out;
3452                }
3453
3454                if (argp) {
3455                        if (copy_from_user(&range, argp, sizeof(range))) {
3456                                ret = -EFAULT;
3457                                goto out;
3458                        }
3459                        /* compression requires us to start the IO */
3460                        if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3461                                range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3462                                range.extent_thresh = (u32)-1;
3463                        }
3464                } else {
3465                        /* the rest are all set to zero by kzalloc */
3466                        range.len = (u64)-1;
3467                }
3468                ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3469                                        &range, BTRFS_OLDEST_GENERATION, 0);
3470                if (ret > 0)
3471                        ret = 0;
3472                break;
3473        default:
3474                ret = -EINVAL;
3475        }
3476out:
3477        mnt_drop_write_file(file);
3478        return ret;
3479}
3480
3481static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3482{
3483        struct btrfs_ioctl_vol_args *vol_args;
3484        bool restore_op = false;
3485        int ret;
3486
3487        if (!capable(CAP_SYS_ADMIN))
3488                return -EPERM;
3489
3490        if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3491                btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3492                return -EINVAL;
3493        }
3494
3495        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3496                if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3497                        return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3498
3499                /*
3500                 * We can do the device add because we have a paused balanced,
3501                 * change the exclusive op type and remember we should bring
3502                 * back the paused balance
3503                 */
3504                fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3505                btrfs_exclop_start_unlock(fs_info);
3506                restore_op = true;
3507        }
3508
3509        vol_args = memdup_user(arg, sizeof(*vol_args));
3510        if (IS_ERR(vol_args)) {
3511                ret = PTR_ERR(vol_args);
3512                goto out;
3513        }
3514
3515        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3516        ret = btrfs_init_new_device(fs_info, vol_args->name);
3517
3518        if (!ret)
3519                btrfs_info(fs_info, "disk added %s", vol_args->name);
3520
3521        kfree(vol_args);
3522out:
3523        if (restore_op)
3524                btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3525        else
3526                btrfs_exclop_finish(fs_info);
3527        return ret;
3528}
3529
3530static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3531{
3532        BTRFS_DEV_LOOKUP_ARGS(args);
3533        struct inode *inode = file_inode(file);
3534        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3535        struct btrfs_ioctl_vol_args_v2 *vol_args;
3536        struct block_device *bdev = NULL;
3537        fmode_t mode;
3538        int ret;
3539        bool cancel = false;
3540
3541        if (!capable(CAP_SYS_ADMIN))
3542                return -EPERM;
3543
3544        vol_args = memdup_user(arg, sizeof(*vol_args));
3545        if (IS_ERR(vol_args))
3546                return PTR_ERR(vol_args);
3547
3548        if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3549                ret = -EOPNOTSUPP;
3550                goto out;
3551        }
3552
3553        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3554        if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3555                args.devid = vol_args->devid;
3556        } else if (!strcmp("cancel", vol_args->name)) {
3557                cancel = true;
3558        } else {
3559                ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3560                if (ret)
3561                        goto out;
3562        }
3563
3564        ret = mnt_want_write_file(file);
3565        if (ret)
3566                goto out;
3567
3568        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3569                                           cancel);
3570        if (ret)
3571                goto err_drop;
3572
3573        /* Exclusive operation is now claimed */
3574        ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3575
3576        btrfs_exclop_finish(fs_info);
3577
3578        if (!ret) {
3579                if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3580                        btrfs_info(fs_info, "device deleted: id %llu",
3581                                        vol_args->devid);
3582                else
3583                        btrfs_info(fs_info, "device deleted: %s",
3584                                        vol_args->name);
3585        }
3586err_drop:
3587        mnt_drop_write_file(file);
3588        if (bdev)
3589                blkdev_put(bdev, mode);
3590out:
3591        btrfs_put_dev_args_from_path(&args);
3592        kfree(vol_args);
3593        return ret;
3594}
3595
3596static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3597{
3598        BTRFS_DEV_LOOKUP_ARGS(args);
3599        struct inode *inode = file_inode(file);
3600        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3601        struct btrfs_ioctl_vol_args *vol_args;
3602        struct block_device *bdev = NULL;
3603        fmode_t mode;
3604        int ret;
3605        bool cancel = false;
3606
3607        if (!capable(CAP_SYS_ADMIN))
3608                return -EPERM;
3609
3610        vol_args = memdup_user(arg, sizeof(*vol_args));
3611        if (IS_ERR(vol_args))
3612                return PTR_ERR(vol_args);
3613
3614        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3615        if (!strcmp("cancel", vol_args->name)) {
3616                cancel = true;
3617        } else {
3618                ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3619                if (ret)
3620                        goto out;
3621        }
3622
3623        ret = mnt_want_write_file(file);
3624        if (ret)
3625                goto out;
3626
3627        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3628                                           cancel);
3629        if (ret == 0) {
3630                ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3631                if (!ret)
3632                        btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3633                btrfs_exclop_finish(fs_info);
3634        }
3635
3636        mnt_drop_write_file(file);
3637        if (bdev)
3638                blkdev_put(bdev, mode);
3639out:
3640        btrfs_put_dev_args_from_path(&args);
3641        kfree(vol_args);
3642        return ret;
3643}
3644
3645static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3646                                void __user *arg)
3647{
3648        struct btrfs_ioctl_fs_info_args *fi_args;
3649        struct btrfs_device *device;
3650        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3651        u64 flags_in;
3652        int ret = 0;
3653
3654        fi_args = memdup_user(arg, sizeof(*fi_args));
3655        if (IS_ERR(fi_args))
3656                return PTR_ERR(fi_args);
3657
3658        flags_in = fi_args->flags;
3659        memset(fi_args, 0, sizeof(*fi_args));
3660
3661        rcu_read_lock();
3662        fi_args->num_devices = fs_devices->num_devices;
3663
3664        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3665                if (device->devid > fi_args->max_id)
3666                        fi_args->max_id = device->devid;
3667        }
3668        rcu_read_unlock();
3669
3670        memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3671        fi_args->nodesize = fs_info->nodesize;
3672        fi_args->sectorsize = fs_info->sectorsize;
3673        fi_args->clone_alignment = fs_info->sectorsize;
3674
3675        if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3676                fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3677                fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3678                fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3679        }
3680
3681        if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3682                fi_args->generation = fs_info->generation;
3683                fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3684        }
3685
3686        if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3687                memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3688                       sizeof(fi_args->metadata_uuid));
3689                fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3690        }
3691
3692        if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3693                ret = -EFAULT;
3694
3695        kfree(fi_args);
3696        return ret;
3697}
3698
3699static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3700                                 void __user *arg)
3701{
3702        BTRFS_DEV_LOOKUP_ARGS(args);
3703        struct btrfs_ioctl_dev_info_args *di_args;
3704        struct btrfs_device *dev;
3705        int ret = 0;
3706
3707        di_args = memdup_user(arg, sizeof(*di_args));
3708        if (IS_ERR(di_args))
3709                return PTR_ERR(di_args);
3710
3711        args.devid = di_args->devid;
3712        if (!btrfs_is_empty_uuid(di_args->uuid))
3713                args.uuid = di_args->uuid;
3714
3715        rcu_read_lock();
3716        dev = btrfs_find_device(fs_info->fs_devices, &args);
3717        if (!dev) {
3718                ret = -ENODEV;
3719                goto out;
3720        }
3721
3722        di_args->devid = dev->devid;
3723        di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3724        di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3725        memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3726        if (dev->name) {
3727                strncpy(di_args->path, rcu_str_deref(dev->name),
3728                                sizeof(di_args->path) - 1);
3729                di_args->path[sizeof(di_args->path) - 1] = 0;
3730        } else {
3731                di_args->path[0] = '\0';
3732        }
3733
3734out:
3735        rcu_read_unlock();
3736        if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3737                ret = -EFAULT;
3738
3739        kfree(di_args);
3740        return ret;
3741}
3742
3743static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3744{
3745        struct inode *inode = file_inode(file);
3746        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3747        struct btrfs_root *root = BTRFS_I(inode)->root;
3748        struct btrfs_root *new_root;
3749        struct btrfs_dir_item *di;
