linux/fs/io_uring.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Shared application/kernel submission and completion ring pairs, for
   4 * supporting fast/efficient IO.
   5 *
   6 * A note on the read/write ordering memory barriers that are matched between
   7 * the application and kernel side.
   8 *
   9 * After the application reads the CQ ring tail, it must use an
  10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
  11 * before writing the tail (using smp_load_acquire to read the tail will
  12 * do). It also needs a smp_mb() before updating CQ head (ordering the
  13 * entry load(s) with the head store), pairing with an implicit barrier
  14 * through a control-dependency in io_get_cqe (smp_store_release to
  15 * store head will do). Failure to do so could lead to reading invalid
  16 * CQ entries.
  17 *
  18 * Likewise, the application must use an appropriate smp_wmb() before
  19 * writing the SQ tail (ordering SQ entry stores with the tail store),
  20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
  21 * to store the tail will do). And it needs a barrier ordering the SQ
  22 * head load before writing new SQ entries (smp_load_acquire to read
  23 * head will do).
  24 *
  25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
  26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
  27 * updating the SQ tail; a full memory barrier smp_mb() is needed
  28 * between.
  29 *
  30 * Also see the examples in the liburing library:
  31 *
  32 *      git://git.kernel.dk/liburing
  33 *
  34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
  35 * from data shared between the kernel and application. This is done both
  36 * for ordering purposes, but also to ensure that once a value is loaded from
  37 * data that the application could potentially modify, it remains stable.
  38 *
  39 * Copyright (C) 2018-2019 Jens Axboe
  40 * Copyright (c) 2018-2019 Christoph Hellwig
  41 */
  42#include <linux/kernel.h>
  43#include <linux/init.h>
  44#include <linux/errno.h>
  45#include <linux/syscalls.h>
  46#include <linux/compat.h>
  47#include <net/compat.h>
  48#include <linux/refcount.h>
  49#include <linux/uio.h>
  50#include <linux/bits.h>
  51
  52#include <linux/sched/signal.h>
  53#include <linux/fs.h>
  54#include <linux/file.h>
  55#include <linux/fdtable.h>
  56#include <linux/mm.h>
  57#include <linux/mman.h>
  58#include <linux/percpu.h>
  59#include <linux/slab.h>
  60#include <linux/blk-mq.h>
  61#include <linux/bvec.h>
  62#include <linux/net.h>
  63#include <net/sock.h>
  64#include <net/af_unix.h>
  65#include <net/scm.h>
  66#include <linux/anon_inodes.h>
  67#include <linux/sched/mm.h>
  68#include <linux/uaccess.h>
  69#include <linux/nospec.h>
  70#include <linux/sizes.h>
  71#include <linux/hugetlb.h>
  72#include <linux/highmem.h>
  73#include <linux/namei.h>
  74#include <linux/fsnotify.h>
  75#include <linux/fadvise.h>
  76#include <linux/eventpoll.h>
  77#include <linux/splice.h>
  78#include <linux/task_work.h>
  79#include <linux/pagemap.h>
  80#include <linux/io_uring.h>
  81#include <linux/audit.h>
  82#include <linux/security.h>
  83
  84#define CREATE_TRACE_POINTS
  85#include <trace/events/io_uring.h>
  86
  87#include <uapi/linux/io_uring.h>
  88
  89#include "internal.h"
  90#include "io-wq.h"
  91
  92#define IORING_MAX_ENTRIES      32768
  93#define IORING_MAX_CQ_ENTRIES   (2 * IORING_MAX_ENTRIES)
  94#define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
  95
  96/* only define max */
  97#define IORING_MAX_FIXED_FILES  (1U << 15)
  98#define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
  99                                 IORING_REGISTER_LAST + IORING_OP_LAST)
 100
 101#define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
 102#define IO_RSRC_TAG_TABLE_MAX   (1U << IO_RSRC_TAG_TABLE_SHIFT)
 103#define IO_RSRC_TAG_TABLE_MASK  (IO_RSRC_TAG_TABLE_MAX - 1)
 104
 105#define IORING_MAX_REG_BUFFERS  (1U << 14)
 106
 107#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
 108                          IOSQE_IO_HARDLINK | IOSQE_ASYNC)
 109
 110#define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
 111                        IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
 112
 113#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
 114                                REQ_F_POLLED | REQ_F_CREDS | REQ_F_ASYNC_DATA)
 115
 116#define IO_TCTX_REFS_CACHE_NR   (1U << 10)
 117
 118struct io_uring {
 119        u32 head ____cacheline_aligned_in_smp;
 120        u32 tail ____cacheline_aligned_in_smp;
 121};
 122
 123/*
 124 * This data is shared with the application through the mmap at offsets
 125 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
 126 *
 127 * The offsets to the member fields are published through struct
 128 * io_sqring_offsets when calling io_uring_setup.
 129 */
 130struct io_rings {
 131        /*
 132         * Head and tail offsets into the ring; the offsets need to be
 133         * masked to get valid indices.
 134         *
 135         * The kernel controls head of the sq ring and the tail of the cq ring,
 136         * and the application controls tail of the sq ring and the head of the
 137         * cq ring.
 138         */
 139        struct io_uring         sq, cq;
 140        /*
 141         * Bitmasks to apply to head and tail offsets (constant, equals
 142         * ring_entries - 1)
 143         */
 144        u32                     sq_ring_mask, cq_ring_mask;
 145        /* Ring sizes (constant, power of 2) */
 146        u32                     sq_ring_entries, cq_ring_entries;
 147        /*
 148         * Number of invalid entries dropped by the kernel due to
 149         * invalid index stored in array
 150         *
 151         * Written by the kernel, shouldn't be modified by the
 152         * application (i.e. get number of "new events" by comparing to
 153         * cached value).
 154         *
 155         * After a new SQ head value was read by the application this
 156         * counter includes all submissions that were dropped reaching
 157         * the new SQ head (and possibly more).
 158         */
 159        u32                     sq_dropped;
 160        /*
 161         * Runtime SQ flags
 162         *
 163         * Written by the kernel, shouldn't be modified by the
 164         * application.
 165         *
 166         * The application needs a full memory barrier before checking
 167         * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
 168         */
 169        u32                     sq_flags;
 170        /*
 171         * Runtime CQ flags
 172         *
 173         * Written by the application, shouldn't be modified by the
 174         * kernel.
 175         */
 176        u32                     cq_flags;
 177        /*
 178         * Number of completion events lost because the queue was full;
 179         * this should be avoided by the application by making sure
 180         * there are not more requests pending than there is space in
 181         * the completion queue.
 182         *
 183         * Written by the kernel, shouldn't be modified by the
 184         * application (i.e. get number of "new events" by comparing to
 185         * cached value).
 186         *
 187         * As completion events come in out of order this counter is not
 188         * ordered with any other data.
 189         */
 190        u32                     cq_overflow;
 191        /*
 192         * Ring buffer of completion events.
 193         *
 194         * The kernel writes completion events fresh every time they are
 195         * produced, so the application is allowed to modify pending
 196         * entries.
 197         */
 198        struct io_uring_cqe     cqes[] ____cacheline_aligned_in_smp;
 199};
 200
 201enum io_uring_cmd_flags {
 202        IO_URING_F_COMPLETE_DEFER       = 1,
 203        IO_URING_F_UNLOCKED             = 2,
 204        /* int's last bit, sign checks are usually faster than a bit test */
 205        IO_URING_F_NONBLOCK             = INT_MIN,
 206};
 207
 208struct io_mapped_ubuf {
 209        u64             ubuf;
 210        u64             ubuf_end;
 211        unsigned int    nr_bvecs;
 212        unsigned long   acct_pages;
 213        struct bio_vec  bvec[];
 214};
 215
 216struct io_ring_ctx;
 217
 218struct io_overflow_cqe {
 219        struct io_uring_cqe cqe;
 220        struct list_head list;
 221};
 222
 223struct io_fixed_file {
 224        /* file * with additional FFS_* flags */
 225        unsigned long file_ptr;
 226};
 227
 228struct io_rsrc_put {
 229        struct list_head list;
 230        u64 tag;
 231        union {
 232                void *rsrc;
 233                struct file *file;
 234                struct io_mapped_ubuf *buf;
 235        };
 236};
 237
 238struct io_file_table {
 239        struct io_fixed_file *files;
 240};
 241
 242struct io_rsrc_node {
 243        struct percpu_ref               refs;
 244        struct list_head                node;
 245        struct list_head                rsrc_list;
 246        struct io_rsrc_data             *rsrc_data;
 247        struct llist_node               llist;
 248        bool                            done;
 249};
 250
 251typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
 252
 253struct io_rsrc_data {
 254        struct io_ring_ctx              *ctx;
 255
 256        u64                             **tags;
 257        unsigned int                    nr;
 258        rsrc_put_fn                     *do_put;
 259        atomic_t                        refs;
 260        struct completion               done;
 261        bool                            quiesce;
 262};
 263
 264struct io_buffer_list {
 265        struct list_head list;
 266        struct list_head buf_list;
 267        __u16 bgid;
 268};
 269
 270struct io_buffer {
 271        struct list_head list;
 272        __u64 addr;
 273        __u32 len;
 274        __u16 bid;
 275        __u16 bgid;
 276};
 277
 278struct io_restriction {
 279        DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
 280        DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
 281        u8 sqe_flags_allowed;
 282        u8 sqe_flags_required;
 283        bool registered;
 284};
 285
 286enum {
 287        IO_SQ_THREAD_SHOULD_STOP = 0,
 288        IO_SQ_THREAD_SHOULD_PARK,
 289};
 290
 291struct io_sq_data {
 292        refcount_t              refs;
 293        atomic_t                park_pending;
 294        struct mutex            lock;
 295
 296        /* ctx's that are using this sqd */
 297        struct list_head        ctx_list;
 298
 299        struct task_struct      *thread;
 300        struct wait_queue_head  wait;
 301
 302        unsigned                sq_thread_idle;
 303        int                     sq_cpu;
 304        pid_t                   task_pid;
 305        pid_t                   task_tgid;
 306
 307        unsigned long           state;
 308        struct completion       exited;
 309};
 310
 311#define IO_COMPL_BATCH                  32
 312#define IO_REQ_CACHE_SIZE               32
 313#define IO_REQ_ALLOC_BATCH              8
 314
 315struct io_submit_link {
 316        struct io_kiocb         *head;
 317        struct io_kiocb         *last;
 318};
 319
 320struct io_submit_state {
 321        /* inline/task_work completion list, under ->uring_lock */
 322        struct io_wq_work_node  free_list;
 323        /* batch completion logic */
 324        struct io_wq_work_list  compl_reqs;
 325        struct io_submit_link   link;
 326
 327        bool                    plug_started;
 328        bool                    need_plug;
 329        bool                    flush_cqes;
 330        unsigned short          submit_nr;
 331        struct blk_plug         plug;
 332};
 333
 334struct io_ev_fd {
 335        struct eventfd_ctx      *cq_ev_fd;
 336        unsigned int            eventfd_async: 1;
 337        struct rcu_head         rcu;
 338};
 339
 340#define IO_BUFFERS_HASH_BITS    5
 341
 342struct io_ring_ctx {
 343        /* const or read-mostly hot data */
 344        struct {
 345                struct percpu_ref       refs;
 346
 347                struct io_rings         *rings;
 348                unsigned int            flags;
 349                unsigned int            compat: 1;
 350                unsigned int            drain_next: 1;
 351                unsigned int            restricted: 1;
 352                unsigned int            off_timeout_used: 1;
 353                unsigned int            drain_active: 1;
 354                unsigned int            drain_disabled: 1;
 355                unsigned int            has_evfd: 1;
 356        } ____cacheline_aligned_in_smp;
 357
 358        /* submission data */
 359        struct {
 360                struct mutex            uring_lock;
 361
 362                /*
 363                 * Ring buffer of indices into array of io_uring_sqe, which is
 364                 * mmapped by the application using the IORING_OFF_SQES offset.
 365                 *
 366                 * This indirection could e.g. be used to assign fixed
 367                 * io_uring_sqe entries to operations and only submit them to
 368                 * the queue when needed.
