linux/fs/dax.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dax.c - Direct Access filesystem code
   4 * Copyright (c) 2013-2014 Intel Corporation
   5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   7 */
   8
   9#include <linux/atomic.h>
  10#include <linux/blkdev.h>
  11#include <linux/buffer_head.h>
  12#include <linux/dax.h>
  13#include <linux/fs.h>
  14#include <linux/highmem.h>
  15#include <linux/memcontrol.h>
  16#include <linux/mm.h>
  17#include <linux/mutex.h>
  18#include <linux/pagevec.h>
  19#include <linux/sched.h>
  20#include <linux/sched/signal.h>
  21#include <linux/uio.h>
  22#include <linux/vmstat.h>
  23#include <linux/pfn_t.h>
  24#include <linux/sizes.h>
  25#include <linux/mmu_notifier.h>
  26#include <linux/iomap.h>
  27#include <asm/pgalloc.h>
  28
  29#define CREATE_TRACE_POINTS
  30#include <trace/events/fs_dax.h>
  31
  32static inline unsigned int pe_order(enum page_entry_size pe_size)
  33{
  34        if (pe_size == PE_SIZE_PTE)
  35                return PAGE_SHIFT - PAGE_SHIFT;
  36        if (pe_size == PE_SIZE_PMD)
  37                return PMD_SHIFT - PAGE_SHIFT;
  38        if (pe_size == PE_SIZE_PUD)
  39                return PUD_SHIFT - PAGE_SHIFT;
  40        return ~0;
  41}
  42
  43/* We choose 4096 entries - same as per-zone page wait tables */
  44#define DAX_WAIT_TABLE_BITS 12
  45#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  46
  47/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  48#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
  49#define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
  50
  51/* The order of a PMD entry */
  52#define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
  53
  54static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  55
  56static int __init init_dax_wait_table(void)
  57{
  58        int i;
  59
  60        for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  61                init_waitqueue_head(wait_table + i);
  62        return 0;
  63}
  64fs_initcall(init_dax_wait_table);
  65
  66/*
  67 * DAX pagecache entries use XArray value entries so they can't be mistaken
  68 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
  69 * and two more to tell us if the entry is a zero page or an empty entry that
  70 * is just used for locking.  In total four special bits.
  71 *
  72 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  73 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  74 * block allocation.
  75 */
  76#define DAX_SHIFT       (4)
  77#define DAX_LOCKED      (1UL << 0)
  78#define DAX_PMD         (1UL << 1)
  79#define DAX_ZERO_PAGE   (1UL << 2)
  80#define DAX_EMPTY       (1UL << 3)
  81
  82static unsigned long dax_to_pfn(void *entry)
  83{
  84        return xa_to_value(entry) >> DAX_SHIFT;
  85}
  86
  87static void *dax_make_entry(pfn_t pfn, unsigned long flags)
  88{
  89        return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
  90}
  91
  92static bool dax_is_locked(void *entry)
  93{
  94        return xa_to_value(entry) & DAX_LOCKED;
  95}
  96
  97static unsigned int dax_entry_order(void *entry)
  98{
  99        if (xa_to_value(entry) & DAX_PMD)
 100                return PMD_ORDER;
 101        return 0;
 102}
 103
 104static unsigned long dax_is_pmd_entry(void *entry)
 105{
 106        return xa_to_value(entry) & DAX_PMD;
 107}
 108
 109static bool dax_is_pte_entry(void *entry)
 110{
 111        return !(xa_to_value(entry) & DAX_PMD);
 112}
 113
 114static int dax_is_zero_entry(void *entry)
 115{
 116        return xa_to_value(entry) & DAX_ZERO_PAGE;
 117}
 118
 119static int dax_is_empty_entry(void *entry)
 120{
 121        return xa_to_value(entry) & DAX_EMPTY;
 122}
 123
 124/*
 125 * true if the entry that was found is of a smaller order than the entry
 126 * we were looking for
 127 */
 128static bool dax_is_conflict(void *entry)
 129{
 130        return entry == XA_RETRY_ENTRY;
 131}
 132
 133/*
 134 * DAX page cache entry locking
 135 */
 136struct exceptional_entry_key {
 137        struct xarray *xa;
 138        pgoff_t entry_start;
 139};
 140
 141struct wait_exceptional_entry_queue {
 142        wait_queue_entry_t wait;
 143        struct exceptional_entry_key key;
 144};
 145
 146/**
 147 * enum dax_wake_mode: waitqueue wakeup behaviour
 148 * @WAKE_ALL: wake all waiters in the waitqueue
 149 * @WAKE_NEXT: wake only the first waiter in the waitqueue
 150 */
 151enum dax_wake_mode {
 152        WAKE_ALL,
 153        WAKE_NEXT,
 154};
 155
 156static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 157                void *entry, struct exceptional_entry_key *key)
 158{
 159        unsigned long hash;
 160        unsigned long index = xas->xa_index;
 161
 162        /*
 163         * If 'entry' is a PMD, align the 'index' that we use for the wait
 164         * queue to the start of that PMD.  This ensures that all offsets in
 165         * the range covered by the PMD map to the same bit lock.
 166         */
 167        if (dax_is_pmd_entry(entry))
 168                index &= ~PG_PMD_COLOUR;
 169        key->xa = xas->xa;
 170        key->entry_start = index;
 171
 172        hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 173        return wait_table + hash;
 174}
 175
 176static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 177                unsigned int mode, int sync, void *keyp)
 178{
 179        struct exceptional_entry_key *key = keyp;
 180        struct wait_exceptional_entry_queue *ewait =
 181                container_of(wait, struct wait_exceptional_entry_queue, wait);
 182
 183        if (key->xa != ewait->key.xa ||
 184            key->entry_start != ewait->key.entry_start)
 185                return 0;
 186        return autoremove_wake_function(wait, mode, sync, NULL);
 187}
 188
 189/*
 190 * @entry may no longer be the entry at the index in the mapping.
 191 * The important information it's conveying is whether the entry at
 192 * this index used to be a PMD entry.
 193 */
 194static void dax_wake_entry(struct xa_state *xas, void *entry,
 195                           enum dax_wake_mode mode)
 196{
 197        struct exceptional_entry_key key;
 198        wait_queue_head_t *wq;
 199
 200        wq = dax_entry_waitqueue(xas, entry, &key);
 201
 202        /*
 203         * Checking for locked entry and prepare_to_wait_exclusive() happens
 204         * under the i_pages lock, ditto for entry handling in our callers.
 205         * So at this point all tasks that could have seen our entry locked
 206         * must be in the waitqueue and the following check will see them.
 207         */
 208        if (waitqueue_active(wq))
 209                __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
 210}
 211
 212/*
 213 * Look up entry in page cache, wait for it to become unlocked if it
 214 * is a DAX entry and return it.  The caller must subsequently call
 215 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 216 * if it did.  The entry returned may have a larger order than @order.