3750        struct btrfs_trans_handle *trans;
3751        struct btrfs_path *path = NULL;
3752        struct btrfs_disk_key disk_key;
3753        u64 objectid = 0;
3754        u64 dir_id;
3755        int ret;
3756
3757        if (!capable(CAP_SYS_ADMIN))
3758                return -EPERM;
3759
3760        ret = mnt_want_write_file(file);
3761        if (ret)
3762                return ret;
3763
3764        if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3765                ret = -EFAULT;
3766                goto out;
3767        }
3768
3769        if (!objectid)
3770                objectid = BTRFS_FS_TREE_OBJECTID;
3771
3772        new_root = btrfs_get_fs_root(fs_info, objectid, true);
3773        if (IS_ERR(new_root)) {
3774                ret = PTR_ERR(new_root);
3775                goto out;
3776        }
3777        if (!is_fstree(new_root->root_key.objectid)) {
3778                ret = -ENOENT;
3779                goto out_free;
3780        }
3781
3782        path = btrfs_alloc_path();
3783        if (!path) {
3784                ret = -ENOMEM;
3785                goto out_free;
3786        }
3787
3788        trans = btrfs_start_transaction(root, 1);
3789        if (IS_ERR(trans)) {
3790                ret = PTR_ERR(trans);
3791                goto out_free;
3792        }
3793
3794        dir_id = btrfs_super_root_dir(fs_info->super_copy);
3795        di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3796                                   dir_id, "default", 7, 1);
3797        if (IS_ERR_OR_NULL(di)) {
3798                btrfs_release_path(path);
3799                btrfs_end_transaction(trans);
3800                btrfs_err(fs_info,
3801                          "Umm, you don't have the default diritem, this isn't going to work");
3802                ret = -ENOENT;
3803                goto out_free;
3804        }
3805
3806        btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3807        btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3808        btrfs_mark_buffer_dirty(path->nodes[0]);
3809        btrfs_release_path(path);
3810
3811        btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3812        btrfs_end_transaction(trans);
3813out_free:
3814        btrfs_put_root(new_root);
3815        btrfs_free_path(path);
3816out:
3817        mnt_drop_write_file(file);
3818        return ret;
3819}
3820
3821static void get_block_group_info(struct list_head *groups_list,
3822                                 struct btrfs_ioctl_space_info *space)
3823{
3824        struct btrfs_block_group *block_group;
3825
3826        space->total_bytes = 0;
3827        space->used_bytes = 0;
3828        space->flags = 0;
3829        list_for_each_entry(block_group, groups_list, list) {
3830                space->flags = block_group->flags;
3831                space->total_bytes += block_group->length;
3832                space->used_bytes += block_group->used;
3833        }
3834}
3835
3836static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3837                                   void __user *arg)
3838{
3839        struct btrfs_ioctl_space_args space_args;
3840        struct btrfs_ioctl_space_info space;
3841        struct btrfs_ioctl_space_info *dest;
3842        struct btrfs_ioctl_space_info *dest_orig;
3843        struct btrfs_ioctl_space_info __user *user_dest;
3844        struct btrfs_space_info *info;
3845        static const u64 types[] = {
3846                BTRFS_BLOCK_GROUP_DATA,
3847                BTRFS_BLOCK_GROUP_SYSTEM,
3848                BTRFS_BLOCK_GROUP_METADATA,
3849                BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3850        };
3851        int num_types = 4;
3852        int alloc_size;
3853        int ret = 0;
3854        u64 slot_count = 0;
3855        int i, c;
3856
3857        if (copy_from_user(&space_args,
3858                           (struct btrfs_ioctl_space_args __user *)arg,
3859                           sizeof(space_args)))
3860                return -EFAULT;
3861
3862        for (i = 0; i < num_types; i++) {
3863                struct btrfs_space_info *tmp;
3864
3865                info = NULL;
3866                list_for_each_entry(tmp, &fs_info->space_info, list) {
3867                        if (tmp->flags == types[i]) {
3868                                info = tmp;
3869                                break;
3870                        }
3871                }
3872
3873                if (!info)
3874                        continue;
3875
3876                down_read(&info->groups_sem);
3877                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3878                        if (!list_empty(&info->block_groups[c]))
3879                                slot_count++;
3880                }
3881                up_read(&info->groups_sem);
3882        }
3883
3884        /*
3885         * Global block reserve, exported as a space_info
3886         */
3887        slot_count++;
3888
3889        /* space_slots == 0 means they are asking for a count */
3890        if (space_args.space_slots == 0) {
3891                space_args.total_spaces = slot_count;
3892                goto out;
3893        }
3894
3895        slot_count = min_t(u64, space_args.space_slots, slot_count);
3896
3897        alloc_size = sizeof(*dest) * slot_count;
3898
3899        /* we generally have at most 6 or so space infos, one for each raid
3900         * level.  So, a whole page should be more than enough for everyone
3901         */
3902        if (alloc_size > PAGE_SIZE)
3903                return -ENOMEM;
3904
3905        space_args.total_spaces = 0;
3906        dest = kmalloc(alloc_size, GFP_KERNEL);
3907        if (!dest)
3908                return -ENOMEM;
3909        dest_orig = dest;
3910
3911        /* now we have a buffer to copy into */
3912        for (i = 0; i < num_types; i++) {
3913                struct btrfs_space_info *tmp;
3914
3915                if (!slot_count)
3916                        break;
3917
3918                info = NULL;
3919                list_for_each_entry(tmp, &fs_info->space_info, list) {
3920                        if (tmp->flags == types[i]) {
3921                                info = tmp;
3922                                break;
3923                        }
3924                }
3925
3926                if (!info)
3927                        continue;
3928                down_read(&info->groups_sem);
3929                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3930                        if (!list_empty(&info->block_groups[c])) {
3931                                get_block_group_info(&info->block_groups[c],
3932                                                     &space);
3933                                memcpy(dest, &space, sizeof(space));
3934                                dest++;
3935                                space_args.total_spaces++;
3936                                slot_count--;
3937                        }
3938                        if (!slot_count)
3939                                break;
3940                }
3941                up_read(&info->groups_sem);
3942        }
3943
3944        /*
3945         * Add global block reserve
3946         */
3947        if (slot_count) {
3948                struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3949
3950                spin_lock(&block_rsv->lock);
3951                space.total_bytes = block_rsv->size;
3952                space.used_bytes = block_rsv->size - block_rsv->reserved;
3953                spin_unlock(&block_rsv->lock);
3954                space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3955                memcpy(dest, &space, sizeof(space));
3956                space_args.total_spaces++;
3957        }
3958
3959        user_dest = (struct btrfs_ioctl_space_info __user *)
3960                (arg + sizeof(struct btrfs_ioctl_space_args));
3961
3962        if (copy_to_user(user_dest, dest_orig, alloc_size))
3963                ret = -EFAULT;
3964
3965        kfree(dest_orig);
3966out:
3967        if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3968                ret = -EFAULT;
3969
3970        return ret;
3971}
3972
3973static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3974                                            void __user *argp)
3975{
3976        struct btrfs_trans_handle *trans;
3977        u64 transid;
3978
3979        trans = btrfs_attach_transaction_barrier(root);
3980        if (IS_ERR(trans)) {
3981                if (PTR_ERR(trans) != -ENOENT)
3982                        return PTR_ERR(trans);
3983
3984                /* No running transaction, don't bother */
3985                transid = root->fs_info->last_trans_committed;
3986                goto out;
3987        }
3988        transid = trans->transid;
3989        btrfs_commit_transaction_async(trans);
3990out:
3991        if (argp)
3992                if (copy_to_user(argp, &transid, sizeof(transid)))
3993                        return -EFAULT;
3994        return 0;
3995}
3996
3997static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3998                                           void __user *argp)
3999{
4000        u64 transid;
4001
4002        if (argp) {
4003                if (copy_from_user(&transid, argp, sizeof(transid)))
4004                        return -EFAULT;
4005        } else {
4006                transid = 0;  /* current trans */
4007        }
4008        return btrfs_wait_for_commit(fs_info, transid);
4009}
4010
4011static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4012{
4013        struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4014        struct btrfs_ioctl_scrub_args *sa;
4015        int ret;
4016
4017        if (!capable(CAP_SYS_ADMIN))
4018                return -EPERM;
4019
4020        if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4021                btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4022                return -EINVAL;
4023        }
4024
4025        sa = memdup_user(arg, sizeof(*sa));
4026        if (IS_ERR(sa))
4027                return PTR_ERR(sa);
4028
4029        if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4030                ret = mnt_want_write_file(file);
4031                if (ret)
4032                        goto out;
4033        }
4034
4035        ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4036                              &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4037                              0);
4038
4039        /*
4040         * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4041         * error. This is important as it allows user space to know how much
4042         * progress scrub has done. For example, if scrub is canceled we get
4043         * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4044         * space. Later user space can inspect the progress from the structure
4045         * btrfs_ioctl_scrub_args and resume scrub from where it left off
4046         * previously (btrfs-progs does this).