 369                 *
 370                 * The kernel modifies neither the indices array nor the entries
 371                 * array.
 372                 */
 373                u32                     *sq_array;
 374                struct io_uring_sqe     *sq_sqes;
 375                unsigned                cached_sq_head;
 376                unsigned                sq_entries;
 377                struct list_head        defer_list;
 378
 379                /*
 380                 * Fixed resources fast path, should be accessed only under
 381                 * uring_lock, and updated through io_uring_register(2)
 382                 */
 383                struct io_rsrc_node     *rsrc_node;
 384                int                     rsrc_cached_refs;
 385                struct io_file_table    file_table;
 386                unsigned                nr_user_files;
 387                unsigned                nr_user_bufs;
 388                struct io_mapped_ubuf   **user_bufs;
 389
 390                struct io_submit_state  submit_state;
 391                struct list_head        timeout_list;
 392                struct list_head        ltimeout_list;
 393                struct list_head        cq_overflow_list;
 394                struct list_head        *io_buffers;
 395                struct list_head        io_buffers_cache;
 396                struct list_head        apoll_cache;
 397                struct xarray           personalities;
 398                u32                     pers_next;
 399                unsigned                sq_thread_idle;
 400        } ____cacheline_aligned_in_smp;
 401
 402        /* IRQ completion list, under ->completion_lock */
 403        struct io_wq_work_list  locked_free_list;
 404        unsigned int            locked_free_nr;
 405
 406        const struct cred       *sq_creds;      /* cred used for __io_sq_thread() */
 407        struct io_sq_data       *sq_data;       /* if using sq thread polling */
 408
 409        struct wait_queue_head  sqo_sq_wait;
 410        struct list_head        sqd_list;
 411
 412        unsigned long           check_cq_overflow;
 413
 414        struct {
 415                unsigned                cached_cq_tail;
 416                unsigned                cq_entries;
 417                struct io_ev_fd __rcu   *io_ev_fd;
 418                struct wait_queue_head  cq_wait;
 419                unsigned                cq_extra;
 420                atomic_t                cq_timeouts;
 421                unsigned                cq_last_tm_flush;
 422        } ____cacheline_aligned_in_smp;
 423
 424        struct {
 425                spinlock_t              completion_lock;
 426
 427                spinlock_t              timeout_lock;
 428
 429                /*
 430                 * ->iopoll_list is protected by the ctx->uring_lock for
 431                 * io_uring instances that don't use IORING_SETUP_SQPOLL.
 432                 * For SQPOLL, only the single threaded io_sq_thread() will
 433                 * manipulate the list, hence no extra locking is needed there.
 434                 */
 435                struct io_wq_work_list  iopoll_list;
 436                struct hlist_head       *cancel_hash;
 437                unsigned                cancel_hash_bits;
 438                bool                    poll_multi_queue;
 439
 440                struct list_head        io_buffers_comp;
 441        } ____cacheline_aligned_in_smp;
 442
 443        struct io_restriction           restrictions;
 444
 445        /* slow path rsrc auxilary data, used by update/register */
 446        struct {
 447                struct io_rsrc_node             *rsrc_backup_node;
 448                struct io_mapped_ubuf           *dummy_ubuf;
 449                struct io_rsrc_data             *file_data;
 450                struct io_rsrc_data             *buf_data;
 451
 452                struct delayed_work             rsrc_put_work;
 453                struct llist_head               rsrc_put_llist;
 454                struct list_head                rsrc_ref_list;
 455                spinlock_t                      rsrc_ref_lock;
 456
 457                struct list_head        io_buffers_pages;
 458        };
 459
 460        /* Keep this last, we don't need it for the fast path */
 461        struct {
 462                #if defined(CONFIG_UNIX)
 463                        struct socket           *ring_sock;
 464                #endif
 465                /* hashed buffered write serialization */
 466                struct io_wq_hash               *hash_map;
 467
 468                /* Only used for accounting purposes */
 469                struct user_struct              *user;
 470                struct mm_struct                *mm_account;
 471
 472                /* ctx exit and cancelation */
 473                struct llist_head               fallback_llist;
 474                struct delayed_work             fallback_work;
 475                struct work_struct              exit_work;
 476                struct list_head                tctx_list;
 477                struct completion               ref_comp;
 478                u32                             iowq_limits[2];
 479                bool                            iowq_limits_set;
 480        };
 481};
 482
 483/*
 484 * Arbitrary limit, can be raised if need be
 485 */
 486#define IO_RINGFD_REG_MAX 16
 487
 488struct io_uring_task {
 489        /* submission side */
 490        int                     cached_refs;
 491        struct xarray           xa;
 492        struct wait_queue_head  wait;
 493        const struct io_ring_ctx *last;
 494        struct io_wq            *io_wq;
 495        struct percpu_counter   inflight;
 496        atomic_t                in_idle;
 497
 498        spinlock_t              task_lock;
 499        struct io_wq_work_list  task_list;
 500        struct io_wq_work_list  prior_task_list;
 501        struct callback_head    task_work;
 502        struct file             **registered_rings;
 503        bool                    task_running;
 504};
 505
 506/*
 507 * First field must be the file pointer in all the
 508 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 509 */
 510struct io_poll_iocb {
 511        struct file                     *file;
 512        struct wait_queue_head          *head;
 513        __poll_t                        events;
 514        struct wait_queue_entry         wait;
 515};
 516
 517struct io_poll_update {
 518        struct file                     *file;
 519        u64                             old_user_data;
 520        u64                             new_user_data;
 521        __poll_t                        events;
 522        bool                            update_events;
 523        bool                            update_user_data;
 524};
 525
 526struct io_close {
 527        struct file                     *file;
 528        int                             fd;
 529        u32                             file_slot;
 530};
 531
 532struct io_timeout_data {
 533        struct io_kiocb                 *req;
 534        struct hrtimer                  timer;
 535        struct timespec64               ts;
 536        enum hrtimer_mode               mode;
 537        u32                             flags;
 538};
 539
 540struct io_accept {
 541        struct file                     *file;
 542        struct sockaddr __user          *addr;
 543        int __user                      *addr_len;
 544        int                             flags;
 545        u32                             file_slot;
 546        unsigned long                   nofile;
 547};
 548
 549struct io_sync {
 550        struct file                     *file;
 551        loff_t                          len;
 552        loff_t                          off;
 553        int                             flags;
 554        int                             mode;
 555};
 556
 557struct io_cancel {
 558        struct file                     *file;
 559        u64                             addr;
 560};
 561
 562struct io_timeout {
 563        struct file                     *file;
 564        u32                             off;
 565        u32                             target_seq;
 566        struct list_head                list;
 567        /* head of the link, used by linked timeouts only */
 568        struct io_kiocb                 *head;
 569        /* for linked completions */
 570        struct io_kiocb                 *prev;
 571};
 572
 573struct io_timeout_rem {
 574        struct file                     *file;
 575        u64                             addr;
 576
 577        /* timeout update */
 578        struct timespec64               ts;
 579        u32                             flags;
 580        bool                            ltimeout;
 581};
 582
 583struct io_rw {
 584        /* NOTE: kiocb has the file as the first member, so don't do it here */
 585        struct kiocb                    kiocb;
 586        u64                             addr;
 587        u32                             len;
 588        u32                             flags;
 589};
 590
 591struct io_connect {
 592        struct file                     *file;
 593        struct sockaddr __user          *addr;
 594        int                             addr_len;
 595};
 596
 597struct io_sr_msg {
 598        struct file                     *file;
 599        union {
 600                struct compat_msghdr __user     *umsg_compat;
 601                struct user_msghdr __user       *umsg;
 602                void __user                     *buf;
 603        };
 604        int                             msg_flags;
 605        int                             bgid;
 606        size_t                          len;
 607        size_t                          done_io;
 608};
 609
 610struct io_open {
 611        struct file                     *file;
 612        int                             dfd;
 613        u32                             file_slot;
 614        struct filename                 *filename;
 615        struct open_how                 how;
 616        unsigned long                   nofile;
 617};
 618
 619struct io_rsrc_update {
 620        struct file                     *file;
 621        u64                             arg;
 622        u32                             nr_args;
 623        u32                             offset;
 624};
 625
 626struct io_fadvise {
 627        struct file                     *file;
 628        u64                             offset;
 629        u32                             len;
 630        u32                             advice;
 631};
 632
 633struct io_madvise {
 634        struct file                     *file;
 635        u64                             addr;
 636        u32                             len;
 637        u32                             advice;
 638};
 639
 640struct io_epoll {
 641        struct file                     *file;
 642        int                             epfd;
 643        int                             op;
 644        int                             fd;
 645        struct epoll_event              event;
 646};
 647
 648struct io_splice {
 649        struct file                     *file_out;
 650        loff_t                          off_out;
 651        loff_t                          off_in;
 652        u64                             len;
 653        int                             splice_fd_in;
 654        unsigned int                    flags;
 655};
 656
 657struct io_provide_buf {
 658        struct file                     *file;
 659        __u64                           addr;
 660        __u32                           len;
 661        __u32                           bgid;
 662        __u16                           nbufs;
 663        __u16                           bid;
 664};
 665
 666struct io_statx {
 667        struct file                     *file;
 668        int                             dfd;
 669        unsigned int                    mask;
 670        unsigned int                    flags;
 671        struct filename                 *filename;
 672        struct statx __user             *buffer;
 673};
 674
 675struct io_shutdown {
 676        struct file                     *file;
 677        int                             how;
 678};
 679
 680struct io_rename {
 681        struct file                     *file;
 682        int                             old_dfd;
 683        int                             new_dfd;
 684        struct filename                 *oldpath;
 685        struct filename                 *newpath;
 686        int                             flags;
 687};
 688
 689struct io_unlink {
 690        struct file                     *file;
 691        int                             dfd;
 692        int                             flags;
 693        struct filename                 *filename;
 694};
 695
 696struct io_mkdir {
 697        struct file                     *file;
 698        int                             dfd;
 699        umode_t                         mode;
 700        struct filename                 *filename;
 701};
 702
 703struct io_symlink {
 704        struct file                     *file;
 705        int                             new_dfd;
 706        struct filename                 *oldpath;
 707        struct filename                 *newpath;
 708};
 709
 710struct io_hardlink {
 711        struct file                     *file;
