linux/fs/btrfs/relocation.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27#include "subpage.h"
  28#include "zoned.h"
  29#include "inode-item.h"
  30
  31/*
  32 * Relocation overview
  33 *
  34 * [What does relocation do]
  35 *
  36 * The objective of relocation is to relocate all extents of the target block
  37 * group to other block groups.
  38 * This is utilized by resize (shrink only), profile converting, compacting
  39 * space, or balance routine to spread chunks over devices.
  40 *
  41 *              Before          |               After
  42 * ------------------------------------------------------------------
  43 *  BG A: 10 data extents       | BG A: deleted
  44 *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
  45 *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
  46 *
  47 * [How does relocation work]
  48 *
  49 * 1.   Mark the target block group read-only
  50 *      New extents won't be allocated from the target block group.
  51 *
  52 * 2.1  Record each extent in the target block group
  53 *      To build a proper map of extents to be relocated.
  54 *
  55 * 2.2  Build data reloc tree and reloc trees
  56 *      Data reloc tree will contain an inode, recording all newly relocated
  57 *      data extents.
  58 *      There will be only one data reloc tree for one data block group.
  59 *
  60 *      Reloc tree will be a special snapshot of its source tree, containing
  61 *      relocated tree blocks.
  62 *      Each tree referring to a tree block in target block group will get its
  63 *      reloc tree built.
  64 *
  65 * 2.3  Swap source tree with its corresponding reloc tree
  66 *      Each involved tree only refers to new extents after swap.
  67 *
  68 * 3.   Cleanup reloc trees and data reloc tree.
  69 *      As old extents in the target block group are still referenced by reloc
  70 *      trees, we need to clean them up before really freeing the target block
  71 *      group.
  72 *
  73 * The main complexity is in steps 2.2 and 2.3.
  74 *
  75 * The entry point of relocation is relocate_block_group() function.
  76 */
  77
  78#define RELOCATION_RESERVED_NODES       256
  79/*
  80 * map address of tree root to tree
  81 */
  82struct mapping_node {
  83        struct {
  84                struct rb_node rb_node;
  85                u64 bytenr;
  86        }; /* Use rb_simle_node for search/insert */
  87        void *data;
  88};
  89
  90struct mapping_tree {
  91        struct rb_root rb_root;
  92        spinlock_t lock;
  93};
  94
  95/*
  96 * present a tree block to process
  97 */
  98struct tree_block {
  99        struct {
 100                struct rb_node rb_node;
 101                u64 bytenr;
 102        }; /* Use rb_simple_node for search/insert */
 103        u64 owner;
 104        struct btrfs_key key;
 105        unsigned int level:8;
 106        unsigned int key_ready:1;
 107};
 108
 109#define MAX_EXTENTS 128
 110
 111struct file_extent_cluster {
 112        u64 start;
 113        u64 end;
 114        u64 boundary[MAX_EXTENTS];
 115        unsigned int nr;
 116};
 117
 118struct reloc_control {
 119        /* block group to relocate */
 120        struct btrfs_block_group *block_group;
 121        /* extent tree */
 122        struct btrfs_root *extent_root;
 123        /* inode for moving data */
 124        struct inode *data_inode;
 125
 126        struct btrfs_block_rsv *block_rsv;
 127
 128        struct btrfs_backref_cache backref_cache;
 129
 130        struct file_extent_cluster cluster;
 131        /* tree blocks have been processed */
 132        struct extent_io_tree processed_blocks;
 133        /* map start of tree root to corresponding reloc tree */
 134        struct mapping_tree reloc_root_tree;
 135        /* list of reloc trees */
 136        struct list_head reloc_roots;
 137        /* list of subvolume trees that get relocated */
 138        struct list_head dirty_subvol_roots;
 139        /* size of metadata reservation for merging reloc trees */
 140        u64 merging_rsv_size;
 141        /* size of relocated tree nodes */
 142        u64 nodes_relocated;
 143        /* reserved size for block group relocation*/
 144        u64 reserved_bytes;
 145
 146        u64 search_start;
 147        u64 extents_found;
 148
 149        unsigned int stage:8;
 150        unsigned int create_reloc_tree:1;
 151        unsigned int merge_reloc_tree:1;
 152        unsigned int found_file_extent:1;
 153};
 154
 155/* stages of data relocation */
 156#define MOVE_DATA_EXTENTS       0
 157#define UPDATE_DATA_PTRS        1
 158
 159static void mark_block_processed(struct reloc_control *rc,
 160                                 struct btrfs_backref_node *node)
 161{
 162        u32 blocksize;
 163
 164        if (node->level == 0 ||
 165            in_range(node->bytenr, rc->block_group->start,
 166                     rc->block_group->length)) {
 167                blocksize = rc->extent_root->fs_info->nodesize;
 168                set_extent_bits(&rc->processed_blocks, node->bytenr,
 169                                node->bytenr + blocksize - 1, EXTENT_DIRTY);
 170        }
 171        node->processed = 1;
 172}
 173
 174
 175static void mapping_tree_init(struct mapping_tree *tree)
 176{
 177        tree->rb_root = RB_ROOT;
 178        spin_lock_init(&tree->lock);
 179}
 180
 181/*
 182 * walk up backref nodes until reach node presents tree root
 183 */
 184static struct btrfs_backref_node *walk_up_backref(
 185                struct btrfs_backref_node *node,
 186                struct btrfs_backref_edge *edges[], int *index)
 187{
 188        struct btrfs_backref_edge *edge;
 189        int idx = *index;
 190
 191        while (!list_empty(&node->upper)) {
 192                edge = list_entry(node->upper.next,
 193                                  struct btrfs_backref_edge, list[LOWER]);
 194                edges[idx++] = edge;
 195                node = edge->node[UPPER];
 196        }
 197        BUG_ON(node->detached);
 198        *index = idx;
 199        return node;
 200}
 201
 202/*
 203 * walk down backref nodes to find start of next reference path
 204 */
 205static struct btrfs_backref_node *walk_down_backref(
 206                struct btrfs_backref_edge *edges[], int *index)
 207{
 208        struct btrfs_backref_edge *edge;
 209        struct btrfs_backref_node *lower;
 210        int idx = *index;
 211
 212        while (idx > 0) {
 213                edge = edges[idx - 1];
 214                lower = edge->node[LOWER];
 215                if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 216                        idx--;
 217                        continue;
 218                }
 219                edge = list_entry(edge->list[LOWER].next,
 220                                  struct btrfs_backref_edge, list[LOWER]);
 221                edges[idx - 1] = edge;
 222                *index = idx;
 223                return edge->node[UPPER];
 224        }
 225        *index = 0;
 226        return NULL;
 227}
 228
 229static void update_backref_node(struct btrfs_backref_cache *cache,
 230                                struct btrfs_backref_node *node, u64 bytenr)
 231{
 232        struct rb_node *rb_node;
 233        rb_erase(&node->rb_node, &cache->rb_root);
 234        node->bytenr = bytenr;
 235        rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 236        if (rb_node)
 237                btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 238}
 239
 240/*
 241 * update backref cache after a transaction commit
 242 */
 243static int update_backref_cache(struct btrfs_trans_handle *trans,
 244                                struct btrfs_backref_cache *cache)
 245{
 246        struct btrfs_backref_node *node;
 247        int level = 0;
 248
 249        if (cache->last_trans == 0) {
 250                cache->last_trans = trans->transid;
 251                return 0;
 252        }
 253
 254        if (cache->last_trans == trans->transid)
 255                return 0;
 256
 257        /*
 258         * detached nodes are used to avoid unnecessary backref
 259         * lookup. transaction commit changes the extent tree.
 260         * so the detached nodes are no longer useful.
 261         */
 262        while (!list_empty(&cache->detached)) {
 263                node = list_entry(cache->detached.next,
 264                                  struct btrfs_backref_node, list);
 265                btrfs_backref_cleanup_node(cache, node);
 266        }
 267
 268        while (!list_empty(&cache->changed)) {
 269                node = list_entry(cache->changed.next,
 270                                  struct btrfs_backref_node, list);
 271                list_del_init(&node->list);
 272                BUG_ON(node->pending);
 273                update_backref_node(cache, node, node->new_bytenr);
 274        }
 275
 276        /*
 277         * some nodes can be left in the pending list if there were
 278         * errors during processing the pending nodes.
 279         */
 280        for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 281                list_for_each_entry(node, &cache->pending[level], list) {
 282                        BUG_ON(!node->pending);
 283                        if (node->bytenr == node->new_bytenr)
 284                                continue;
 285                        update_backref_node(cache, node, node->new_bytenr);
 286                }
 287        }
 288
 289        cache->last_trans = 0;
 290        return 1;
 291}
 292
 293static bool reloc_root_is_dead(struct btrfs_root *root)
 294{
 295        /*
 296         * Pair with set_bit/clear_bit in clean_dirty_subvols and
 297         * btrfs_update_reloc_root. We need to see the updated bit before
 298         * trying to access reloc_root
 299         */
 300        smp_rmb();
 301        if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 302                return true;
 303        return false;
 304}
 305
 306/*
 307 * Check if this subvolume tree has valid reloc tree.
 308 *
 309 * Reloc tree after swap is considered dead, thus not considered as valid.
 310 * This is enough for most callers, as they don't distinguish dead reloc root
 311 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 312 * special case.
 313 */
 314static bool have_reloc_root(struct btrfs_root *root)
 315{
 316        if (reloc_root_is_dead(root))
 317                return false;
 318        if (!root->reloc_root)
 319                return false;
 320        return true;
 321}
 322
 323int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 324{
 325        struct btrfs_root *reloc_root;
 326
 327        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 328                return 0;
 329
 330        /* This root has been merged with its reloc tree, we can ignore it */
 331        if (reloc_root_is_dead(root))
 332                return 1;
 333
 334        reloc_root = root->reloc_root;
 335        if (!reloc_root)
 336                return 0;
 337
 338        if (btrfs_header_generation(reloc_root->commit_root) ==
 339            root->fs_info->running_transaction->transid)
 340                return 0;
 341        /*
 342         * if there is reloc tree and it was created in previous
 343         * transaction backref lookup can find the reloc tree,
 344         * so backref node for the fs tree root is useless for
 345         * relocation.
 346         */
 347        return 1;
 348}
 349
 350/*
 351 * find reloc tree by address of tree root
 352 */
 353struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 354{
 355        struct reloc_control *rc = fs_info->reloc_ctl;
 356        struct rb_node *rb_node;
 357        struct mapping_node *node;
 358        struct btrfs_root *root = NULL;
 359
 360        ASSERT(rc);
 361        spin_lock(&rc->reloc_root_tree.lock);
 362        rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 363        if (rb_node) {
 364                node = rb_entry(rb_node, struct mapping_node, rb_node);
 365                root = (struct btrfs_root *)node->data;
 366        }
 367        spin_unlock(&rc->reloc_root_tree.lock);
 368        return btrfs_grab_root(root);
 369}
 370
 371/*
 372 * For useless nodes, do two major clean ups:
 373 *
 374 * - Cleanup the children edges and nodes
 375 *   If child node is also orphan (no parent) during cleanup, then the child
 376 *   node will also be cleaned up.
 377 *
 378 * - Freeing up leaves (level 0), keeps nodes detached
 379 *   For nodes, the node is still cached as "detached"
 380 *
 381 * Return false if @node is not in the @useless_nodes list.
 382 * Return true if @node is in the @useless_nodes list.
 383 */
 384static bool handle_useless_nodes(struct reloc_control *rc,
 385                                 struct btrfs_backref_node *node)
 386{
 387        struct btrfs_backref_cache *cache = &rc->backref_cache;
 388        struct list_head *useless_node = &cache->useless_node;
 389        bool ret = false;
 390
 391        while (!list_empty(useless_node)) {
 392                struct btrfs_backref_node *cur;
 393
 394                cur = list_first_entry(useless_node, struct btrfs_backref_node,
 395                                 list);
 396                list_del_init(&cur->list);
 397
 398                /* Only tree root nodes can be added to @useless_nodes */
 399                ASSERT(list_empty(&cur->upper));
 400
 401                if (cur == node)
 402                        ret = true;
 403
 404                /* The node is the lowest node */
 405                if (cur->lowest) {
 406                        list_del_init(&cur->lower);
 407                        cur->lowest = 0;
 408                }
 409
 410                /* Cleanup the lower edges */
 411                while (!list_empty(&cur->lower)) {
 412                        struct btrfs_backref_edge *edge;
 413                        struct btrfs_backref_node *lower;
 414
 415                        edge = list_entry(cur->lower.next,
 416                                        struct btrfs_backref_edge, list[UPPER]);
 417                        list_del(&edge->list[UPPER]);
 418                        list_del(&edge->list[LOWER]);
 419                        lower = edge->node[LOWER];
 420                        btrfs_backref_free_edge(cache, edge);
 421
 422                        /* Child node is also orphan, queue for cleanup */
 423                        if (list_empty(&lower->upper))
 424                                list_add(&lower->list, useless_node);
 425                }
 426                /* Mark this block processed for relocation */
 427                mark_block_processed(rc, cur);
 428
 429                /*
 430                 * Backref nodes for tree leaves are deleted from the cache.
 431                 * Backref nodes for upper level tree blocks are left in the
 432                 * cache to avoid unnecessary backref lookup.
 433                 */
 434                if (cur->level > 0) {
 435                        list_add(&cur->list, &cache->detached);
 436                        cur->detached = 1;
 437                } else {
 438                        rb_erase(&cur->rb_node, &cache->rb_root);
 439                        btrfs_backref_free_node(cache, cur);
 440                }
 441        }
 442        return ret;
 443}
 444
 445/*
 446 * Build backref tree for a given tree block. Root of the backref tree
 447 * corresponds the tree block, leaves of the backref tree correspond roots of
 448 * b-trees that reference the tree block.
 449 *
 450 * The basic idea of this function is check backrefs of a given block to find
 451 * upper level blocks that reference the block, and then check backrefs of
 452 * these upper level blocks recursively. The recursion stops when tree root is
 453 * reached or backrefs for the block is cached.
 454 *
 455 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 456 * all upper level blocks that directly/indirectly reference the block are also
 457 * cached.
 458 */
 459static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 460                        struct reloc_control *rc, struct btrfs_key *node_key,
 461                        int level, u64 bytenr)
 462{
 463        struct btrfs_backref_iter *iter;
 464        struct btrfs_backref_cache *cache = &rc->backref_cache;
 465        /* For searching parent of TREE_BLOCK_REF */
 466        struct btrfs_path *path;
 467        struct btrfs_backref_node *cur;
 468        struct btrfs_backref_node *node = NULL;
 469        struct btrfs_backref_edge *edge;
 470        int ret;
 471        int err = 0;
 472
 473        iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
 474        if (!iter)
 475                return ERR_PTR(-ENOMEM);
 476        path = btrfs_alloc_path();
 477        if (!path) {
 478                err = -ENOMEM;
 479                goto out;
 480        }
 481
 482        node = btrfs_backref_alloc_node(cache, bytenr, level);
 483        if (!node) {
 484                err = -ENOMEM;
 485                goto out;
 486        }
 487
 488        node->lowest = 1;
 489        cur = node;
 490
 491        /* Breadth-first search to build backref cache */
 492        do {
 493                ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 494                                                  cur);
 495                if (ret < 0) {
 496                        err = ret;
 497                        goto out;
 498                }
 499                edge = list_first_entry_or_null(&cache->pending_edge,
 500                                struct btrfs_backref_edge, list[UPPER]);
 501                /*
 502                 * The pending list isn't empty, take the first block to
 503                 * process
 504                 */
 505                if (edge) {
 506                        list_del_init(&edge->list[UPPER]);
 507                        cur = edge->node[UPPER];
 508                }
 509        } while (edge);
 510
 511        /* Finish the upper linkage of newly added edges/nodes */
 512        ret = btrfs_backref_finish_upper_links(cache, node);
 513        if (ret < 0) {
 514                err = ret;
 515                goto out;
 516        }
 517
 518        if (handle_useless_nodes(rc, node))
 519                node = NULL;
 520out:
 521        btrfs_backref_iter_free(iter);
 522        btrfs_free_path(path);
 523        if (err) {
 524                btrfs_backref_error_cleanup(cache, node);
 525                return ERR_PTR(err);
 526        }
 527        ASSERT(!node || !node->detached);
 528        ASSERT(list_empty(&cache->useless_node) &&
 529               list_empty(&cache->pending_edge));
 530        return node;
 531}
 532
 533/*
 534 * helper to add backref node for the newly created snapshot.