4047         * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4048         * then return -EFAULT to signal the structure was not copied or it may
4049         * be corrupt and unreliable due to a partial copy.
4050         */
4051        if (copy_to_user(arg, sa, sizeof(*sa)))
4052                ret = -EFAULT;
4053
4054        if (!(sa->flags & BTRFS_SCRUB_READONLY))
4055                mnt_drop_write_file(file);
4056out:
4057        kfree(sa);
4058        return ret;
4059}
4060
4061static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4062{
4063        if (!capable(CAP_SYS_ADMIN))
4064                return -EPERM;
4065
4066        return btrfs_scrub_cancel(fs_info);
4067}
4068
4069static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4070                                       void __user *arg)
4071{
4072        struct btrfs_ioctl_scrub_args *sa;
4073        int ret;
4074
4075        if (!capable(CAP_SYS_ADMIN))
4076                return -EPERM;
4077
4078        sa = memdup_user(arg, sizeof(*sa));
4079        if (IS_ERR(sa))
4080                return PTR_ERR(sa);
4081
4082        ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4083
4084        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4085                ret = -EFAULT;
4086
4087        kfree(sa);
4088        return ret;
4089}
4090
4091static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4092                                      void __user *arg)
4093{
4094        struct btrfs_ioctl_get_dev_stats *sa;
4095        int ret;
4096
4097        sa = memdup_user(arg, sizeof(*sa));
4098        if (IS_ERR(sa))
4099                return PTR_ERR(sa);
4100
4101        if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4102                kfree(sa);
4103                return -EPERM;
4104        }
4105
4106        ret = btrfs_get_dev_stats(fs_info, sa);
4107
4108        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4109                ret = -EFAULT;
4110
4111        kfree(sa);
4112        return ret;
4113}
4114
4115static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4116                                    void __user *arg)
4117{
4118        struct btrfs_ioctl_dev_replace_args *p;
4119        int ret;
4120
4121        if (!capable(CAP_SYS_ADMIN))
4122                return -EPERM;
4123
4124        if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4125                btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4126                return -EINVAL;
4127        }
4128
4129        p = memdup_user(arg, sizeof(*p));
4130        if (IS_ERR(p))
4131                return PTR_ERR(p);
4132
4133        switch (p->cmd) {
4134        case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4135                if (sb_rdonly(fs_info->sb)) {
4136                        ret = -EROFS;
4137                        goto out;
4138                }
4139                if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4140                        ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4141                } else {
4142                        ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4143                        btrfs_exclop_finish(fs_info);
4144                }
4145                break;
4146        case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4147                btrfs_dev_replace_status(fs_info, p);
4148                ret = 0;
4149                break;
4150        case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4151                p->result = btrfs_dev_replace_cancel(fs_info);
4152                ret = 0;
4153                break;
4154        default:
4155                ret = -EINVAL;
4156                break;
4157        }
4158
4159        if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4160                ret = -EFAULT;
4161out:
4162        kfree(p);
4163        return ret;
4164}
4165
4166static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4167{
4168        int ret = 0;
4169        int i;
4170        u64 rel_ptr;
4171        int size;
4172        struct btrfs_ioctl_ino_path_args *ipa = NULL;
4173        struct inode_fs_paths *ipath = NULL;
4174        struct btrfs_path *path;
4175
4176        if (!capable(CAP_DAC_READ_SEARCH))
4177                return -EPERM;
4178
4179        path = btrfs_alloc_path();
4180        if (!path) {
4181                ret = -ENOMEM;
4182                goto out;
4183        }
4184
4185        ipa = memdup_user(arg, sizeof(*ipa));
4186        if (IS_ERR(ipa)) {
4187                ret = PTR_ERR(ipa);
4188                ipa = NULL;
4189                goto out;
4190        }
4191
4192        size = min_t(u32, ipa->size, 4096);
4193        ipath = init_ipath(size, root, path);
4194        if (IS_ERR(ipath)) {
4195                ret = PTR_ERR(ipath);
4196                ipath = NULL;
4197                goto out;
4198        }
4199
4200        ret = paths_from_inode(ipa->inum, ipath);
4201        if (ret < 0)
4202                goto out;
4203
4204        for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4205                rel_ptr = ipath->fspath->val[i] -
4206                          (u64)(unsigned long)ipath->fspath->val;
4207                ipath->fspath->val[i] = rel_ptr;
4208        }
4209
4210        ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4211                           ipath->fspath, size);
4212        if (ret) {
4213                ret = -EFAULT;
4214                goto out;
4215        }
4216
4217out:
4218        btrfs_free_path(path);
4219        free_ipath(ipath);
4220        kfree(ipa);
4221
4222        return ret;
4223}
4224
4225static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4226{
4227        struct btrfs_data_container *inodes = ctx;
4228        const size_t c = 3 * sizeof(u64);
4229
4230        if (inodes->bytes_left >= c) {
4231                inodes->bytes_left -= c;
4232                inodes->val[inodes->elem_cnt] = inum;
4233                inodes->val[inodes->elem_cnt + 1] = offset;
4234                inodes->val[inodes->elem_cnt + 2] = root;
4235                inodes->elem_cnt += 3;
4236        } else {
4237                inodes->bytes_missing += c - inodes->bytes_left;
4238                inodes->bytes_left = 0;
4239                inodes->elem_missed += 3;
4240        }
4241
4242        return 0;
4243}
4244
4245static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4246                                        void __user *arg, int version)
4247{
4248        int ret = 0;
4249        int size;
4250        struct btrfs_ioctl_logical_ino_args *loi;
4251        struct btrfs_data_container *inodes = NULL;
4252        struct btrfs_path *path = NULL;
4253        bool ignore_offset;
4254
4255        if (!capable(CAP_SYS_ADMIN))
4256                return -EPERM;
4257
4258        loi = memdup_user(arg, sizeof(*loi));
4259        if (IS_ERR(loi))
4260                return PTR_ERR(loi);
4261
4262        if (version == 1) {
4263                ignore_offset = false;
4264                size = min_t(u32, loi->size, SZ_64K);
4265        } else {
4266                /* All reserved bits must be 0 for now */
4267                if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4268                        ret = -EINVAL;
4269                        goto out_loi;
4270                }
4271                /* Only accept flags we have defined so far */
4272                if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4273                        ret = -EINVAL;
4274                        goto out_loi;
4275                }
4276                ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4277                size = min_t(u32, loi->size, SZ_16M);
4278        }
4279
4280        path = btrfs_alloc_path();
4281        if (!path) {
4282                ret = -ENOMEM;
4283                goto out;
4284        }
4285
4286        inodes = init_data_container(size);
4287        if (IS_ERR(inodes)) {
4288                ret = PTR_ERR(inodes);
4289                inodes = NULL;
4290                goto out;
4291        }
4292
4293        ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4294                                          build_ino_list, inodes, ignore_offset);
4295        if (ret == -EINVAL)
4296                ret = -ENOENT;
4297        if (ret < 0)
4298                goto out;
4299
4300        ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4301                           size);
4302        if (ret)
4303                ret = -EFAULT;
4304
4305out:
4306        btrfs_free_path(path);
4307        kvfree(inodes);
4308out_loi:
4309        kfree(loi);
4310
4311        return ret;
4312}
4313
4314void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4315                               struct btrfs_ioctl_balance_args *bargs)
4316{
4317        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4318
4319        bargs->flags = bctl->flags;
4320
4321        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4322                bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4323        if (atomic_read(&fs_info->balance_pause_req))
4324                bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4325        if (atomic_read(&fs_info->balance_cancel_req))
4326                bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4327
4328        memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4329        memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4330        memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4331
4332        spin_lock(&fs_info->balance_lock);
4333        memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4334        spin_unlock(&fs_info->balance_lock);
4335}
4336
4337static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4338{
4339        struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4340        struct btrfs_fs_info *fs_info = root->fs_info;
4341        struct btrfs_ioctl_balance_args *bargs;
4342        struct btrfs_balance_control *bctl;
4343        bool need_unlock; /* for mut. excl. ops lock */
4344        int ret;
4345
4346        if (!arg)
4347                btrfs_warn(fs_info,
4348        "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4349
4350        if (!capable(CAP_SYS_ADMIN))
4351                return -EPERM;
4352
4353        ret = mnt_want_write_file(file);
4354        if (ret)
4355                return ret;
4356
4357again:
4358        if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4359                mutex_lock(&fs_info->balance_mutex);
4360                need_unlock = true;
4361                goto locked;
4362        }
4363
4364        /*
4365         * mut. excl. ops lock is locked.  Three possibilities:
4366         *   (1) some other op is running
4367         *   (2) balance is running
4368         *   (3) balance is paused -- special case (think resume)
4369         */
4370        mutex_lock(&fs_info->balance_mutex);
4371        if (fs_info->balance_ctl) {
4372                /* this is either (2) or (3) */
4373                if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4374                        mutex_unlock(&fs_info->balance_mutex);
4375                        /*
4376                         * Lock released to allow other waiters to continue,
4377                         * we'll reexamine the status again.