 712        int                             old_dfd;
 713        int                             new_dfd;
 714        struct filename                 *oldpath;
 715        struct filename                 *newpath;
 716        int                             flags;
 717};
 718
 719struct io_msg {
 720        struct file                     *file;
 721        u64 user_data;
 722        u32 len;
 723};
 724
 725struct io_async_connect {
 726        struct sockaddr_storage         address;
 727};
 728
 729struct io_async_msghdr {
 730        struct iovec                    fast_iov[UIO_FASTIOV];
 731        /* points to an allocated iov, if NULL we use fast_iov instead */
 732        struct iovec                    *free_iov;
 733        struct sockaddr __user          *uaddr;
 734        struct msghdr                   msg;
 735        struct sockaddr_storage         addr;
 736};
 737
 738struct io_rw_state {
 739        struct iov_iter                 iter;
 740        struct iov_iter_state           iter_state;
 741        struct iovec                    fast_iov[UIO_FASTIOV];
 742};
 743
 744struct io_async_rw {
 745        struct io_rw_state              s;
 746        const struct iovec              *free_iovec;
 747        size_t                          bytes_done;
 748        struct wait_page_queue          wpq;
 749};
 750
 751enum {
 752        REQ_F_FIXED_FILE_BIT    = IOSQE_FIXED_FILE_BIT,
 753        REQ_F_IO_DRAIN_BIT      = IOSQE_IO_DRAIN_BIT,
 754        REQ_F_LINK_BIT          = IOSQE_IO_LINK_BIT,
 755        REQ_F_HARDLINK_BIT      = IOSQE_IO_HARDLINK_BIT,
 756        REQ_F_FORCE_ASYNC_BIT   = IOSQE_ASYNC_BIT,
 757        REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
 758        REQ_F_CQE_SKIP_BIT      = IOSQE_CQE_SKIP_SUCCESS_BIT,
 759
 760        /* first byte is taken by user flags, shift it to not overlap */
 761        REQ_F_FAIL_BIT          = 8,
 762        REQ_F_INFLIGHT_BIT,
 763        REQ_F_CUR_POS_BIT,
 764        REQ_F_NOWAIT_BIT,
 765        REQ_F_LINK_TIMEOUT_BIT,
 766        REQ_F_NEED_CLEANUP_BIT,
 767        REQ_F_POLLED_BIT,
 768        REQ_F_BUFFER_SELECTED_BIT,
 769        REQ_F_COMPLETE_INLINE_BIT,
 770        REQ_F_REISSUE_BIT,
 771        REQ_F_CREDS_BIT,
 772        REQ_F_REFCOUNT_BIT,
 773        REQ_F_ARM_LTIMEOUT_BIT,
 774        REQ_F_ASYNC_DATA_BIT,
 775        REQ_F_SKIP_LINK_CQES_BIT,
 776        REQ_F_SINGLE_POLL_BIT,
 777        REQ_F_DOUBLE_POLL_BIT,
 778        REQ_F_PARTIAL_IO_BIT,
 779        /* keep async read/write and isreg together and in order */
 780        REQ_F_SUPPORT_NOWAIT_BIT,
 781        REQ_F_ISREG_BIT,
 782
 783        /* not a real bit, just to check we're not overflowing the space */
 784        __REQ_F_LAST_BIT,
 785};
 786
 787enum {
 788        /* ctx owns file */
 789        REQ_F_FIXED_FILE        = BIT(REQ_F_FIXED_FILE_BIT),
 790        /* drain existing IO first */
 791        REQ_F_IO_DRAIN          = BIT(REQ_F_IO_DRAIN_BIT),
 792        /* linked sqes */
 793        REQ_F_LINK              = BIT(REQ_F_LINK_BIT),
 794        /* doesn't sever on completion < 0 */
 795        REQ_F_HARDLINK          = BIT(REQ_F_HARDLINK_BIT),
 796        /* IOSQE_ASYNC */
 797        REQ_F_FORCE_ASYNC       = BIT(REQ_F_FORCE_ASYNC_BIT),
 798        /* IOSQE_BUFFER_SELECT */
 799        REQ_F_BUFFER_SELECT     = BIT(REQ_F_BUFFER_SELECT_BIT),
 800        /* IOSQE_CQE_SKIP_SUCCESS */
 801        REQ_F_CQE_SKIP          = BIT(REQ_F_CQE_SKIP_BIT),
 802
 803        /* fail rest of links */
 804        REQ_F_FAIL              = BIT(REQ_F_FAIL_BIT),
 805        /* on inflight list, should be cancelled and waited on exit reliably */
 806        REQ_F_INFLIGHT          = BIT(REQ_F_INFLIGHT_BIT),
 807        /* read/write uses file position */
 808        REQ_F_CUR_POS           = BIT(REQ_F_CUR_POS_BIT),
 809        /* must not punt to workers */
 810        REQ_F_NOWAIT            = BIT(REQ_F_NOWAIT_BIT),
 811        /* has or had linked timeout */
 812        REQ_F_LINK_TIMEOUT      = BIT(REQ_F_LINK_TIMEOUT_BIT),
 813        /* needs cleanup */
 814        REQ_F_NEED_CLEANUP      = BIT(REQ_F_NEED_CLEANUP_BIT),
 815        /* already went through poll handler */
 816        REQ_F_POLLED            = BIT(REQ_F_POLLED_BIT),
 817        /* buffer already selected */
 818        REQ_F_BUFFER_SELECTED   = BIT(REQ_F_BUFFER_SELECTED_BIT),
 819        /* completion is deferred through io_comp_state */
 820        REQ_F_COMPLETE_INLINE   = BIT(REQ_F_COMPLETE_INLINE_BIT),
 821        /* caller should reissue async */
 822        REQ_F_REISSUE           = BIT(REQ_F_REISSUE_BIT),
 823        /* supports async reads/writes */
 824        REQ_F_SUPPORT_NOWAIT    = BIT(REQ_F_SUPPORT_NOWAIT_BIT),
 825        /* regular file */
 826        REQ_F_ISREG             = BIT(REQ_F_ISREG_BIT),
 827        /* has creds assigned */
 828        REQ_F_CREDS             = BIT(REQ_F_CREDS_BIT),
 829        /* skip refcounting if not set */
 830        REQ_F_REFCOUNT          = BIT(REQ_F_REFCOUNT_BIT),
 831        /* there is a linked timeout that has to be armed */
 832        REQ_F_ARM_LTIMEOUT      = BIT(REQ_F_ARM_LTIMEOUT_BIT),
 833        /* ->async_data allocated */
 834        REQ_F_ASYNC_DATA        = BIT(REQ_F_ASYNC_DATA_BIT),
 835        /* don't post CQEs while failing linked requests */
 836        REQ_F_SKIP_LINK_CQES    = BIT(REQ_F_SKIP_LINK_CQES_BIT),
 837        /* single poll may be active */
 838        REQ_F_SINGLE_POLL       = BIT(REQ_F_SINGLE_POLL_BIT),
 839        /* double poll may active */
 840        REQ_F_DOUBLE_POLL       = BIT(REQ_F_DOUBLE_POLL_BIT),
 841        /* request has already done partial IO */
 842        REQ_F_PARTIAL_IO        = BIT(REQ_F_PARTIAL_IO_BIT),
 843};
 844
 845struct async_poll {
 846        struct io_poll_iocb     poll;
 847        struct io_poll_iocb     *double_poll;
 848};
 849
 850typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
 851
 852struct io_task_work {
 853        union {
 854                struct io_wq_work_node  node;
 855                struct llist_node       fallback_node;
 856        };
 857        io_req_tw_func_t                func;
 858};
 859
 860enum {
 861        IORING_RSRC_FILE                = 0,
 862        IORING_RSRC_BUFFER              = 1,
 863};
 864
 865/*
 866 * NOTE! Each of the iocb union members has the file pointer
 867 * as the first entry in their struct definition. So you can
 868 * access the file pointer through any of the sub-structs,
 869 * or directly as just 'file' in this struct.
 870 */
 871struct io_kiocb {
 872        union {
 873                struct file             *file;
 874                struct io_rw            rw;
 875                struct io_poll_iocb     poll;
 876                struct io_poll_update   poll_update;
 877                struct io_accept        accept;
 878                struct io_sync          sync;
 879                struct io_cancel        cancel;
 880                struct io_timeout       timeout;
 881                struct io_timeout_rem   timeout_rem;
 882                struct io_connect       connect;
 883                struct io_sr_msg        sr_msg;
 884                struct io_open          open;
 885                struct io_close         close;
 886                struct io_rsrc_update   rsrc_update;
 887                struct io_fadvise       fadvise;
 888                struct io_madvise       madvise;
 889                struct io_epoll         epoll;
 890                struct io_splice        splice;
 891                struct io_provide_buf   pbuf;
 892                struct io_statx         statx;
 893                struct io_shutdown      shutdown;
 894                struct io_rename        rename;
 895                struct io_unlink        unlink;
 896                struct io_mkdir         mkdir;
 897                struct io_symlink       symlink;
 898                struct io_hardlink      hardlink;
 899                struct io_msg           msg;
 900        };
 901
 902        u8                              opcode;
 903        /* polled IO has completed */
 904        u8                              iopoll_completed;
 905        u16                             buf_index;
 906        unsigned int                    flags;
 907
 908        u64                             user_data;
 909        u32                             result;
 910        /* fd initially, then cflags for completion */
 911        union {
 912                u32                     cflags;
 913                int                     fd;
 914        };
 915
 916        struct io_ring_ctx              *ctx;
 917        struct task_struct              *task;
 918
 919        struct percpu_ref               *fixed_rsrc_refs;
 920        /* store used ubuf, so we can prevent reloading */
 921        struct io_mapped_ubuf           *imu;
 922
 923        union {
 924                /* used by request caches, completion batching and iopoll */
 925                struct io_wq_work_node  comp_list;
 926                /* cache ->apoll->events */
 927                int apoll_events;
 928        };
 929        atomic_t                        refs;
 930        atomic_t                        poll_refs;
 931        struct io_task_work             io_task_work;
 932        /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
 933        struct hlist_node               hash_node;
 934        /* internal polling, see IORING_FEAT_FAST_POLL */
 935        struct async_poll               *apoll;
 936        /* opcode allocated if it needs to store data for async defer */
 937        void                            *async_data;
 938        /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
 939        struct io_buffer                *kbuf;
 940        /* linked requests, IFF REQ_F_HARDLINK or REQ_F_LINK are set */
 941        struct io_kiocb                 *link;
 942        /* custom credentials, valid IFF REQ_F_CREDS is set */
 943        const struct cred               *creds;
 944        struct io_wq_work               work;
 945};
 946
 947struct io_tctx_node {
 948        struct list_head        ctx_node;
 949        struct task_struct      *task;
 950        struct io_ring_ctx      *ctx;
 951};
 952
 953struct io_defer_entry {
 954        struct list_head        list;
 955        struct io_kiocb         *req;
 956        u32                     seq;
 957};
 958
 959struct io_op_def {
 960        /* needs req->file assigned */
 961        unsigned                needs_file : 1;
 962        /* should block plug */
 963        unsigned                plug : 1;
 964        /* hash wq insertion if file is a regular file */
 965        unsigned                hash_reg_file : 1;
 966        /* unbound wq insertion if file is a non-regular file */
 967        unsigned                unbound_nonreg_file : 1;
 968        /* set if opcode supports polled "wait" */
 969        unsigned                pollin : 1;
 970        unsigned                pollout : 1;
 971        unsigned                poll_exclusive : 1;
 972        /* op supports buffer selection */
 973        unsigned                buffer_select : 1;
 974        /* do prep async if is going to be punted */
 975        unsigned                needs_async_setup : 1;
 976        /* opcode is not supported by this kernel */
 977        unsigned                not_supported : 1;
 978        /* skip auditing */
 979        unsigned                audit_skip : 1;
 980        /* size of async data needed, if any */
 981        unsigned short          async_size;
 982};
 983
 984static const struct io_op_def io_op_defs[] = {
 985        [IORING_OP_NOP] = {},
 986        [IORING_OP_READV] = {
 987                .needs_file             = 1,
 988                .unbound_nonreg_file    = 1,
 989                .pollin                 = 1,
 990                .buffer_select          = 1,
 991                .needs_async_setup      = 1,
 992                .plug                   = 1,
 993                .audit_skip             = 1,
 994                .async_size             = sizeof(struct io_async_rw),
 995        },
 996        [IORING_OP_WRITEV] = {
 997                .needs_file             = 1,
 998                .hash_reg_file          = 1,
 999                .unbound_nonreg_file    = 1,
1000                .pollout                = 1,
1001                .needs_async_setup      = 1,
1002                .plug                   = 1,
1003                .audit_skip             = 1,
1004                .async_size             = sizeof(struct io_async_rw),
1005        },
1006        [IORING_OP_FSYNC] = {
1007                .needs_file             = 1,
1008                .audit_skip             = 1,
1009        },
1010        [IORING_OP_READ_FIXED] = {
1011                .needs_file             = 1,
1012                .unbound_nonreg_file    = 1,
1013                .pollin                 = 1,
1014                .plug                   = 1,
1015                .audit_skip             = 1,
1016                .async_size             = sizeof(struct io_async_rw),
1017        },
1018        [IORING_OP_WRITE_FIXED] = {
1019                .needs_file             = 1,
1020                .hash_reg_file          = 1,
1021                .unbound_nonreg_file    = 1,
1022                .pollout                = 1,
1023                .plug                   = 1,
1024                .audit_skip             = 1,
1025                .async_size             = sizeof(struct io_async_rw),
1026        },
1027        [IORING_OP_POLL_ADD] = {