 217 * If @order is larger than the order of the entry found in i_pages, this
 218 * function returns a dax_is_conflict entry.
 219 *
 220 * Must be called with the i_pages lock held.
 221 */
 222static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 223{
 224        void *entry;
 225        struct wait_exceptional_entry_queue ewait;
 226        wait_queue_head_t *wq;
 227
 228        init_wait(&ewait.wait);
 229        ewait.wait.func = wake_exceptional_entry_func;
 230
 231        for (;;) {
 232                entry = xas_find_conflict(xas);
 233                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 234                        return entry;
 235                if (dax_entry_order(entry) < order)
 236                        return XA_RETRY_ENTRY;
 237                if (!dax_is_locked(entry))
 238                        return entry;
 239
 240                wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 241                prepare_to_wait_exclusive(wq, &ewait.wait,
 242                                          TASK_UNINTERRUPTIBLE);
 243                xas_unlock_irq(xas);
 244                xas_reset(xas);
 245                schedule();
 246                finish_wait(wq, &ewait.wait);
 247                xas_lock_irq(xas);
 248        }
 249}
 250
 251/*
 252 * The only thing keeping the address space around is the i_pages lock
 253 * (it's cycled in clear_inode() after removing the entries from i_pages)
 254 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 255 */
 256static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 257{
 258        struct wait_exceptional_entry_queue ewait;
 259        wait_queue_head_t *wq;
 260
 261        init_wait(&ewait.wait);
 262        ewait.wait.func = wake_exceptional_entry_func;
 263
 264        wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 265        /*
 266         * Unlike get_unlocked_entry() there is no guarantee that this
 267         * path ever successfully retrieves an unlocked entry before an
 268         * inode dies. Perform a non-exclusive wait in case this path
 269         * never successfully performs its own wake up.
 270         */
 271        prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 272        xas_unlock_irq(xas);
 273        schedule();
 274        finish_wait(wq, &ewait.wait);
 275}
 276
 277static void put_unlocked_entry(struct xa_state *xas, void *entry,
 278                               enum dax_wake_mode mode)
 279{
 280        if (entry && !dax_is_conflict(entry))
 281                dax_wake_entry(xas, entry, mode);
 282}
 283
 284/*
 285 * We used the xa_state to get the entry, but then we locked the entry and
 286 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 287 * before use.
 288 */
 289static void dax_unlock_entry(struct xa_state *xas, void *entry)
 290{
 291        void *old;
 292
 293        BUG_ON(dax_is_locked(entry));
 294        xas_reset(xas);
 295        xas_lock_irq(xas);
 296        old = xas_store(xas, entry);
 297        xas_unlock_irq(xas);
 298        BUG_ON(!dax_is_locked(old));
 299        dax_wake_entry(xas, entry, WAKE_NEXT);
 300}
 301
 302/*
 303 * Return: The entry stored at this location before it was locked.
 304 */
 305static void *dax_lock_entry(struct xa_state *xas, void *entry)
 306{
 307        unsigned long v = xa_to_value(entry);
 308        return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 309}
 310
 311static unsigned long dax_entry_size(void *entry)
 312{
 313        if (dax_is_zero_entry(entry))
 314                return 0;
 315        else if (dax_is_empty_entry(entry))
 316                return 0;
 317        else if (dax_is_pmd_entry(entry))
 318                return PMD_SIZE;
 319        else
 320                return PAGE_SIZE;
 321}
 322
 323static unsigned long dax_end_pfn(void *entry)
 324{
 325        return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 326}
 327
 328/*
 329 * Iterate through all mapped pfns represented by an entry, i.e. skip
 330 * 'empty' and 'zero' entries.
 331 */
 332#define for_each_mapped_pfn(entry, pfn) \
 333        for (pfn = dax_to_pfn(entry); \
 334                        pfn < dax_end_pfn(entry); pfn++)
 335
 336/*
 337 * TODO: for reflink+dax we need a way to associate a single page with
 338 * multiple address_space instances at different linear_page_index()
 339 * offsets.
 340 */
 341static void dax_associate_entry(void *entry, struct address_space *mapping,
 342                struct vm_area_struct *vma, unsigned long address)
 343{
 344        unsigned long size = dax_entry_size(entry), pfn, index;
 345        int i = 0;
 346
 347        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 348                return;
 349
 350        index = linear_page_index(vma, address & ~(size - 1));
 351        for_each_mapped_pfn(entry, pfn) {
 352                struct page *page = pfn_to_page(pfn);
 353
 354                WARN_ON_ONCE(page->mapping);
 355                page->mapping = mapping;
 356                page->index = index + i++;
 357        }
 358}
 359
 360static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 361                bool trunc)
 362{
 363        unsigned long pfn;
 364
 365        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 366                return;
 367
 368        for_each_mapped_pfn(entry, pfn) {
 369                struct page *page = pfn_to_page(pfn);
 370
 371                WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 372                WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 373                page->mapping = NULL;
 374                page->index = 0;
 375        }
 376}
 377
 378static struct page *dax_busy_page(void *entry)
 379{
 380        unsigned long pfn;
 381
 382        for_each_mapped_pfn(entry, pfn) {
 383                struct page *page = pfn_to_page(pfn);
 384
 385                if (page_ref_count(page) > 1)
 386                        return page;
 387        }
 388        return NULL;
 389}
 390
 391/*
 392 * dax_lock_page - Lock the DAX entry corresponding to a page
 393 * @page: The page whose entry we want to lock
 394 *
 395 * Context: Process context.
 396 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 397 * not be locked.
 398 */
 399dax_entry_t dax_lock_page(struct page *page)
 400{
 401        XA_STATE(xas, NULL, 0);
 402        void *entry;
 403
 404        /* Ensure page->mapping isn't freed while we look at it */
 405        rcu_read_lock();
 406        for (;;) {
 407                struct address_space *mapping = READ_ONCE(page->mapping);
 408
 409                entry = NULL;
 410                if (!mapping || !dax_mapping(mapping))
 411                        break;
 412
 413                /*
 414                 * In the device-dax case there's no need to lock, a
 415                 * struct dev_pagemap pin is sufficient to keep the
 416                 * inode alive, and we assume we have dev_pagemap pin
 417                 * otherwise we would not have a valid pfn_to_page()
 418                 * translation.