4378                         */
4379                        mutex_lock(&fs_info->balance_mutex);
4380
4381                        if (fs_info->balance_ctl &&
4382                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4383                                /* this is (3) */
4384                                need_unlock = false;
4385                                goto locked;
4386                        }
4387
4388                        mutex_unlock(&fs_info->balance_mutex);
4389                        goto again;
4390                } else {
4391                        /* this is (2) */
4392                        mutex_unlock(&fs_info->balance_mutex);
4393                        ret = -EINPROGRESS;
4394                        goto out;
4395                }
4396        } else {
4397                /* this is (1) */
4398                mutex_unlock(&fs_info->balance_mutex);
4399                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4400                goto out;
4401        }
4402
4403locked:
4404
4405        if (arg) {
4406                bargs = memdup_user(arg, sizeof(*bargs));
4407                if (IS_ERR(bargs)) {
4408                        ret = PTR_ERR(bargs);
4409                        goto out_unlock;
4410                }
4411
4412                if (bargs->flags & BTRFS_BALANCE_RESUME) {
4413                        if (!fs_info->balance_ctl) {
4414                                ret = -ENOTCONN;
4415                                goto out_bargs;
4416                        }
4417
4418                        bctl = fs_info->balance_ctl;
4419                        spin_lock(&fs_info->balance_lock);
4420                        bctl->flags |= BTRFS_BALANCE_RESUME;
4421                        spin_unlock(&fs_info->balance_lock);
4422                        btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4423
4424                        goto do_balance;
4425                }
4426        } else {
4427                bargs = NULL;
4428        }
4429
4430        if (fs_info->balance_ctl) {
4431                ret = -EINPROGRESS;
4432                goto out_bargs;
4433        }
4434
4435        bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4436        if (!bctl) {
4437                ret = -ENOMEM;
4438                goto out_bargs;
4439        }
4440
4441        if (arg) {
4442                memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4443                memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4444                memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4445
4446                bctl->flags = bargs->flags;
4447        } else {
4448                /* balance everything - no filters */
4449                bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4450        }
4451
4452        if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4453                ret = -EINVAL;
4454                goto out_bctl;
4455        }
4456
4457do_balance:
4458        /*
4459         * Ownership of bctl and exclusive operation goes to btrfs_balance.
4460         * bctl is freed in reset_balance_state, or, if restriper was paused
4461         * all the way until unmount, in free_fs_info.  The flag should be
4462         * cleared after reset_balance_state.
4463         */
4464        need_unlock = false;
4465
4466        ret = btrfs_balance(fs_info, bctl, bargs);
4467        bctl = NULL;
4468
4469        if ((ret == 0 || ret == -ECANCELED) && arg) {
4470                if (copy_to_user(arg, bargs, sizeof(*bargs)))
4471                        ret = -EFAULT;
4472        }
4473
4474out_bctl:
4475        kfree(bctl);
4476out_bargs:
4477        kfree(bargs);
4478out_unlock:
4479        mutex_unlock(&fs_info->balance_mutex);
4480        if (need_unlock)
4481                btrfs_exclop_finish(fs_info);
4482out:
4483        mnt_drop_write_file(file);
4484        return ret;
4485}
4486
4487static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4488{
4489        if (!capable(CAP_SYS_ADMIN))
4490                return -EPERM;
4491
4492        switch (cmd) {
4493        case BTRFS_BALANCE_CTL_PAUSE:
4494                return btrfs_pause_balance(fs_info);
4495        case BTRFS_BALANCE_CTL_CANCEL:
4496                return btrfs_cancel_balance(fs_info);
4497        }
4498
4499        return -EINVAL;
4500}
4501
4502static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4503                                         void __user *arg)
4504{
4505        struct btrfs_ioctl_balance_args *bargs;
4506        int ret = 0;
4507
4508        if (!capable(CAP_SYS_ADMIN))
4509                return -EPERM;
4510
4511        mutex_lock(&fs_info->balance_mutex);
4512        if (!fs_info->balance_ctl) {
4513                ret = -ENOTCONN;
4514                goto out;
4515        }
4516
4517        bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4518        if (!bargs) {
4519                ret = -ENOMEM;
4520                goto out;
4521        }
4522
4523        btrfs_update_ioctl_balance_args(fs_info, bargs);
4524
4525        if (copy_to_user(arg, bargs, sizeof(*bargs)))
4526                ret = -EFAULT;
4527
4528        kfree(bargs);
4529out:
4530        mutex_unlock(&fs_info->balance_mutex);
4531        return ret;
4532}
4533
4534static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4535{
4536        struct inode *inode = file_inode(file);
4537        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4538        struct btrfs_ioctl_quota_ctl_args *sa;
4539        int ret;
4540
4541        if (!capable(CAP_SYS_ADMIN))
4542                return -EPERM;
4543
4544        ret = mnt_want_write_file(file);
4545        if (ret)
4546                return ret;
4547
4548        sa = memdup_user(arg, sizeof(*sa));
4549        if (IS_ERR(sa)) {
4550                ret = PTR_ERR(sa);
4551                goto drop_write;
4552        }
4553
4554        down_write(&fs_info->subvol_sem);
4555
4556        switch (sa->cmd) {
4557        case BTRFS_QUOTA_CTL_ENABLE:
4558                ret = btrfs_quota_enable(fs_info);
4559                break;
4560        case BTRFS_QUOTA_CTL_DISABLE:
4561                ret = btrfs_quota_disable(fs_info);
4562                break;
4563        default:
4564                ret = -EINVAL;
4565                break;
4566        }
4567
4568        kfree(sa);
4569        up_write(&fs_info->subvol_sem);
4570drop_write:
4571        mnt_drop_write_file(file);
4572        return ret;
4573}
4574
4575static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4576{
4577        struct inode *inode = file_inode(file);
4578        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4579        struct btrfs_root *root = BTRFS_I(inode)->root;
4580        struct btrfs_ioctl_qgroup_assign_args *sa;
4581        struct btrfs_trans_handle *trans;
4582        int ret;
4583        int err;
4584
4585        if (!capable(CAP_SYS_ADMIN))
4586                return -EPERM;
4587
4588        ret = mnt_want_write_file(file);
4589        if (ret)
4590                return ret;
4591
4592        sa = memdup_user(arg, sizeof(*sa));
4593        if (IS_ERR(sa)) {
4594                ret = PTR_ERR(sa);
4595                goto drop_write;
4596        }
4597
4598        trans = btrfs_join_transaction(root);
4599        if (IS_ERR(trans)) {
4600                ret = PTR_ERR(trans);
4601                goto out;
4602        }
4603
4604        if (sa->assign) {
4605                ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4606        } else {
4607                ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4608        }
4609
4610        /* update qgroup status and info */
4611        err = btrfs_run_qgroups(trans);
4612        if (err < 0)
4613                btrfs_handle_fs_error(fs_info, err,
4614                                      "failed to update qgroup status and info");
4615        err = btrfs_end_transaction(trans);
4616        if (err && !ret)
4617                ret = err;
4618
4619out:
4620        kfree(sa);
4621drop_write:
4622        mnt_drop_write_file(file);
4623        return ret;
4624}
4625
4626static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4627{
4628        struct inode *inode = file_inode(file);
4629        struct btrfs_root *root = BTRFS_I(inode)->root;
4630        struct btrfs_ioctl_qgroup_create_args *sa;
4631        struct btrfs_trans_handle *trans;
4632        int ret;
4633        int err;
4634
4635        if (!capable(CAP_SYS_ADMIN))
4636                return -EPERM;
4637
4638        ret = mnt_want_write_file(file);
4639        if (ret)
4640                return ret;
4641
4642        sa = memdup_user(arg, sizeof(*sa));
4643        if (IS_ERR(sa)) {
4644                ret = PTR_ERR(sa);
4645                goto drop_write;
4646        }
4647
4648        if (!sa->qgroupid) {
4649                ret = -EINVAL;
4650                goto out;
4651        }