1028                .needs_file             = 1,
1029                .unbound_nonreg_file    = 1,
1030                .audit_skip             = 1,
1031        },
1032        [IORING_OP_POLL_REMOVE] = {
1033                .audit_skip             = 1,
1034        },
1035        [IORING_OP_SYNC_FILE_RANGE] = {
1036                .needs_file             = 1,
1037                .audit_skip             = 1,
1038        },
1039        [IORING_OP_SENDMSG] = {
1040                .needs_file             = 1,
1041                .unbound_nonreg_file    = 1,
1042                .pollout                = 1,
1043                .needs_async_setup      = 1,
1044                .async_size             = sizeof(struct io_async_msghdr),
1045        },
1046        [IORING_OP_RECVMSG] = {
1047                .needs_file             = 1,
1048                .unbound_nonreg_file    = 1,
1049                .pollin                 = 1,
1050                .buffer_select          = 1,
1051                .needs_async_setup      = 1,
1052                .async_size             = sizeof(struct io_async_msghdr),
1053        },
1054        [IORING_OP_TIMEOUT] = {
1055                .audit_skip             = 1,
1056                .async_size             = sizeof(struct io_timeout_data),
1057        },
1058        [IORING_OP_TIMEOUT_REMOVE] = {
1059                /* used by timeout updates' prep() */
1060                .audit_skip             = 1,
1061        },
1062        [IORING_OP_ACCEPT] = {
1063                .needs_file             = 1,
1064                .unbound_nonreg_file    = 1,
1065                .pollin                 = 1,
1066                .poll_exclusive         = 1,
1067        },
1068        [IORING_OP_ASYNC_CANCEL] = {
1069                .audit_skip             = 1,
1070        },
1071        [IORING_OP_LINK_TIMEOUT] = {
1072                .audit_skip             = 1,
1073                .async_size             = sizeof(struct io_timeout_data),
1074        },
1075        [IORING_OP_CONNECT] = {
1076                .needs_file             = 1,
1077                .unbound_nonreg_file    = 1,
1078                .pollout                = 1,
1079                .needs_async_setup      = 1,
1080                .async_size             = sizeof(struct io_async_connect),
1081        },
1082        [IORING_OP_FALLOCATE] = {
1083                .needs_file             = 1,
1084        },
1085        [IORING_OP_OPENAT] = {},
1086        [IORING_OP_CLOSE] = {},
1087        [IORING_OP_FILES_UPDATE] = {
1088                .audit_skip             = 1,
1089        },
1090        [IORING_OP_STATX] = {
1091                .audit_skip             = 1,
1092        },
1093        [IORING_OP_READ] = {
1094                .needs_file             = 1,
1095                .unbound_nonreg_file    = 1,
1096                .pollin                 = 1,
1097                .buffer_select          = 1,
1098                .plug                   = 1,
1099                .audit_skip             = 1,
1100                .async_size             = sizeof(struct io_async_rw),
1101        },
1102        [IORING_OP_WRITE] = {
1103                .needs_file             = 1,
1104                .hash_reg_file          = 1,
1105                .unbound_nonreg_file    = 1,
1106                .pollout                = 1,
1107                .plug                   = 1,
1108                .audit_skip             = 1,
1109                .async_size             = sizeof(struct io_async_rw),
1110        },
1111        [IORING_OP_FADVISE] = {
1112                .needs_file             = 1,
1113                .audit_skip             = 1,
1114        },
1115        [IORING_OP_MADVISE] = {},
1116        [IORING_OP_SEND] = {
1117                .needs_file             = 1,
1118                .unbound_nonreg_file    = 1,
1119                .pollout                = 1,
1120                .audit_skip             = 1,
1121        },
1122        [IORING_OP_RECV] = {
1123                .needs_file             = 1,
1124                .unbound_nonreg_file    = 1,
1125                .pollin                 = 1,
1126                .buffer_select          = 1,
1127                .audit_skip             = 1,
1128        },
1129        [IORING_OP_OPENAT2] = {
1130        },
1131        [IORING_OP_EPOLL_CTL] = {
1132                .unbound_nonreg_file    = 1,
1133                .audit_skip             = 1,
1134        },
1135        [IORING_OP_SPLICE] = {
1136                .needs_file             = 1,
1137                .hash_reg_file          = 1,
1138                .unbound_nonreg_file    = 1,
1139                .audit_skip             = 1,
1140        },
1141        [IORING_OP_PROVIDE_BUFFERS] = {
1142                .audit_skip             = 1,
1143        },
1144        [IORING_OP_REMOVE_BUFFERS] = {
1145                .audit_skip             = 1,
1146        },
1147        [IORING_OP_TEE] = {
1148                .needs_file             = 1,
1149                .hash_reg_file          = 1,
1150                .unbound_nonreg_file    = 1,
1151                .audit_skip             = 1,
1152        },
1153        [IORING_OP_SHUTDOWN] = {
1154                .needs_file             = 1,
1155        },
1156        [IORING_OP_RENAMEAT] = {},
1157        [IORING_OP_UNLINKAT] = {},
1158        [IORING_OP_MKDIRAT] = {},
1159        [IORING_OP_SYMLINKAT] = {},
1160        [IORING_OP_LINKAT] = {},
1161        [IORING_OP_MSG_RING] = {
1162                .needs_file             = 1,
1163        },
1164};
1165
1166/* requests with any of those set should undergo io_disarm_next() */
1167#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1168
1169static bool io_disarm_next(struct io_kiocb *req);
1170static void io_uring_del_tctx_node(unsigned long index);
1171static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1172                                         struct task_struct *task,
1173                                         bool cancel_all);
1174static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1175
1176static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1177
1178static void io_put_req(struct io_kiocb *req);
1179static void io_put_req_deferred(struct io_kiocb *req);
1180static void io_dismantle_req(struct io_kiocb *req);
1181static void io_queue_linked_timeout(struct io_kiocb *req);
1182static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1183                                     struct io_uring_rsrc_update2 *up,
1184                                     unsigned nr_args);
1185static void io_clean_op(struct io_kiocb *req);
1186static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1187                                             unsigned issue_flags);
1188static inline struct file *io_file_get_normal(struct io_kiocb *req, int fd);
1189static void io_drop_inflight_file(struct io_kiocb *req);
1190static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags);
1191static void __io_queue_sqe(struct io_kiocb *req);
1192static void io_rsrc_put_work(struct work_struct *work);
1193
1194static void io_req_task_queue(struct io_kiocb *req);
1195static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
1196static int io_req_prep_async(struct io_kiocb *req);
1197
1198static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1199                                 unsigned int issue_flags, u32 slot_index);
1200static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1201
1202static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1203static void io_eventfd_signal(struct io_ring_ctx *ctx);
1204
1205static struct kmem_cache *req_cachep;
1206
1207static const struct file_operations io_uring_fops;
1208
1209struct sock *io_uring_get_socket(struct file *file)
1210{
1211#if defined(CONFIG_UNIX)
1212        if (file->f_op == &io_uring_fops) {
1213                struct io_ring_ctx *ctx = file->private_data;
1214
1215                return ctx->ring_sock->sk;
1216        }
1217#endif
1218        return NULL;
1219}
1220EXPORT_SYMBOL(io_uring_get_socket);
1221
1222static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1223{
1224        if (!*locked) {
1225                mutex_lock(&ctx->uring_lock);
1226                *locked = true;
1227        }
1228}
1229
1230#define io_for_each_link(pos, head) \
1231        for (pos = (head); pos; pos = pos->link)
1232
1233/*
1234 * Shamelessly stolen from the mm implementation of page reference checking,
1235 * see commit f958d7b528b1 for details.
1236 */
1237#define req_ref_zero_or_close_to_overflow(req)  \
1238        ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1239
1240static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1241{
1242        WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1243        return atomic_inc_not_zero(&req->refs);
1244}
1245
1246static inline bool req_ref_put_and_test(struct io_kiocb *req)
1247{
1248        if (likely(!(req->flags & REQ_F_REFCOUNT)))
1249                return true;
1250
1251        WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1252        return atomic_dec_and_test(&req->refs);
1253}
1254
1255static inline void req_ref_get(struct io_kiocb *req)
1256{
1257        WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1258        WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1259        atomic_inc(&req->refs);
1260}
1261
1262static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
1263{
1264        if (!wq_list_empty(&ctx->submit_state.compl_reqs))
1265                __io_submit_flush_completions(ctx);
1266}
1267
1268static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1269{
1270        if (!(req->flags & REQ_F_REFCOUNT)) {
1271                req->flags |= REQ_F_REFCOUNT;
1272                atomic_set(&req->refs, nr);
1273        }
1274}
1275
1276static inline void io_req_set_refcount(struct io_kiocb *req)
1277{
1278        __io_req_set_refcount(req, 1);
1279}
1280
1281#define IO_RSRC_REF_BATCH       100
1282
1283static inline void io_req_put_rsrc_locked(struct io_kiocb *req,
1284                                          struct io_ring_ctx *ctx)
1285        __must_hold(&ctx->uring_lock)
1286{
1287        struct percpu_ref *ref = req->fixed_rsrc_refs;
1288
1289        if (ref) {
1290                if (ref == &ctx->rsrc_node->refs)
1291                        ctx->rsrc_cached_refs++;
1292                else
1293                        percpu_ref_put(ref);
1294        }
1295}
1296
1297static inline void io_req_put_rsrc(struct io_kiocb *req, struct io_ring_ctx *ctx)
1298{
1299        if (req->fixed_rsrc_refs)
1300                percpu_ref_put(req->fixed_rsrc_refs);
1301}
1302
1303static __cold void io_rsrc_refs_drop(struct io_ring_ctx *ctx)
1304        __must_hold(&ctx->uring_lock)
1305{
1306        if (ctx->rsrc_cached_refs) {
1307                percpu_ref_put_many(&ctx->rsrc_node->refs, ctx->rsrc_cached_refs);
1308                ctx->rsrc_cached_refs = 0;
1309        }
1310}
1311
1312static void io_rsrc_refs_refill(struct io_ring_ctx *ctx)
1313        __must_hold(&ctx->uring_lock)
1314{
1315        ctx->rsrc_cached_refs += IO_RSRC_REF_BATCH;
1316        percpu_ref_get_many(&ctx->rsrc_node->refs, IO_RSRC_REF_BATCH);
1317}
1318
1319static inline void io_req_set_rsrc_node(struct io_kiocb *req,
1320                                        struct io_ring_ctx *ctx,
1321                                        unsigned int issue_flags)
1322{
1323        if (!req->fixed_rsrc_refs) {
1324                req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1325
1326                if (!(issue_flags & IO_URING_F_UNLOCKED)) {
1327                        lockdep_assert_held(&ctx->uring_lock);
1328                        ctx->rsrc_cached_refs--;
1329                        if (unlikely(ctx->rsrc_cached_refs < 0))
1330                                io_rsrc_refs_refill(ctx);
1331                } else {
1332                        percpu_ref_get(req->fixed_rsrc_refs);
1333                }
1334        }
1335}
1336
1337static unsigned int __io_put_kbuf(struct io_kiocb *req, struct list_head *list)
1338{
1339        struct io_buffer *kbuf = req->kbuf;
1340        unsigned int cflags;
1341
1342        cflags = IORING_CQE_F_BUFFER | (kbuf->bid << IORING_CQE_BUFFER_SHIFT);
1343        req->flags &= ~REQ_F_BUFFER_SELECTED;
1344        list_add(&kbuf->list, list);
1345        req->kbuf = NULL;
1346        return cflags;
1347}
1348
1349static inline unsigned int io_put_kbuf_comp(struct io_kiocb *req)
1350{
1351        lockdep_assert_held(&req->ctx->completion_lock);
1352
1353        if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
1354                return 0;
1355        return __io_put_kbuf(req, &req->ctx->io_buffers_comp);
1356}
1357
1358static inline unsigned int io_put_kbuf(struct io_kiocb *req,
1359                                       unsigned issue_flags)
1360{
1361        unsigned int cflags;
1362
1363        if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
1364                return 0;
1365
1366        /*
1367         * We can add this buffer back to two lists:
1368         *
1369         * 1) The io_buffers_cache list. This one is protected by the
1370         *    ctx->uring_lock. If we already hold this lock, add back to this
1371         *    list as we can grab it from issue as well.
1372         * 2) The io_buffers_comp list. This one is protected by the
1373         *    ctx->completion_lock.
1374         *
1375         * We migrate buffers from the comp_list to the issue cache list
1376         * when we need one.