 535 * the backref node is created by cloning backref node that
 536 * corresponds to root of source tree
 537 */
 538static int clone_backref_node(struct btrfs_trans_handle *trans,
 539                              struct reloc_control *rc,
 540                              struct btrfs_root *src,
 541                              struct btrfs_root *dest)
 542{
 543        struct btrfs_root *reloc_root = src->reloc_root;
 544        struct btrfs_backref_cache *cache = &rc->backref_cache;
 545        struct btrfs_backref_node *node = NULL;
 546        struct btrfs_backref_node *new_node;
 547        struct btrfs_backref_edge *edge;
 548        struct btrfs_backref_edge *new_edge;
 549        struct rb_node *rb_node;
 550
 551        if (cache->last_trans > 0)
 552                update_backref_cache(trans, cache);
 553
 554        rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 555        if (rb_node) {
 556                node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 557                if (node->detached)
 558                        node = NULL;
 559                else
 560                        BUG_ON(node->new_bytenr != reloc_root->node->start);
 561        }
 562
 563        if (!node) {
 564                rb_node = rb_simple_search(&cache->rb_root,
 565                                           reloc_root->commit_root->start);
 566                if (rb_node) {
 567                        node = rb_entry(rb_node, struct btrfs_backref_node,
 568                                        rb_node);
 569                        BUG_ON(node->detached);
 570                }
 571        }
 572
 573        if (!node)
 574                return 0;
 575
 576        new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 577                                            node->level);
 578        if (!new_node)
 579                return -ENOMEM;
 580
 581        new_node->lowest = node->lowest;
 582        new_node->checked = 1;
 583        new_node->root = btrfs_grab_root(dest);
 584        ASSERT(new_node->root);
 585
 586        if (!node->lowest) {
 587                list_for_each_entry(edge, &node->lower, list[UPPER]) {
 588                        new_edge = btrfs_backref_alloc_edge(cache);
 589                        if (!new_edge)
 590                                goto fail;
 591
 592                        btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 593                                                new_node, LINK_UPPER);
 594                }
 595        } else {
 596                list_add_tail(&new_node->lower, &cache->leaves);
 597        }
 598
 599        rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 600                                   &new_node->rb_node);
 601        if (rb_node)
 602                btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 603
 604        if (!new_node->lowest) {
 605                list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 606                        list_add_tail(&new_edge->list[LOWER],
 607                                      &new_edge->node[LOWER]->upper);
 608                }
 609        }
 610        return 0;
 611fail:
 612        while (!list_empty(&new_node->lower)) {
 613                new_edge = list_entry(new_node->lower.next,
 614                                      struct btrfs_backref_edge, list[UPPER]);
 615                list_del(&new_edge->list[UPPER]);
 616                btrfs_backref_free_edge(cache, new_edge);
 617        }
 618        btrfs_backref_free_node(cache, new_node);
 619        return -ENOMEM;
 620}
 621
 622/*
 623 * helper to add 'address of tree root -> reloc tree' mapping
 624 */
 625static int __must_check __add_reloc_root(struct btrfs_root *root)
 626{
 627        struct btrfs_fs_info *fs_info = root->fs_info;
 628        struct rb_node *rb_node;
 629        struct mapping_node *node;
 630        struct reloc_control *rc = fs_info->reloc_ctl;
 631
 632        node = kmalloc(sizeof(*node), GFP_NOFS);
 633        if (!node)
 634                return -ENOMEM;
 635
 636        node->bytenr = root->commit_root->start;
 637        node->data = root;
 638
 639        spin_lock(&rc->reloc_root_tree.lock);
 640        rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 641                                   node->bytenr, &node->rb_node);
 642        spin_unlock(&rc->reloc_root_tree.lock);
 643        if (rb_node) {
 644                btrfs_err(fs_info,
 645                            "Duplicate root found for start=%llu while inserting into relocation tree",
 646                            node->bytenr);
 647                return -EEXIST;
 648        }
 649
 650        list_add_tail(&root->root_list, &rc->reloc_roots);
 651        return 0;
 652}
 653
 654/*
 655 * helper to delete the 'address of tree root -> reloc tree'
 656 * mapping
 657 */
 658static void __del_reloc_root(struct btrfs_root *root)
 659{
 660        struct btrfs_fs_info *fs_info = root->fs_info;
 661        struct rb_node *rb_node;
 662        struct mapping_node *node = NULL;
 663        struct reloc_control *rc = fs_info->reloc_ctl;
 664        bool put_ref = false;
 665
 666        if (rc && root->node) {
 667                spin_lock(&rc->reloc_root_tree.lock);
 668                rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 669                                           root->commit_root->start);
 670                if (rb_node) {
 671                        node = rb_entry(rb_node, struct mapping_node, rb_node);
 672                        rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 673                        RB_CLEAR_NODE(&node->rb_node);
 674                }
 675                spin_unlock(&rc->reloc_root_tree.lock);
 676                ASSERT(!node || (struct btrfs_root *)node->data == root);
 677        }
 678
 679        /*
 680         * We only put the reloc root here if it's on the list.  There's a lot
 681         * of places where the pattern is to splice the rc->reloc_roots, process
 682         * the reloc roots, and then add the reloc root back onto
 683         * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 684         * list we don't want the reference being dropped, because the guy
 685         * messing with the list is in charge of the reference.
 686         */
 687        spin_lock(&fs_info->trans_lock);
 688        if (!list_empty(&root->root_list)) {
 689                put_ref = true;
 690                list_del_init(&root->root_list);
 691        }
 692        spin_unlock(&fs_info->trans_lock);
 693        if (put_ref)
 694                btrfs_put_root(root);
 695        kfree(node);
 696}
 697
 698/*
 699 * helper to update the 'address of tree root -> reloc tree'
 700 * mapping
 701 */
 702static int __update_reloc_root(struct btrfs_root *root)
 703{
 704        struct btrfs_fs_info *fs_info = root->fs_info;
 705        struct rb_node *rb_node;
 706        struct mapping_node *node = NULL;
 707        struct reloc_control *rc = fs_info->reloc_ctl;
 708
 709        spin_lock(&rc->reloc_root_tree.lock);
 710        rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 711                                   root->commit_root->start);
 712        if (rb_node) {
 713                node = rb_entry(rb_node, struct mapping_node, rb_node);
 714                rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 715        }
 716        spin_unlock(&rc->reloc_root_tree.lock);
 717
 718        if (!node)
 719                return 0;
 720        BUG_ON((struct btrfs_root *)node->data != root);
 721
 722        spin_lock(&rc->reloc_root_tree.lock);
 723        node->bytenr = root->node->start;
 724        rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 725                                   node->bytenr, &node->rb_node);
 726        spin_unlock(&rc->reloc_root_tree.lock);
 727        if (rb_node)
 728                btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 729        return 0;
 730}
 731
 732static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 733                                        struct btrfs_root *root, u64 objectid)
 734{
 735        struct btrfs_fs_info *fs_info = root->fs_info;
 736        struct btrfs_root *reloc_root;
 737        struct extent_buffer *eb;
 738        struct btrfs_root_item *root_item;
 739        struct btrfs_key root_key;
 740        int ret = 0;
 741        bool must_abort = false;
 742
 743        root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 744        if (!root_item)
 745                return ERR_PTR(-ENOMEM);
 746
 747        root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 748        root_key.type = BTRFS_ROOT_ITEM_KEY;
 749        root_key.offset = objectid;
 750
 751        if (root->root_key.objectid == objectid) {
 752                u64 commit_root_gen;
 753
 754                /* called by btrfs_init_reloc_root */
 755                ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 756                                      BTRFS_TREE_RELOC_OBJECTID);
 757                if (ret)
 758                        goto fail;
 759
 760                /*
 761                 * Set the last_snapshot field to the generation of the commit
 762                 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 763                 * correctly (returns true) when the relocation root is created
 764                 * either inside the critical section of a transaction commit
 765                 * (through transaction.c:qgroup_account_snapshot()) and when
 766                 * it's created before the transaction commit is started.
 767                 */
 768                commit_root_gen = btrfs_header_generation(root->commit_root);
 769                btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 770        } else {
 771                /*
 772                 * called by btrfs_reloc_post_snapshot_hook.
 773                 * the source tree is a reloc tree, all tree blocks
 774                 * modified after it was created have RELOC flag
 775                 * set in their headers. so it's OK to not update
 776                 * the 'last_snapshot'.
 777                 */
 778                ret = btrfs_copy_root(trans, root, root->node, &eb,
 779                                      BTRFS_TREE_RELOC_OBJECTID);
 780                if (ret)
 781                        goto fail;
 782        }
 783
 784        /*
 785         * We have changed references at this point, we must abort the
 786         * transaction if anything fails.
 787         */
 788        must_abort = true;
 789
 790        memcpy(root_item, &root->root_item, sizeof(*root_item));
 791        btrfs_set_root_bytenr(root_item, eb->start);
 792        btrfs_set_root_level(root_item, btrfs_header_level(eb));
 793        btrfs_set_root_generation(root_item, trans->transid);
 794
 795        if (root->root_key.objectid == objectid) {
 796                btrfs_set_root_refs(root_item, 0);
 797                memset(&root_item->drop_progress, 0,
 798                       sizeof(struct btrfs_disk_key));
 799                btrfs_set_root_drop_level(root_item, 0);
 800        }
 801
 802        btrfs_tree_unlock(eb);
 803        free_extent_buffer(eb);
 804
 805        ret = btrfs_insert_root(trans, fs_info->tree_root,
 806                                &root_key, root_item);
 807        if (ret)
 808                goto fail;
 809
 810        kfree(root_item);
 811
 812        reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 813        if (IS_ERR(reloc_root)) {
 814                ret = PTR_ERR(reloc_root);
 815                goto abort;
 816        }
 817        set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 818        reloc_root->last_trans = trans->transid;
 819        return reloc_root;
 820fail:
 821        kfree(root_item);
 822abort:
 823        if (must_abort)
 824                btrfs_abort_transaction(trans, ret);
 825        return ERR_PTR(ret);
 826}
 827
 828/*
 829 * create reloc tree for a given fs tree. reloc tree is just a
 830 * snapshot of the fs tree with special root objectid.
 831 *
 832 * The reloc_root comes out of here with two references, one for
 833 * root->reloc_root, and another for being on the rc->reloc_roots list.
 834 */
 835int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 836                          struct btrfs_root *root)
 837{
 838        struct btrfs_fs_info *fs_info = root->fs_info;
 839        struct btrfs_root *reloc_root;
 840        struct reloc_control *rc = fs_info->reloc_ctl;
 841        struct btrfs_block_rsv *rsv;
 842        int clear_rsv = 0;
 843        int ret;
 844
 845        if (!rc)
 846                return 0;
 847
 848        /*
 849         * The subvolume has reloc tree but the swap is finished, no need to
 850         * create/update the dead reloc tree
 851         */
 852        if (reloc_root_is_dead(root))
 853                return 0;
 854
 855        /*
 856         * This is subtle but important.  We do not do
 857         * record_root_in_transaction for reloc roots, instead we record their
 858         * corresponding fs root, and then here we update the last trans for the
 859         * reloc root.  This means that we have to do this for the entire life
 860         * of the reloc root, regardless of which stage of the relocation we are
 861         * in.
 862         */
 863        if (root->reloc_root) {
 864                reloc_root = root->reloc_root;
 865                reloc_root->last_trans = trans->transid;
 866                return 0;
 867        }
 868
 869        /*
 870         * We are merging reloc roots, we do not need new reloc trees.  Also
 871         * reloc trees never need their own reloc tree.
 872         */
 873        if (!rc->create_reloc_tree ||
 874            root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 875                return 0;
 876
 877        if (!trans->reloc_reserved) {
 878                rsv = trans->block_rsv;
 879                trans->block_rsv = rc->block_rsv;
 880                clear_rsv = 1;
 881        }
 882        reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 883        if (clear_rsv)
 884                trans->block_rsv = rsv;
 885        if (IS_ERR(reloc_root))
 886                return PTR_ERR(reloc_root);
 887
 888        ret = __add_reloc_root(reloc_root);
 889        ASSERT(ret != -EEXIST);
 890        if (ret) {
 891                /* Pairs with create_reloc_root */
 892                btrfs_put_root(reloc_root);
 893                return ret;
 894        }
 895        root->reloc_root = btrfs_grab_root(reloc_root);
 896        return 0;
 897}
 898
 899/*
 900 * update root item of reloc tree
 901 */
 902int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 903                            struct btrfs_root *root)
 904{
 905        struct btrfs_fs_info *fs_info = root->fs_info;
 906        struct btrfs_root *reloc_root;
 907        struct btrfs_root_item *root_item;
 908        int ret;
 909
 910        if (!have_reloc_root(root))
 911                return 0;
 912
 913        reloc_root = root->reloc_root;
 914        root_item = &reloc_root->root_item;
 915
 916        /*
 917         * We are probably ok here, but __del_reloc_root() will drop its ref of
 918         * the root.  We have the ref for root->reloc_root, but just in case
 919         * hold it while we update the reloc root.
 920         */
 921        btrfs_grab_root(reloc_root);
 922
 923        /* root->reloc_root will stay until current relocation finished */
 924        if (fs_info->reloc_ctl->merge_reloc_tree &&
 925            btrfs_root_refs(root_item) == 0) {
 926                set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 927                /*
 928                 * Mark the tree as dead before we change reloc_root so
 929                 * have_reloc_root will not touch it from now on.
 930                 */
 931                smp_wmb();
 932                __del_reloc_root(reloc_root);
 933        }
 934
 935        if (reloc_root->commit_root != reloc_root->node) {
 936                __update_reloc_root(reloc_root);
 937                btrfs_set_root_node(root_item, reloc_root->node);
 938                free_extent_buffer(reloc_root->commit_root);
 939                reloc_root->commit_root = btrfs_root_node(reloc_root);
 940        }
 941
 942        ret = btrfs_update_root(trans, fs_info->tree_root,
 943                                &reloc_root->root_key, root_item);
 944        btrfs_put_root(reloc_root);
 945        return ret;
 946}
 947
 948/*
 949 * helper to find first cached inode with inode number >= objectid
 950 * in a subvolume
 951 */
 952static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 953{
 954        struct rb_node *node;
 955        struct rb_node *prev;
 956        struct btrfs_inode *entry;
 957        struct inode *inode;
 958
 959        spin_lock(&root->inode_lock);
 960again:
 961        node = root->inode_tree.rb_node;
 962        prev = NULL;
 963        while (node) {
 964                prev = node;
 965                entry = rb_entry(node, struct btrfs_inode, rb_node);
 966
 967                if (objectid < btrfs_ino(entry))
 968                        node = node->rb_left;
 969                else if (objectid > btrfs_ino(entry))
 970                        node = node->rb_right;
 971                else
 972                        break;
 973        }
 974        if (!node) {
 975                while (prev) {
 976                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
 977                        if (objectid <= btrfs_ino(entry)) {
 978                                node = prev;
 979                                break;
 980                        }
 981                        prev = rb_next(prev);
 982                }
 983        }
 984        while (node) {
 985                entry = rb_entry(node, struct btrfs_inode, rb_node);
 986                inode = igrab(&entry->vfs_inode);
 987                if (inode) {
 988                        spin_unlock(&root->inode_lock);
 989                        return inode;
 990                }
 991
 992                objectid = btrfs_ino(entry) + 1;
 993                if (cond_resched_lock(&root->inode_lock))
 994                        goto again;
 995
 996                node = rb_next(node);
 997        }
 998        spin_unlock(&root->inode_lock);
 999        return NULL;
1000}
1001
1002/*
1003 * get new location of data
1004 */
1005static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1006                            u64 bytenr, u64 num_bytes)
1007{
1008        struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1009        struct btrfs_path *path;
1010        struct btrfs_file_extent_item *fi;
1011        struct extent_buffer *leaf;
1012        int ret;
1013
1014        path = btrfs_alloc_path();
1015        if (!path)
1016                return -ENOMEM;
1017
1018        bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1019        ret = btrfs_lookup_file_extent(NULL, root, path,
1020                        btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1021        if (ret < 0)
1022                goto out;
1023        if (ret > 0) {
1024                ret = -ENOENT;
1025                goto out;
1026        }
1027
1028        leaf = path->nodes[0];
1029        fi = btrfs_item_ptr(leaf, path->slots[0],
1030                            struct btrfs_file_extent_item);
1031
1032        BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1033               btrfs_file_extent_compression(leaf, fi) ||
1034               btrfs_file_extent_encryption(leaf, fi) ||
1035               btrfs_file_extent_other_encoding(leaf, fi));
1036
1037        if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1038                ret = -EINVAL;
1039                goto out;
1040        }
1041
1042        *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1043        ret = 0;
1044out:
1045        btrfs_free_path(path);
1046        return ret;
1047}
1048
1049/*
1050 * update file extent items in the tree leaf to point to
1051 * the new locations.
1052 */
1053static noinline_for_stack
1054int replace_file_extents(struct btrfs_trans_handle *trans,
1055                         struct reloc_control *rc,
1056                         struct btrfs_root *root,
1057                         struct extent_buffer *leaf)
1058{
1059        struct btrfs_fs_info *fs_info = root->fs_info;
1060        struct btrfs_key key;
1061        struct btrfs_file_extent_item *fi;
1062        struct inode *inode = NULL;
1063        u64 parent;
1064        u64 bytenr;
1065        u64 new_bytenr = 0;
1066        u64 num_bytes;
1067        u64 end;
1068        u32 nritems;
1069        u32 i;
1070        int ret = 0;
1071        int first = 1;
1072        int dirty = 0;
1073
1074        if (rc->stage != UPDATE_DATA_PTRS)
1075                return 0;
1076
1077        /* reloc trees always use full backref */
1078        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1079                parent = leaf->start;
1080        else
1081                parent = 0;
1082
1083        nritems = btrfs_header_nritems(leaf);
1084        for (i = 0; i < nritems; i++) {
1085                struct btrfs_ref ref = { 0 };
1086
1087                cond_resched();
1088                btrfs_item_key_to_cpu(leaf, &key, i);
1089                if (key.type != BTRFS_EXTENT_DATA_KEY)
1090                        continue;
1091                fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1092                if (btrfs_file_extent_type(leaf, fi) ==
1093                    BTRFS_FILE_EXTENT_INLINE)
1094                        continue;
1095                bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1096                num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1097                if (bytenr == 0)
1098                        continue;
1099                if (!in_range(bytenr, rc->block_group->start,
1100                              rc->block_group->length))
1101                        continue;
1102
1103                /*
1104                 * if we are modifying block in fs tree, wait for readpage
1105                 * to complete and drop the extent cache
1106                 */
1107                if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1108                        if (first) {
1109                                inode = find_next_inode(root, key.objectid);
1110                                first = 0;
1111                        } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1112                                btrfs_add_delayed_iput(inode);
1113                                inode = find_next_inode(root, key.objectid);
1114                        }
1115                        if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1116                                end = key.offset +
1117                                      btrfs_file_extent_num_bytes(leaf, fi);
1118                                WARN_ON(!IS_ALIGNED(key.offset,
1119                                                    fs_info->sectorsize));
1120                                WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1121                                end--;
1122                                ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1123                                                      key.offset, end);
1124                                if (!ret)
1125                                        continue;
1126
1127                                btrfs_drop_extent_cache(BTRFS_I(inode),
1128                                                key.offset,     end, 1);
1129                                unlock_extent(&BTRFS_I(inode)->io_tree,
1130                                              key.offset, end);
1131                        }
1132                }
1133
1134                ret = get_new_location(rc->data_inode, &new_bytenr,
1135                                       bytenr, num_bytes);
1136                if (ret) {
1137                        /*
1138                         * Don't have to abort since we've not changed anything
1139                         * in the file extent yet.