4652
4653        trans = btrfs_join_transaction(root);
4654        if (IS_ERR(trans)) {
4655                ret = PTR_ERR(trans);
4656                goto out;
4657        }
4658
4659        if (sa->create) {
4660                ret = btrfs_create_qgroup(trans, sa->qgroupid);
4661        } else {
4662                ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4663        }
4664
4665        err = btrfs_end_transaction(trans);
4666        if (err && !ret)
4667                ret = err;
4668
4669out:
4670        kfree(sa);
4671drop_write:
4672        mnt_drop_write_file(file);
4673        return ret;
4674}
4675
4676static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4677{
4678        struct inode *inode = file_inode(file);
4679        struct btrfs_root *root = BTRFS_I(inode)->root;
4680        struct btrfs_ioctl_qgroup_limit_args *sa;
4681        struct btrfs_trans_handle *trans;
4682        int ret;
4683        int err;
4684        u64 qgroupid;
4685
4686        if (!capable(CAP_SYS_ADMIN))
4687                return -EPERM;
4688
4689        ret = mnt_want_write_file(file);
4690        if (ret)
4691                return ret;
4692
4693        sa = memdup_user(arg, sizeof(*sa));
4694        if (IS_ERR(sa)) {
4695                ret = PTR_ERR(sa);
4696                goto drop_write;
4697        }
4698
4699        trans = btrfs_join_transaction(root);
4700        if (IS_ERR(trans)) {
4701                ret = PTR_ERR(trans);
4702                goto out;
4703        }
4704
4705        qgroupid = sa->qgroupid;
4706        if (!qgroupid) {
4707                /* take the current subvol as qgroup */
4708                qgroupid = root->root_key.objectid;
4709        }
4710
4711        ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4712
4713        err = btrfs_end_transaction(trans);
4714        if (err && !ret)
4715                ret = err;
4716
4717out:
4718        kfree(sa);
4719drop_write:
4720        mnt_drop_write_file(file);
4721        return ret;
4722}
4723
4724static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4725{
4726        struct inode *inode = file_inode(file);
4727        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4728        struct btrfs_ioctl_quota_rescan_args *qsa;
4729        int ret;
4730
4731        if (!capable(CAP_SYS_ADMIN))
4732                return -EPERM;
4733
4734        ret = mnt_want_write_file(file);
4735        if (ret)
4736                return ret;
4737
4738        qsa = memdup_user(arg, sizeof(*qsa));
4739        if (IS_ERR(qsa)) {
4740                ret = PTR_ERR(qsa);
4741                goto drop_write;
4742        }
4743
4744        if (qsa->flags) {
4745                ret = -EINVAL;
4746                goto out;
4747        }
4748
4749        ret = btrfs_qgroup_rescan(fs_info);
4750
4751out:
4752        kfree(qsa);
4753drop_write:
4754        mnt_drop_write_file(file);
4755        return ret;
4756}
4757
4758static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4759                                                void __user *arg)
4760{
4761        struct btrfs_ioctl_quota_rescan_args qsa = {0};
4762
4763        if (!capable(CAP_SYS_ADMIN))
4764                return -EPERM;
4765
4766        if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4767                qsa.flags = 1;
4768                qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4769        }
4770
4771        if (copy_to_user(arg, &qsa, sizeof(qsa)))
4772                return -EFAULT;
4773
4774        return 0;
4775}
4776
4777static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4778                                                void __user *arg)
4779{
4780        if (!capable(CAP_SYS_ADMIN))
4781                return -EPERM;
4782
4783        return btrfs_qgroup_wait_for_completion(fs_info, true);
4784}
4785
4786static long _btrfs_ioctl_set_received_subvol(struct file *file,
4787                                            struct user_namespace *mnt_userns,
4788                                            struct btrfs_ioctl_received_subvol_args *sa)
4789{
4790        struct inode *inode = file_inode(file);
4791        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4792        struct btrfs_root *root = BTRFS_I(inode)->root;
4793        struct btrfs_root_item *root_item = &root->root_item;
4794        struct btrfs_trans_handle *trans;
4795        struct timespec64 ct = current_time(inode);
4796        int ret = 0;
4797        int received_uuid_changed;
4798
4799        if (!inode_owner_or_capable(mnt_userns, inode))
4800                return -EPERM;
4801
4802        ret = mnt_want_write_file(file);
4803        if (ret < 0)
4804                return ret;
4805
4806        down_write(&fs_info->subvol_sem);
4807
4808        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4809                ret = -EINVAL;
4810                goto out;
4811        }
4812
4813        if (btrfs_root_readonly(root)) {
4814                ret = -EROFS;
4815                goto out;
4816        }
4817
4818        /*
4819         * 1 - root item
4820         * 2 - uuid items (received uuid + subvol uuid)
4821         */
4822        trans = btrfs_start_transaction(root, 3);
4823        if (IS_ERR(trans)) {
4824                ret = PTR_ERR(trans);
4825                trans = NULL;
4826                goto out;
4827        }
4828
4829        sa->rtransid = trans->transid;
4830        sa->rtime.sec = ct.tv_sec;
4831        sa->rtime.nsec = ct.tv_nsec;
4832
4833        received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4834                                       BTRFS_UUID_SIZE);
4835        if (received_uuid_changed &&
4836            !btrfs_is_empty_uuid(root_item->received_uuid)) {
4837                ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4838                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4839                                          root->root_key.objectid);
4840                if (ret && ret != -ENOENT) {
4841                        btrfs_abort_transaction(trans, ret);
4842                        btrfs_end_transaction(trans);
4843                        goto out;
4844                }
4845        }
4846        memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4847        btrfs_set_root_stransid(root_item, sa->stransid);
4848        btrfs_set_root_rtransid(root_item, sa->rtransid);
4849        btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4850        btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4851        btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4852        btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4853
4854        ret = btrfs_update_root(trans, fs_info->tree_root,
4855                                &root->root_key, &root->root_item);
4856        if (ret < 0) {
4857                btrfs_end_transaction(trans);
4858                goto out;
4859        }
4860        if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4861                ret = btrfs_uuid_tree_add(trans, sa->uuid,
4862                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4863                                          root->root_key.objectid);
4864                if (ret < 0 && ret != -EEXIST) {
4865                        btrfs_abort_transaction(trans, ret);
4866                        btrfs_end_transaction(trans);
4867                        goto out;
4868                }
4869        }
4870        ret = btrfs_commit_transaction(trans);
4871out:
4872        up_write(&fs_info->subvol_sem);
4873        mnt_drop_write_file(file);
4874        return ret;
4875}
4876
4877#ifdef CONFIG_64BIT
4878static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4879                                                void __user *arg)
4880{
4881        struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4882        struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4883        int ret = 0;
4884
4885        args32 = memdup_user(arg, sizeof(*args32));
4886        if (IS_ERR(args32))
4887                return PTR_ERR(args32);
4888
4889        args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4890        if (!args64) {
4891                ret = -ENOMEM;
4892                goto out;
4893        }
4894
4895        memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4896        args64->stransid = args32->stransid;
4897        args64->rtransid = args32->rtransid;
4898        args64->stime.sec = args32->stime.sec;
4899        args64->stime.nsec = args32->stime.nsec;
4900        args64->rtime.sec = args32->rtime.sec;
4901        args64->rtime.nsec = args32->rtime.nsec;
4902        args64->flags = args32->flags;
4903
4904        ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4905        if (ret)
4906                goto out;
4907
4908        memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4909        args32->stransid = args64->stransid;