1377         */
1378        if (issue_flags & IO_URING_F_UNLOCKED) {
1379                struct io_ring_ctx *ctx = req->ctx;
1380
1381                spin_lock(&ctx->completion_lock);
1382                cflags = __io_put_kbuf(req, &ctx->io_buffers_comp);
1383                spin_unlock(&ctx->completion_lock);
1384        } else {
1385                lockdep_assert_held(&req->ctx->uring_lock);
1386
1387                cflags = __io_put_kbuf(req, &req->ctx->io_buffers_cache);
1388        }
1389
1390        return cflags;
1391}
1392
1393static struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
1394                                                 unsigned int bgid)
1395{
1396        struct list_head *hash_list;
1397        struct io_buffer_list *bl;
1398
1399        hash_list = &ctx->io_buffers[hash_32(bgid, IO_BUFFERS_HASH_BITS)];
1400        list_for_each_entry(bl, hash_list, list)
1401                if (bl->bgid == bgid || bgid == -1U)
1402                        return bl;
1403
1404        return NULL;
1405}
1406
1407static void io_kbuf_recycle(struct io_kiocb *req, unsigned issue_flags)
1408{
1409        struct io_ring_ctx *ctx = req->ctx;
1410        struct io_buffer_list *bl;
1411        struct io_buffer *buf;
1412
1413        if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
1414                return;
1415        /* don't recycle if we already did IO to this buffer */
1416        if (req->flags & REQ_F_PARTIAL_IO)
1417                return;
1418
1419        if (issue_flags & IO_URING_F_UNLOCKED)
1420                mutex_lock(&ctx->uring_lock);
1421
1422        lockdep_assert_held(&ctx->uring_lock);
1423
1424        buf = req->kbuf;
1425        bl = io_buffer_get_list(ctx, buf->bgid);
1426        list_add(&buf->list, &bl->buf_list);
1427        req->flags &= ~REQ_F_BUFFER_SELECTED;
1428        req->kbuf = NULL;
1429
1430        if (issue_flags & IO_URING_F_UNLOCKED)
1431                mutex_unlock(&ctx->uring_lock);
1432}
1433
1434static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1435                          bool cancel_all)
1436        __must_hold(&req->ctx->timeout_lock)
1437{
1438        if (task && head->task != task)
1439                return false;
1440        return cancel_all;
1441}
1442
1443/*
1444 * As io_match_task() but protected against racing with linked timeouts.
1445 * User must not hold timeout_lock.
1446 */
1447static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1448                               bool cancel_all)
1449{
1450        if (task && head->task != task)
1451                return false;
1452        return cancel_all;
1453}
1454
1455static inline bool req_has_async_data(struct io_kiocb *req)
1456{
1457        return req->flags & REQ_F_ASYNC_DATA;
1458}
1459
1460static inline void req_set_fail(struct io_kiocb *req)
1461{
1462        req->flags |= REQ_F_FAIL;
1463        if (req->flags & REQ_F_CQE_SKIP) {
1464                req->flags &= ~REQ_F_CQE_SKIP;
1465                req->flags |= REQ_F_SKIP_LINK_CQES;
1466        }
1467}
1468
1469static inline void req_fail_link_node(struct io_kiocb *req, int res)
1470{
1471        req_set_fail(req);
1472        req->result = res;
1473}
1474
1475static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
1476{
1477        struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1478
1479        complete(&ctx->ref_comp);
1480}
1481
1482static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1483{
1484        return !req->timeout.off;
1485}
1486
1487static __cold void io_fallback_req_func(struct work_struct *work)
1488{
1489        struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1490                                                fallback_work.work);
1491        struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1492        struct io_kiocb *req, *tmp;
1493        bool locked = false;
1494
1495        percpu_ref_get(&ctx->refs);
1496        llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1497                req->io_task_work.func(req, &locked);
1498
1499        if (locked) {
1500                io_submit_flush_completions(ctx);
1501                mutex_unlock(&ctx->uring_lock);
1502        }
1503        percpu_ref_put(&ctx->refs);
1504}
1505
1506static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1507{
1508        struct io_ring_ctx *ctx;
1509        int i, hash_bits;
1510
1511        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1512        if (!ctx)
1513                return NULL;
1514
1515        /*
1516         * Use 5 bits less than the max cq entries, that should give us around
1517         * 32 entries per hash list if totally full and uniformly spread.
1518         */
1519        hash_bits = ilog2(p->cq_entries);
1520        hash_bits -= 5;
1521        if (hash_bits <= 0)
1522                hash_bits = 1;
1523        ctx->cancel_hash_bits = hash_bits;
1524        ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1525                                        GFP_KERNEL);
1526        if (!ctx->cancel_hash)
1527                goto err;
1528        __hash_init(ctx->cancel_hash, 1U << hash_bits);
1529
1530        ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1531        if (!ctx->dummy_ubuf)
1532                goto err;
1533        /* set invalid range, so io_import_fixed() fails meeting it */
1534        ctx->dummy_ubuf->ubuf = -1UL;
1535
1536        ctx->io_buffers = kcalloc(1U << IO_BUFFERS_HASH_BITS,
1537                                        sizeof(struct list_head), GFP_KERNEL);
1538        if (!ctx->io_buffers)
1539                goto err;
1540        for (i = 0; i < (1U << IO_BUFFERS_HASH_BITS); i++)
1541                INIT_LIST_HEAD(&ctx->io_buffers[i]);
1542
1543        if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1544                            PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1545                goto err;
1546
1547        ctx->flags = p->flags;
1548        init_waitqueue_head(&ctx->sqo_sq_wait);
1549        INIT_LIST_HEAD(&ctx->sqd_list);
1550        INIT_LIST_HEAD(&ctx->cq_overflow_list);
1551        INIT_LIST_HEAD(&ctx->io_buffers_cache);
1552        INIT_LIST_HEAD(&ctx->apoll_cache);
1553        init_completion(&ctx->ref_comp);
1554        xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1555        mutex_init(&ctx->uring_lock);
1556        init_waitqueue_head(&ctx->cq_wait);
1557        spin_lock_init(&ctx->completion_lock);
1558        spin_lock_init(&ctx->timeout_lock);
1559        INIT_WQ_LIST(&ctx->iopoll_list);
1560        INIT_LIST_HEAD(&ctx->io_buffers_pages);
1561        INIT_LIST_HEAD(&ctx->io_buffers_comp);
1562        INIT_LIST_HEAD(&ctx->defer_list);
1563        INIT_LIST_HEAD(&ctx->timeout_list);
1564        INIT_LIST_HEAD(&ctx->ltimeout_list);
1565        spin_lock_init(&ctx->rsrc_ref_lock);
1566        INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1567        INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1568        init_llist_head(&ctx->rsrc_put_llist);
1569        INIT_LIST_HEAD(&ctx->tctx_list);
1570        ctx->submit_state.free_list.next = NULL;
1571        INIT_WQ_LIST(&ctx->locked_free_list);
1572        INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1573        INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
1574        return ctx;
1575err:
1576        kfree(ctx->dummy_ubuf);
1577        kfree(ctx->cancel_hash);
1578        kfree(ctx->io_buffers);
1579        kfree(ctx);
1580        return NULL;
1581}
1582
1583static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1584{
1585        struct io_rings *r = ctx->rings;
1586
1587        WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1588        ctx->cq_extra--;
1589}
1590
1591static bool req_need_defer(struct io_kiocb *req, u32 seq)
1592{
1593        if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1594                struct io_ring_ctx *ctx = req->ctx;
1595
1596                return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1597        }
1598
1599        return false;
1600}
1601
1602#define FFS_NOWAIT              0x1UL
1603#define FFS_ISREG               0x2UL
1604#define FFS_MASK                ~(FFS_NOWAIT|FFS_ISREG)
1605
1606static inline bool io_req_ffs_set(struct io_kiocb *req)
1607{
1608        return req->flags & REQ_F_FIXED_FILE;
1609}
1610
1611static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1612{
1613        if (WARN_ON_ONCE(!req->link))
1614                return NULL;
1615
1616        req->flags &= ~REQ_F_ARM_LTIMEOUT;
1617        req->flags |= REQ_F_LINK_TIMEOUT;
1618
1619        /* linked timeouts should have two refs once prep'ed */
1620        io_req_set_refcount(req);
1621        __io_req_set_refcount(req->link, 2);
1622        return req->link;
1623}
1624
1625static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1626{
1627        if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1628                return NULL;
1629        return __io_prep_linked_timeout(req);
1630}
1631
1632static void io_prep_async_work(struct io_kiocb *req)
1633{
1634        const struct io_op_def *def = &io_op_defs[req->opcode];
1635        struct io_ring_ctx *ctx = req->ctx;
1636
1637        if (!(req->flags & REQ_F_CREDS)) {
1638                req->flags |= REQ_F_CREDS;
1639                req->creds = get_current_cred();
1640        }
1641
1642        req->work.list.next = NULL;
1643        req->work.flags = 0;
1644        if (req->flags & REQ_F_FORCE_ASYNC)
1645                req->work.flags |= IO_WQ_WORK_CONCURRENT;
1646
1647        if (req->flags & REQ_F_ISREG) {
1648                if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1649                        io_wq_hash_work(&req->work, file_inode(req->file));
1650        } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1651                if (def->unbound_nonreg_file)
1652                        req->work.flags |= IO_WQ_WORK_UNBOUND;
1653        }
1654}
1655
1656static void io_prep_async_link(struct io_kiocb *req)
1657{
1658        struct io_kiocb *cur;
1659
1660        if (req->flags & REQ_F_LINK_TIMEOUT) {
1661                struct io_ring_ctx *ctx = req->ctx;
1662
1663                spin_lock_irq(&ctx->timeout_lock);
1664                io_for_each_link(cur, req)
1665                        io_prep_async_work(cur);
1666                spin_unlock_irq(&ctx->timeout_lock);
1667        } else {
1668                io_for_each_link(cur, req)
1669                        io_prep_async_work(cur);
1670        }
1671}
1672
1673static inline void io_req_add_compl_list(struct io_kiocb *req)
1674{
1675        struct io_ring_ctx *ctx = req->ctx;
1676        struct io_submit_state *state = &ctx->submit_state;
1677
1678        if (!(req->flags & REQ_F_CQE_SKIP))
1679                ctx->submit_state.flush_cqes = true;
1680        wq_list_add_tail(&req->comp_list, &state->compl_reqs);
1681}
1682
1683static void io_queue_async_work(struct io_kiocb *req, bool *dont_use)
1684{
1685        struct io_ring_ctx *ctx = req->ctx;
1686        struct io_kiocb *link = io_prep_linked_timeout(req);
1687        struct io_uring_task *tctx = req->task->io_uring;
1688
1689        BUG_ON(!tctx);
1690        BUG_ON(!tctx->io_wq);
1691
1692        /* init ->work of the whole link before punting */
1693        io_prep_async_link(req);
1694
1695        /*
1696         * Not expected to happen, but if we do have a bug where this _can_
1697         * happen, catch it here and ensure the request is marked as
1698         * canceled. That will make io-wq go through the usual work cancel
1699         * procedure rather than attempt to run this request (or create a new
1700         * worker for it).
1701         */
1702        if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1703                req->work.flags |= IO_WQ_WORK_CANCEL;
1704
1705        trace_io_uring_queue_async_work(ctx, req, req->user_data, req->opcode, req->flags,
1706                                        &req->work, io_wq_is_hashed(&req->work));
1707        io_wq_enqueue(tctx->io_wq, &req->work);
1708        if (link)
1709                io_queue_linked_timeout(link);
1710}
1711
1712static void io_kill_timeout(struct io_kiocb *req, int status)
1713        __must_hold(&req->ctx->completion_lock)
1714        __must_hold(&req->ctx->timeout_lock)
1715{
1716        struct io_timeout_data *io = req->async_data;
1717
1718        if (hrtimer_try_to_cancel(&io->timer) != -1) {
1719                if (status)
1720                        req_set_fail(req);
1721                atomic_set(&req->ctx->cq_timeouts,
1722                        atomic_read(&req->ctx->cq_timeouts) + 1);
1723                list_del_init(&req->timeout.list);
1724                io_fill_cqe_req(req, status, 0);
1725                io_put_req_deferred(req);
1726        }
1727}
1728
1729static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
1730{
1731        while (!list_empty(&ctx->defer_list)) {
1732                struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1733                                                struct io_defer_entry, list);
1734
1735                if (req_need_defer(de->req, de->seq))
1736                        break;
1737                list_del_init(&de->list);
1738                io_req_task_queue(de->req);
1739                kfree(de);
1740        }
1741}
1742
1743static __cold void io_flush_timeouts(struct io_ring_ctx *ctx)
1744        __must_hold(&ctx->completion_lock)
1745{
1746        u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1747        struct io_kiocb *req, *tmp;
1748
1749        spin_lock_irq(&ctx->timeout_lock);
1750        list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1751                u32 events_needed, events_got;
1752
1753                if (io_is_timeout_noseq(req))
1754                        break;
1755
1756                /*
1757                 * Since seq can easily wrap around over time, subtract
1758                 * the last seq at which timeouts were flushed before comparing.