1140                         */
1141                        break;
1142                }
1143
1144                btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1145                dirty = 1;
1146
1147                key.offset -= btrfs_file_extent_offset(leaf, fi);
1148                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1149                                       num_bytes, parent);
1150                btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1151                                    key.objectid, key.offset,
1152                                    root->root_key.objectid, false);
1153                ret = btrfs_inc_extent_ref(trans, &ref);
1154                if (ret) {
1155                        btrfs_abort_transaction(trans, ret);
1156                        break;
1157                }
1158
1159                btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1160                                       num_bytes, parent);
1161                btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1162                                    key.objectid, key.offset,
1163                                    root->root_key.objectid, false);
1164                ret = btrfs_free_extent(trans, &ref);
1165                if (ret) {
1166                        btrfs_abort_transaction(trans, ret);
1167                        break;
1168                }
1169        }
1170        if (dirty)
1171                btrfs_mark_buffer_dirty(leaf);
1172        if (inode)
1173                btrfs_add_delayed_iput(inode);
1174        return ret;
1175}
1176
1177static noinline_for_stack
1178int memcmp_node_keys(struct extent_buffer *eb, int slot,
1179                     struct btrfs_path *path, int level)
1180{
1181        struct btrfs_disk_key key1;
1182        struct btrfs_disk_key key2;
1183        btrfs_node_key(eb, &key1, slot);
1184        btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1185        return memcmp(&key1, &key2, sizeof(key1));
1186}
1187
1188/*
1189 * try to replace tree blocks in fs tree with the new blocks
1190 * in reloc tree. tree blocks haven't been modified since the
1191 * reloc tree was create can be replaced.
1192 *
1193 * if a block was replaced, level of the block + 1 is returned.
1194 * if no block got replaced, 0 is returned. if there are other
1195 * errors, a negative error number is returned.
1196 */
1197static noinline_for_stack
1198int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1199                 struct btrfs_root *dest, struct btrfs_root *src,
1200                 struct btrfs_path *path, struct btrfs_key *next_key,
1201                 int lowest_level, int max_level)
1202{
1203        struct btrfs_fs_info *fs_info = dest->fs_info;
1204        struct extent_buffer *eb;
1205        struct extent_buffer *parent;
1206        struct btrfs_ref ref = { 0 };
1207        struct btrfs_key key;
1208        u64 old_bytenr;
1209        u64 new_bytenr;
1210        u64 old_ptr_gen;
1211        u64 new_ptr_gen;
1212        u64 last_snapshot;
1213        u32 blocksize;
1214        int cow = 0;
1215        int level;
1216        int ret;
1217        int slot;
1218
1219        ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1220        ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1221
1222        last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1223again:
1224        slot = path->slots[lowest_level];
1225        btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1226
1227        eb = btrfs_lock_root_node(dest);
1228        level = btrfs_header_level(eb);
1229
1230        if (level < lowest_level) {
1231                btrfs_tree_unlock(eb);
1232                free_extent_buffer(eb);
1233                return 0;
1234        }
1235
1236        if (cow) {
1237                ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1238                                      BTRFS_NESTING_COW);
1239                if (ret) {
1240                        btrfs_tree_unlock(eb);
1241                        free_extent_buffer(eb);
1242                        return ret;
1243                }
1244        }
1245
1246        if (next_key) {
1247                next_key->objectid = (u64)-1;
1248                next_key->type = (u8)-1;
1249                next_key->offset = (u64)-1;
1250        }
1251
1252        parent = eb;
1253        while (1) {
1254                level = btrfs_header_level(parent);
1255                ASSERT(level >= lowest_level);
1256
1257                ret = btrfs_bin_search(parent, &key, &slot);
1258                if (ret < 0)
1259                        break;
1260                if (ret && slot > 0)
1261                        slot--;
1262
1263                if (next_key && slot + 1 < btrfs_header_nritems(parent))
1264                        btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1265
1266                old_bytenr = btrfs_node_blockptr(parent, slot);
1267                blocksize = fs_info->nodesize;
1268                old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1269
1270                if (level <= max_level) {
1271                        eb = path->nodes[level];
1272                        new_bytenr = btrfs_node_blockptr(eb,
1273                                                        path->slots[level]);
1274                        new_ptr_gen = btrfs_node_ptr_generation(eb,
1275                                                        path->slots[level]);
1276                } else {
1277                        new_bytenr = 0;
1278                        new_ptr_gen = 0;
1279                }
1280
1281                if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1282                        ret = level;
1283                        break;
1284                }
1285
1286                if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1287                    memcmp_node_keys(parent, slot, path, level)) {
1288                        if (level <= lowest_level) {
1289                                ret = 0;
1290                                break;
1291                        }
1292
1293                        eb = btrfs_read_node_slot(parent, slot);
1294                        if (IS_ERR(eb)) {
1295                                ret = PTR_ERR(eb);
1296                                break;
1297                        }
1298                        btrfs_tree_lock(eb);
1299                        if (cow) {
1300                                ret = btrfs_cow_block(trans, dest, eb, parent,
1301                                                      slot, &eb,
1302                                                      BTRFS_NESTING_COW);
1303                                if (ret) {
1304                                        btrfs_tree_unlock(eb);
1305                                        free_extent_buffer(eb);
1306                                        break;
1307                                }
1308                        }
1309
1310                        btrfs_tree_unlock(parent);
1311                        free_extent_buffer(parent);
1312
1313                        parent = eb;
1314                        continue;
1315                }
1316
1317                if (!cow) {
1318                        btrfs_tree_unlock(parent);
1319                        free_extent_buffer(parent);
1320                        cow = 1;
1321                        goto again;
1322                }
1323
1324                btrfs_node_key_to_cpu(path->nodes[level], &key,
1325                                      path->slots[level]);
1326                btrfs_release_path(path);
1327
1328                path->lowest_level = level;
1329                ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1330                path->lowest_level = 0;
1331                if (ret) {
1332                        if (ret > 0)
1333                                ret = -ENOENT;
1334                        break;
1335                }
1336
1337                /*
1338                 * Info qgroup to trace both subtrees.
1339                 *
1340                 * We must trace both trees.
1341                 * 1) Tree reloc subtree
1342                 *    If not traced, we will leak data numbers
1343                 * 2) Fs subtree
1344                 *    If not traced, we will double count old data
1345                 *
1346                 * We don't scan the subtree right now, but only record
1347                 * the swapped tree blocks.
1348                 * The real subtree rescan is delayed until we have new
1349                 * CoW on the subtree root node before transaction commit.
1350                 */
1351                ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1352                                rc->block_group, parent, slot,
1353                                path->nodes[level], path->slots[level],
1354                                last_snapshot);
1355                if (ret < 0)
1356                        break;
1357                /*
1358                 * swap blocks in fs tree and reloc tree.
1359                 */
1360                btrfs_set_node_blockptr(parent, slot, new_bytenr);
1361                btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1362                btrfs_mark_buffer_dirty(parent);
1363
1364                btrfs_set_node_blockptr(path->nodes[level],
1365                                        path->slots[level], old_bytenr);
1366                btrfs_set_node_ptr_generation(path->nodes[level],
1367                                              path->slots[level], old_ptr_gen);
1368                btrfs_mark_buffer_dirty(path->nodes[level]);
1369
1370                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1371                                       blocksize, path->nodes[level]->start);
1372                btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1373                                    0, true);
1374                ret = btrfs_inc_extent_ref(trans, &ref);
1375                if (ret) {
1376                        btrfs_abort_transaction(trans, ret);
1377                        break;
1378                }
1379                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1380                                       blocksize, 0);
1381                btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1382                                    true);
1383                ret = btrfs_inc_extent_ref(trans, &ref);
1384                if (ret) {
1385                        btrfs_abort_transaction(trans, ret);
1386                        break;
1387                }
1388
1389                btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1390                                       blocksize, path->nodes[level]->start);
1391                btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1392                                    0, true);
1393                ret = btrfs_free_extent(trans, &ref);
1394                if (ret) {
1395                        btrfs_abort_transaction(trans, ret);
1396                        break;
1397                }
1398
1399                btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1400                                       blocksize, 0);
1401                btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1402                                    0, true);
1403                ret = btrfs_free_extent(trans, &ref);
1404                if (ret) {
1405                        btrfs_abort_transaction(trans, ret);
1406                        break;
1407                }
1408
1409                btrfs_unlock_up_safe(path, 0);
1410
1411                ret = level;
1412                break;
1413        }
1414        btrfs_tree_unlock(parent);
1415        free_extent_buffer(parent);
1416        return ret;
1417}
1418
1419/*
1420 * helper to find next relocated block in reloc tree
1421 */
1422static noinline_for_stack
1423int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1424                       int *level)
1425{
1426        struct extent_buffer *eb;
1427        int i;
1428        u64 last_snapshot;
1429        u32 nritems;
1430
1431        last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1432
1433        for (i = 0; i < *level; i++) {
1434                free_extent_buffer(path->nodes[i]);
1435                path->nodes[i] = NULL;
1436        }
1437
1438        for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1439                eb = path->nodes[i];
1440                nritems = btrfs_header_nritems(eb);
1441                while (path->slots[i] + 1 < nritems) {
1442                        path->slots[i]++;
1443                        if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1444                            last_snapshot)
1445                                continue;
1446
1447                        *level = i;
1448                        return 0;
1449                }
1450                free_extent_buffer(path->nodes[i]);
1451                path->nodes[i] = NULL;
1452        }
1453        return 1;
1454}
1455
1456/*
1457 * walk down reloc tree to find relocated block of lowest level
1458 */
1459static noinline_for_stack
1460int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1461                         int *level)
1462{
1463        struct extent_buffer *eb = NULL;
1464        int i;
1465        u64 ptr_gen = 0;
1466        u64 last_snapshot;
1467        u32 nritems;
1468
1469        last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1470
1471        for (i = *level; i > 0; i--) {
1472                eb = path->nodes[i];
1473                nritems = btrfs_header_nritems(eb);
1474                while (path->slots[i] < nritems) {
1475                        ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1476                        if (ptr_gen > last_snapshot)
1477                                break;
1478                        path->slots[i]++;
1479                }
1480                if (path->slots[i] >= nritems) {
1481                        if (i == *level)
1482                                break;
1483                        *level = i + 1;
1484                        return 0;
1485                }
1486                if (i == 1) {
1487                        *level = i;
1488                        return 0;
1489                }
1490
1491                eb = btrfs_read_node_slot(eb, path->slots[i]);
1492                if (IS_ERR(eb))
1493                        return PTR_ERR(eb);
1494                BUG_ON(btrfs_header_level(eb) != i - 1);
1495                path->nodes[i - 1] = eb;
1496                path->slots[i - 1] = 0;
1497        }
1498        return 1;
1499}
1500
1501/*
1502 * invalidate extent cache for file extents whose key in range of
1503 * [min_key, max_key)
1504 */
1505static int invalidate_extent_cache(struct btrfs_root *root,
1506                                   struct btrfs_key *min_key,
1507                                   struct btrfs_key *max_key)
1508{
1509        struct btrfs_fs_info *fs_info = root->fs_info;
1510        struct inode *inode = NULL;
1511        u64 objectid;
1512        u64 start, end;
1513        u64 ino;
1514
1515        objectid = min_key->objectid;
1516        while (1) {
1517                cond_resched();
1518                iput(inode);
1519
1520                if (objectid > max_key->objectid)
1521                        break;
1522
1523                inode = find_next_inode(root, objectid);
1524                if (!inode)
1525                        break;
1526                ino = btrfs_ino(BTRFS_I(inode));
1527
1528                if (ino > max_key->objectid) {
1529                        iput(inode);
1530                        break;
1531                }
1532
1533                objectid = ino + 1;
1534                if (!S_ISREG(inode->i_mode))
1535                        continue;
1536
1537                if (unlikely(min_key->objectid == ino)) {
1538                        if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1539                                continue;
1540                        if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1541                                start = 0;
1542                        else {
1543                                start = min_key->offset;
1544                                WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1545                        }
1546                } else {
1547                        start = 0;
1548                }
1549
1550                if (unlikely(max_key->objectid == ino)) {
1551                        if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1552                                continue;
1553                        if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1554                                end = (u64)-1;
1555                        } else {
1556                                if (max_key->offset == 0)
1557                                        continue;
1558                                end = max_key->offset;
1559                                WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1560                                end--;
1561                        }
1562                } else {
1563                        end = (u64)-1;
1564                }
1565
1566                /* the lock_extent waits for readpage to complete */
1567                lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1568                btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1569                unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1570        }
1571        return 0;
1572}
1573
1574static int find_next_key(struct btrfs_path *path, int level,
1575                         struct btrfs_key *key)
1576
1577{
1578        while (level < BTRFS_MAX_LEVEL) {
1579                if (!path->nodes[level])
1580                        break;
1581                if (path->slots[level] + 1 <
1582                    btrfs_header_nritems(path->nodes[level])) {
1583                        btrfs_node_key_to_cpu(path->nodes[level], key,
1584                                              path->slots[level] + 1);
1585                        return 0;
1586                }
1587                level++;
1588        }
1589        return 1;
1590}
1591
1592/*
1593 * Insert current subvolume into reloc_control::dirty_subvol_roots
1594 */
1595static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1596                               struct reloc_control *rc,
1597                               struct btrfs_root *root)
1598{
1599        struct btrfs_root *reloc_root = root->reloc_root;
1600        struct btrfs_root_item *reloc_root_item;
1601        int ret;
1602
1603        /* @root must be a subvolume tree root with a valid reloc tree */
1604        ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1605        ASSERT(reloc_root);
1606
1607        reloc_root_item = &reloc_root->root_item;
1608        memset(&reloc_root_item->drop_progress, 0,
1609                sizeof(reloc_root_item->drop_progress));
1610        btrfs_set_root_drop_level(reloc_root_item, 0);
1611        btrfs_set_root_refs(reloc_root_item, 0);
1612        ret = btrfs_update_reloc_root(trans, root);
1613        if (ret)
1614                return ret;
1615
1616        if (list_empty(&root->reloc_dirty_list)) {
1617                btrfs_grab_root(root);
1618                list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1619        }
1620
1621        return 0;
1622}
1623
1624static int clean_dirty_subvols(struct reloc_control *rc)
1625{
1626        struct btrfs_root *root;
1627        struct btrfs_root *next;
1628        int ret = 0;
1629        int ret2;
1630
1631        list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1632                                 reloc_dirty_list) {
1633                if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1634                        /* Merged subvolume, cleanup its reloc root */
1635                        struct btrfs_root *reloc_root = root->reloc_root;
1636
1637                        list_del_init(&root->reloc_dirty_list);
1638                        root->reloc_root = NULL;
1639                        /*
1640                         * Need barrier to ensure clear_bit() only happens after
1641                         * root->reloc_root = NULL. Pairs with have_reloc_root.
1642                         */
1643                        smp_wmb();
1644                        clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1645                        if (reloc_root) {
1646                                /*
1647                                 * btrfs_drop_snapshot drops our ref we hold for
1648                                 * ->reloc_root.  If it fails however we must
1649                                 * drop the ref ourselves.
1650                                 */
1651                                ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1652                                if (ret2 < 0) {
1653                                        btrfs_put_root(reloc_root);
1654                                        if (!ret)
1655                                                ret = ret2;
1656                                }
1657                        }
1658                        btrfs_put_root(root);
1659                } else {
1660                        /* Orphan reloc tree, just clean it up */
1661                        ret2 = btrfs_drop_snapshot(root, 0, 1);
1662                        if (ret2 < 0) {
1663                                btrfs_put_root(root);
1664                                if (!ret)
1665                                        ret = ret2;
1666                        }
1667                }
1668        }
1669        return ret;
1670}
1671
1672/*
1673 * merge the relocated tree blocks in reloc tree with corresponding
1674 * fs tree.