4910        args32->rtransid = args64->rtransid;
4911        args32->stime.sec = args64->stime.sec;
4912        args32->stime.nsec = args64->stime.nsec;
4913        args32->rtime.sec = args64->rtime.sec;
4914        args32->rtime.nsec = args64->rtime.nsec;
4915        args32->flags = args64->flags;
4916
4917        ret = copy_to_user(arg, args32, sizeof(*args32));
4918        if (ret)
4919                ret = -EFAULT;
4920
4921out:
4922        kfree(args32);
4923        kfree(args64);
4924        return ret;
4925}
4926#endif
4927
4928static long btrfs_ioctl_set_received_subvol(struct file *file,
4929                                            void __user *arg)
4930{
4931        struct btrfs_ioctl_received_subvol_args *sa = NULL;
4932        int ret = 0;
4933
4934        sa = memdup_user(arg, sizeof(*sa));
4935        if (IS_ERR(sa))
4936                return PTR_ERR(sa);
4937
4938        ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4939
4940        if (ret)
4941                goto out;
4942
4943        ret = copy_to_user(arg, sa, sizeof(*sa));
4944        if (ret)
4945                ret = -EFAULT;
4946
4947out:
4948        kfree(sa);
4949        return ret;
4950}
4951
4952static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4953                                        void __user *arg)
4954{
4955        size_t len;
4956        int ret;
4957        char label[BTRFS_LABEL_SIZE];
4958
4959        spin_lock(&fs_info->super_lock);
4960        memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4961        spin_unlock(&fs_info->super_lock);
4962
4963        len = strnlen(label, BTRFS_LABEL_SIZE);
4964
4965        if (len == BTRFS_LABEL_SIZE) {
4966                btrfs_warn(fs_info,
4967                           "label is too long, return the first %zu bytes",
4968                           --len);
4969        }
4970
4971        ret = copy_to_user(arg, label, len);
4972
4973        return ret ? -EFAULT : 0;
4974}
4975
4976static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4977{
4978        struct inode *inode = file_inode(file);
4979        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4980        struct btrfs_root *root = BTRFS_I(inode)->root;
4981        struct btrfs_super_block *super_block = fs_info->super_copy;
4982        struct btrfs_trans_handle *trans;
4983        char label[BTRFS_LABEL_SIZE];
4984        int ret;
4985
4986        if (!capable(CAP_SYS_ADMIN))
4987                return -EPERM;
4988
4989        if (copy_from_user(label, arg, sizeof(label)))
4990                return -EFAULT;
4991
4992        if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4993                btrfs_err(fs_info,
4994                          "unable to set label with more than %d bytes",
4995                          BTRFS_LABEL_SIZE - 1);
4996                return -EINVAL;
4997        }
4998
4999        ret = mnt_want_write_file(file);
5000        if (ret)
5001                return ret;
5002
5003        trans = btrfs_start_transaction(root, 0);
5004        if (IS_ERR(trans)) {
5005                ret = PTR_ERR(trans);
5006                goto out_unlock;
5007        }
5008
5009        spin_lock(&fs_info->super_lock);
5010        strcpy(super_block->label, label);
5011        spin_unlock(&fs_info->super_lock);
5012        ret = btrfs_commit_transaction(trans);
5013
5014out_unlock:
5015        mnt_drop_write_file(file);
5016        return ret;
5017}
5018
5019#define INIT_FEATURE_FLAGS(suffix) \
5020        { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5021          .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5022          .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5023
5024int btrfs_ioctl_get_supported_features(void __user *arg)
5025{
5026        static const struct btrfs_ioctl_feature_flags features[3] = {
5027                INIT_FEATURE_FLAGS(SUPP),
5028                INIT_FEATURE_FLAGS(SAFE_SET),
5029                INIT_FEATURE_FLAGS(SAFE_CLEAR)
5030        };
5031
5032        if (copy_to_user(arg, &features, sizeof(features)))
5033                return -EFAULT;
5034
5035        return 0;
5036}
5037
5038static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5039                                        void __user *arg)
5040{
5041        struct btrfs_super_block *super_block = fs_info->super_copy;
5042        struct btrfs_ioctl_feature_flags features;
5043
5044        features.compat_flags = btrfs_super_compat_flags(super_block);
5045        features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5046        features.incompat_flags = btrfs_super_incompat_flags(super_block);
5047
5048        if (copy_to_user(arg, &features, sizeof(features)))
5049                return -EFAULT;
5050
5051        return 0;
5052}
5053
5054static int check_feature_bits(struct btrfs_fs_info *fs_info,
5055                              enum btrfs_feature_set set,
5056                              u64 change_mask, u64 flags, u64 supported_flags,
5057                              u64 safe_set, u64 safe_clear)
5058{
5059        const char *type = btrfs_feature_set_name(set);
5060        char *names;
5061        u64 disallowed, unsupported;
5062        u64 set_mask = flags & change_mask;
5063        u64 clear_mask = ~flags & change_mask;
5064
5065        unsupported = set_mask & ~supported_flags;
5066        if (unsupported) {
5067                names = btrfs_printable_features(set, unsupported);
5068                if (names) {
5069                        btrfs_warn(fs_info,
5070                                   "this kernel does not support the %s feature bit%s",
5071                                   names, strchr(names, ',') ? "s" : "");
5072                        kfree(names);
5073                } else
5074                        btrfs_warn(fs_info,
5075                                   "this kernel does not support %s bits 0x%llx",
5076                                   type, unsupported);
5077                return -EOPNOTSUPP;
5078        }
5079
5080        disallowed = set_mask & ~safe_set;
5081        if (disallowed) {
5082                names = btrfs_printable_features(set, disallowed);
5083                if (names) {
5084                        btrfs_warn(fs_info,
5085                                   "can't set the %s feature bit%s while mounted",
5086                                   names, strchr(names, ',') ? "s" : "");
5087                        kfree(names);
5088                } else
5089                        btrfs_warn(fs_info,
5090                                   "can't set %s bits 0x%llx while mounted",
5091                                   type, disallowed);
5092                return -EPERM;
5093        }
5094
5095        disallowed = clear_mask & ~safe_clear;
5096        if (disallowed) {
5097                names = btrfs_printable_features(set, disallowed);
5098                if (names) {
5099                        btrfs_warn(fs_info,
5100                                   "can't clear the %s feature bit%s while mounted",
5101                                   names, strchr(names, ',') ? "s" : "");
5102                        kfree(names);
5103                } else
5104                        btrfs_warn(fs_info,
5105                                   "can't clear %s bits 0x%llx while mounted",
5106                                   type, disallowed);
5107                return -EPERM;
5108        }
5109
5110        return 0;
5111}
5112
5113#define check_feature(fs_info, change_mask, flags, mask_base)   \
5114check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
5115                   BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
5116                   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
5117                   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5118
5119static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5120{
5121        struct inode *inode = file_inode(file);
5122        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5123        struct btrfs_root *root = BTRFS_I(inode)->root;
5124        struct btrfs_super_block *super_block = fs_info->super_copy;
5125        struct btrfs_ioctl_feature_flags flags[2];
5126        struct btrfs_trans_handle *trans;
5127        u64 newflags;
5128        int ret;
5129
5130        if (!capable(CAP_SYS_ADMIN))
5131                return -EPERM;
5132
5133        if (copy_from_user(flags, arg, sizeof(flags)))
5134                return -EFAULT;
5135
5136        /* Nothing to do */
5137        if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5138            !flags[0].incompat_flags)
5139                return 0;
5140
5141        ret = check_feature(fs_info, flags[0].compat_flags,
5142                            flags[1].compat_flags, COMPAT);
5143        if (ret)
5144                return ret;
5145
5146        ret = check_feature(fs_info, flags[0].compat_ro_flags,