1759                 * Assuming not more than 2^31-1 events have happened since,
1760                 * these subtractions won't have wrapped, so we can check if
1761                 * target is in [last_seq, current_seq] by comparing the two.
1762                 */
1763                events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1764                events_got = seq - ctx->cq_last_tm_flush;
1765                if (events_got < events_needed)
1766                        break;
1767
1768                io_kill_timeout(req, 0);
1769        }
1770        ctx->cq_last_tm_flush = seq;
1771        spin_unlock_irq(&ctx->timeout_lock);
1772}
1773
1774static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1775{
1776        /* order cqe stores with ring update */
1777        smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1778}
1779
1780static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1781{
1782        if (ctx->off_timeout_used || ctx->drain_active) {
1783                spin_lock(&ctx->completion_lock);
1784                if (ctx->off_timeout_used)
1785                        io_flush_timeouts(ctx);
1786                if (ctx->drain_active)
1787                        io_queue_deferred(ctx);
1788                io_commit_cqring(ctx);
1789                spin_unlock(&ctx->completion_lock);
1790        }
1791        if (ctx->has_evfd)
1792                io_eventfd_signal(ctx);
1793}
1794
1795static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1796{
1797        struct io_rings *r = ctx->rings;
1798
1799        return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1800}
1801
1802static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1803{
1804        return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1805}
1806
1807static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1808{
1809        struct io_rings *rings = ctx->rings;
1810        unsigned tail, mask = ctx->cq_entries - 1;
1811
1812        /*
1813         * writes to the cq entry need to come after reading head; the
1814         * control dependency is enough as we're using WRITE_ONCE to
1815         * fill the cq entry
1816         */
1817        if (__io_cqring_events(ctx) == ctx->cq_entries)
1818                return NULL;
1819
1820        tail = ctx->cached_cq_tail++;
1821        return &rings->cqes[tail & mask];
1822}
1823
1824static void io_eventfd_signal(struct io_ring_ctx *ctx)
1825{
1826        struct io_ev_fd *ev_fd;
1827
1828        rcu_read_lock();
1829        /*
1830         * rcu_dereference ctx->io_ev_fd once and use it for both for checking
1831         * and eventfd_signal
1832         */
1833        ev_fd = rcu_dereference(ctx->io_ev_fd);
1834
1835        /*
1836         * Check again if ev_fd exists incase an io_eventfd_unregister call
1837         * completed between the NULL check of ctx->io_ev_fd at the start of
1838         * the function and rcu_read_lock.
1839         */
1840        if (unlikely(!ev_fd))
1841                goto out;
1842        if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1843                goto out;
1844
1845        if (!ev_fd->eventfd_async || io_wq_current_is_worker())
1846                eventfd_signal(ev_fd->cq_ev_fd, 1);
1847out:
1848        rcu_read_unlock();
1849}
1850
1851static inline void io_cqring_wake(struct io_ring_ctx *ctx)
1852{
1853        /*
1854         * wake_up_all() may seem excessive, but io_wake_function() and
1855         * io_should_wake() handle the termination of the loop and only
1856         * wake as many waiters as we need to.
1857         */
1858        if (wq_has_sleeper(&ctx->cq_wait))
1859                wake_up_all(&ctx->cq_wait);
1860}
1861
1862/*
1863 * This should only get called when at least one event has been posted.
1864 * Some applications rely on the eventfd notification count only changing
1865 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1866 * 1:1 relationship between how many times this function is called (and
1867 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1868 */
1869static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1870{
1871        if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
1872                     ctx->has_evfd))
1873                __io_commit_cqring_flush(ctx);
1874
1875        io_cqring_wake(ctx);
1876}
1877
1878static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1879{
1880        if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
1881                     ctx->has_evfd))
1882                __io_commit_cqring_flush(ctx);
1883
1884        if (ctx->flags & IORING_SETUP_SQPOLL)
1885                io_cqring_wake(ctx);
1886}
1887
1888/* Returns true if there are no backlogged entries after the flush */
1889static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1890{
1891        bool all_flushed, posted;
1892
1893        if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1894                return false;
1895
1896        posted = false;
1897        spin_lock(&ctx->completion_lock);
1898        while (!list_empty(&ctx->cq_overflow_list)) {
1899                struct io_uring_cqe *cqe = io_get_cqe(ctx);
1900                struct io_overflow_cqe *ocqe;
1901
1902                if (!cqe && !force)
1903                        break;
1904                ocqe = list_first_entry(&ctx->cq_overflow_list,
1905                                        struct io_overflow_cqe, list);
1906                if (cqe)
1907                        memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1908                else
1909                        io_account_cq_overflow(ctx);
1910
1911                posted = true;
1912                list_del(&ocqe->list);
1913                kfree(ocqe);
1914        }
1915
1916        all_flushed = list_empty(&ctx->cq_overflow_list);
1917        if (all_flushed) {
1918                clear_bit(0, &ctx->check_cq_overflow);
1919                WRITE_ONCE(ctx->rings->sq_flags,
1920                           ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1921        }
1922
1923        if (posted)
1924                io_commit_cqring(ctx);
1925        spin_unlock(&ctx->completion_lock);
1926        if (posted)
1927                io_cqring_ev_posted(ctx);
1928        return all_flushed;
1929}
1930
1931static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1932{
1933        bool ret = true;
1934
1935        if (test_bit(0, &ctx->check_cq_overflow)) {
1936                /* iopoll syncs against uring_lock, not completion_lock */
1937                if (ctx->flags & IORING_SETUP_IOPOLL)
1938                        mutex_lock(&ctx->uring_lock);
1939                ret = __io_cqring_overflow_flush(ctx, false);
1940                if (ctx->flags & IORING_SETUP_IOPOLL)
1941                        mutex_unlock(&ctx->uring_lock);
1942        }
1943
1944        return ret;
1945}
1946
1947/* must to be called somewhat shortly after putting a request */
1948static inline void io_put_task(struct task_struct *task, int nr)
1949{
1950        struct io_uring_task *tctx = task->io_uring;
1951
1952        if (likely(task == current)) {
1953                tctx->cached_refs += nr;
1954        } else {
1955                percpu_counter_sub(&tctx->inflight, nr);
1956                if (unlikely(atomic_read(&tctx->in_idle)))
1957                        wake_up(&tctx->wait);
1958                put_task_struct_many(task, nr);
1959        }
1960}
1961
1962static void io_task_refs_refill(struct io_uring_task *tctx)
1963{
1964        unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1965
1966        percpu_counter_add(&tctx->inflight, refill);
1967        refcount_add(refill, &current->usage);
1968        tctx->cached_refs += refill;
1969}
1970
1971static inline void io_get_task_refs(int nr)
1972{
1973        struct io_uring_task *tctx = current->io_uring;
1974
1975        tctx->cached_refs -= nr;
1976        if (unlikely(tctx->cached_refs < 0))
1977                io_task_refs_refill(tctx);
1978}
1979
1980static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1981{
1982        struct io_uring_task *tctx = task->io_uring;
1983        unsigned int refs = tctx->cached_refs;
1984
1985        if (refs) {
1986                tctx->cached_refs = 0;
1987                percpu_counter_sub(&tctx->inflight, refs);
1988                put_task_struct_many(task, refs);
1989        }
1990}
1991
1992static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1993                                     s32 res, u32 cflags)
1994{
1995        struct io_overflow_cqe *ocqe;
1996
1997        ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1998        if (!ocqe) {
1999                /*
2000                 * If we're in ring overflow flush mode, or in task cancel mode,
2001                 * or cannot allocate an overflow entry, then we need to drop it
2002                 * on the floor.
2003                 */
2004                io_account_cq_overflow(ctx);
2005                return false;
2006        }
2007        if (list_empty(&ctx->cq_overflow_list)) {
2008                set_bit(0, &ctx->check_cq_overflow);
2009                WRITE_ONCE(ctx->rings->sq_flags,
2010                           ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
2011
2012        }
2013        ocqe->cqe.user_data = user_data;
2014        ocqe->cqe.res = res;
2015        ocqe->cqe.flags = cflags;
2016        list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
2017        return true;
2018}
2019
2020static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
2021                                 s32 res, u32 cflags)
2022{
2023        struct io_uring_cqe *cqe;
2024
2025        /*
2026         * If we can't get a cq entry, userspace overflowed the
2027         * submission (by quite a lot). Increment the overflow count in
2028         * the ring.
2029         */
2030        cqe = io_get_cqe(ctx);
2031        if (likely(cqe)) {
2032                WRITE_ONCE(cqe->user_data, user_data);
2033                WRITE_ONCE(cqe->res, res);
2034                WRITE_ONCE(cqe->flags, cflags);
2035                return true;
2036        }
2037        return io_cqring_event_overflow(ctx, user_data, res, cflags);
2038}
2039
2040static inline bool __io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
2041{
2042        trace_io_uring_complete(req->ctx, req, req->user_data, res, cflags);
2043        return __io_fill_cqe(req->ctx, req->user_data, res, cflags);
2044}
2045
2046static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
2047{
2048        if (!(req->flags & REQ_F_CQE_SKIP))
2049                __io_fill_cqe_req(req, res, cflags);
2050}
2051
2052static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
2053                                     s32 res, u32 cflags)
2054{
2055        ctx->cq_extra++;
2056        trace_io_uring_complete(ctx, NULL, user_data, res, cflags);
2057        return __io_fill_cqe(ctx, user_data, res, cflags);
2058}
2059
2060static void __io_req_complete_post(struct io_kiocb *req, s32 res,
2061                                   u32 cflags)
2062{
2063        struct io_ring_ctx *ctx = req->ctx;
2064
2065        if (!(req->flags & REQ_F_CQE_SKIP))
2066                __io_fill_cqe_req(req, res, cflags);
2067        /*
2068         * If we're the last reference to this request, add to our locked
2069         * free_list cache.
2070         */
2071        if (req_ref_put_and_test(req)) {
2072                if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
2073                        if (req->flags & IO_DISARM_MASK)
2074                                io_disarm_next(req);
2075                        if (req->link) {
2076                                io_req_task_queue(req->link);
2077                                req->link = NULL;
2078                        }
2079                }
2080                io_req_put_rsrc(req, ctx);
2081                /*
2082                 * Selected buffer deallocation in io_clean_op() assumes that
2083                 * we don't hold ->completion_lock. Clean them here to avoid
2084                 * deadlocks.