 419                 */
 420                entry = (void *)~0UL;
 421                if (S_ISCHR(mapping->host->i_mode))
 422                        break;
 423
 424                xas.xa = &mapping->i_pages;
 425                xas_lock_irq(&xas);
 426                if (mapping != page->mapping) {
 427                        xas_unlock_irq(&xas);
 428                        continue;
 429                }
 430                xas_set(&xas, page->index);
 431                entry = xas_load(&xas);
 432                if (dax_is_locked(entry)) {
 433                        rcu_read_unlock();
 434                        wait_entry_unlocked(&xas, entry);
 435                        rcu_read_lock();
 436                        continue;
 437                }
 438                dax_lock_entry(&xas, entry);
 439                xas_unlock_irq(&xas);
 440                break;
 441        }
 442        rcu_read_unlock();
 443        return (dax_entry_t)entry;
 444}
 445
 446void dax_unlock_page(struct page *page, dax_entry_t cookie)
 447{
 448        struct address_space *mapping = page->mapping;
 449        XA_STATE(xas, &mapping->i_pages, page->index);
 450
 451        if (S_ISCHR(mapping->host->i_mode))
 452                return;
 453
 454        dax_unlock_entry(&xas, (void *)cookie);
 455}
 456
 457/*
 458 * Find page cache entry at given index. If it is a DAX entry, return it
 459 * with the entry locked. If the page cache doesn't contain an entry at
 460 * that index, add a locked empty entry.
 461 *
 462 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 463 * either return that locked entry or will return VM_FAULT_FALLBACK.
 464 * This will happen if there are any PTE entries within the PMD range
 465 * that we are requesting.
 466 *
 467 * We always favor PTE entries over PMD entries. There isn't a flow where we
 468 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 469 * insertion will fail if it finds any PTE entries already in the tree, and a
 470 * PTE insertion will cause an existing PMD entry to be unmapped and
 471 * downgraded to PTE entries.  This happens for both PMD zero pages as
 472 * well as PMD empty entries.
 473 *
 474 * The exception to this downgrade path is for PMD entries that have
 475 * real storage backing them.  We will leave these real PMD entries in
 476 * the tree, and PTE writes will simply dirty the entire PMD entry.
 477 *
 478 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 479 * persistent memory the benefit is doubtful. We can add that later if we can
 480 * show it helps.
 481 *
 482 * On error, this function does not return an ERR_PTR.  Instead it returns
 483 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 484 * overlap with xarray value entries.
 485 */
 486static void *grab_mapping_entry(struct xa_state *xas,
 487                struct address_space *mapping, unsigned int order)
 488{
 489        unsigned long index = xas->xa_index;
 490        bool pmd_downgrade;     /* splitting PMD entry into PTE entries? */
 491        void *entry;
 492
 493retry:
 494        pmd_downgrade = false;
 495        xas_lock_irq(xas);
 496        entry = get_unlocked_entry(xas, order);
 497
 498        if (entry) {
 499                if (dax_is_conflict(entry))
 500                        goto fallback;
 501                if (!xa_is_value(entry)) {
 502                        xas_set_err(xas, -EIO);
 503                        goto out_unlock;
 504                }
 505
 506                if (order == 0) {
 507                        if (dax_is_pmd_entry(entry) &&
 508                            (dax_is_zero_entry(entry) ||
 509                             dax_is_empty_entry(entry))) {
 510                                pmd_downgrade = true;
 511                        }
 512                }
 513        }
 514
 515        if (pmd_downgrade) {
 516                /*
 517                 * Make sure 'entry' remains valid while we drop
 518                 * the i_pages lock.
 519                 */
 520                dax_lock_entry(xas, entry);
 521
 522                /*
 523                 * Besides huge zero pages the only other thing that gets
 524                 * downgraded are empty entries which don't need to be
 525                 * unmapped.
 526                 */
 527                if (dax_is_zero_entry(entry)) {
 528                        xas_unlock_irq(xas);
 529                        unmap_mapping_pages(mapping,
 530                                        xas->xa_index & ~PG_PMD_COLOUR,
 531                                        PG_PMD_NR, false);
 532                        xas_reset(xas);
 533                        xas_lock_irq(xas);
 534                }
 535
 536                dax_disassociate_entry(entry, mapping, false);
 537                xas_store(xas, NULL);   /* undo the PMD join */
 538                dax_wake_entry(xas, entry, WAKE_ALL);
 539                mapping->nrpages -= PG_PMD_NR;
 540                entry = NULL;
 541                xas_set(xas, index);
 542        }
 543
 544        if (entry) {
 545                dax_lock_entry(xas, entry);
 546        } else {
 547                unsigned long flags = DAX_EMPTY;
 548
 549                if (order > 0)
 550                        flags |= DAX_PMD;
 551                entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 552                dax_lock_entry(xas, entry);
 553                if (xas_error(xas))
 554                        goto out_unlock;
 555                mapping->nrpages += 1UL << order;
 556        }
 557
 558out_unlock:
 559        xas_unlock_irq(xas);
 560        if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 561                goto retry;
 562        if (xas->xa_node == XA_ERROR(-ENOMEM))
 563                return xa_mk_internal(VM_FAULT_OOM);
 564        if (xas_error(xas))
 565                return xa_mk_internal(VM_FAULT_SIGBUS);
 566        return entry;
 567fallback:
 568        xas_unlock_irq(xas);
 569        return xa_mk_internal(VM_FAULT_FALLBACK);
 570}
 571
 572/**
 573 * dax_layout_busy_page_range - find first pinned page in @mapping
 574 * @mapping: address space to scan for a page with ref count > 1
 575 * @start: Starting offset. Page containing 'start' is included.
 576 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
 577 *       pages from 'start' till the end of file are included.
 578 *
 579 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 580 * 'onlined' to the page allocator so they are considered idle when
 581 * page->count == 1. A filesystem uses this interface to determine if
 582 * any page in the mapping is busy, i.e. for DMA, or other
 583 * get_user_pages() usages.
 584 *
 585 * It is expected that the filesystem is holding locks to block the
 586 * establishment of new mappings in this address_space. I.e. it expects
 587 * to be able to run unmap_mapping_range() and subsequently not race
 588 * mapping_mapped() becoming true.
 589 */
 590struct page *dax_layout_busy_page_range(struct address_space *mapping,
 591                                        loff_t start, loff_t end)
 592{
 593        void *entry;
 594        unsigned int scanned = 0;
 595        struct page *page = NULL;
 596        pgoff_t start_idx = start >> PAGE_SHIFT;
 597        pgoff_t end_idx;
 598        XA_STATE(xas, &mapping->i_pages, start_idx);
 599
 600        /*
 601         * In the 'limited' case get_user_pages() for dax is disabled.
 602         */
 603        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 604                return NULL;
 605
 606        if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 607                return NULL;
 608
 609        /* If end == LLONG_MAX, all pages from start to till end of file */
 610        if (end == LLONG_MAX)
 611                end_idx = ULONG_MAX;
 612        else
 613                end_idx = end >> PAGE_SHIFT;
 614        /*
 615         * If we race get_user_pages_fast() here either we'll see the
 616         * elevated page count in the iteration and wait, or
 617         * get_user_pages_fast() will see that the page it took a reference
 618         * against is no longer mapped in the page tables and bail to the
 619         * get_user_pages() slow path.  The slow path is protected by
 620         * pte_lock() and pmd_lock(). New references are not taken without
 621         * holding those locks, and unmap_mapping_pages() will not zero the
 622         * pte or pmd without holding the respective lock, so we are
 623         * guaranteed to either see new references or prevent new
 624         * references from being established.