1675 */
1676static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1677                                               struct btrfs_root *root)
1678{
1679        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1680        struct btrfs_key key;
1681        struct btrfs_key next_key;
1682        struct btrfs_trans_handle *trans = NULL;
1683        struct btrfs_root *reloc_root;
1684        struct btrfs_root_item *root_item;
1685        struct btrfs_path *path;
1686        struct extent_buffer *leaf;
1687        int reserve_level;
1688        int level;
1689        int max_level;
1690        int replaced = 0;
1691        int ret = 0;
1692        u32 min_reserved;
1693
1694        path = btrfs_alloc_path();
1695        if (!path)
1696                return -ENOMEM;
1697        path->reada = READA_FORWARD;
1698
1699        reloc_root = root->reloc_root;
1700        root_item = &reloc_root->root_item;
1701
1702        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1703                level = btrfs_root_level(root_item);
1704                atomic_inc(&reloc_root->node->refs);
1705                path->nodes[level] = reloc_root->node;
1706                path->slots[level] = 0;
1707        } else {
1708                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1709
1710                level = btrfs_root_drop_level(root_item);
1711                BUG_ON(level == 0);
1712                path->lowest_level = level;
1713                ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1714                path->lowest_level = 0;
1715                if (ret < 0) {
1716                        btrfs_free_path(path);
1717                        return ret;
1718                }
1719
1720                btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1721                                      path->slots[level]);
1722                WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1723
1724                btrfs_unlock_up_safe(path, 0);
1725        }
1726
1727        /*
1728         * In merge_reloc_root(), we modify the upper level pointer to swap the
1729         * tree blocks between reloc tree and subvolume tree.  Thus for tree
1730         * block COW, we COW at most from level 1 to root level for each tree.
1731         *
1732         * Thus the needed metadata size is at most root_level * nodesize,
1733         * and * 2 since we have two trees to COW.
1734         */
1735        reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1736        min_reserved = fs_info->nodesize * reserve_level * 2;
1737        memset(&next_key, 0, sizeof(next_key));
1738
1739        while (1) {
1740                ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1741                                             min_reserved,
1742                                             BTRFS_RESERVE_FLUSH_LIMIT);
1743                if (ret)
1744                        goto out;
1745                trans = btrfs_start_transaction(root, 0);
1746                if (IS_ERR(trans)) {
1747                        ret = PTR_ERR(trans);
1748                        trans = NULL;
1749                        goto out;
1750                }
1751
1752                /*
1753                 * At this point we no longer have a reloc_control, so we can't
1754                 * depend on btrfs_init_reloc_root to update our last_trans.
1755                 *
1756                 * But that's ok, we started the trans handle on our
1757                 * corresponding fs_root, which means it's been added to the
1758                 * dirty list.  At commit time we'll still call
1759                 * btrfs_update_reloc_root() and update our root item
1760                 * appropriately.
1761                 */
1762                reloc_root->last_trans = trans->transid;
1763                trans->block_rsv = rc->block_rsv;
1764
1765                replaced = 0;
1766                max_level = level;
1767
1768                ret = walk_down_reloc_tree(reloc_root, path, &level);
1769                if (ret < 0)
1770                        goto out;
1771                if (ret > 0)
1772                        break;
1773
1774                if (!find_next_key(path, level, &key) &&
1775                    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1776                        ret = 0;
1777                } else {
1778                        ret = replace_path(trans, rc, root, reloc_root, path,
1779                                           &next_key, level, max_level);
1780                }
1781                if (ret < 0)
1782                        goto out;
1783                if (ret > 0) {
1784                        level = ret;
1785                        btrfs_node_key_to_cpu(path->nodes[level], &key,
1786                                              path->slots[level]);
1787                        replaced = 1;
1788                }
1789
1790                ret = walk_up_reloc_tree(reloc_root, path, &level);
1791                if (ret > 0)
1792                        break;
1793
1794                BUG_ON(level == 0);
1795                /*
1796                 * save the merging progress in the drop_progress.
1797                 * this is OK since root refs == 1 in this case.
1798                 */
1799                btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1800                               path->slots[level]);
1801                btrfs_set_root_drop_level(root_item, level);
1802
1803                btrfs_end_transaction_throttle(trans);
1804                trans = NULL;
1805
1806                btrfs_btree_balance_dirty(fs_info);
1807
1808                if (replaced && rc->stage == UPDATE_DATA_PTRS)
1809                        invalidate_extent_cache(root, &key, &next_key);
1810        }
1811
1812        /*
1813         * handle the case only one block in the fs tree need to be
1814         * relocated and the block is tree root.
1815         */
1816        leaf = btrfs_lock_root_node(root);
1817        ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1818                              BTRFS_NESTING_COW);
1819        btrfs_tree_unlock(leaf);
1820        free_extent_buffer(leaf);
1821out:
1822        btrfs_free_path(path);
1823
1824        if (ret == 0) {
1825                ret = insert_dirty_subvol(trans, rc, root);
1826                if (ret)
1827                        btrfs_abort_transaction(trans, ret);
1828        }
1829
1830        if (trans)
1831                btrfs_end_transaction_throttle(trans);
1832
1833        btrfs_btree_balance_dirty(fs_info);
1834
1835        if (replaced && rc->stage == UPDATE_DATA_PTRS)
1836                invalidate_extent_cache(root, &key, &next_key);
1837
1838        return ret;
1839}
1840
1841static noinline_for_stack
1842int prepare_to_merge(struct reloc_control *rc, int err)
1843{
1844        struct btrfs_root *root = rc->extent_root;
1845        struct btrfs_fs_info *fs_info = root->fs_info;
1846        struct btrfs_root *reloc_root;
1847        struct btrfs_trans_handle *trans;
1848        LIST_HEAD(reloc_roots);
1849        u64 num_bytes = 0;
1850        int ret;
1851
1852        mutex_lock(&fs_info->reloc_mutex);
1853        rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1854        rc->merging_rsv_size += rc->nodes_relocated * 2;
1855        mutex_unlock(&fs_info->reloc_mutex);
1856
1857again:
1858        if (!err) {
1859                num_bytes = rc->merging_rsv_size;
1860                ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1861                                          BTRFS_RESERVE_FLUSH_ALL);
1862                if (ret)
1863                        err = ret;
1864        }
1865
1866        trans = btrfs_join_transaction(rc->extent_root);
1867        if (IS_ERR(trans)) {
1868                if (!err)
1869                        btrfs_block_rsv_release(fs_info, rc->block_rsv,
1870                                                num_bytes, NULL);
1871                return PTR_ERR(trans);
1872        }
1873
1874        if (!err) {
1875                if (num_bytes != rc->merging_rsv_size) {
1876                        btrfs_end_transaction(trans);
1877                        btrfs_block_rsv_release(fs_info, rc->block_rsv,
1878                                                num_bytes, NULL);
1879                        goto again;
1880                }
1881        }
1882
1883        rc->merge_reloc_tree = 1;
1884
1885        while (!list_empty(&rc->reloc_roots)) {
1886                reloc_root = list_entry(rc->reloc_roots.next,
1887                                        struct btrfs_root, root_list);
1888                list_del_init(&reloc_root->root_list);
1889
1890                root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1891                                false);
1892                if (IS_ERR(root)) {
1893                        /*
1894                         * Even if we have an error we need this reloc root
1895                         * back on our list so we can clean up properly.
1896                         */
1897                        list_add(&reloc_root->root_list, &reloc_roots);
1898                        btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1899                        if (!err)
1900                                err = PTR_ERR(root);
1901                        break;
1902                }
1903                ASSERT(root->reloc_root == reloc_root);
1904
1905                /*
1906                 * set reference count to 1, so btrfs_recover_relocation
1907                 * knows it should resumes merging
1908                 */
1909                if (!err)
1910                        btrfs_set_root_refs(&reloc_root->root_item, 1);
1911                ret = btrfs_update_reloc_root(trans, root);
1912
1913                /*
1914                 * Even if we have an error we need this reloc root back on our
1915                 * list so we can clean up properly.
1916                 */
1917                list_add(&reloc_root->root_list, &reloc_roots);
1918                btrfs_put_root(root);
1919
1920                if (ret) {
1921                        btrfs_abort_transaction(trans, ret);
1922                        if (!err)
1923                                err = ret;
1924                        break;
1925                }
1926        }
1927
1928        list_splice(&reloc_roots, &rc->reloc_roots);
1929
1930        if (!err)
1931                err = btrfs_commit_transaction(trans);
1932        else
1933                btrfs_end_transaction(trans);
1934        return err;
1935}
1936
1937static noinline_for_stack
1938void free_reloc_roots(struct list_head *list)
1939{
1940        struct btrfs_root *reloc_root, *tmp;
1941
1942        list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1943                __del_reloc_root(reloc_root);
1944}
1945
1946static noinline_for_stack
1947void merge_reloc_roots(struct reloc_control *rc)
1948{
1949        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1950        struct btrfs_root *root;
1951        struct btrfs_root *reloc_root;
1952        LIST_HEAD(reloc_roots);
1953        int found = 0;
1954        int ret = 0;
1955again:
1956        root = rc->extent_root;
1957
1958        /*
1959         * this serializes us with btrfs_record_root_in_transaction,
1960         * we have to make sure nobody is in the middle of
1961         * adding their roots to the list while we are
1962         * doing this splice
1963         */
1964        mutex_lock(&fs_info->reloc_mutex);
1965        list_splice_init(&rc->reloc_roots, &reloc_roots);
1966        mutex_unlock(&fs_info->reloc_mutex);
1967
1968        while (!list_empty(&reloc_roots)) {
1969                found = 1;
1970                reloc_root = list_entry(reloc_roots.next,
1971                                        struct btrfs_root, root_list);
1972
1973                root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1974                                         false);
1975                if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1976                        if (IS_ERR(root)) {
1977                                /*
1978                                 * For recovery we read the fs roots on mount,
1979                                 * and if we didn't find the root then we marked
1980                                 * the reloc root as a garbage root.  For normal
1981                                 * relocation obviously the root should exist in
1982                                 * memory.  However there's no reason we can't
1983                                 * handle the error properly here just in case.
1984                                 */
1985                                ASSERT(0);
1986                                ret = PTR_ERR(root);
1987                                goto out;
1988                        }
1989                        if (root->reloc_root != reloc_root) {
1990                                /*
1991                                 * This is actually impossible without something
1992                                 * going really wrong (like weird race condition
1993                                 * or cosmic rays).
1994                                 */
1995                                ASSERT(0);
1996                                ret = -EINVAL;
1997                                goto out;
1998                        }
1999                        ret = merge_reloc_root(rc, root);
2000                        btrfs_put_root(root);
2001                        if (ret) {
2002                                if (list_empty(&reloc_root->root_list))
2003                                        list_add_tail(&reloc_root->root_list,
2004                                                      &reloc_roots);
2005                                goto out;
2006                        }
2007                } else {
2008                        if (!IS_ERR(root)) {
2009                                if (root->reloc_root == reloc_root) {
2010                                        root->reloc_root = NULL;
2011                                        btrfs_put_root(reloc_root);
2012                                }
2013                                clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2014                                          &root->state);
2015                                btrfs_put_root(root);
2016                        }
2017
2018                        list_del_init(&reloc_root->root_list);
2019                        /* Don't forget to queue this reloc root for cleanup */
2020                        list_add_tail(&reloc_root->reloc_dirty_list,
2021                                      &rc->dirty_subvol_roots);
2022                }
2023        }
2024
2025        if (found) {
2026                found = 0;
2027                goto again;
2028        }
2029out:
2030        if (ret) {
2031                btrfs_handle_fs_error(fs_info, ret, NULL);
2032                free_reloc_roots(&reloc_roots);
2033
2034                /* new reloc root may be added */
2035                mutex_lock(&fs_info->reloc_mutex);
2036                list_splice_init(&rc->reloc_roots, &reloc_roots);
2037                mutex_unlock(&fs_info->reloc_mutex);
2038                free_reloc_roots(&reloc_roots);
2039        }
2040
2041        /*
2042         * We used to have
2043         *
2044         * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2045         *
2046         * here, but it's wrong.  If we fail to start the transaction in
2047         * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2048         * have actually been removed from the reloc_root_tree rb tree.  This is
2049         * fine because we're bailing here, and we hold a reference on the root
2050         * for the list that holds it, so these roots will be cleaned up when we
2051         * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2052         * will be cleaned up on unmount.
2053         *
2054         * The remaining nodes will be cleaned up by free_reloc_control.
2055         */
2056}
2057
2058static void free_block_list(struct rb_root *blocks)
2059{
2060        struct tree_block *block;
2061        struct rb_node *rb_node;
2062        while ((rb_node = rb_first(blocks))) {
2063                block = rb_entry(rb_node, struct tree_block, rb_node);
2064                rb_erase(rb_node, blocks);
2065                kfree(block);
2066        }
2067}
2068
2069static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2070                                      struct btrfs_root *reloc_root)
2071{
2072        struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2073        struct btrfs_root *root;
2074        int ret;
2075
2076        if (reloc_root->last_trans == trans->transid)
2077                return 0;
2078
2079        root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2080
2081        /*
2082         * This should succeed, since we can't have a reloc root without having
2083         * already looked up the actual root and created the reloc root for this
2084         * root.
2085         *
2086         * However if there's some sort of corruption where we have a ref to a
2087         * reloc root without a corresponding root this could return ENOENT.
2088         */
2089        if (IS_ERR(root)) {
2090                ASSERT(0);
2091                return PTR_ERR(root);
2092        }
2093        if (root->reloc_root != reloc_root) {
2094                ASSERT(0);
2095                btrfs_err(fs_info,
2096                          "root %llu has two reloc roots associated with it",
2097                          reloc_root->root_key.offset);
2098                btrfs_put_root(root);
2099                return -EUCLEAN;
2100        }
2101        ret = btrfs_record_root_in_trans(trans, root);
2102        btrfs_put_root(root);
2103
2104        return ret;
2105}
2106
2107static noinline_for_stack
2108struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2109                                     struct reloc_control *rc,
2110                                     struct btrfs_backref_node *node,
2111                                     struct btrfs_backref_edge *edges[])
2112{
2113        struct btrfs_backref_node *next;
2114        struct btrfs_root *root;
2115        int index = 0;
2116        int ret;
2117
2118        next = node;
2119        while (1) {
2120                cond_resched();
2121                next = walk_up_backref(next, edges, &index);
2122                root = next->root;
2123
2124                /*
2125                 * If there is no root, then our references for this block are
2126                 * incomplete, as we should be able to walk all the way up to a
2127                 * block that is owned by a root.
2128                 *
2129                 * This path is only for SHAREABLE roots, so if we come upon a
2130                 * non-SHAREABLE root then we have backrefs that resolve
2131                 * improperly.
2132                 *
2133                 * Both of these cases indicate file system corruption, or a bug
2134                 * in the backref walking code.
2135                 */
2136                if (!root) {
2137                        ASSERT(0);
2138                        btrfs_err(trans->fs_info,
2139                "bytenr %llu doesn't have a backref path ending in a root",
2140                                  node->bytenr);
2141                        return ERR_PTR(-EUCLEAN);
2142                }
2143                if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2144                        ASSERT(0);
2145                        btrfs_err(trans->fs_info,
2146        "bytenr %llu has multiple refs with one ending in a non-shareable root",
2147                                  node->bytenr);
2148                        return ERR_PTR(-EUCLEAN);
2149                }
2150
2151                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2152                        ret = record_reloc_root_in_trans(trans, root);
2153                        if (ret)
2154                                return ERR_PTR(ret);
2155                        break;
2156                }
2157
2158                ret = btrfs_record_root_in_trans(trans, root);
2159                if (ret)
2160                        return ERR_PTR(ret);
2161                root = root->reloc_root;
2162
2163                /*
2164                 * We could have raced with another thread which failed, so
2165                 * root->reloc_root may not be set, return ENOENT in this case.
2166                 */
2167                if (!root)
2168                        return ERR_PTR(-ENOENT);
2169
2170                if (next->new_bytenr != root->node->start) {
2171                        /*
2172                         * We just created the reloc root, so we shouldn't have
2173                         * ->new_bytenr set and this shouldn't be in the changed
2174                         *  list.  If it is then we have multiple roots pointing
2175                         *  at the same bytenr which indicates corruption, or
2176                         *  we've made a mistake in the backref walking code.
2177                         */
2178                        ASSERT(next->new_bytenr == 0);
2179                        ASSERT(list_empty(&next->list));
2180                        if (next->new_bytenr || !list_empty(&next->list)) {
2181                                btrfs_err(trans->fs_info,
2182        "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2183                                          node->bytenr, next->bytenr);
2184                                return ERR_PTR(-EUCLEAN);
2185                        }
2186
2187                        next->new_bytenr = root->node->start;
2188                        btrfs_put_root(next->root);
2189                        next->root = btrfs_grab_root(root);
2190                        ASSERT(next->root);
2191                        list_add_tail(&next->list,
2192                                      &rc->backref_cache.changed);
2193                        mark_block_processed(rc, next);
2194                        break;
2195                }
2196
2197                WARN_ON(1);
2198                root = NULL;
2199                next = walk_down_backref(edges, &index);
2200                if (!next || next->level <= node->level)
2201                        break;
2202        }
2203        if (!root) {
2204                /*
2205                 * This can happen if there's fs corruption or if there's a bug
2206                 * in the backref lookup code.
2207                 */
2208                ASSERT(0);
2209                return ERR_PTR(-ENOENT);
2210        }
2211
2212        next = node;
2213        /* setup backref node path for btrfs_reloc_cow_block */
2214        while (1) {
2215                rc->backref_cache.path[next->level] = next;
2216                if (--index < 0)
2217                        break;
2218                next = edges[index]->node[UPPER];
2219        }
2220        return root;
2221}
2222
2223/*
2224 * Select a tree root for relocation.
2225 *
2226 * Return NULL if the block is not shareable. We should use do_relocation() in
2227 * this case.
2228 *
2229 * Return a tree root pointer if the block is shareable.
2230 * Return -ENOENT if the block is root of reloc tree.