5147                            flags[1].compat_ro_flags, COMPAT_RO);
5148        if (ret)
5149                return ret;
5150
5151        ret = check_feature(fs_info, flags[0].incompat_flags,
5152                            flags[1].incompat_flags, INCOMPAT);
5153        if (ret)
5154                return ret;
5155
5156        ret = mnt_want_write_file(file);
5157        if (ret)
5158                return ret;
5159
5160        trans = btrfs_start_transaction(root, 0);
5161        if (IS_ERR(trans)) {
5162                ret = PTR_ERR(trans);
5163                goto out_drop_write;
5164        }
5165
5166        spin_lock(&fs_info->super_lock);
5167        newflags = btrfs_super_compat_flags(super_block);
5168        newflags |= flags[0].compat_flags & flags[1].compat_flags;
5169        newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5170        btrfs_set_super_compat_flags(super_block, newflags);
5171
5172        newflags = btrfs_super_compat_ro_flags(super_block);
5173        newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5174        newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5175        btrfs_set_super_compat_ro_flags(super_block, newflags);
5176
5177        newflags = btrfs_super_incompat_flags(super_block);
5178        newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5179        newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5180        btrfs_set_super_incompat_flags(super_block, newflags);
5181        spin_unlock(&fs_info->super_lock);
5182
5183        ret = btrfs_commit_transaction(trans);
5184out_drop_write:
5185        mnt_drop_write_file(file);
5186
5187        return ret;
5188}
5189
5190static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5191{
5192        struct btrfs_ioctl_send_args *arg;
5193        int ret;
5194
5195        if (compat) {
5196#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5197                struct btrfs_ioctl_send_args_32 args32;
5198
5199                ret = copy_from_user(&args32, argp, sizeof(args32));
5200                if (ret)
5201                        return -EFAULT;
5202                arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5203                if (!arg)
5204                        return -ENOMEM;
5205                arg->send_fd = args32.send_fd;
5206                arg->clone_sources_count = args32.clone_sources_count;
5207                arg->clone_sources = compat_ptr(args32.clone_sources);
5208                arg->parent_root = args32.parent_root;
5209                arg->flags = args32.flags;
5210                memcpy(arg->reserved, args32.reserved,
5211                       sizeof(args32.reserved));
5212#else
5213                return -ENOTTY;
5214#endif
5215        } else {
5216                arg = memdup_user(argp, sizeof(*arg));
5217                if (IS_ERR(arg))
5218                        return PTR_ERR(arg);
5219        }
5220        ret = btrfs_ioctl_send(inode, arg);
5221        kfree(arg);
5222        return ret;
5223}
5224
5225static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5226                                    bool compat)
5227{
5228        struct btrfs_ioctl_encoded_io_args args = { 0 };
5229        size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5230                                             flags);
5231        size_t copy_end;
5232        struct iovec iovstack[UIO_FASTIOV];
5233        struct iovec *iov = iovstack;
5234        struct iov_iter iter;
5235        loff_t pos;
5236        struct kiocb kiocb;
5237        ssize_t ret;
5238
5239        if (!capable(CAP_SYS_ADMIN)) {
5240                ret = -EPERM;
5241                goto out_acct;
5242        }
5243
5244        if (compat) {
5245#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5246                struct btrfs_ioctl_encoded_io_args_32 args32;
5247
5248                copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5249                                       flags);
5250                if (copy_from_user(&args32, argp, copy_end)) {
5251                        ret = -EFAULT;
5252                        goto out_acct;
5253                }
5254                args.iov = compat_ptr(args32.iov);
5255                args.iovcnt = args32.iovcnt;
5256                args.offset = args32.offset;
5257                args.flags = args32.flags;
5258#else
5259                return -ENOTTY;
5260#endif
5261        } else {
5262                copy_end = copy_end_kernel;
5263                if (copy_from_user(&args, argp, copy_end)) {
5264                        ret = -EFAULT;
5265                        goto out_acct;
5266                }
5267        }
5268        if (args.flags != 0) {
5269                ret = -EINVAL;
5270                goto out_acct;
5271        }
5272
5273        ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5274                           &iov, &iter);
5275        if (ret < 0)
5276                goto out_acct;
5277
5278        if (iov_iter_count(&iter) == 0) {
5279                ret = 0;
5280                goto out_iov;
5281        }
5282        pos = args.offset;
5283        ret = rw_verify_area(READ, file, &pos, args.len);
5284        if (ret < 0)
5285                goto out_iov;
5286
5287        init_sync_kiocb(&kiocb, file);
5288        kiocb.ki_pos = pos;
5289
5290        ret = btrfs_encoded_read(&kiocb, &iter, &args);
5291        if (ret >= 0) {
5292                fsnotify_access(file);
5293                if (copy_to_user(argp + copy_end,
5294                                 (char *)&args + copy_end_kernel,
5295                                 sizeof(args) - copy_end_kernel))
5296                        ret = -EFAULT;
5297        }
5298
5299out_iov:
5300        kfree(iov);
5301out_acct:
5302        if (ret > 0)
5303                add_rchar(current, ret);
5304        inc_syscr(current);
5305        return ret;
5306}
5307
5308static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5309{
5310        struct btrfs_ioctl_encoded_io_args args;
5311        struct iovec iovstack[UIO_FASTIOV];
5312        struct iovec *iov = iovstack;
5313        struct iov_iter iter;
5314        loff_t pos;
5315        struct kiocb kiocb;
5316        ssize_t ret;
5317
5318        if (!capable(CAP_SYS_ADMIN)) {
5319                ret = -EPERM;
5320                goto out_acct;
5321        }
5322
5323        if (!(file->f_mode & FMODE_WRITE)) {
5324                ret = -EBADF;
5325                goto out_acct;
5326        }
5327
5328        if (compat) {
5329#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5330                struct btrfs_ioctl_encoded_io_args_32 args32;
5331
5332                if (copy_from_user(&args32, argp, sizeof(args32))) {
5333                        ret = -EFAULT;
5334                        goto out_acct;
5335                }
5336                args.iov = compat_ptr(args32.iov);
5337                args.iovcnt = args32.iovcnt;
5338                args.offset = args32.offset;
5339                args.flags = args32.flags;
5340                args.len = args32.len;
5341                args.unencoded_len = args32.unencoded_len;
5342                args.unencoded_offset = args32.unencoded_offset;
5343                args.compression = args32.compression;
5344                args.encryption = args32.encryption;
5345                memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5346#else
5347                return -ENOTTY;
5348#endif
5349        } else {
5350                if (copy_from_user(&args, argp, sizeof(args))) {
5351                        ret = -EFAULT;
5352                        goto out_acct;
5353                }
5354        }
5355
5356        ret = -EINVAL;
5357        if (args.flags != 0)
5358                goto out_acct;
5359        if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5360                goto out_acct;
5361        if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5362            args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5363                goto out_acct;
5364        if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5365            args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5366                goto out_acct;
5367        if (args.unencoded_offset > args.unencoded_len)
5368                goto out_acct;
5369        if (args.len > args.unencoded_len - args.unencoded_offset)
5370                goto out_acct;
5371
5372        ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5373                           &iov, &iter);
5374        if (ret < 0)
5375                goto out_acct;
5376
5377        file_start_write(file);
5378
5379        if (iov_iter_count(&iter) == 0) {
5380                ret = 0;
5381                goto out_end_write;
5382        }
5383        pos = args.offset;
5384        ret = rw_verify_area(WRITE, file, &pos, args.len);
5385        if (ret < 0)
5386                goto out_end_write;
5387
5388        init_sync_kiocb(&kiocb, file);