 625         */
 626        unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
 627
 628        xas_lock_irq(&xas);
 629        xas_for_each(&xas, entry, end_idx) {
 630                if (WARN_ON_ONCE(!xa_is_value(entry)))
 631                        continue;
 632                if (unlikely(dax_is_locked(entry)))
 633                        entry = get_unlocked_entry(&xas, 0);
 634                if (entry)
 635                        page = dax_busy_page(entry);
 636                put_unlocked_entry(&xas, entry, WAKE_NEXT);
 637                if (page)
 638                        break;
 639                if (++scanned % XA_CHECK_SCHED)
 640                        continue;
 641
 642                xas_pause(&xas);
 643                xas_unlock_irq(&xas);
 644                cond_resched();
 645                xas_lock_irq(&xas);
 646        }
 647        xas_unlock_irq(&xas);
 648        return page;
 649}
 650EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
 651
 652struct page *dax_layout_busy_page(struct address_space *mapping)
 653{
 654        return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
 655}
 656EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 657
 658static int __dax_invalidate_entry(struct address_space *mapping,
 659                                          pgoff_t index, bool trunc)
 660{
 661        XA_STATE(xas, &mapping->i_pages, index);
 662        int ret = 0;
 663        void *entry;
 664
 665        xas_lock_irq(&xas);
 666        entry = get_unlocked_entry(&xas, 0);
 667        if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 668                goto out;
 669        if (!trunc &&
 670            (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 671             xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 672                goto out;
 673        dax_disassociate_entry(entry, mapping, trunc);
 674        xas_store(&xas, NULL);
 675        mapping->nrpages -= 1UL << dax_entry_order(entry);
 676        ret = 1;
 677out:
 678        put_unlocked_entry(&xas, entry, WAKE_ALL);
 679        xas_unlock_irq(&xas);
 680        return ret;
 681}
 682
 683/*
 684 * Delete DAX entry at @index from @mapping.  Wait for it
 685 * to be unlocked before deleting it.
 686 */
 687int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 688{
 689        int ret = __dax_invalidate_entry(mapping, index, true);
 690
 691        /*
 692         * This gets called from truncate / punch_hole path. As such, the caller
 693         * must hold locks protecting against concurrent modifications of the
 694         * page cache (usually fs-private i_mmap_sem for writing). Since the
 695         * caller has seen a DAX entry for this index, we better find it
 696         * at that index as well...
 697         */
 698        WARN_ON_ONCE(!ret);
 699        return ret;
 700}
 701
 702/*
 703 * Invalidate DAX entry if it is clean.
 704 */
 705int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 706                                      pgoff_t index)
 707{
 708        return __dax_invalidate_entry(mapping, index, false);
 709}
 710
 711static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
 712{
 713        return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
 714}
 715
 716static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
 717{
 718        pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
 719        void *vto, *kaddr;
 720        long rc;
 721        int id;
 722
 723        id = dax_read_lock();
 724        rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, &kaddr, NULL);
 725        if (rc < 0) {
 726                dax_read_unlock(id);
 727                return rc;
 728        }
 729        vto = kmap_atomic(vmf->cow_page);
 730        copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
 731        kunmap_atomic(vto);
 732        dax_read_unlock(id);
 733        return 0;
 734}
 735
 736/*
 737 * By this point grab_mapping_entry() has ensured that we have a locked entry
 738 * of the appropriate size so we don't have to worry about downgrading PMDs to
 739 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 740 * already in the tree, we will skip the insertion and just dirty the PMD as
 741 * appropriate.
 742 */
 743static void *dax_insert_entry(struct xa_state *xas,
 744                struct address_space *mapping, struct vm_fault *vmf,
 745                void *entry, pfn_t pfn, unsigned long flags, bool dirty)
 746{
 747        void *new_entry = dax_make_entry(pfn, flags);
 748
 749        if (dirty)
 750                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 751
 752        if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
 753                unsigned long index = xas->xa_index;
 754                /* we are replacing a zero page with block mapping */
 755                if (dax_is_pmd_entry(entry))
 756                        unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 757                                        PG_PMD_NR, false);
 758                else /* pte entry */
 759                        unmap_mapping_pages(mapping, index, 1, false);
 760        }
 761
 762        xas_reset(xas);
 763        xas_lock_irq(xas);
 764        if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 765                void *old;
 766
 767                dax_disassociate_entry(entry, mapping, false);
 768                dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
 769                /*
 770                 * Only swap our new entry into the page cache if the current
 771                 * entry is a zero page or an empty entry.  If a normal PTE or
 772                 * PMD entry is already in the cache, we leave it alone.  This
 773                 * means that if we are trying to insert a PTE and the
 774                 * existing entry is a PMD, we will just leave the PMD in the
 775                 * tree and dirty it if necessary.
 776                 */
 777                old = dax_lock_entry(xas, new_entry);
 778                WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 779                                        DAX_LOCKED));
 780                entry = new_entry;
 781        } else {
 782                xas_load(xas);  /* Walk the xa_state */
 783        }
 784
 785        if (dirty)
 786                xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 787
 788        xas_unlock_irq(xas);
 789        return entry;
 790}
 791
 792static inline
 793unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 794{
 795        unsigned long address;
 796
 797        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 798        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 799        return address;
 800}
 801
 802/* Walk all mappings of a given index of a file and writeprotect them */
 803static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
 804                unsigned long pfn)
 805{
 806        struct vm_area_struct *vma;
 807        pte_t pte, *ptep = NULL;
 808        pmd_t *pmdp = NULL;
 809        spinlock_t *ptl;
 810
 811        i_mmap_lock_read(mapping);
 812        vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 813                struct mmu_notifier_range range;
 814                unsigned long address;
 815
 816                cond_resched();
 817
 818                if (!(vma->vm_flags & VM_SHARED))
 819                        continue;
 820
 821                address = pgoff_address(index, vma);
 822
 823                /*
 824                 * follow_invalidate_pte() will use the range to call
 825                 * mmu_notifier_invalidate_range_start() on our behalf before
 826                 * taking any lock.
 827                 */
 828                if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
 829                                          &pmdp, &ptl))
 830                        continue;
 831
 832                /*
 833                 * No need to call mmu_notifier_invalidate_range() as we are
 834                 * downgrading page table protection not changing it to point
 835                 * to a new page.