2231 */
2232static noinline_for_stack
2233struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2234{
2235        struct btrfs_backref_node *next;
2236        struct btrfs_root *root;
2237        struct btrfs_root *fs_root = NULL;
2238        struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2239        int index = 0;
2240
2241        next = node;
2242        while (1) {
2243                cond_resched();
2244                next = walk_up_backref(next, edges, &index);
2245                root = next->root;
2246
2247                /*
2248                 * This can occur if we have incomplete extent refs leading all
2249                 * the way up a particular path, in this case return -EUCLEAN.
2250                 */
2251                if (!root)
2252                        return ERR_PTR(-EUCLEAN);
2253
2254                /* No other choice for non-shareable tree */
2255                if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2256                        return root;
2257
2258                if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2259                        fs_root = root;
2260
2261                if (next != node)
2262                        return NULL;
2263
2264                next = walk_down_backref(edges, &index);
2265                if (!next || next->level <= node->level)
2266                        break;
2267        }
2268
2269        if (!fs_root)
2270                return ERR_PTR(-ENOENT);
2271        return fs_root;
2272}
2273
2274static noinline_for_stack
2275u64 calcu_metadata_size(struct reloc_control *rc,
2276                        struct btrfs_backref_node *node, int reserve)
2277{
2278        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2279        struct btrfs_backref_node *next = node;
2280        struct btrfs_backref_edge *edge;
2281        struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2282        u64 num_bytes = 0;
2283        int index = 0;
2284
2285        BUG_ON(reserve && node->processed);
2286
2287        while (next) {
2288                cond_resched();
2289                while (1) {
2290                        if (next->processed && (reserve || next != node))
2291                                break;
2292
2293                        num_bytes += fs_info->nodesize;
2294
2295                        if (list_empty(&next->upper))
2296                                break;
2297
2298                        edge = list_entry(next->upper.next,
2299                                        struct btrfs_backref_edge, list[LOWER]);
2300                        edges[index++] = edge;
2301                        next = edge->node[UPPER];
2302                }
2303                next = walk_down_backref(edges, &index);
2304        }
2305        return num_bytes;
2306}
2307
2308static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2309                                  struct reloc_control *rc,
2310                                  struct btrfs_backref_node *node)
2311{
2312        struct btrfs_root *root = rc->extent_root;
2313        struct btrfs_fs_info *fs_info = root->fs_info;
2314        u64 num_bytes;
2315        int ret;
2316        u64 tmp;
2317
2318        num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2319
2320        trans->block_rsv = rc->block_rsv;
2321        rc->reserved_bytes += num_bytes;
2322
2323        /*
2324         * We are under a transaction here so we can only do limited flushing.
2325         * If we get an enospc just kick back -EAGAIN so we know to drop the
2326         * transaction and try to refill when we can flush all the things.
2327         */
2328        ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2329                                     BTRFS_RESERVE_FLUSH_LIMIT);
2330        if (ret) {
2331                tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2332                while (tmp <= rc->reserved_bytes)
2333                        tmp <<= 1;
2334                /*
2335                 * only one thread can access block_rsv at this point,
2336                 * so we don't need hold lock to protect block_rsv.
2337                 * we expand more reservation size here to allow enough
2338                 * space for relocation and we will return earlier in
2339                 * enospc case.
2340                 */
2341                rc->block_rsv->size = tmp + fs_info->nodesize *
2342                                      RELOCATION_RESERVED_NODES;
2343                return -EAGAIN;
2344        }
2345
2346        return 0;
2347}
2348
2349/*
2350 * relocate a block tree, and then update pointers in upper level
2351 * blocks that reference the block to point to the new location.
2352 *
2353 * if called by link_to_upper, the block has already been relocated.
2354 * in that case this function just updates pointers.
2355 */
2356static int do_relocation(struct btrfs_trans_handle *trans,
2357                         struct reloc_control *rc,
2358                         struct btrfs_backref_node *node,
2359                         struct btrfs_key *key,
2360                         struct btrfs_path *path, int lowest)
2361{
2362        struct btrfs_backref_node *upper;
2363        struct btrfs_backref_edge *edge;
2364        struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2365        struct btrfs_root *root;
2366        struct extent_buffer *eb;
2367        u32 blocksize;
2368        u64 bytenr;
2369        int slot;
2370        int ret = 0;
2371
2372        /*
2373         * If we are lowest then this is the first time we're processing this
2374         * block, and thus shouldn't have an eb associated with it yet.
2375         */
2376        ASSERT(!lowest || !node->eb);
2377
2378        path->lowest_level = node->level + 1;
2379        rc->backref_cache.path[node->level] = node;
2380        list_for_each_entry(edge, &node->upper, list[LOWER]) {
2381                struct btrfs_ref ref = { 0 };
2382
2383                cond_resched();
2384
2385                upper = edge->node[UPPER];
2386                root = select_reloc_root(trans, rc, upper, edges);
2387                if (IS_ERR(root)) {
2388                        ret = PTR_ERR(root);
2389                        goto next;
2390                }
2391
2392                if (upper->eb && !upper->locked) {
2393                        if (!lowest) {
2394                                ret = btrfs_bin_search(upper->eb, key, &slot);
2395                                if (ret < 0)
2396                                        goto next;
2397                                BUG_ON(ret);
2398                                bytenr = btrfs_node_blockptr(upper->eb, slot);
2399                                if (node->eb->start == bytenr)
2400                                        goto next;
2401                        }
2402                        btrfs_backref_drop_node_buffer(upper);
2403                }
2404
2405                if (!upper->eb) {
2406                        ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2407                        if (ret) {
2408                                if (ret > 0)
2409                                        ret = -ENOENT;
2410
2411                                btrfs_release_path(path);
2412                                break;
2413                        }
2414
2415                        if (!upper->eb) {
2416                                upper->eb = path->nodes[upper->level];
2417                                path->nodes[upper->level] = NULL;
2418                        } else {
2419                                BUG_ON(upper->eb != path->nodes[upper->level]);
2420                        }
2421
2422                        upper->locked = 1;
2423                        path->locks[upper->level] = 0;
2424
2425                        slot = path->slots[upper->level];
2426                        btrfs_release_path(path);
2427                } else {
2428                        ret = btrfs_bin_search(upper->eb, key, &slot);
2429                        if (ret < 0)
2430                                goto next;
2431                        BUG_ON(ret);
2432                }
2433
2434                bytenr = btrfs_node_blockptr(upper->eb, slot);
2435                if (lowest) {
2436                        if (bytenr != node->bytenr) {
2437                                btrfs_err(root->fs_info,
2438                "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2439                                          bytenr, node->bytenr, slot,
2440                                          upper->eb->start);
2441                                ret = -EIO;
2442                                goto next;
2443                        }
2444                } else {
2445                        if (node->eb->start == bytenr)
2446                                goto next;
2447                }
2448
2449                blocksize = root->fs_info->nodesize;
2450                eb = btrfs_read_node_slot(upper->eb, slot);
2451                if (IS_ERR(eb)) {
2452                        ret = PTR_ERR(eb);
2453                        goto next;
2454                }
2455                btrfs_tree_lock(eb);
2456
2457                if (!node->eb) {
2458                        ret = btrfs_cow_block(trans, root, eb, upper->eb,
2459                                              slot, &eb, BTRFS_NESTING_COW);
2460                        btrfs_tree_unlock(eb);
2461                        free_extent_buffer(eb);
2462                        if (ret < 0)
2463                                goto next;
2464                        /*
2465                         * We've just COWed this block, it should have updated
2466                         * the correct backref node entry.
2467                         */
2468                        ASSERT(node->eb == eb);
2469                } else {
2470                        btrfs_set_node_blockptr(upper->eb, slot,
2471                                                node->eb->start);
2472                        btrfs_set_node_ptr_generation(upper->eb, slot,
2473                                                      trans->transid);
2474                        btrfs_mark_buffer_dirty(upper->eb);
2475
2476                        btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2477                                               node->eb->start, blocksize,
2478                                               upper->eb->start);
2479                        btrfs_init_tree_ref(&ref, node->level,
2480                                            btrfs_header_owner(upper->eb),
2481                                            root->root_key.objectid, false);
2482                        ret = btrfs_inc_extent_ref(trans, &ref);
2483                        if (!ret)
2484                                ret = btrfs_drop_subtree(trans, root, eb,
2485                                                         upper->eb);
2486                        if (ret)
2487                                btrfs_abort_transaction(trans, ret);
2488                }
2489next:
2490                if (!upper->pending)
2491                        btrfs_backref_drop_node_buffer(upper);
2492                else
2493                        btrfs_backref_unlock_node_buffer(upper);
2494                if (ret)
2495                        break;
2496        }
2497
2498        if (!ret && node->pending) {
2499                btrfs_backref_drop_node_buffer(node);
2500                list_move_tail(&node->list, &rc->backref_cache.changed);
2501                node->pending = 0;
2502        }
2503
2504        path->lowest_level = 0;
2505
2506        /*
2507         * We should have allocated all of our space in the block rsv and thus
2508         * shouldn't ENOSPC.
2509         */
2510        ASSERT(ret != -ENOSPC);
2511        return ret;
2512}
2513
2514static int link_to_upper(struct btrfs_trans_handle *trans,
2515                         struct reloc_control *rc,
2516                         struct btrfs_backref_node *node,
2517                         struct btrfs_path *path)
2518{
2519        struct btrfs_key key;
2520
2521        btrfs_node_key_to_cpu(node->eb, &key, 0);
2522        return do_relocation(trans, rc, node, &key, path, 0);
2523}
2524
2525static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2526                                struct reloc_control *rc,
2527                                struct btrfs_path *path, int err)
2528{
2529        LIST_HEAD(list);
2530        struct btrfs_backref_cache *cache = &rc->backref_cache;
2531        struct btrfs_backref_node *node;
2532        int level;
2533        int ret;
2534
2535        for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2536                while (!list_empty(&cache->pending[level])) {
2537                        node = list_entry(cache->pending[level].next,
2538                                          struct btrfs_backref_node, list);
2539                        list_move_tail(&node->list, &list);
2540                        BUG_ON(!node->pending);
2541
2542                        if (!err) {
2543                                ret = link_to_upper(trans, rc, node, path);
2544                                if (ret < 0)
2545                                        err = ret;
2546                        }
2547                }
2548                list_splice_init(&list, &cache->pending[level]);
2549        }
2550        return err;
2551}
2552
2553/*
2554 * mark a block and all blocks directly/indirectly reference the block
2555 * as processed.
2556 */
2557static void update_processed_blocks(struct reloc_control *rc,
2558                                    struct btrfs_backref_node *node)
2559{
2560        struct btrfs_backref_node *next = node;
2561        struct btrfs_backref_edge *edge;
2562        struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2563        int index = 0;
2564
2565        while (next) {
2566                cond_resched();
2567                while (1) {
2568                        if (next->processed)
2569                                break;
2570
2571                        mark_block_processed(rc, next);
2572
2573                        if (list_empty(&next->upper))
2574                                break;
2575
2576                        edge = list_entry(next->upper.next,
2577                                        struct btrfs_backref_edge, list[LOWER]);
2578                        edges[index++] = edge;
2579                        next = edge->node[UPPER];
2580                }
2581                next = walk_down_backref(edges, &index);
2582        }
2583}
2584
2585static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2586{
2587        u32 blocksize = rc->extent_root->fs_info->nodesize;
2588
2589        if (test_range_bit(&rc->processed_blocks, bytenr,
2590                           bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2591                return 1;
2592        return 0;
2593}
2594
2595static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2596                              struct tree_block *block)
2597{
2598        struct extent_buffer *eb;
2599
2600        eb = read_tree_block(fs_info, block->bytenr, block->owner,
2601                             block->key.offset, block->level, NULL);
2602        if (IS_ERR(eb))
2603                return PTR_ERR(eb);
2604        if (!extent_buffer_uptodate(eb)) {
2605                free_extent_buffer(eb);
2606                return -EIO;
2607        }
2608        if (block->level == 0)
2609                btrfs_item_key_to_cpu(eb, &block->key, 0);
2610        else
2611                btrfs_node_key_to_cpu(eb, &block->key, 0);
2612        free_extent_buffer(eb);
2613        block->key_ready = 1;
2614        return 0;
2615}
2616
2617/*
2618 * helper function to relocate a tree block
2619 */
2620static int relocate_tree_block(struct btrfs_trans_handle *trans,
2621                                struct reloc_control *rc,
2622                                struct btrfs_backref_node *node,
2623                                struct btrfs_key *key,
2624                                struct btrfs_path *path)
2625{
2626        struct btrfs_root *root;
2627        int ret = 0;
2628
2629        if (!node)
2630                return 0;
2631
2632        /*
2633         * If we fail here we want to drop our backref_node because we are going
2634         * to start over and regenerate the tree for it.
2635         */
2636        ret = reserve_metadata_space(trans, rc, node);
2637        if (ret)
2638                goto out;
2639
2640        BUG_ON(node->processed);
2641        root = select_one_root(node);
2642        if (IS_ERR(root)) {
2643                ret = PTR_ERR(root);
2644
2645                /* See explanation in select_one_root for the -EUCLEAN case. */
2646                ASSERT(ret == -ENOENT);
2647                if (ret == -ENOENT) {
2648                        ret = 0;
2649                        update_processed_blocks(rc, node);
2650                }
2651                goto out;
2652        }
2653
2654        if (root) {
2655                if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2656                        /*
2657                         * This block was the root block of a root, and this is
2658                         * the first time we're processing the block and thus it
2659                         * should not have had the ->new_bytenr modified and
2660                         * should have not been included on the changed list.
2661                         *
2662                         * However in the case of corruption we could have
2663                         * multiple refs pointing to the same block improperly,
2664                         * and thus we would trip over these checks.  ASSERT()
2665                         * for the developer case, because it could indicate a
2666                         * bug in the backref code, however error out for a
2667                         * normal user in the case of corruption.
2668                         */
2669                        ASSERT(node->new_bytenr == 0);
2670                        ASSERT(list_empty(&node->list));
2671                        if (node->new_bytenr || !list_empty(&node->list)) {
2672                                btrfs_err(root->fs_info,
2673                                  "bytenr %llu has improper references to it",
2674                                          node->bytenr);
2675                                ret = -EUCLEAN;
2676                                goto out;
2677                        }
2678                        ret = btrfs_record_root_in_trans(trans, root);
2679                        if (ret)
2680                                goto out;
2681                        /*
2682                         * Another thread could have failed, need to check if we
2683                         * have reloc_root actually set.
2684                         */
2685                        if (!root->reloc_root) {
2686                                ret = -ENOENT;
2687                                goto out;
2688                        }
2689                        root = root->reloc_root;
2690                        node->new_bytenr = root->node->start;
2691                        btrfs_put_root(node->root);
2692                        node->root = btrfs_grab_root(root);
2693                        ASSERT(node->root);
2694                        list_add_tail(&node->list, &rc->backref_cache.changed);
2695                } else {
2696                        path->lowest_level = node->level;
2697                        if (root == root->fs_info->chunk_root)
2698                                btrfs_reserve_chunk_metadata(trans, false);
2699                        ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2700                        btrfs_release_path(path);
2701                        if (root == root->fs_info->chunk_root)
2702                                btrfs_trans_release_chunk_metadata(trans);
2703                        if (ret > 0)
2704                                ret = 0;
2705                }
2706                if (!ret)
2707                        update_processed_blocks(rc, node);
2708        } else {
2709                ret = do_relocation(trans, rc, node, key, path, 1);
2710        }
2711out:
2712        if (ret || node->level == 0 || node->cowonly)
2713                btrfs_backref_cleanup_node(&rc->backref_cache, node);
2714        return ret;
2715}
2716
2717/*
2718 * relocate a list of blocks
2719 */
2720static noinline_for_stack
2721int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2722                         struct reloc_control *rc, struct rb_root *blocks)
2723{
2724        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2725        struct btrfs_backref_node *node;
2726        struct btrfs_path *path;
2727        struct tree_block *block;
2728        struct tree_block *next;
2729        int ret;
2730        int err = 0;
2731
2732        path = btrfs_alloc_path();
2733        if (!path) {
2734                err = -ENOMEM;
2735                goto out_free_blocks;
2736        }
2737
2738        /* Kick in readahead for tree blocks with missing keys */
2739        rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2740                if (!block->key_ready)
2741                        btrfs_readahead_tree_block(fs_info, block->bytenr,
2742                                                   block->owner, 0,
2743                                                   block->level);
2744        }
2745
2746        /* Get first keys */
2747        rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2748                if (!block->key_ready) {
2749                        err = get_tree_block_key(fs_info, block);
2750                        if (err)
2751                                goto out_free_path;
2752                }
2753        }
2754
2755        /* Do tree relocation */
2756        rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2757                node = build_backref_tree(rc, &block->key,
2758                                          block->level, block->bytenr);
2759                if (IS_ERR(node)) {
2760                        err = PTR_ERR(node);
2761                        goto out;
2762                }
2763
2764                ret = relocate_tree_block(trans, rc, node, &block->key,
2765                                          path);
2766                if (ret < 0) {
2767                        err = ret;
2768                        break;
2769                }
2770        }
2771out:
2772        err = finish_pending_nodes(trans, rc, path, err);
2773
2774out_free_path:
2775        btrfs_free_path(path);
2776out_free_blocks:
2777        free_block_list(blocks);
2778        return err;
2779}
2780
2781static noinline_for_stack int prealloc_file_extent_cluster(
2782                                struct btrfs_inode *inode,
2783                                struct file_extent_cluster *cluster)
2784{
2785        u64 alloc_hint = 0;
2786        u64 start;
2787        u64 end;
2788        u64 offset = inode->index_cnt;
2789        u64 num_bytes;
2790        int nr;
2791        int ret = 0;
2792        u64 i_size = i_size_read(&inode->vfs_inode);
2793        u64 prealloc_start = cluster->start - offset;
2794        u64 prealloc_end = cluster->end - offset;
2795        u64 cur_offset = prealloc_start;
2796
2797        /*
2798         * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2799         * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2800         * btrfs_do_readpage() call of previously relocated file cluster.