2085                 */
2086                io_put_kbuf_comp(req);
2087                io_dismantle_req(req);
2088                io_put_task(req->task, 1);
2089                wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
2090                ctx->locked_free_nr++;
2091        }
2092}
2093
2094static void io_req_complete_post(struct io_kiocb *req, s32 res,
2095                                 u32 cflags)
2096{
2097        struct io_ring_ctx *ctx = req->ctx;
2098
2099        spin_lock(&ctx->completion_lock);
2100        __io_req_complete_post(req, res, cflags);
2101        io_commit_cqring(ctx);
2102        spin_unlock(&ctx->completion_lock);
2103        io_cqring_ev_posted(ctx);
2104}
2105
2106static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
2107                                         u32 cflags)
2108{
2109        req->result = res;
2110        req->cflags = cflags;
2111        req->flags |= REQ_F_COMPLETE_INLINE;
2112}
2113
2114static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
2115                                     s32 res, u32 cflags)
2116{
2117        if (issue_flags & IO_URING_F_COMPLETE_DEFER)
2118                io_req_complete_state(req, res, cflags);
2119        else
2120                io_req_complete_post(req, res, cflags);
2121}
2122
2123static inline void io_req_complete(struct io_kiocb *req, s32 res)
2124{
2125        __io_req_complete(req, 0, res, 0);
2126}
2127
2128static void io_req_complete_failed(struct io_kiocb *req, s32 res)
2129{
2130        req_set_fail(req);
2131        io_req_complete_post(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
2132}
2133
2134static void io_req_complete_fail_submit(struct io_kiocb *req)
2135{
2136        /*
2137         * We don't submit, fail them all, for that replace hardlinks with
2138         * normal links. Extra REQ_F_LINK is tolerated.
2139         */
2140        req->flags &= ~REQ_F_HARDLINK;
2141        req->flags |= REQ_F_LINK;
2142        io_req_complete_failed(req, req->result);
2143}
2144
2145/*
2146 * Don't initialise the fields below on every allocation, but do that in
2147 * advance and keep them valid across allocations.
2148 */
2149static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
2150{
2151        req->ctx = ctx;
2152        req->link = NULL;
2153        req->async_data = NULL;
2154        /* not necessary, but safer to zero */
2155        req->result = 0;
2156}
2157
2158static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
2159                                        struct io_submit_state *state)
2160{
2161        spin_lock(&ctx->completion_lock);
2162        wq_list_splice(&ctx->locked_free_list, &state->free_list);
2163        ctx->locked_free_nr = 0;
2164        spin_unlock(&ctx->completion_lock);
2165}
2166
2167/* Returns true IFF there are requests in the cache */
2168static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
2169{
2170        struct io_submit_state *state = &ctx->submit_state;
2171
2172        /*
2173         * If we have more than a batch's worth of requests in our IRQ side
2174         * locked cache, grab the lock and move them over to our submission
2175         * side cache.
2176         */
2177        if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
2178                io_flush_cached_locked_reqs(ctx, state);
2179        return !!state->free_list.next;
2180}
2181
2182/*
2183 * A request might get retired back into the request caches even before opcode
2184 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
2185 * Because of that, io_alloc_req() should be called only under ->uring_lock
2186 * and with extra caution to not get a request that is still worked on.
2187 */
2188static __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
2189        __must_hold(&ctx->uring_lock)
2190{
2191        struct io_submit_state *state = &ctx->submit_state;
2192        gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
2193        void *reqs[IO_REQ_ALLOC_BATCH];
2194        struct io_kiocb *req;
2195        int ret, i;
2196
2197        if (likely(state->free_list.next || io_flush_cached_reqs(ctx)))
2198                return true;
2199
2200        ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
2201
2202        /*
2203         * Bulk alloc is all-or-nothing. If we fail to get a batch,
2204         * retry single alloc to be on the safe side.
2205         */
2206        if (unlikely(ret <= 0)) {
2207                reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2208                if (!reqs[0])
2209                        return false;
2210                ret = 1;
2211        }
2212
2213        percpu_ref_get_many(&ctx->refs, ret);
2214        for (i = 0; i < ret; i++) {
2215                req = reqs[i];
2216
2217                io_preinit_req(req, ctx);
2218                wq_stack_add_head(&req->comp_list, &state->free_list);
2219        }
2220        return true;
2221}
2222
2223static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
2224{
2225        if (unlikely(!ctx->submit_state.free_list.next))
2226                return __io_alloc_req_refill(ctx);
2227        return true;
2228}
2229
2230static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
2231{
2232        struct io_wq_work_node *node;
2233
2234        node = wq_stack_extract(&ctx->submit_state.free_list);
2235        return container_of(node, struct io_kiocb, comp_list);
2236}
2237
2238static inline void io_put_file(struct file *file)
2239{
2240        if (file)
2241                fput(file);
2242}
2243
2244static inline void io_dismantle_req(struct io_kiocb *req)
2245{
2246        unsigned int flags = req->flags;
2247
2248        if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
2249                io_clean_op(req);
2250        if (!(flags & REQ_F_FIXED_FILE))
2251                io_put_file(req->file);
2252}
2253
2254static __cold void __io_free_req(struct io_kiocb *req)
2255{
2256        struct io_ring_ctx *ctx = req->ctx;
2257
2258        io_req_put_rsrc(req, ctx);
2259        io_dismantle_req(req);
2260        io_put_task(req->task, 1);
2261
2262        spin_lock(&ctx->completion_lock);
2263        wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
2264        ctx->locked_free_nr++;
2265        spin_unlock(&ctx->completion_lock);
2266}
2267
2268static inline void io_remove_next_linked(struct io_kiocb *req)
2269{
2270        struct io_kiocb *nxt = req->link;
2271
2272        req->link = nxt->link;
2273        nxt->link = NULL;
2274}
2275
2276static bool io_kill_linked_timeout(struct io_kiocb *req)
2277        __must_hold(&req->ctx->completion_lock)
2278        __must_hold(&req->ctx->timeout_lock)
2279{
2280        struct io_kiocb *link = req->link;
2281
2282        if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2283                struct io_timeout_data *io = link->async_data;
2284
2285                io_remove_next_linked(req);
2286                link->timeout.head = NULL;
2287                if (hrtimer_try_to_cancel(&io->timer) != -1) {
2288                        list_del(&link->timeout.list);
2289                        /* leave REQ_F_CQE_SKIP to io_fill_cqe_req */
2290                        io_fill_cqe_req(link, -ECANCELED, 0);
2291                        io_put_req_deferred(link);
2292                        return true;
2293                }
2294        }
2295        return false;
2296}
2297
2298static void io_fail_links(struct io_kiocb *req)
2299        __must_hold(&req->ctx->completion_lock)
2300{
2301        struct io_kiocb *nxt, *link = req->link;
2302        bool ignore_cqes = req->flags & REQ_F_SKIP_LINK_CQES;
2303
2304        req->link = NULL;
2305        while (link) {
2306                long res = -ECANCELED;
2307
2308                if (link->flags & REQ_F_FAIL)
2309                        res = link->result;
2310
2311                nxt = link->link;
2312                link->link = NULL;
2313
2314                trace_io_uring_fail_link(req->ctx, req, req->user_data,
2315                                        req->opcode, link);
2316
2317                if (!ignore_cqes) {
2318                        link->flags &= ~REQ_F_CQE_SKIP;
2319                        io_fill_cqe_req(link, res, 0);
2320                }
2321                io_put_req_deferred(link);
2322                link = nxt;
2323        }
2324}
2325
2326static bool io_disarm_next(struct io_kiocb *req)
2327        __must_hold(&req->ctx->completion_lock)
2328{
2329        bool posted = false;
2330
2331        if (req->flags & REQ_F_ARM_LTIMEOUT) {
2332                struct io_kiocb *link = req->link;
2333
2334                req->flags &= ~REQ_F_ARM_LTIMEOUT;
2335                if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2336                        io_remove_next_linked(req);
2337                        /* leave REQ_F_CQE_SKIP to io_fill_cqe_req */
2338                        io_fill_cqe_req(link, -ECANCELED, 0);
2339                        io_put_req_deferred(link);
2340                        posted = true;
2341                }
2342        } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2343                struct io_ring_ctx *ctx = req->ctx;
2344
2345                spin_lock_irq(&ctx->timeout_lock);
2346                posted = io_kill_linked_timeout(req);
2347                spin_unlock_irq(&ctx->timeout_lock);
2348        }
2349        if (unlikely((req->flags & REQ_F_FAIL) &&
2350                     !(req->flags & REQ_F_HARDLINK))) {
2351                posted |= (req->link != NULL);
2352                io_fail_links(req);
2353        }
2354        return posted;
2355}
2356
2357static void __io_req_find_next_prep(struct io_kiocb *req)
2358{
2359        struct io_ring_ctx *ctx = req->ctx;
2360        bool posted;
2361
2362        spin_lock(&ctx->completion_lock);
2363        posted = io_disarm_next(req);
2364        if (posted)
2365                io_commit_cqring(ctx);
2366        spin_unlock(&ctx->completion_lock);
2367        if (posted)
2368                io_cqring_ev_posted(ctx);
2369}
2370
2371static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2372{
2373        struct io_kiocb *nxt;
2374
2375        if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2376                return NULL;
2377        /*
2378         * If LINK is set, we have dependent requests in this chain. If we
2379         * didn't fail this request, queue the first one up, moving any other
2380         * dependencies to the next request. In case of failure, fail the rest
2381         * of the chain.
2382         */
2383        if (unlikely(req->flags & IO_DISARM_MASK))
2384                __io_req_find_next_prep(req);
2385        nxt = req->link;
2386        req->link = NULL;
2387        return nxt;
2388}
2389
2390static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2391{
2392        if (!ctx)
2393                return;
2394        if (*locked) {
2395                io_submit_flush_completions(ctx);
2396                mutex_unlock(&ctx->uring_lock);
2397                *locked = false;
2398        }
2399        percpu_ref_put(&ctx->refs);
2400}
2401
2402static inline void ctx_commit_and_unlock(struct io_ring_ctx *ctx)
2403{
2404        io_commit_cqring(ctx);
2405        spin_unlock(&ctx->completion_lock);
2406        io_cqring_ev_posted(ctx);
2407}
2408
2409static void handle_prev_tw_list(struct io_wq_work_node *node,
2410                                struct io_ring_ctx **ctx, bool *uring_locked)
2411{
2412        if (*ctx && !*uring_locked)
2413                spin_lock(&(*ctx)->completion_lock);
2414
2415        do {
2416                struct io_wq_work_node *next = node->next;
2417                struct io_kiocb *req = container_of(node, struct io_kiocb,
2418                                                    io_task_work.node);
2419
2420                prefetch(container_of(next, struct io_kiocb, io_task_work.node));
2421
2422                if (req->ctx != *ctx) {
2423                        if (unlikely(!*uring_locked && *ctx))
2424                                ctx_commit_and_unlock(*ctx);
2425
2426                        ctx_flush_and_put(*ctx, uring_locked);
2427                        *ctx = req->ctx;
2428                        /* if not contended, grab and improve batching */
2429                        *uring_locked = mutex_trylock(&(*ctx)->uring_lock);
2430                        percpu_ref_get(&(*ctx)->refs);
2431                        if (unlikely(!*uring_locked))
2432                                spin_lock(&(*ctx)->completion_lock);
2433                }
2434                if (likely(*uring_locked))
2435                        req->io_task_work.func(req, uring_locked);
2436                else
2437                        __io_req_complete_post(req, req->result,
2438                                                io_put_kbuf_comp(req));
2439                node = next;
2440        } while (node);
2441
2442        if (unlikely(!*uring_locked))
2443                ctx_commit_and_unlock(*ctx);
2444}
2445
2446static void handle_tw_list(struct io_wq_work_node *node,
2447                           struct io_ring_ctx **ctx, bool *locked)
2448{
2449        do {
2450                struct io_wq_work_node *next = node->next;
2451                struct io_kiocb *req = container_of(node, struct io_kiocb,
2452                                                    io_task_work.node);
2453
2454                prefetch(container_of(next, struct io_kiocb, io_task_work.node));
2455
2456                if (req->ctx != *ctx) {
2457                        ctx_flush_and_put(*ctx, locked);
2458                        *ctx = req->ctx;
2459                        /* if not contended, grab and improve batching */
2460                        *locked = mutex_trylock(&(*ctx)->uring_lock);
2461                        percpu_ref_get(&(*ctx)->refs);
2462                }
2463                req->io_task_work.func(req, locked);
2464                node = next;
2465        } while (node);
2466}
2467
2468static void tctx_task_work(struct callback_head *cb)
2469{
2470        bool uring_locked = false;
2471        struct io_ring_ctx *ctx = NULL;
2472        struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2473                                                  task_work);
2474
2475        while (1) {
2476                struct io_wq_work_node *node1, *node2;
2477
2478                if (!tctx->task_list.first &&
2479                    !tctx->prior_task_list.first && uring_locked)
2480                        io_submit_flush_completions(ctx);
2481
2482                spin_lock_irq(&tctx->task_lock);
2483                node1 = tctx->prior_task_list.first;
2484                node2 = tctx->task_list.first;
2485                INIT_WQ_LIST(&tctx->task_list);
2486                INIT_WQ_LIST(&tctx->prior_task_list);
2487                if (!node2 && !node1)
2488                        tctx->task_running = false;
2489                spin_unlock_irq(&tctx->task_lock);
2490                if (!node2 && !node1)
2491                        break;
2492
2493                if (node1)
2494                        handle_prev_tw_list(node1, &ctx, &uring_locked);
2495
2496                if (node2)
2497                        handle_tw_list(node2, &ctx, &uring_locked);
2498                cond_resched();
2499        }
2500
2501        ctx_flush_and_put(ctx, &uring_locked);
2502
2503        /* relaxed read is enough as only the task itself sets ->in_idle */
2504        if (unlikely(atomic_read(&tctx->in_idle)))
2505                io_uring_drop_tctx_refs(current);
2506}
2507
2508static void io_req_task_work_add(struct io_kiocb *req, bool priority)
2509{
2510        struct task_struct *tsk = req->task;
2511        struct io_uring_task *tctx = tsk->io_uring;
2512        enum task_work_notify_mode notify;
2513        struct io_wq_work_node *node;
2514        unsigned long flags;
2515        bool running;
2516
2517        WARN_ON_ONCE(!tctx);
2518
2519        io_drop_inflight_file(req);
2520
2521        spin_lock_irqsave(&tctx->task_lock, flags);
2522        if (priority)
2523                wq_list_add_tail(&req->io_task_work.node, &tctx->prior_task_list);
2524        else
2525                wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2526        running = tctx->task_running;
2527        if (!running)
2528                tctx->task_running = true;
2529        spin_unlock_irqrestore(&tctx->task_lock, flags);
2530
2531        /* task_work already pending, we're done */
2532        if (running)
2533                return;
2534
2535        /*
2536         * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2537         * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2538         * processing task_work. There's no reliable way to tell if TWA_RESUME
2539         * will do the job.