 836                 *
 837                 * See Documentation/vm/mmu_notifier.rst
 838                 */
 839                if (pmdp) {
 840#ifdef CONFIG_FS_DAX_PMD
 841                        pmd_t pmd;
 842
 843                        if (pfn != pmd_pfn(*pmdp))
 844                                goto unlock_pmd;
 845                        if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 846                                goto unlock_pmd;
 847
 848                        flush_cache_page(vma, address, pfn);
 849                        pmd = pmdp_invalidate(vma, address, pmdp);
 850                        pmd = pmd_wrprotect(pmd);
 851                        pmd = pmd_mkclean(pmd);
 852                        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 853unlock_pmd:
 854#endif
 855                        spin_unlock(ptl);
 856                } else {
 857                        if (pfn != pte_pfn(*ptep))
 858                                goto unlock_pte;
 859                        if (!pte_dirty(*ptep) && !pte_write(*ptep))
 860                                goto unlock_pte;
 861
 862                        flush_cache_page(vma, address, pfn);
 863                        pte = ptep_clear_flush(vma, address, ptep);
 864                        pte = pte_wrprotect(pte);
 865                        pte = pte_mkclean(pte);
 866                        set_pte_at(vma->vm_mm, address, ptep, pte);
 867unlock_pte:
 868                        pte_unmap_unlock(ptep, ptl);
 869                }
 870
 871                mmu_notifier_invalidate_range_end(&range);
 872        }
 873        i_mmap_unlock_read(mapping);
 874}
 875
 876static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 877                struct address_space *mapping, void *entry)
 878{
 879        unsigned long pfn, index, count;
 880        long ret = 0;
 881
 882        /*
 883         * A page got tagged dirty in DAX mapping? Something is seriously
 884         * wrong.
 885         */
 886        if (WARN_ON(!xa_is_value(entry)))
 887                return -EIO;
 888
 889        if (unlikely(dax_is_locked(entry))) {
 890                void *old_entry = entry;
 891
 892                entry = get_unlocked_entry(xas, 0);
 893
 894                /* Entry got punched out / reallocated? */
 895                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 896                        goto put_unlocked;
 897                /*
 898                 * Entry got reallocated elsewhere? No need to writeback.
 899                 * We have to compare pfns as we must not bail out due to
 900                 * difference in lockbit or entry type.
 901                 */
 902                if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 903                        goto put_unlocked;
 904                if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 905                                        dax_is_zero_entry(entry))) {
 906                        ret = -EIO;
 907                        goto put_unlocked;
 908                }
 909
 910                /* Another fsync thread may have already done this entry */
 911                if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 912                        goto put_unlocked;
 913        }
 914
 915        /* Lock the entry to serialize with page faults */
 916        dax_lock_entry(xas, entry);
 917
 918        /*
 919         * We can clear the tag now but we have to be careful so that concurrent
 920         * dax_writeback_one() calls for the same index cannot finish before we
 921         * actually flush the caches. This is achieved as the calls will look
 922         * at the entry only under the i_pages lock and once they do that
 923         * they will see the entry locked and wait for it to unlock.
 924         */
 925        xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 926        xas_unlock_irq(xas);
 927
 928        /*
 929         * If dax_writeback_mapping_range() was given a wbc->range_start
 930         * in the middle of a PMD, the 'index' we use needs to be
 931         * aligned to the start of the PMD.
 932         * This allows us to flush for PMD_SIZE and not have to worry about
 933         * partial PMD writebacks.
 934         */
 935        pfn = dax_to_pfn(entry);
 936        count = 1UL << dax_entry_order(entry);
 937        index = xas->xa_index & ~(count - 1);
 938
 939        dax_entry_mkclean(mapping, index, pfn);
 940        dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 941        /*
 942         * After we have flushed the cache, we can clear the dirty tag. There
 943         * cannot be new dirty data in the pfn after the flush has completed as
 944         * the pfn mappings are writeprotected and fault waits for mapping
 945         * entry lock.
 946         */
 947        xas_reset(xas);
 948        xas_lock_irq(xas);
 949        xas_store(xas, entry);
 950        xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 951        dax_wake_entry(xas, entry, WAKE_NEXT);
 952
 953        trace_dax_writeback_one(mapping->host, index, count);
 954        return ret;
 955
 956 put_unlocked:
 957        put_unlocked_entry(xas, entry, WAKE_NEXT);
 958        return ret;
 959}
 960
 961/*
 962 * Flush the mapping to the persistent domain within the byte range of [start,
 963 * end]. This is required by data integrity operations to ensure file data is
 964 * on persistent storage prior to completion of the operation.
 965 */
 966int dax_writeback_mapping_range(struct address_space *mapping,
 967                struct dax_device *dax_dev, struct writeback_control *wbc)
 968{
 969        XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 970        struct inode *inode = mapping->host;
 971        pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 972        void *entry;
 973        int ret = 0;
 974        unsigned int scanned = 0;
 975
 976        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 977                return -EIO;
 978
 979        if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
 980                return 0;
 981
 982        trace_dax_writeback_range(inode, xas.xa_index, end_index);
 983
 984        tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 985
 986        xas_lock_irq(&xas);
 987        xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 988                ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 989                if (ret < 0) {
 990                        mapping_set_error(mapping, ret);
 991                        break;
 992                }
 993                if (++scanned % XA_CHECK_SCHED)
 994                        continue;
 995
 996                xas_pause(&xas);
 997                xas_unlock_irq(&xas);
 998                cond_resched();
 999                xas_lock_irq(&xas);
1000        }
1001        xas_unlock_irq(&xas);
1002        trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1003        return ret;
1004}
1005EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1006
1007static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
1008                         pfn_t *pfnp)
1009{
1010        pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1011        int id, rc;
1012        long length;
1013
1014        id = dax_read_lock();
1015        length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1016                                   NULL, pfnp);
1017        if (length < 0) {
1018                rc = length;
1019                goto out;
1020        }
1021        rc = -EINVAL;
1022        if (PFN_PHYS(length) < size)
1023                goto out;
1024        if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1025                goto out;
1026        /* For larger pages we need devmap */
1027        if (length > 1 && !pfn_t_devmap(*pfnp))
1028                goto out;
1029        rc = 0;
1030out:
1031        dax_read_unlock(id);
1032        return rc;
1033}
1034
1035/*
1036 * The user has performed a load from a hole in the file.  Allocating a new
1037 * page in the file would cause excessive storage usage for workloads with
1038 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1039 * If this page is ever written to we will re-fault and change the mapping to
1040 * point to real DAX storage instead.