2801         *
2802         * If the current cluster starts in the above range, btrfs_do_readpage()
2803         * will skip the read, and relocate_one_page() will later writeback
2804         * the padding zeros as new data, causing data corruption.
2805         *
2806         * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2807         */
2808        if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2809                struct address_space *mapping = inode->vfs_inode.i_mapping;
2810                struct btrfs_fs_info *fs_info = inode->root->fs_info;
2811                const u32 sectorsize = fs_info->sectorsize;
2812                struct page *page;
2813
2814                ASSERT(sectorsize < PAGE_SIZE);
2815                ASSERT(IS_ALIGNED(i_size, sectorsize));
2816
2817                /*
2818                 * Subpage can't handle page with DIRTY but without UPTODATE
2819                 * bit as it can lead to the following deadlock:
2820                 *
2821                 * btrfs_readpage()
2822                 * | Page already *locked*
2823                 * |- btrfs_lock_and_flush_ordered_range()
2824                 *    |- btrfs_start_ordered_extent()
2825                 *       |- extent_write_cache_pages()
2826                 *          |- lock_page()
2827                 *             We try to lock the page we already hold.
2828                 *
2829                 * Here we just writeback the whole data reloc inode, so that
2830                 * we will be ensured to have no dirty range in the page, and
2831                 * are safe to clear the uptodate bits.
2832                 *
2833                 * This shouldn't cause too much overhead, as we need to write
2834                 * the data back anyway.
2835                 */
2836                ret = filemap_write_and_wait(mapping);
2837                if (ret < 0)
2838                        return ret;
2839
2840                clear_extent_bits(&inode->io_tree, i_size,
2841                                  round_up(i_size, PAGE_SIZE) - 1,
2842                                  EXTENT_UPTODATE);
2843                page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2844                /*
2845                 * If page is freed we don't need to do anything then, as we
2846                 * will re-read the whole page anyway.
2847                 */
2848                if (page) {
2849                        btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2850                                        round_up(i_size, PAGE_SIZE) - i_size);
2851                        unlock_page(page);
2852                        put_page(page);
2853                }
2854        }
2855
2856        BUG_ON(cluster->start != cluster->boundary[0]);
2857        ret = btrfs_alloc_data_chunk_ondemand(inode,
2858                                              prealloc_end + 1 - prealloc_start);
2859        if (ret)
2860                return ret;
2861
2862        btrfs_inode_lock(&inode->vfs_inode, 0);
2863        for (nr = 0; nr < cluster->nr; nr++) {
2864                start = cluster->boundary[nr] - offset;
2865                if (nr + 1 < cluster->nr)
2866                        end = cluster->boundary[nr + 1] - 1 - offset;
2867                else
2868                        end = cluster->end - offset;
2869
2870                lock_extent(&inode->io_tree, start, end);
2871                num_bytes = end + 1 - start;
2872                ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2873                                                num_bytes, num_bytes,
2874                                                end + 1, &alloc_hint);
2875                cur_offset = end + 1;
2876                unlock_extent(&inode->io_tree, start, end);
2877                if (ret)
2878                        break;
2879        }
2880        btrfs_inode_unlock(&inode->vfs_inode, 0);
2881
2882        if (cur_offset < prealloc_end)
2883                btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2884                                               prealloc_end + 1 - cur_offset);
2885        return ret;
2886}
2887
2888static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2889                                u64 start, u64 end, u64 block_start)
2890{
2891        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2892        struct extent_map *em;
2893        int ret = 0;
2894
2895        em = alloc_extent_map();
2896        if (!em)
2897                return -ENOMEM;
2898
2899        em->start = start;
2900        em->len = end + 1 - start;
2901        em->block_len = em->len;
2902        em->block_start = block_start;
2903        set_bit(EXTENT_FLAG_PINNED, &em->flags);
2904
2905        lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2906        while (1) {
2907                write_lock(&em_tree->lock);
2908                ret = add_extent_mapping(em_tree, em, 0);
2909                write_unlock(&em_tree->lock);
2910                if (ret != -EEXIST) {
2911                        free_extent_map(em);
2912                        break;
2913                }
2914                btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2915        }
2916        unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2917        return ret;
2918}
2919
2920/*
2921 * Allow error injection to test balance/relocation cancellation
2922 */
2923noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2924{
2925        return atomic_read(&fs_info->balance_cancel_req) ||
2926                atomic_read(&fs_info->reloc_cancel_req) ||
2927                fatal_signal_pending(current);
2928}
2929ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2930
2931static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2932                                    int cluster_nr)
2933{
2934        /* Last extent, use cluster end directly */
2935        if (cluster_nr >= cluster->nr - 1)
2936                return cluster->end;
2937
2938        /* Use next boundary start*/
2939        return cluster->boundary[cluster_nr + 1] - 1;
2940}
2941
2942static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2943                             struct file_extent_cluster *cluster,
2944                             int *cluster_nr, unsigned long page_index)
2945{
2946        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2947        u64 offset = BTRFS_I(inode)->index_cnt;
2948        const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2949        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2950        struct page *page;
2951        u64 page_start;
2952        u64 page_end;
2953        u64 cur;
2954        int ret;
2955
2956        ASSERT(page_index <= last_index);
2957        page = find_lock_page(inode->i_mapping, page_index);
2958        if (!page) {
2959                page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2960                                page_index, last_index + 1 - page_index);
2961                page = find_or_create_page(inode->i_mapping, page_index, mask);
2962                if (!page)
2963                        return -ENOMEM;
2964        }
2965        ret = set_page_extent_mapped(page);
2966        if (ret < 0)
2967                goto release_page;
2968
2969        if (PageReadahead(page))
2970                page_cache_async_readahead(inode->i_mapping, ra, NULL, page,
2971                                   page_index, last_index + 1 - page_index);
2972
2973        if (!PageUptodate(page)) {
2974                btrfs_readpage(NULL, page);
2975                lock_page(page);
2976                if (!PageUptodate(page)) {
2977                        ret = -EIO;
2978                        goto release_page;
2979                }
2980        }
2981
2982        page_start = page_offset(page);
2983        page_end = page_start + PAGE_SIZE - 1;
2984
2985        /*
2986         * Start from the cluster, as for subpage case, the cluster can start
2987         * inside the page.
2988         */
2989        cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
2990        while (cur <= page_end) {
2991                u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2992                u64 extent_end = get_cluster_boundary_end(cluster,
2993                                                *cluster_nr) - offset;
2994                u64 clamped_start = max(page_start, extent_start);
2995                u64 clamped_end = min(page_end, extent_end);
2996                u32 clamped_len = clamped_end + 1 - clamped_start;
2997
2998                /* Reserve metadata for this range */
2999                ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3000                                                      clamped_len, clamped_len);
3001                if (ret)
3002                        goto release_page;
3003
3004                /* Mark the range delalloc and dirty for later writeback */
3005                lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3006                ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3007                                                clamped_end, 0, NULL);
3008                if (ret) {
3009                        clear_extent_bits(&BTRFS_I(inode)->io_tree,
3010                                        clamped_start, clamped_end,
3011                                        EXTENT_LOCKED | EXTENT_BOUNDARY);
3012                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
3013                                                        clamped_len, true);
3014                        btrfs_delalloc_release_extents(BTRFS_I(inode),
3015                                                       clamped_len);
3016                        goto release_page;
3017                }
3018                btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3019
3020                /*
3021                 * Set the boundary if it's inside the page.
3022                 * Data relocation requires the destination extents to have the
3023                 * same size as the source.
3024                 * EXTENT_BOUNDARY bit prevents current extent from being merged
3025                 * with previous extent.
3026                 */
3027                if (in_range(cluster->boundary[*cluster_nr] - offset,
3028                             page_start, PAGE_SIZE)) {
3029                        u64 boundary_start = cluster->boundary[*cluster_nr] -
3030                                                offset;
3031                        u64 boundary_end = boundary_start +
3032                                           fs_info->sectorsize - 1;
3033
3034                        set_extent_bits(&BTRFS_I(inode)->io_tree,
3035                                        boundary_start, boundary_end,
3036                                        EXTENT_BOUNDARY);
3037                }
3038                unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3039                btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3040                cur += clamped_len;
3041
3042                /* Crossed extent end, go to next extent */
3043                if (cur >= extent_end) {
3044                        (*cluster_nr)++;
3045                        /* Just finished the last extent of the cluster, exit. */
3046                        if (*cluster_nr >= cluster->nr)
3047                                break;
3048                }
3049        }
3050        unlock_page(page);
3051        put_page(page);
3052
3053        balance_dirty_pages_ratelimited(inode->i_mapping);
3054        btrfs_throttle(fs_info);
3055        if (btrfs_should_cancel_balance(fs_info))
3056                ret = -ECANCELED;
3057        return ret;
3058
3059release_page:
3060        unlock_page(page);
3061        put_page(page);
3062        return ret;
3063}
3064
3065static int relocate_file_extent_cluster(struct inode *inode,
3066                                        struct file_extent_cluster *cluster)
3067{
3068        u64 offset = BTRFS_I(inode)->index_cnt;
3069        unsigned long index;
3070        unsigned long last_index;
3071        struct file_ra_state *ra;
3072        int cluster_nr = 0;
3073        int ret = 0;
3074
3075        if (!cluster->nr)
3076                return 0;
3077
3078        ra = kzalloc(sizeof(*ra), GFP_NOFS);
3079        if (!ra)
3080                return -ENOMEM;
3081
3082        ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3083        if (ret)
3084                goto out;
3085
3086        file_ra_state_init(ra, inode->i_mapping);
3087
3088        ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3089                                   cluster->end - offset, cluster->start);
3090        if (ret)
3091                goto out;
3092
3093        last_index = (cluster->end - offset) >> PAGE_SHIFT;
3094        for (index = (cluster->start - offset) >> PAGE_SHIFT;
3095             index <= last_index && !ret; index++)
3096                ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3097        if (ret == 0)
3098                WARN_ON(cluster_nr != cluster->nr);
3099out:
3100        kfree(ra);
3101        return ret;
3102}
3103
3104static noinline_for_stack
3105int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3106                         struct file_extent_cluster *cluster)
3107{
3108        int ret;
3109
3110        if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3111                ret = relocate_file_extent_cluster(inode, cluster);
3112                if (ret)
3113                        return ret;
3114                cluster->nr = 0;
3115        }
3116
3117        if (!cluster->nr)
3118                cluster->start = extent_key->objectid;
3119        else
3120                BUG_ON(cluster->nr >= MAX_EXTENTS);
3121        cluster->end = extent_key->objectid + extent_key->offset - 1;
3122        cluster->boundary[cluster->nr] = extent_key->objectid;
3123        cluster->nr++;
3124
3125        if (cluster->nr >= MAX_EXTENTS) {
3126                ret = relocate_file_extent_cluster(inode, cluster);
3127                if (ret)
3128                        return ret;
3129                cluster->nr = 0;
3130        }
3131        return 0;
3132}
3133
3134/*
3135 * helper to add a tree block to the list.
3136 * the major work is getting the generation and level of the block
3137 */
3138static int add_tree_block(struct reloc_control *rc,
3139                          struct btrfs_key *extent_key,
3140                          struct btrfs_path *path,
3141                          struct rb_root *blocks)
3142{
3143        struct extent_buffer *eb;
3144        struct btrfs_extent_item *ei;
3145        struct btrfs_tree_block_info *bi;
3146        struct tree_block *block;
3147        struct rb_node *rb_node;
3148        u32 item_size;
3149        int level = -1;
3150        u64 generation;
3151        u64 owner = 0;
3152
3153        eb =  path->nodes[0];
3154        item_size = btrfs_item_size(eb, path->slots[0]);
3155
3156        if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3157            item_size >= sizeof(*ei) + sizeof(*bi)) {
3158                unsigned long ptr = 0, end;
3159
3160                ei = btrfs_item_ptr(eb, path->slots[0],
3161                                struct btrfs_extent_item);
3162                end = (unsigned long)ei + item_size;
3163                if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3164                        bi = (struct btrfs_tree_block_info *)(ei + 1);
3165                        level = btrfs_tree_block_level(eb, bi);
3166                        ptr = (unsigned long)(bi + 1);
3167                } else {
3168                        level = (int)extent_key->offset;
3169                        ptr = (unsigned long)(ei + 1);
3170                }
3171                generation = btrfs_extent_generation(eb, ei);
3172
3173                /*
3174                 * We're reading random blocks without knowing their owner ahead
3175                 * of time.  This is ok most of the time, as all reloc roots and
3176                 * fs roots have the same lock type.  However normal trees do
3177                 * not, and the only way to know ahead of time is to read the
3178                 * inline ref offset.  We know it's an fs root if
3179                 *
3180                 * 1. There's more than one ref.
3181                 * 2. There's a SHARED_DATA_REF_KEY set.
3182                 * 3. FULL_BACKREF is set on the flags.
3183                 *
3184                 * Otherwise it's safe to assume that the ref offset == the
3185                 * owner of this block, so we can use that when calling
3186                 * read_tree_block.
3187                 */
3188                if (btrfs_extent_refs(eb, ei) == 1 &&
3189                    !(btrfs_extent_flags(eb, ei) &
3190                      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3191                    ptr < end) {
3192                        struct btrfs_extent_inline_ref *iref;
3193                        int type;
3194
3195                        iref = (struct btrfs_extent_inline_ref *)ptr;
3196                        type = btrfs_get_extent_inline_ref_type(eb, iref,
3197                                                        BTRFS_REF_TYPE_BLOCK);
3198                        if (type == BTRFS_REF_TYPE_INVALID)
3199                                return -EINVAL;
3200                        if (type == BTRFS_TREE_BLOCK_REF_KEY)
3201                                owner = btrfs_extent_inline_ref_offset(eb, iref);
3202                }
3203        } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3204                btrfs_print_v0_err(eb->fs_info);
3205                btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3206                return -EINVAL;
3207        } else {
3208                BUG();
3209        }
3210
3211        btrfs_release_path(path);
3212
3213        BUG_ON(level == -1);
3214
3215        block = kmalloc(sizeof(*block), GFP_NOFS);
3216        if (!block)
3217                return -ENOMEM;
3218
3219        block->bytenr = extent_key->objectid;
3220        block->key.objectid = rc->extent_root->fs_info->nodesize;
3221        block->key.offset = generation;
3222        block->level = level;
3223        block->key_ready = 0;
3224        block->owner = owner;
3225
3226        rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3227        if (rb_node)
3228                btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3229                                    -EEXIST);
3230
3231        return 0;
3232}
3233
3234/*
3235 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3236 */
3237static int __add_tree_block(struct reloc_control *rc,
3238                            u64 bytenr, u32 blocksize,
3239                            struct rb_root *blocks)
3240{
3241        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3242        struct btrfs_path *path;
3243        struct btrfs_key key;
3244        int ret;
3245        bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3246
3247        if (tree_block_processed(bytenr, rc))
3248                return 0;
3249
3250        if (rb_simple_search(blocks, bytenr))
3251                return 0;
3252
3253        path = btrfs_alloc_path();
3254        if (!path)
3255                return -ENOMEM;
3256again:
3257        key.objectid = bytenr;
3258        if (skinny) {
3259                key.type = BTRFS_METADATA_ITEM_KEY;
3260                key.offset = (u64)-1;
3261        } else {
3262                key.type = BTRFS_EXTENT_ITEM_KEY;
3263                key.offset = blocksize;
3264        }
3265
3266        path->search_commit_root = 1;
3267        path->skip_locking = 1;
3268        ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3269        if (ret < 0)
3270                goto out;
3271
3272        if (ret > 0 && skinny) {
3273                if (path->slots[0]) {
3274                        path->slots[0]--;
3275                        btrfs_item_key_to_cpu(path->nodes[0], &key,
3276                                              path->slots[0]);
3277                        if (key.objectid == bytenr &&
3278                            (key.type == BTRFS_METADATA_ITEM_KEY ||
3279                             (key.type == BTRFS_EXTENT_ITEM_KEY &&
3280                              key.offset == blocksize)))
3281                                ret = 0;
3282                }
3283
3284                if (ret) {
3285                        skinny = false;
3286                        btrfs_release_path(path);
3287                        goto again;
3288                }
3289        }
3290        if (ret) {
3291                ASSERT(ret == 1);
3292                btrfs_print_leaf(path->nodes[0]);
3293                btrfs_err(fs_info,
3294             "tree block extent item (%llu) is not found in extent tree",
3295                     bytenr);
3296                WARN_ON(1);
3297                ret = -EINVAL;
3298                goto out;
3299        }
3300
3301        ret = add_tree_block(rc, &key, path, blocks);
3302out:
3303        btrfs_free_path(path);
3304        return ret;
3305}
3306
3307static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3308                                    struct btrfs_block_group *block_group,
3309                                    struct inode *inode,
3310                                    u64 ino)
3311{
3312        struct btrfs_root *root = fs_info->tree_root;
3313        struct btrfs_trans_handle *trans;
3314        int ret = 0;
3315
3316        if (inode)
3317                goto truncate;
3318
3319        inode = btrfs_iget(fs_info->sb, ino, root);
3320        if (IS_ERR(inode))
3321                return -ENOENT;
3322
3323truncate:
3324        ret = btrfs_check_trunc_cache_free_space(fs_info,
3325                                                 &fs_info->global_block_rsv);
3326        if (ret)
3327                goto out;
3328
3329        trans = btrfs_join_transaction(root);
3330        if (IS_ERR(trans)) {
3331                ret = PTR_ERR(trans);
3332                goto out;
3333        }
3334
3335        ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3336
3337        btrfs_end_transaction(trans);
3338        btrfs_btree_balance_dirty(fs_info);
3339out:
3340        iput(inode);
3341        return ret;
3342}
3343
3344/*
3345 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3346 * cache inode, to avoid free space cache data extent blocking data relocation.