5389        ret = kiocb_set_rw_flags(&kiocb, 0);
5390        if (ret)
5391                goto out_end_write;
5392        kiocb.ki_pos = pos;
5393
5394        ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5395        if (ret > 0)
5396                fsnotify_modify(file);
5397
5398out_end_write:
5399        file_end_write(file);
5400        kfree(iov);
5401out_acct:
5402        if (ret > 0)
5403                add_wchar(current, ret);
5404        inc_syscw(current);
5405        return ret;
5406}
5407
5408long btrfs_ioctl(struct file *file, unsigned int
5409                cmd, unsigned long arg)
5410{
5411        struct inode *inode = file_inode(file);
5412        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5413        struct btrfs_root *root = BTRFS_I(inode)->root;
5414        void __user *argp = (void __user *)arg;
5415
5416        switch (cmd) {
5417        case FS_IOC_GETVERSION:
5418                return btrfs_ioctl_getversion(inode, argp);
5419        case FS_IOC_GETFSLABEL:
5420                return btrfs_ioctl_get_fslabel(fs_info, argp);
5421        case FS_IOC_SETFSLABEL:
5422                return btrfs_ioctl_set_fslabel(file, argp);
5423        case FITRIM:
5424                return btrfs_ioctl_fitrim(fs_info, argp);
5425        case BTRFS_IOC_SNAP_CREATE:
5426                return btrfs_ioctl_snap_create(file, argp, 0);
5427        case BTRFS_IOC_SNAP_CREATE_V2:
5428                return btrfs_ioctl_snap_create_v2(file, argp, 0);
5429        case BTRFS_IOC_SUBVOL_CREATE:
5430                return btrfs_ioctl_snap_create(file, argp, 1);
5431        case BTRFS_IOC_SUBVOL_CREATE_V2:
5432                return btrfs_ioctl_snap_create_v2(file, argp, 1);
5433        case BTRFS_IOC_SNAP_DESTROY:
5434                return btrfs_ioctl_snap_destroy(file, argp, false);
5435        case BTRFS_IOC_SNAP_DESTROY_V2:
5436                return btrfs_ioctl_snap_destroy(file, argp, true);
5437        case BTRFS_IOC_SUBVOL_GETFLAGS:
5438                return btrfs_ioctl_subvol_getflags(inode, argp);
5439        case BTRFS_IOC_SUBVOL_SETFLAGS:
5440                return btrfs_ioctl_subvol_setflags(file, argp);
5441        case BTRFS_IOC_DEFAULT_SUBVOL:
5442                return btrfs_ioctl_default_subvol(file, argp);
5443        case BTRFS_IOC_DEFRAG:
5444                return btrfs_ioctl_defrag(file, NULL);
5445        case BTRFS_IOC_DEFRAG_RANGE:
5446                return btrfs_ioctl_defrag(file, argp);
5447        case BTRFS_IOC_RESIZE:
5448                return btrfs_ioctl_resize(file, argp);
5449        case BTRFS_IOC_ADD_DEV:
5450                return btrfs_ioctl_add_dev(fs_info, argp);
5451        case BTRFS_IOC_RM_DEV:
5452                return btrfs_ioctl_rm_dev(file, argp);
5453        case BTRFS_IOC_RM_DEV_V2:
5454                return btrfs_ioctl_rm_dev_v2(file, argp);
5455        case BTRFS_IOC_FS_INFO:
5456                return btrfs_ioctl_fs_info(fs_info, argp);
5457        case BTRFS_IOC_DEV_INFO:
5458                return btrfs_ioctl_dev_info(fs_info, argp);
5459        case BTRFS_IOC_TREE_SEARCH:
5460                return btrfs_ioctl_tree_search(inode, argp);
5461        case BTRFS_IOC_TREE_SEARCH_V2:
5462                return btrfs_ioctl_tree_search_v2(inode, argp);
5463        case BTRFS_IOC_INO_LOOKUP:
5464                return btrfs_ioctl_ino_lookup(root, argp);
5465        case BTRFS_IOC_INO_PATHS:
5466                return btrfs_ioctl_ino_to_path(root, argp);
5467        case BTRFS_IOC_LOGICAL_INO:
5468                return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5469        case BTRFS_IOC_LOGICAL_INO_V2:
5470                return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5471        case BTRFS_IOC_SPACE_INFO:
5472                return btrfs_ioctl_space_info(fs_info, argp);
5473        case BTRFS_IOC_SYNC: {
5474                int ret;
5475
5476                ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5477                if (ret)
5478                        return ret;
5479                ret = btrfs_sync_fs(inode->i_sb, 1);
5480                /*
5481                 * The transaction thread may want to do more work,
5482                 * namely it pokes the cleaner kthread that will start
5483                 * processing uncleaned subvols.
5484                 */
5485                wake_up_process(fs_info->transaction_kthread);
5486                return ret;
5487        }
5488        case BTRFS_IOC_START_SYNC:
5489                return btrfs_ioctl_start_sync(root, argp);
5490        case BTRFS_IOC_WAIT_SYNC:
5491                return btrfs_ioctl_wait_sync(fs_info, argp);
5492        case BTRFS_IOC_SCRUB:
5493                return btrfs_ioctl_scrub(file, argp);
5494        case BTRFS_IOC_SCRUB_CANCEL:
5495                return btrfs_ioctl_scrub_cancel(fs_info);
5496        case BTRFS_IOC_SCRUB_PROGRESS:
5497                return btrfs_ioctl_scrub_progress(fs_info, argp);
5498        case BTRFS_IOC_BALANCE_V2:
5499                return btrfs_ioctl_balance(file, argp);
5500        case BTRFS_IOC_BALANCE_CTL:
5501                return btrfs_ioctl_balance_ctl(fs_info, arg);
5502        case BTRFS_IOC_BALANCE_PROGRESS:
5503                return btrfs_ioctl_balance_progress(fs_info, argp);
5504        case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5505                return btrfs_ioctl_set_received_subvol(file, argp);
5506#ifdef CONFIG_64BIT
5507        case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5508                return btrfs_ioctl_set_received_subvol_32(file, argp);
5509#endif
5510        case BTRFS_IOC_SEND:
5511                return _btrfs_ioctl_send(inode, argp, false);
5512#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5513        case BTRFS_IOC_SEND_32:
5514                return _btrfs_ioctl_send(inode, argp, true);
5515#endif
5516        case BTRFS_IOC_GET_DEV_STATS:
5517                return btrfs_ioctl_get_dev_stats(fs_info, argp);
5518        case BTRFS_IOC_QUOTA_CTL:
5519                return btrfs_ioctl_quota_ctl(file, argp);
5520        case BTRFS_IOC_QGROUP_ASSIGN:
5521                return btrfs_ioctl_qgroup_assign(file, argp);
5522        case BTRFS_IOC_QGROUP_CREATE:
5523                return btrfs_ioctl_qgroup_create(file, argp);
5524        case BTRFS_IOC_QGROUP_LIMIT:
5525                return btrfs_ioctl_qgroup_limit(file, argp);
5526        case BTRFS_IOC_QUOTA_RESCAN:
5527                return btrfs_ioctl_quota_rescan(file, argp);
5528        case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5529                return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5530        case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5531                return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5532        case BTRFS_IOC_DEV_REPLACE:
5533                return btrfs_ioctl_dev_replace(fs_info, argp);
5534        case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5535                return btrfs_ioctl_get_supported_features(argp);
5536        case BTRFS_IOC_GET_FEATURES:
5537                return btrfs_ioctl_get_features(fs_info, argp);
5538        case BTRFS_IOC_SET_FEATURES:
5539                return btrfs_ioctl_set_features(file, argp);
5540        case BTRFS_IOC_GET_SUBVOL_INFO:
5541                return btrfs_ioctl_get_subvol_info(inode, argp);
5542        case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5543                return btrfs_ioctl_get_subvol_rootref(root, argp);
5544        case BTRFS_IOC_INO_LOOKUP_USER:
5545                return btrfs_ioctl_ino_lookup_user(file, argp);
5546        case FS_IOC_ENABLE_VERITY:
5547                return fsverity_ioctl_enable(file, (const void __user *)argp);
5548        case FS_IOC_MEASURE_VERITY:
5549                return fsverity_ioctl_measure(file, argp);
5550        case BTRFS_IOC_ENCODED_READ:
5551                return btrfs_ioctl_encoded_read(file, argp, false);
5552        case BTRFS_IOC_ENCODED_WRITE:
5553                return btrfs_ioctl_encoded_write(file, argp, false);
5554#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5555        case BTRFS_IOC_ENCODED_READ_32:
5556                return btrfs_ioctl_encoded_read(file, argp, true);
5557        case BTRFS_IOC_ENCODED_WRITE_32:
5558                return btrfs_ioctl_encoded_write(file, argp, true);
5559#endif
5560        }
5561
5562        return -ENOTTY;
5563}
5564
5565#ifdef CONFIG_COMPAT
5566long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5567{
5568        /*
5569         * These all access 32-bit values anyway so no further
5570         * handling is necessary.
5571         */
5572        switch (cmd) {
5573        case FS_IOC32_GETVERSION:
5574                cmd = FS_IOC_GETVERSION;
5575                break;
5576        }
5577
5578        return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5579}
5580#endif
5581