1041 */
1042static vm_fault_t dax_load_hole(struct xa_state *xas,
1043                struct address_space *mapping, void **entry,
1044                struct vm_fault *vmf)
1045{
1046        struct inode *inode = mapping->host;
1047        unsigned long vaddr = vmf->address;
1048        pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1049        vm_fault_t ret;
1050
1051        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1052                        DAX_ZERO_PAGE, false);
1053
1054        ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1055        trace_dax_load_hole(inode, vmf, ret);
1056        return ret;
1057}
1058
1059#ifdef CONFIG_FS_DAX_PMD
1060static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1061                const struct iomap *iomap, void **entry)
1062{
1063        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1064        unsigned long pmd_addr = vmf->address & PMD_MASK;
1065        struct vm_area_struct *vma = vmf->vma;
1066        struct inode *inode = mapping->host;
1067        pgtable_t pgtable = NULL;
1068        struct page *zero_page;
1069        spinlock_t *ptl;
1070        pmd_t pmd_entry;
1071        pfn_t pfn;
1072
1073        zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1074
1075        if (unlikely(!zero_page))
1076                goto fallback;
1077
1078        pfn = page_to_pfn_t(zero_page);
1079        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1080                        DAX_PMD | DAX_ZERO_PAGE, false);
1081
1082        if (arch_needs_pgtable_deposit()) {
1083                pgtable = pte_alloc_one(vma->vm_mm);
1084                if (!pgtable)
1085                        return VM_FAULT_OOM;
1086        }
1087
1088        ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1089        if (!pmd_none(*(vmf->pmd))) {
1090                spin_unlock(ptl);
1091                goto fallback;
1092        }
1093
1094        if (pgtable) {
1095                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1096                mm_inc_nr_ptes(vma->vm_mm);
1097        }
1098        pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1099        pmd_entry = pmd_mkhuge(pmd_entry);
1100        set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1101        spin_unlock(ptl);
1102        trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1103        return VM_FAULT_NOPAGE;
1104
1105fallback:
1106        if (pgtable)
1107                pte_free(vma->vm_mm, pgtable);
1108        trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1109        return VM_FAULT_FALLBACK;
1110}
1111#else
1112static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1113                const struct iomap *iomap, void **entry)
1114{
1115        return VM_FAULT_FALLBACK;
1116}
1117#endif /* CONFIG_FS_DAX_PMD */
1118
1119static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1120                unsigned int offset, size_t size)
1121{
1122        void *kaddr;
1123        long ret;
1124
1125        ret = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1126        if (ret > 0) {
1127                memset(kaddr + offset, 0, size);
1128                dax_flush(dax_dev, kaddr + offset, size);
1129        }
1130        return ret;
1131}
1132
1133static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1134{
1135        const struct iomap *iomap = &iter->iomap;
1136        const struct iomap *srcmap = iomap_iter_srcmap(iter);
1137        loff_t pos = iter->pos;
1138        u64 length = iomap_length(iter);
1139        s64 written = 0;
1140
1141        /* already zeroed?  we're done. */
1142        if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1143                return length;
1144
1145        do {
1146                unsigned offset = offset_in_page(pos);
1147                unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1148                pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1149                long rc;
1150                int id;
1151
1152                id = dax_read_lock();
1153                if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1154                        rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1155                else
1156                        rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1157                dax_read_unlock(id);
1158
1159                if (rc < 0)
1160                        return rc;
1161                pos += size;
1162                length -= size;
1163                written += size;
1164                if (did_zero)
1165                        *did_zero = true;
1166        } while (length > 0);
1167
1168        return written;
1169}
1170
1171int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1172                const struct iomap_ops *ops)
1173{
1174        struct iomap_iter iter = {
1175                .inode          = inode,
1176                .pos            = pos,
1177                .len            = len,
1178                .flags          = IOMAP_DAX | IOMAP_ZERO,
1179        };
1180        int ret;
1181
1182        while ((ret = iomap_iter(&iter, ops)) > 0)
1183                iter.processed = dax_zero_iter(&iter, did_zero);
1184        return ret;
1185}
1186EXPORT_SYMBOL_GPL(dax_zero_range);
1187
1188int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1189                const struct iomap_ops *ops)
1190{
1191        unsigned int blocksize = i_blocksize(inode);
1192        unsigned int off = pos & (blocksize - 1);
1193
1194        /* Block boundary? Nothing to do */
1195        if (!off)
1196                return 0;
1197        return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1198}
1199EXPORT_SYMBOL_GPL(dax_truncate_page);
1200
1201static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1202                struct iov_iter *iter)
1203{
1204        const struct iomap *iomap = &iomi->iomap;
1205        loff_t length = iomap_length(iomi);
1206        loff_t pos = iomi->pos;
1207        struct dax_device *dax_dev = iomap->dax_dev;
1208        loff_t end = pos + length, done = 0;
1209        ssize_t ret = 0;
1210        size_t xfer;
1211        int id;
1212
1213        if (iov_iter_rw(iter) == READ) {
1214                end = min(end, i_size_read(iomi->inode));
1215                if (pos >= end)
1216                        return 0;
1217
1218                if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1219                        return iov_iter_zero(min(length, end - pos), iter);
1220        }
1221
1222        if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1223                return -EIO;
1224
1225        /*
1226         * Write can allocate block for an area which has a hole page mapped
1227         * into page tables. We have to tear down these mappings so that data
1228         * written by write(2) is visible in mmap.
1229         */
1230        if (iomap->flags & IOMAP_F_NEW) {
1231                invalidate_inode_pages2_range(iomi->inode->i_mapping,
1232                                              pos >> PAGE_SHIFT,
1233                                              (end - 1) >> PAGE_SHIFT);
1234        }
1235
1236        id = dax_read_lock();
1237        while (pos < end) {
1238                unsigned offset = pos & (PAGE_SIZE - 1);
1239                const size_t size = ALIGN(length + offset, PAGE_SIZE);
1240                pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1241                ssize_t map_len;
1242                void *kaddr;
1243
1244                if (fatal_signal_pending(current)) {
1245                        ret = -EINTR;
1246                        break;
1247                }
1248
1249                map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1250                                &kaddr, NULL);
1251                if (map_len < 0) {
1252                        ret = map_len;
1253                        break;
1254                }
1255
1256                map_len = PFN_PHYS(map_len);
1257                kaddr += offset;
1258                map_len -= offset;
1259                if (map_len > end - pos)
1260                        map_len = end - pos;
1261
1262                if (iov_iter_rw(iter) == WRITE)
1263                        xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1264                                        map_len, iter);
1265                else
1266                        xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1267                                        map_len, iter);
1268
1269                pos += xfer;
1270                length -= xfer;
1271                done += xfer;
1272
1273                if (xfer == 0)
1274                        ret = -EFAULT;
1275                if (xfer < map_len)
1276                        break;
1277        }
1278        dax_read_unlock(id);
1279
1280        return done ? done : ret;
1281}
1282
1283/**
1284 * dax_iomap_rw - Perform I/O to a DAX file
1285 * @iocb:       The control block for this I/O
1286 * @iter:       The addresses to do I/O from or to
1287 * @ops:        iomap ops passed from the file system
1288 *
1289 * This function performs read and write operations to directly mapped
1290 * persistent memory.  The callers needs to take care of read/write exclusion
1291 * and evicting any page cache pages in the region under I/O.