3347 */
3348static int delete_v1_space_cache(struct extent_buffer *leaf,
3349                                 struct btrfs_block_group *block_group,
3350                                 u64 data_bytenr)
3351{
3352        u64 space_cache_ino;
3353        struct btrfs_file_extent_item *ei;
3354        struct btrfs_key key;
3355        bool found = false;
3356        int i;
3357        int ret;
3358
3359        if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3360                return 0;
3361
3362        for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3363                u8 type;
3364
3365                btrfs_item_key_to_cpu(leaf, &key, i);
3366                if (key.type != BTRFS_EXTENT_DATA_KEY)
3367                        continue;
3368                ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3369                type = btrfs_file_extent_type(leaf, ei);
3370
3371                if ((type == BTRFS_FILE_EXTENT_REG ||
3372                     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3373                    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3374                        found = true;
3375                        space_cache_ino = key.objectid;
3376                        break;
3377                }
3378        }
3379        if (!found)
3380                return -ENOENT;
3381        ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3382                                        space_cache_ino);
3383        return ret;
3384}
3385
3386/*
3387 * helper to find all tree blocks that reference a given data extent
3388 */
3389static noinline_for_stack
3390int add_data_references(struct reloc_control *rc,
3391                        struct btrfs_key *extent_key,
3392                        struct btrfs_path *path,
3393                        struct rb_root *blocks)
3394{
3395        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3396        struct ulist *leaves = NULL;
3397        struct ulist_iterator leaf_uiter;
3398        struct ulist_node *ref_node = NULL;
3399        const u32 blocksize = fs_info->nodesize;
3400        int ret = 0;
3401
3402        btrfs_release_path(path);
3403        ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3404                                   0, &leaves, NULL, true);
3405        if (ret < 0)
3406                return ret;
3407
3408        ULIST_ITER_INIT(&leaf_uiter);
3409        while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3410                struct extent_buffer *eb;
3411
3412                eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3413                if (IS_ERR(eb)) {
3414                        ret = PTR_ERR(eb);
3415                        break;
3416                }
3417                ret = delete_v1_space_cache(eb, rc->block_group,
3418                                            extent_key->objectid);
3419                free_extent_buffer(eb);
3420                if (ret < 0)
3421                        break;
3422                ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3423                if (ret < 0)
3424                        break;
3425        }
3426        if (ret < 0)
3427                free_block_list(blocks);
3428        ulist_free(leaves);
3429        return ret;
3430}
3431
3432/*
3433 * helper to find next unprocessed extent
3434 */
3435static noinline_for_stack
3436int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3437                     struct btrfs_key *extent_key)
3438{
3439        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3440        struct btrfs_key key;
3441        struct extent_buffer *leaf;
3442        u64 start, end, last;
3443        int ret;
3444
3445        last = rc->block_group->start + rc->block_group->length;
3446        while (1) {
3447                cond_resched();
3448                if (rc->search_start >= last) {
3449                        ret = 1;
3450                        break;
3451                }
3452
3453                key.objectid = rc->search_start;
3454                key.type = BTRFS_EXTENT_ITEM_KEY;
3455                key.offset = 0;
3456
3457                path->search_commit_root = 1;
3458                path->skip_locking = 1;
3459                ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3460                                        0, 0);
3461                if (ret < 0)
3462                        break;
3463next:
3464                leaf = path->nodes[0];
3465                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3466                        ret = btrfs_next_leaf(rc->extent_root, path);
3467                        if (ret != 0)
3468                                break;
3469                        leaf = path->nodes[0];
3470                }
3471
3472                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3473                if (key.objectid >= last) {
3474                        ret = 1;
3475                        break;
3476                }
3477
3478                if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3479                    key.type != BTRFS_METADATA_ITEM_KEY) {
3480                        path->slots[0]++;
3481                        goto next;
3482                }
3483
3484                if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3485                    key.objectid + key.offset <= rc->search_start) {
3486                        path->slots[0]++;
3487                        goto next;
3488                }
3489
3490                if (key.type == BTRFS_METADATA_ITEM_KEY &&
3491                    key.objectid + fs_info->nodesize <=
3492                    rc->search_start) {
3493                        path->slots[0]++;
3494                        goto next;
3495                }
3496
3497                ret = find_first_extent_bit(&rc->processed_blocks,
3498                                            key.objectid, &start, &end,
3499                                            EXTENT_DIRTY, NULL);
3500
3501                if (ret == 0 && start <= key.objectid) {
3502                        btrfs_release_path(path);
3503                        rc->search_start = end + 1;
3504                } else {
3505                        if (key.type == BTRFS_EXTENT_ITEM_KEY)
3506                                rc->search_start = key.objectid + key.offset;
3507                        else
3508                                rc->search_start = key.objectid +
3509                                        fs_info->nodesize;
3510                        memcpy(extent_key, &key, sizeof(key));
3511                        return 0;
3512                }
3513        }
3514        btrfs_release_path(path);
3515        return ret;
3516}
3517
3518static void set_reloc_control(struct reloc_control *rc)
3519{
3520        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3521
3522        mutex_lock(&fs_info->reloc_mutex);
3523        fs_info->reloc_ctl = rc;
3524        mutex_unlock(&fs_info->reloc_mutex);
3525}
3526
3527static void unset_reloc_control(struct reloc_control *rc)
3528{
3529        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3530
3531        mutex_lock(&fs_info->reloc_mutex);
3532        fs_info->reloc_ctl = NULL;
3533        mutex_unlock(&fs_info->reloc_mutex);
3534}
3535
3536static noinline_for_stack
3537int prepare_to_relocate(struct reloc_control *rc)
3538{
3539        struct btrfs_trans_handle *trans;
3540        int ret;
3541
3542        rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3543                                              BTRFS_BLOCK_RSV_TEMP);
3544        if (!rc->block_rsv)
3545                return -ENOMEM;
3546
3547        memset(&rc->cluster, 0, sizeof(rc->cluster));
3548        rc->search_start = rc->block_group->start;
3549        rc->extents_found = 0;
3550        rc->nodes_relocated = 0;
3551        rc->merging_rsv_size = 0;
3552        rc->reserved_bytes = 0;
3553        rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3554                              RELOCATION_RESERVED_NODES;
3555        ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3556                                     rc->block_rsv, rc->block_rsv->size,
3557                                     BTRFS_RESERVE_FLUSH_ALL);
3558        if (ret)
3559                return ret;
3560
3561        rc->create_reloc_tree = 1;
3562        set_reloc_control(rc);
3563
3564        trans = btrfs_join_transaction(rc->extent_root);
3565        if (IS_ERR(trans)) {
3566                unset_reloc_control(rc);
3567                /*
3568                 * extent tree is not a ref_cow tree and has no reloc_root to
3569                 * cleanup.  And callers are responsible to free the above
3570                 * block rsv.
3571                 */
3572                return PTR_ERR(trans);
3573        }
3574        return btrfs_commit_transaction(trans);
3575}
3576
3577static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3578{
3579        struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3580        struct rb_root blocks = RB_ROOT;
3581        struct btrfs_key key;
3582        struct btrfs_trans_handle *trans = NULL;
3583        struct btrfs_path *path;
3584        struct btrfs_extent_item *ei;
3585        u64 flags;
3586        int ret;
3587        int err = 0;
3588        int progress = 0;
3589
3590        path = btrfs_alloc_path();
3591        if (!path)
3592                return -ENOMEM;
3593        path->reada = READA_FORWARD;
3594
3595        ret = prepare_to_relocate(rc);
3596        if (ret) {
3597                err = ret;
3598                goto out_free;
3599        }
3600
3601        while (1) {
3602                rc->reserved_bytes = 0;
3603                ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3604                                             rc->block_rsv->size,
3605                                             BTRFS_RESERVE_FLUSH_ALL);
3606                if (ret) {
3607                        err = ret;
3608                        break;
3609                }
3610                progress++;
3611                trans = btrfs_start_transaction(rc->extent_root, 0);
3612                if (IS_ERR(trans)) {
3613                        err = PTR_ERR(trans);
3614                        trans = NULL;
3615                        break;
3616                }
3617restart:
3618                if (update_backref_cache(trans, &rc->backref_cache)) {
3619                        btrfs_end_transaction(trans);
3620                        trans = NULL;
3621                        continue;
3622                }
3623
3624                ret = find_next_extent(rc, path, &key);
3625                if (ret < 0)
3626                        err = ret;
3627                if (ret != 0)
3628                        break;
3629
3630                rc->extents_found++;
3631
3632                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3633                                    struct btrfs_extent_item);
3634                flags = btrfs_extent_flags(path->nodes[0], ei);
3635
3636                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3637                        ret = add_tree_block(rc, &key, path, &blocks);
3638                } else if (rc->stage == UPDATE_DATA_PTRS &&
3639                           (flags & BTRFS_EXTENT_FLAG_DATA)) {
3640                        ret = add_data_references(rc, &key, path, &blocks);
3641                } else {
3642                        btrfs_release_path(path);
3643                        ret = 0;
3644                }
3645                if (ret < 0) {
3646                        err = ret;
3647                        break;
3648                }
3649
3650                if (!RB_EMPTY_ROOT(&blocks)) {
3651                        ret = relocate_tree_blocks(trans, rc, &blocks);
3652                        if (ret < 0) {
3653                                if (ret != -EAGAIN) {
3654                                        err = ret;
3655                                        break;
3656                                }
3657                                rc->extents_found--;
3658                                rc->search_start = key.objectid;
3659                        }
3660                }
3661
3662                btrfs_end_transaction_throttle(trans);
3663                btrfs_btree_balance_dirty(fs_info);
3664                trans = NULL;
3665
3666                if (rc->stage == MOVE_DATA_EXTENTS &&
3667                    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3668                        rc->found_file_extent = 1;
3669                        ret = relocate_data_extent(rc->data_inode,
3670                                                   &key, &rc->cluster);
3671                        if (ret < 0) {
3672                                err = ret;
3673                                break;
3674                        }
3675                }
3676                if (btrfs_should_cancel_balance(fs_info)) {
3677                        err = -ECANCELED;
3678                        break;
3679                }
3680        }
3681        if (trans && progress && err == -ENOSPC) {
3682                ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3683                if (ret == 1) {
3684                        err = 0;
3685                        progress = 0;
3686                        goto restart;
3687                }
3688        }
3689
3690        btrfs_release_path(path);
3691        clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3692
3693        if (trans) {
3694                btrfs_end_transaction_throttle(trans);
3695                btrfs_btree_balance_dirty(fs_info);
3696        }
3697
3698        if (!err) {
3699                ret = relocate_file_extent_cluster(rc->data_inode,
3700                                                   &rc->cluster);
3701                if (ret < 0)
3702                        err = ret;
3703        }
3704
3705        rc->create_reloc_tree = 0;
3706        set_reloc_control(rc);
3707
3708        btrfs_backref_release_cache(&rc->backref_cache);
3709        btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3710
3711        /*
3712         * Even in the case when the relocation is cancelled, we should all go
3713         * through prepare_to_merge() and merge_reloc_roots().
3714         *
3715         * For error (including cancelled balance), prepare_to_merge() will
3716         * mark all reloc trees orphan, then queue them for cleanup in
3717         * merge_reloc_roots()
3718         */
3719        err = prepare_to_merge(rc, err);
3720
3721        merge_reloc_roots(rc);
3722
3723        rc->merge_reloc_tree = 0;
3724        unset_reloc_control(rc);
3725        btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3726
3727        /* get rid of pinned extents */
3728        trans = btrfs_join_transaction(rc->extent_root);
3729        if (IS_ERR(trans)) {
3730                err = PTR_ERR(trans);
3731                goto out_free;
3732        }
3733        ret = btrfs_commit_transaction(trans);
3734        if (ret && !err)
3735                err = ret;
3736out_free:
3737        ret = clean_dirty_subvols(rc);
3738        if (ret < 0 && !err)
3739                err = ret;
3740        btrfs_free_block_rsv(fs_info, rc->block_rsv);
3741        btrfs_free_path(path);
3742        return err;
3743}
3744
3745static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3746                                 struct btrfs_root *root, u64 objectid)
3747{
3748        struct btrfs_path *path;
3749        struct btrfs_inode_item *item;
3750        struct extent_buffer *leaf;
3751        int ret;
3752
3753        path = btrfs_alloc_path();
3754        if (!path)
3755                return -ENOMEM;
3756
3757        ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3758        if (ret)
3759                goto out;
3760
3761        leaf = path->nodes[0];
3762        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3763        memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3764        btrfs_set_inode_generation(leaf, item, 1);
3765        btrfs_set_inode_size(leaf, item, 0);
3766        btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3767        btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3768                                          BTRFS_INODE_PREALLOC);
3769        btrfs_mark_buffer_dirty(leaf);
3770out:
3771        btrfs_free_path(path);
3772        return ret;
3773}
3774
3775static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3776                                struct btrfs_root *root, u64 objectid)
3777{
3778        struct btrfs_path *path;
3779        struct btrfs_key key;
3780        int ret = 0;
3781
3782        path = btrfs_alloc_path();
3783        if (!path) {
3784                ret = -ENOMEM;
3785                goto out;
3786        }
3787
3788        key.objectid = objectid;
3789        key.type = BTRFS_INODE_ITEM_KEY;
3790        key.offset = 0;
3791        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3792        if (ret) {
3793                if (ret > 0)
3794                        ret = -ENOENT;
3795                goto out;
3796        }
3797        ret = btrfs_del_item(trans, root, path);
3798out:
3799        if (ret)
3800                btrfs_abort_transaction(trans, ret);
3801        btrfs_free_path(path);
3802}
3803
3804/*
3805 * helper to create inode for data relocation.
3806 * the inode is in data relocation tree and its link count is 0
3807 */
3808static noinline_for_stack
3809struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3810                                 struct btrfs_block_group *group)
3811{
3812        struct inode *inode = NULL;
3813        struct btrfs_trans_handle *trans;
3814        struct btrfs_root *root;
3815        u64 objectid;
3816        int err = 0;
3817
3818        root = btrfs_grab_root(fs_info->data_reloc_root);
3819        trans = btrfs_start_transaction(root, 6);
3820        if (IS_ERR(trans)) {
3821                btrfs_put_root(root);
3822                return ERR_CAST(trans);
3823        }
3824
3825        err = btrfs_get_free_objectid(root, &objectid);
3826        if (err)
3827                goto out;
3828
3829        err = __insert_orphan_inode(trans, root, objectid);
3830        if (err)
3831                goto out;
3832
3833        inode = btrfs_iget(fs_info->sb, objectid, root);
3834        if (IS_ERR(inode)) {
3835                delete_orphan_inode(trans, root, objectid);
3836                err = PTR_ERR(inode);
3837                inode = NULL;
3838                goto out;
3839        }
3840        BTRFS_I(inode)->index_cnt = group->start;
3841
3842        err = btrfs_orphan_add(trans, BTRFS_I(inode));
3843out:
3844        btrfs_put_root(root);
3845        btrfs_end_transaction(trans);
3846        btrfs_btree_balance_dirty(fs_info);
3847        if (err) {
3848                if (inode)
3849                        iput(inode);
3850                inode = ERR_PTR(err);
3851        }
3852        return inode;
3853}
3854
3855/*
3856 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3857 * has been requested meanwhile and don't start in that case.
3858 *
3859 * Return:
3860 *   0             success
3861 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3862 *   -ECANCELED    cancellation request was set before the operation started
3863 */
3864static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3865{
3866        if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3867                /* This should not happen */
3868                btrfs_err(fs_info, "reloc already running, cannot start");
3869                return -EINPROGRESS;
3870        }
3871
3872        if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3873                btrfs_info(fs_info, "chunk relocation canceled on start");
3874                /*
3875                 * On cancel, clear all requests but let the caller mark
3876                 * the end after cleanup operations.
3877                 */
3878                atomic_set(&fs_info->reloc_cancel_req, 0);
3879                return -ECANCELED;
3880        }
3881        return 0;
3882}
3883
3884/*
3885 * Mark end of chunk relocation that is cancellable and wake any waiters.
3886 */
3887static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3888{
3889        /* Requested after start, clear bit first so any waiters can continue */
3890        if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3891                btrfs_info(fs_info, "chunk relocation canceled during operation");
3892        clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3893        atomic_set(&fs_info->reloc_cancel_req, 0);
3894}
3895
3896static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3897{
3898        struct reloc_control *rc;
3899
3900        rc = kzalloc(sizeof(*rc), GFP_NOFS);
3901        if (!rc)
3902                return NULL;
3903
3904        INIT_LIST_HEAD(&rc->reloc_roots);
3905        INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3906        btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3907        mapping_tree_init(&rc->reloc_root_tree);
3908        extent_io_tree_init(fs_info, &rc->processed_blocks,
3909                            IO_TREE_RELOC_BLOCKS, NULL);
3910        return rc;
3911}
3912
3913static void free_reloc_control(struct reloc_control *rc)
3914{
3915        struct mapping_node *node, *tmp;
3916
3917        free_reloc_roots(&rc->reloc_roots);
3918        rbtree_postorder_for_each_entry_safe(node, tmp,
3919                        &rc->reloc_root_tree.rb_root, rb_node)
3920                kfree(node);
3921
3922        kfree(rc);
3923}
3924
3925/*
3926 * Print the block group being relocated
3927 */
3928static void describe_relocation(struct btrfs_fs_info *fs_info,
3929                                struct btrfs_block_group *block_group)
3930{
3931        char buf[128] = {'\0'};
3932
3933        btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3934
3935        btrfs_info(fs_info,
3936                   "relocating block group %llu flags %s",
3937                   block_group->start, buf);
3938}
3939
3940static const char *stage_to_string(int stage)
3941{
3942        if (stage == MOVE_DATA_EXTENTS)
3943                return "move data extents";
3944        if (stage == UPDATE_DATA_PTRS)
3945                return "update data pointers";
3946        return "unknown";
3947}
3948
3949/*
3950 * function to relocate all extents in a block group.
3951 */
3952int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3953{
3954        struct btrfs_block_group *bg;
3955        struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3956        struct reloc_control *rc;
3957        struct inode *inode;
3958        struct btrfs_path *path;
3959        int ret;
3960        int rw = 0;
3961        int err = 0;
3962
3963        /*
3964         * This only gets set if we had a half-deleted snapshot on mount.  We
3965         * cannot allow relocation to start while we're still trying to clean up
3966         * these pending deletions.
3967         */
3968        ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3969        if (ret)
3970                return ret;
3971
3972        /* We may have been woken up by close_ctree, so bail if we're closing. */
3973        if (btrfs_fs_closing(fs_info))
3974                return -EINTR;
3975
3976        bg = btrfs_lookup_block_group(fs_info, group_start);
3977        if (!bg)
3978                return -ENOENT;
3979
3980        if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3981                btrfs_put_block_group(bg);
3982                return -ETXTBSY;
3983        }
3984
3985        rc = alloc_reloc_control(fs_info);
3986        if (!rc) {
3987                btrfs_put_block_group(bg);
3988                return -ENOMEM;
3989        }
3990
3991        ret = reloc_chunk_start(fs_info);
3992        if (ret < 0) {
3993                err = ret;
3994                goto out_put_bg;
3995        }
3996
3997        rc->extent_root = extent_root;
3998        rc->block_group = bg;
3999
4000        ret = btrfs_inc_block_group_ro(rc->block_group, true);
4001        if (ret) {
4002                err = ret;
4003                goto out;
4004        }
4005        rw = 1;
4006
4007        path = btrfs_alloc_path();
4008        if (!path) {
4009                err = -ENOMEM;
4010                goto out;
4011        }
4012
4013        inode = lookup_free_space_inode(rc->block_group, path);
4014        btrfs_free_path(path);
4015
4016        if (!IS_ERR(inode))
4017                ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4018        else
4019                ret = PTR_ERR(inode);
4020
4021        if (ret && ret != -ENOENT) {
4022                err = ret;
4023                goto out;
4024        }
4025
4026        rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4027        if (IS_ERR(rc->data_inode)) {
4028                err = PTR_ERR(rc->data_inode);
4029                rc->data_inode = NULL;
4030                goto out;
4031        }
4032
4033        describe_relocation(fs_info, rc->block_group);
4034
4035        btrfs_wait_block_group_reservations(rc->block_group);
4036        btrfs_wait_nocow_writers(rc->block_group);
4037        btrfs_wait_ordered_roots(fs_info, U64_MAX,
4038                                 rc->block_group->start,
4039                                 rc->block_group->length);
4040
4041        ret = btrfs_zone_finish(rc->block_group);
4042        WARN_ON(ret && ret != -EAGAIN);
4043
4044        while (1) {
4045                int finishes_stage;
4046
4047                mutex_lock(&fs_info->cleaner_mutex);
4048                ret = relocate_block_group(rc);
4049                mutex_unlock(&fs_info->cleaner_mutex);
4050                if (ret < 0)
4051                        err = ret;
4052
4053                finishes_stage = rc->stage;
4054                /*
4055                 * We may have gotten ENOSPC after we already dirtied some
4056                 * extents.  If writeout happens while we're relocating a
4057                 * different block group we could end up hitting the
4058                 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4059                 * btrfs_reloc_cow_block.  Make sure we write everything out
4060                 * properly so we don't trip over this problem, and then break
4061                 * out of the loop if we hit an error.
4062                 */
4063                if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4064                        ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4065                                                       (u64)-1);
4066                        if (ret)
4067                                err = ret;
4068                        invalidate_mapping_pages(rc->data_inode->i_mapping,
4069                                                 0, -1);
4070                        rc->stage = UPDATE_DATA_PTRS;
4071                }
4072
4073                if (err < 0)
4074                        goto out;
4075
4076                if (rc->extents_found == 0)
4077                        break;
4078
4079                btrfs_info(fs_info, "found %llu extents, stage: %s",
4080                           rc->extents_found, stage_to_string(finishes_stage));
4081        }
4082
4083        WARN_ON(rc->block_group->pinned > 0);
4084        WARN_ON(rc->block_group->reserved > 0);
4085        WARN_ON(rc->block_group->used > 0);
4086out:
4087        if (err && rw)
4088                btrfs_dec_block_group_ro(rc->block_group);
4089        iput(rc->data_inode);
4090out_put_bg:
4091        btrfs_put_block_group(bg);
4092        reloc_chunk_end(fs_info);
4093        free_reloc_control(rc);
4094        return err;
4095}
4096
4097static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4098{
4099        struct btrfs_fs_info *fs_info = root->fs_info;
4100        struct btrfs_trans_handle *trans;
4101        int ret, err;
4102
4103        trans = btrfs_start_transaction(fs_info->tree_root, 0);
4104        if (IS_ERR(trans))
4105                return PTR_ERR(trans);
4106
4107        memset(&root->root_item.drop_progress, 0,
4108                sizeof(root->root_item.drop_progress));
4109        btrfs_set_root_drop_level(&root->root_item, 0);
4110        btrfs_set_root_refs(&root->root_item, 0);
4111        ret = btrfs_update_root(trans, fs_info->tree_root,
4112                                &root->root_key, &root->root_item);
4113
4114        err = btrfs_end_transaction(trans);
4115        if (err)
4116                return err;
4117        return ret;
4118}
4119
4120/*
4121 * recover relocation interrupted by system crash.
4122 *
4123 * this function resumes merging reloc trees with corresponding fs trees.
4124 * this is important for keeping the sharing of tree blocks
4125 */
4126int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4127{
4128        LIST_HEAD(reloc_roots);
4129        struct btrfs_key key;
4130        struct btrfs_root *fs_root;
4131        struct btrfs_root *reloc_root;
4132        struct btrfs_path *path;
4133        struct extent_buffer *leaf;
4134        struct reloc_control *rc = NULL;
4135        struct btrfs_trans_handle *trans;
4136        int ret;
4137        int err = 0;
4138
4139        path = btrfs_alloc_path();
4140        if (!path)
4141                return -ENOMEM;
4142        path->reada = READA_BACK;
4143
4144        key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4145        key.type = BTRFS_ROOT_ITEM_KEY;
4146        key.offset = (u64)-1;
4147
4148        while (1) {
4149                ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4150                                        path, 0, 0);
4151                if (ret < 0) {
4152                        err = ret;
4153                        goto out;
4154                }
4155                if (ret > 0) {
4156                        if (path->slots[0] == 0)
4157                                break;
4158                        path->slots[0]--;
4159                }
4160                leaf = path->nodes[0];
4161                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4162                btrfs_release_path(path);
4163
4164                if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4165                    key.type != BTRFS_ROOT_ITEM_KEY)
4166                        break;
4167
4168                reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4169                if (IS_ERR(reloc_root)) {
4170                        err = PTR_ERR(reloc_root);
4171                        goto out;
4172                }
4173
4174                set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4175                list_add(&reloc_root->root_list, &reloc_roots);
4176
4177                if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4178                        fs_root = btrfs_get_fs_root(fs_info,
4179                                        reloc_root->root_key.offset, false);
4180                        if (IS_ERR(fs_root)) {
4181                                ret = PTR_ERR(fs_root);
4182                                if (ret != -ENOENT) {
4183                                        err = ret;
4184                                        goto out;
4185                                }
4186                                ret = mark_garbage_root(reloc_root);
4187                                if (ret < 0) {
4188                                        err = ret;
4189                                        goto out;
4190                                }
4191                        } else {
4192                                btrfs_put_root(fs_root);
4193                        }
4194                }
4195
4196                if (key.offset == 0)
4197                        break;
4198
4199                key.offset--;
4200        }
4201        btrfs_release_path(path);
4202
4203        if (list_empty(&reloc_roots))
4204                goto out;
4205
4206        rc = alloc_reloc_control(fs_info);
4207        if (!rc) {
4208                err = -ENOMEM;
4209                goto out;
4210        }
4211
4212        ret = reloc_chunk_start(fs_info);
4213        if (ret < 0) {
4214                err = ret;
4215                goto out_end;
4216        }
4217
4218        rc->extent_root = btrfs_extent_root(fs_info, 0);
4219
4220        set_reloc_control(rc);
4221
4222        trans = btrfs_join_transaction(rc->extent_root);
4223        if (IS_ERR(trans)) {
4224                err = PTR_ERR(trans);
4225                goto out_unset;
4226        }
4227
4228        rc->merge_reloc_tree = 1;
4229
4230        while (!list_empty(&reloc_roots)) {
4231                reloc_root = list_entry(reloc_roots.next,
4232                                        struct btrfs_root, root_list);
4233                list_del(&reloc_root->root_list);
4234
4235                if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4236                        list_add_tail(&reloc_root->root_list,
4237                                      &rc->reloc_roots);
4238                        continue;
4239                }
4240
4241                fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4242                                            false);
4243                if (IS_ERR(fs_root)) {
4244                        err = PTR_ERR(fs_root);
4245                        list_add_tail(&reloc_root->root_list, &reloc_roots);
4246                        btrfs_end_transaction(trans);
4247                        goto out_unset;
4248                }
4249
4250                err = __add_reloc_root(reloc_root);
4251                ASSERT(err != -EEXIST);
4252                if (err) {
4253                        list_add_tail(&reloc_root->root_list, &reloc_roots);
4254                        btrfs_put_root(fs_root);
4255                        btrfs_end_transaction(trans);
4256                        goto out_unset;
4257                }
4258                fs_root->reloc_root = btrfs_grab_root(reloc_root);
4259                btrfs_put_root(fs_root);
4260        }
4261
4262        err = btrfs_commit_transaction(trans);
4263        if (err)
4264                goto out_unset;
4265
4266        merge_reloc_roots(rc);
4267
4268        unset_reloc_control(rc);
4269
4270        trans = btrfs_join_transaction(rc->extent_root);
4271        if (IS_ERR(trans)) {
4272                err = PTR_ERR(trans);
4273                goto out_clean;
4274        }
4275        err = btrfs_commit_transaction(trans);
4276out_clean:
4277        ret = clean_dirty_subvols(rc);
4278        if (ret < 0 && !err)
4279                err = ret;
4280out_unset:
4281        unset_reloc_control(rc);
4282out_end:
4283        reloc_chunk_end(fs_info);
4284        free_reloc_control(rc);
4285out:
4286        free_reloc_roots(&reloc_roots);
4287
4288        btrfs_free_path(path);
4289
4290        if (err == 0) {
4291                /* cleanup orphan inode in data relocation tree */
4292                fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4293                ASSERT(fs_root);
4294                err = btrfs_orphan_cleanup(fs_root);
4295                btrfs_put_root(fs_root);
4296        }
4297        return err;
4298}
4299
4300/*
4301 * helper to add ordered checksum for data relocation.
4302 *
4303 * cloning checksum properly handles the nodatasum extents.
4304 * it also saves CPU time to re-calculate the checksum.
4305 */
4306int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4307{
4308        struct btrfs_fs_info *fs_info = inode->root->fs_info;
4309        struct btrfs_root *csum_root;
4310        struct btrfs_ordered_sum *sums;
4311        struct btrfs_ordered_extent *ordered;
4312        int ret;
4313        u64 disk_bytenr;
4314        u64 new_bytenr;
4315        LIST_HEAD(list);
4316
4317        ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4318        BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4319
4320        disk_bytenr = file_pos + inode->index_cnt;
4321        csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4322        ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4323                                       disk_bytenr + len - 1, &list, 0);
4324        if (ret)
4325                goto out;
4326
4327        while (!list_empty(&list)) {
4328                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4329                list_del_init(&sums->list);
4330
4331                /*
4332                 * We need to offset the new_bytenr based on where the csum is.
4333                 * We need to do this because we will read in entire prealloc
4334                 * extents but we may have written to say the middle of the
4335                 * prealloc extent, so we need to make sure the csum goes with
4336                 * the right disk offset.
4337                 *
4338                 * We can do this because the data reloc inode refers strictly
4339                 * to the on disk bytes, so we don't have to worry about
4340                 * disk_len vs real len like with real inodes since it's all
4341                 * disk length.
4342                 */
4343                new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4344                sums->bytenr = new_bytenr;
4345
4346                btrfs_add_ordered_sum(ordered, sums);
4347        }
4348out:
4349        btrfs_put_ordered_extent(ordered);
4350        return ret;
4351}
4352
4353int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4354                          struct btrfs_root *root, struct extent_buffer *buf,
4355                          struct extent_buffer *cow)
4356{
4357        struct btrfs_fs_info *fs_info = root->fs_info;
4358        struct reloc_control *rc;
4359        struct btrfs_backref_node *node;
4360        int first_cow = 0;
4361        int level;
4362        int ret = 0;
4363
4364        rc = fs_info->reloc_ctl;
4365        if (!rc)
4366                return 0;
4367
4368        BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4369
4370        level = btrfs_header_level(buf);
4371        if (btrfs_header_generation(buf) <=
4372            btrfs_root_last_snapshot(&root->root_item))
4373                first_cow = 1;
4374
4375        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4376            rc->create_reloc_tree) {
4377                WARN_ON(!first_cow && level == 0);
4378
4379                node = rc->backref_cache.path[level];
4380                BUG_ON(node->bytenr != buf->start &&
4381                       node->new_bytenr != buf->start);
4382
4383                btrfs_backref_drop_node_buffer(node);
4384                atomic_inc(&cow->refs);
4385                node->eb = cow;
4386                node->new_bytenr = cow->start;
4387
4388                if (!node->pending) {
4389                        list_move_tail(&node->list,
4390                                       &rc->backref_cache.pending[level]);
4391                        node->pending = 1;
4392                }
4393
4394                if (first_cow)
4395                        mark_block_processed(rc, node);
4396
4397                if (first_cow && level > 0)
4398                        rc->nodes_relocated += buf->len;
4399        }
4400
4401        if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4402                ret = replace_file_extents(trans, rc, root, cow);
4403        return ret;
4404}
4405
4406/*
4407 * called before creating snapshot. it calculates metadata reservation
4408 * required for relocating tree blocks in the snapshot
4409 */
4410void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4411                              u64 *bytes_to_reserve)
4412{
4413        struct btrfs_root *root = pending->root;
4414        struct reloc_control *rc = root->fs_info->reloc_ctl;
4415
4416        if (!rc || !have_reloc_root(root))
4417                return;
4418
4419        if (!rc->merge_reloc_tree)
4420                return;
4421
4422        root = root->reloc_root;
4423        BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4424        /*
4425         * relocation is in the stage of merging trees. the space
4426         * used by merging a reloc tree is twice the size of
4427         * relocated tree nodes in the worst case. half for cowing
4428         * the reloc tree, half for cowing the fs tree. the space
4429         * used by cowing the reloc tree will be freed after the
4430         * tree is dropped. if we create snapshot, cowing the fs
4431         * tree may use more space than it frees. so we need
4432         * reserve extra space.
4433         */
4434        *bytes_to_reserve += rc->nodes_relocated;
4435}
4436
4437/*
4438 * called after snapshot is created. migrate block reservation
4439 * and create reloc root for the newly created snapshot
4440 *
4441 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4442 * references held on the reloc_root, one for root->reloc_root and one for
4443 * rc->reloc_roots.
4444 */
4445int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4446                               struct btrfs_pending_snapshot *pending)
4447{
4448        struct btrfs_root *root = pending->root;
4449        struct btrfs_root *reloc_root;
4450        struct btrfs_root *new_root;
4451        struct reloc_control *rc = root->fs_info->reloc_ctl;
4452        int ret;
4453
4454        if (!rc || !have_reloc_root(root))
4455                return 0;
4456
4457        rc = root->fs_info->reloc_ctl;
4458        rc->merging_rsv_size += rc->nodes_relocated;
4459
4460        if (rc->merge_reloc_tree) {
4461                ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4462                                              rc->block_rsv,
4463                                              rc->nodes_relocated, true);
4464                if (ret)
4465                        return ret;
4466        }
4467
4468        new_root = pending->snap;
4469        reloc_root = create_reloc_root(trans, root->reloc_root,
4470                                       new_root->root_key.objectid);
4471        if (IS_ERR(reloc_root))
4472                return PTR_ERR(reloc_root);
4473
4474        ret = __add_reloc_root(reloc_root);
4475        ASSERT(ret != -EEXIST);
4476        if (ret) {
4477                /* Pairs with create_reloc_root */
4478                btrfs_put_root(reloc_root);
4479                return ret;
4480        }
4481        new_root->reloc_root = btrfs_grab_root(reloc_root);
4482
4483        if (rc->create_reloc_tree)
4484                ret = clone_backref_node(trans, rc, root, reloc_root);
4485        return ret;
4486}
4487