1292 */
1293ssize_t
1294dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1295                const struct iomap_ops *ops)
1296{
1297        struct iomap_iter iomi = {
1298                .inode          = iocb->ki_filp->f_mapping->host,
1299                .pos            = iocb->ki_pos,
1300                .len            = iov_iter_count(iter),
1301                .flags          = IOMAP_DAX,
1302        };
1303        loff_t done = 0;
1304        int ret;
1305
1306        if (iov_iter_rw(iter) == WRITE) {
1307                lockdep_assert_held_write(&iomi.inode->i_rwsem);
1308                iomi.flags |= IOMAP_WRITE;
1309        } else {
1310                lockdep_assert_held(&iomi.inode->i_rwsem);
1311        }
1312
1313        if (iocb->ki_flags & IOCB_NOWAIT)
1314                iomi.flags |= IOMAP_NOWAIT;
1315
1316        while ((ret = iomap_iter(&iomi, ops)) > 0)
1317                iomi.processed = dax_iomap_iter(&iomi, iter);
1318
1319        done = iomi.pos - iocb->ki_pos;
1320        iocb->ki_pos = iomi.pos;
1321        return done ? done : ret;
1322}
1323EXPORT_SYMBOL_GPL(dax_iomap_rw);
1324
1325static vm_fault_t dax_fault_return(int error)
1326{
1327        if (error == 0)
1328                return VM_FAULT_NOPAGE;
1329        return vmf_error(error);
1330}
1331
1332/*
1333 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1334 * flushed on write-faults (non-cow), but not read-faults.
1335 */
1336static bool dax_fault_is_synchronous(unsigned long flags,
1337                struct vm_area_struct *vma, const struct iomap *iomap)
1338{
1339        return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1340                && (iomap->flags & IOMAP_F_DIRTY);
1341}
1342
1343/*
1344 * When handling a synchronous page fault and the inode need a fsync, we can
1345 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1346 * insertion for now and return the pfn so that caller can insert it after the
1347 * fsync is done.
1348 */
1349static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1350{
1351        if (WARN_ON_ONCE(!pfnp))
1352                return VM_FAULT_SIGBUS;
1353        *pfnp = pfn;
1354        return VM_FAULT_NEEDDSYNC;
1355}
1356
1357static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1358                const struct iomap_iter *iter)
1359{
1360        vm_fault_t ret;
1361        int error = 0;
1362
1363        switch (iter->iomap.type) {
1364        case IOMAP_HOLE:
1365        case IOMAP_UNWRITTEN:
1366                clear_user_highpage(vmf->cow_page, vmf->address);
1367                break;
1368        case IOMAP_MAPPED:
1369                error = copy_cow_page_dax(vmf, iter);
1370                break;
1371        default:
1372                WARN_ON_ONCE(1);
1373                error = -EIO;
1374                break;
1375        }
1376
1377        if (error)
1378                return dax_fault_return(error);
1379
1380        __SetPageUptodate(vmf->cow_page);
1381        ret = finish_fault(vmf);
1382        if (!ret)
1383                return VM_FAULT_DONE_COW;
1384        return ret;
1385}
1386
1387/**
1388 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1389 * @vmf:        vm fault instance
1390 * @iter:       iomap iter
1391 * @pfnp:       pfn to be returned
1392 * @xas:        the dax mapping tree of a file
1393 * @entry:      an unlocked dax entry to be inserted
1394 * @pmd:        distinguish whether it is a pmd fault
1395 */
1396static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1397                const struct iomap_iter *iter, pfn_t *pfnp,
1398                struct xa_state *xas, void **entry, bool pmd)
1399{
1400        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401        const struct iomap *iomap = &iter->iomap;
1402        size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1403        loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1404        bool write = vmf->flags & FAULT_FLAG_WRITE;
1405        bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1406        unsigned long entry_flags = pmd ? DAX_PMD : 0;
1407        int err = 0;
1408        pfn_t pfn;
1409
1410        if (!pmd && vmf->cow_page)
1411                return dax_fault_cow_page(vmf, iter);
1412
1413        /* if we are reading UNWRITTEN and HOLE, return a hole. */
1414        if (!write &&
1415            (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1416                if (!pmd)
1417                        return dax_load_hole(xas, mapping, entry, vmf);
1418                return dax_pmd_load_hole(xas, vmf, iomap, entry);
1419        }
1420
1421        if (iomap->type != IOMAP_MAPPED) {
1422                WARN_ON_ONCE(1);
1423                return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1424        }
1425
1426        err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1427        if (err)
1428                return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1429
1430        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1431                                  write && !sync);
1432
1433        if (sync)
1434                return dax_fault_synchronous_pfnp(pfnp, pfn);
1435
1436        /* insert PMD pfn */
1437        if (pmd)
1438                return vmf_insert_pfn_pmd(vmf, pfn, write);
1439
1440        /* insert PTE pfn */
1441        if (write)
1442                return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1443        return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1444}
1445
1446static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1447                               int *iomap_errp, const struct iomap_ops *ops)
1448{
1449        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1450        XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1451        struct iomap_iter iter = {
1452                .inode          = mapping->host,
1453                .pos            = (loff_t)vmf->pgoff << PAGE_SHIFT,
1454                .len            = PAGE_SIZE,
1455                .flags          = IOMAP_DAX | IOMAP_FAULT,
1456        };
1457        vm_fault_t ret = 0;
1458        void *entry;
1459        int error;
1460
1461        trace_dax_pte_fault(iter.inode, vmf, ret);
1462        /*
1463         * Check whether offset isn't beyond end of file now. Caller is supposed
1464         * to hold locks serializing us with truncate / punch hole so this is
1465         * a reliable test.
1466         */
1467        if (iter.pos >= i_size_read(iter.inode)) {
1468                ret = VM_FAULT_SIGBUS;
1469                goto out;
1470        }
1471
1472        if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1473                iter.flags |= IOMAP_WRITE;
1474
1475        entry = grab_mapping_entry(&xas, mapping, 0);
1476        if (xa_is_internal(entry)) {
1477                ret = xa_to_internal(entry);
1478                goto out;
1479        }
1480
1481        /*
1482         * It is possible, particularly with mixed reads & writes to private
1483         * mappings, that we have raced with a PMD fault that overlaps with
1484         * the PTE we need to set up.  If so just return and the fault will be
1485         * retried.
1486         */
1487        if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1488                ret = VM_FAULT_NOPAGE;
1489                goto unlock_entry;
1490        }
1491
1492        while ((error = iomap_iter(&iter, ops)) > 0) {
1493                if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1494                        iter.processed = -EIO;  /* fs corruption? */
1495                        continue;
1496                }
1497
1498                ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1499                if (ret != VM_FAULT_SIGBUS &&
1500                    (iter.iomap.flags & IOMAP_F_NEW)) {
1501                        count_vm_event(PGMAJFAULT);
1502                        count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1503                        ret |= VM_FAULT_MAJOR;
1504                }
1505
1506                if (!(ret & VM_FAULT_ERROR))
1507                        iter.processed = PAGE_SIZE;
1508        }
1509
1510        if (iomap_errp)
1511                *iomap_errp = error;
1512        if (!ret && error)
1513                ret = dax_fault_return(error);
1514
1515unlock_entry:
1516        dax_unlock_entry(&xas, entry);
1517out:
1518        trace_dax_pte_fault_done(iter.inode, vmf, ret);
1519        return ret;
1520}
1521
1522#ifdef CONFIG_FS_DAX_PMD
1523static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1524                pgoff_t max_pgoff)
1525{
1526        unsigned long pmd_addr = vmf->address & PMD_MASK;
1527        bool write = vmf->flags & FAULT_FLAG_WRITE;
1528
1529        /*
1530         * Make sure that the faulting address's PMD offset (color) matches
1531         * the PMD offset from the start of the file.  This is necessary so
1532         * that a PMD range in the page table overlaps exactly with a PMD
1533         * range in the page cache.
1534         */
1535        if ((vmf->pgoff & PG_PMD_COLOUR) !=
1536            ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1537                return true;
1538
1539        /* Fall back to PTEs if we're going to COW */
1540        if (write && !(vmf->vma->vm_flags & VM_SHARED))
1541                return true;
1542
1543        /* If the PMD would extend outside the VMA */
1544        if (pmd_addr < vmf->vma->vm_start)
1545                return true;
1546        if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1547                return true;
1548
1549        /* If the PMD would extend beyond the file size */
1550        if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1551                return true;
1552
1553        return false;
1554}
1555
1556static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1557                               const struct iomap_ops *ops)
1558{
1559        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1560        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1561        struct iomap_iter iter = {
1562                .inode          = mapping->host,
1563                .len            = PMD_SIZE,
1564                .flags          = IOMAP_DAX | IOMAP_FAULT,
1565        };
1566        vm_fault_t ret = VM_FAULT_FALLBACK;
1567        pgoff_t max_pgoff;
1568        void *entry;
1569        int error;
1570
1571        if (vmf->flags & FAULT_FLAG_WRITE)
1572                iter.flags |= IOMAP_WRITE;
1573
1574        /*
1575         * Check whether offset isn't beyond end of file now. Caller is
1576         * supposed to hold locks serializing us with truncate / punch hole so
1577         * this is a reliable test.
1578         */
1579        max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1580
1581        trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1582
1583        if (xas.xa_index >= max_pgoff) {
1584                ret = VM_FAULT_SIGBUS;
1585                goto out;
1586        }
1587
1588        if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1589                goto fallback;
1590
1591        /*
1592         * grab_mapping_entry() will make sure we get an empty PMD entry,
1593         * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1594         * entry is already in the array, for instance), it will return
1595         * VM_FAULT_FALLBACK.
1596         */
1597        entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1598        if (xa_is_internal(entry)) {
1599                ret = xa_to_internal(entry);
1600                goto fallback;
1601        }
1602
1603        /*
1604         * It is possible, particularly with mixed reads & writes to private
1605         * mappings, that we have raced with a PTE fault that overlaps with
1606         * the PMD we need to set up.  If so just return and the fault will be
1607         * retried.
1608         */
1609        if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1610                        !pmd_devmap(*vmf->pmd)) {
1611                ret = 0;
1612                goto unlock_entry;
1613        }
1614
1615        iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1616        while ((error = iomap_iter(&iter, ops)) > 0) {
1617                if (iomap_length(&iter) < PMD_SIZE)
1618                        continue; /* actually breaks out of the loop */
1619
1620                ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1621                if (ret != VM_FAULT_FALLBACK)
1622                        iter.processed = PMD_SIZE;
1623        }
1624
1625unlock_entry:
1626        dax_unlock_entry(&xas, entry);
1627fallback:
1628        if (ret == VM_FAULT_FALLBACK) {
1629                split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1630                count_vm_event(THP_FAULT_FALLBACK);
1631        }
1632out:
1633        trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1634        return ret;
1635}
1636#else
1637static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1638                               const struct iomap_ops *ops)
1639{
1640        return VM_FAULT_FALLBACK;
1641}
1642#endif /* CONFIG_FS_DAX_PMD */
1643
1644/**
1645 * dax_iomap_fault - handle a page fault on a DAX file
1646 * @vmf: The description of the fault
1647 * @pe_size: Size of the page to fault in
1648 * @pfnp: PFN to insert for synchronous faults if fsync is required
1649 * @iomap_errp: Storage for detailed error code in case of error
1650 * @ops: Iomap ops passed from the file system
1651 *
1652 * When a page fault occurs, filesystems may call this helper in
1653 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1654 * has done all the necessary locking for page fault to proceed
1655 * successfully.
1656 */
1657vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1658                    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1659{
1660        switch (pe_size) {
1661        case PE_SIZE_PTE:
1662                return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1663        case PE_SIZE_PMD:
1664                return dax_iomap_pmd_fault(vmf, pfnp, ops);
1665        default:
1666                return VM_FAULT_FALLBACK;
1667        }
1668}
1669EXPORT_SYMBOL_GPL(dax_iomap_fault);
1670
1671/*
1672 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1673 * @vmf: The description of the fault
1674 * @pfn: PFN to insert
1675 * @order: Order of entry to insert.
1676 *
1677 * This function inserts a writeable PTE or PMD entry into the page tables
1678 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1679 */
1680static vm_fault_t
1681dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1682{
1683        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1684        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1685        void *entry;
1686        vm_fault_t ret;
1687
1688        xas_lock_irq(&xas);
1689        entry = get_unlocked_entry(&xas, order);
1690        /* Did we race with someone splitting entry or so? */
1691        if (!entry || dax_is_conflict(entry) ||
1692            (order == 0 && !dax_is_pte_entry(entry))) {
1693                put_unlocked_entry(&xas, entry, WAKE_NEXT);
1694                xas_unlock_irq(&xas);
1695                trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1696                                                      VM_FAULT_NOPAGE);
1697                return VM_FAULT_NOPAGE;
1698        }
1699        xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1700        dax_lock_entry(&xas, entry);
1701        xas_unlock_irq(&xas);
1702        if (order == 0)
1703                ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1704#ifdef CONFIG_FS_DAX_PMD
1705        else if (order == PMD_ORDER)
1706                ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1707#endif
1708        else
1709                ret = VM_FAULT_FALLBACK;
1710        dax_unlock_entry(&xas, entry);
1711        trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1712        return ret;
1713}
1714
1715/**
1716 * dax_finish_sync_fault - finish synchronous page fault
1717 * @vmf: The description of the fault
1718 * @pe_size: Size of entry to be inserted
1719 * @pfn: PFN to insert
1720 *
1721 * This function ensures that the file range touched by the page fault is
1722 * stored persistently on the media and handles inserting of appropriate page
1723 * table entry.
1724 */
1725vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1726                enum page_entry_size pe_size, pfn_t pfn)
1727{
1728        int err;
1729        loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1730        unsigned int order = pe_order(pe_size);
1731        size_t len = PAGE_SIZE << order;
1732
1733        err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1734        if (err)
1735                return VM_FAULT_SIGBUS;
1736        return dax_insert_pfn_mkwrite(vmf, pfn, order);
1737}
1738EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1739