2540         */
2541        notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2542        if (likely(!task_work_add(tsk, &tctx->task_work, notify))) {
2543                if (notify == TWA_NONE)
2544                        wake_up_process(tsk);
2545                return;
2546        }
2547
2548        spin_lock_irqsave(&tctx->task_lock, flags);
2549        tctx->task_running = false;
2550        node = wq_list_merge(&tctx->prior_task_list, &tctx->task_list);
2551        spin_unlock_irqrestore(&tctx->task_lock, flags);
2552
2553        while (node) {
2554                req = container_of(node, struct io_kiocb, io_task_work.node);
2555                node = node->next;
2556                if (llist_add(&req->io_task_work.fallback_node,
2557                              &req->ctx->fallback_llist))
2558                        schedule_delayed_work(&req->ctx->fallback_work, 1);
2559        }
2560}
2561
2562static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2563{
2564        struct io_ring_ctx *ctx = req->ctx;
2565
2566        /* not needed for normal modes, but SQPOLL depends on it */
2567        io_tw_lock(ctx, locked);
2568        io_req_complete_failed(req, req->result);
2569}
2570
2571static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2572{
2573        struct io_ring_ctx *ctx = req->ctx;
2574
2575        io_tw_lock(ctx, locked);
2576        /* req->task == current here, checking PF_EXITING is safe */
2577        if (likely(!(req->task->flags & PF_EXITING)))
2578                __io_queue_sqe(req);
2579        else
2580                io_req_complete_failed(req, -EFAULT);
2581}
2582
2583static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2584{
2585        req->result = ret;
2586        req->io_task_work.func = io_req_task_cancel;
2587        io_req_task_work_add(req, false);
2588}
2589
2590static void io_req_task_queue(struct io_kiocb *req)
2591{
2592        req->io_task_work.func = io_req_task_submit;
2593        io_req_task_work_add(req, false);
2594}
2595
2596static void io_req_task_queue_reissue(struct io_kiocb *req)
2597{
2598        req->io_task_work.func = io_queue_async_work;
2599        io_req_task_work_add(req, false);
2600}
2601
2602static inline void io_queue_next(struct io_kiocb *req)
2603{
2604        struct io_kiocb *nxt = io_req_find_next(req);
2605
2606        if (nxt)
2607                io_req_task_queue(nxt);
2608}
2609
2610static void io_free_req(struct io_kiocb *req)
2611{
2612        io_queue_next(req);
2613        __io_free_req(req);
2614}
2615
2616static void io_free_req_work(struct io_kiocb *req, bool *locked)
2617{
2618        io_free_req(req);
2619}
2620
2621static void io_free_batch_list(struct io_ring_ctx *ctx,
2622                                struct io_wq_work_node *node)
2623        __must_hold(&ctx->uring_lock)
2624{
2625        struct task_struct *task = NULL;
2626        int task_refs = 0;
2627
2628        do {
2629                struct io_kiocb *req = container_of(node, struct io_kiocb,
2630                                                    comp_list);
2631
2632                if (unlikely(req->flags & REQ_F_REFCOUNT)) {
2633                        node = req->comp_list.next;
2634                        if (!req_ref_put_and_test(req))
2635                                continue;
2636                }
2637
2638                io_req_put_rsrc_locked(req, ctx);
2639                io_queue_next(req);
2640                io_dismantle_req(req);
2641
2642                if (req->task != task) {
2643                        if (task)
2644                                io_put_task(task, task_refs);
2645                        task = req->task;
2646                        task_refs = 0;
2647                }
2648                task_refs++;
2649                node = req->comp_list.next;
2650                wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
2651        } while (node);
2652
2653        if (task)
2654                io_put_task(task, task_refs);
2655}
2656
2657static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
2658        __must_hold(&ctx->uring_lock)
2659{
2660        struct io_wq_work_node *node, *prev;
2661        struct io_submit_state *state = &ctx->submit_state;
2662
2663        if (state->flush_cqes) {
2664                spin_lock(&ctx->completion_lock);
2665                wq_list_for_each(node, prev, &state->compl_reqs) {
2666                        struct io_kiocb *req = container_of(node, struct io_kiocb,
2667                                                    comp_list);
2668
2669                        if (!(req->flags & REQ_F_CQE_SKIP))
2670                                __io_fill_cqe_req(req, req->result, req->cflags);
2671                        if ((req->flags & REQ_F_POLLED) && req->apoll) {
2672                                struct async_poll *apoll = req->apoll;
2673
2674                                if (apoll->double_poll)
2675                                        kfree(apoll->double_poll);
2676                                list_add(&apoll->poll.wait.entry,
2677                                                &ctx->apoll_cache);
2678                                req->flags &= ~REQ_F_POLLED;
2679                        }
2680                }
2681
2682                io_commit_cqring(ctx);
2683                spin_unlock(&ctx->completion_lock);
2684                io_cqring_ev_posted(ctx);
2685                state->flush_cqes = false;
2686        }
2687
2688        io_free_batch_list(ctx, state->compl_reqs.first);
2689        INIT_WQ_LIST(&state->compl_reqs);
2690}
2691
2692/*
2693 * Drop reference to request, return next in chain (if there is one) if this
2694 * was the last reference to this request.
2695 */
2696static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2697{
2698        struct io_kiocb *nxt = NULL;
2699
2700        if (req_ref_put_and_test(req)) {
2701                nxt = io_req_find_next(req);
2702                __io_free_req(req);
2703        }
2704        return nxt;
2705}
2706
2707static inline void io_put_req(struct io_kiocb *req)
2708{
2709        if (req_ref_put_and_test(req))
2710                io_free_req(req);
2711}
2712
2713static inline void io_put_req_deferred(struct io_kiocb *req)
2714{
2715        if (req_ref_put_and_test(req)) {
2716                req->io_task_work.func = io_free_req_work;
2717                io_req_task_work_add(req, false);
2718        }
2719}
2720
2721static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2722{
2723        /* See comment at the top of this file */
2724        smp_rmb();
2725        return __io_cqring_events(ctx);
2726}
2727
2728static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2729{
2730        struct io_rings *rings = ctx->rings;
2731
2732        /* make sure SQ entry isn't read before tail */
2733        return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2734}
2735
2736static inline bool io_run_task_work(void)
2737{
2738        if (test_thread_flag(TIF_NOTIFY_SIGNAL) || task_work_pending(current)) {
2739                __set_current_state(TASK_RUNNING);
2740                clear_notify_signal();
2741                if (task_work_pending(current))
2742                        task_work_run();
2743                return true;
2744        }
2745
2746        return false;
2747}
2748
2749static int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
2750{
2751        struct io_wq_work_node *pos, *start, *prev;
2752        unsigned int poll_flags = BLK_POLL_NOSLEEP;
2753        DEFINE_IO_COMP_BATCH(iob);
2754        int nr_events = 0;
2755
2756        /*
2757         * Only spin for completions if we don't have multiple devices hanging
2758         * off our complete list.
2759         */
2760        if (ctx->poll_multi_queue || force_nonspin)
2761                poll_flags |= BLK_POLL_ONESHOT;
2762
2763        wq_list_for_each(pos, start, &ctx->iopoll_list) {
2764                struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
2765                struct kiocb *kiocb = &req->rw.kiocb;
2766                int ret;
2767
2768                /*
2769                 * Move completed and retryable entries to our local lists.
2770                 * If we find a request that requires polling, break out
2771                 * and complete those lists first, if we have entries there.
2772                 */
2773                if (READ_ONCE(req->iopoll_completed))
2774                        break;
2775
2776                ret = kiocb->ki_filp->f_op->iopoll(kiocb, &iob, poll_flags);
2777                if (unlikely(ret < 0))
2778                        return ret;
2779                else if (ret)
2780                        poll_flags |= BLK_POLL_ONESHOT;
2781
2782                /* iopoll may have completed current req */
2783                if (!rq_list_empty(iob.req_list) ||
2784                    READ_ONCE(req->iopoll_completed))
2785                        break;
2786        }
2787
2788        if (!rq_list_empty(iob.req_list))
2789                iob.complete(&iob);
2790        else if (!pos)
2791                return 0;
2792
2793        prev = start;
2794        wq_list_for_each_resume(pos, prev) {
2795                struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
2796
2797                /* order with io_complete_rw_iopoll(), e.g. ->result updates */
2798                if (!smp_load_acquire(&req->iopoll_completed))
2799                        break;
2800                nr_events++;
2801                if (unlikely(req->flags & REQ_F_CQE_SKIP))
2802                        continue;
2803                __io_fill_cqe_req(req, req->result, io_put_kbuf(req, 0));
2804        }
2805
2806        if (unlikely(!nr_events))
2807                return 0;
2808
2809        io_commit_cqring(ctx);
2810        io_cqring_ev_posted_iopoll(ctx);
2811        pos = start ? start->next : ctx->iopoll_list.first;
2812        wq_list_cut(&ctx->iopoll_list, prev, start);
2813        io_free_batch_list(ctx, pos);
2814        return nr_events;
2815}
2816
2817/*
2818 * We can't just wait for polled events to come to us, we have to actively
2819 * find and complete them.
2820 */
2821static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2822{
2823        if (!(ctx->flags & IORING_SETUP_IOPOLL))
2824                return;
2825
2826        mutex_lock(&ctx->uring_lock);
2827        while (!wq_list_empty(&ctx->iopoll_list)) {
2828                /* let it sleep and repeat later if can't complete a request */
2829                if (io_do_iopoll(ctx, true) == 0)
2830                        break;
2831                /*
2832                 * Ensure we allow local-to-the-cpu processing to take place,
2833                 * in this case we need to ensure that we reap all events.
2834                 * Also let task_work, etc. to progress by releasing the mutex
2835                 */
2836                if (need_resched()) {
2837                        mutex_unlock(&ctx->uring_lock);
2838                        cond_resched();
2839                        mutex_lock(&ctx->uring_lock);
2840                }
2841        }
2842        mutex_unlock(&ctx->uring_lock);
2843}
2844
2845static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2846{
2847        unsigned int nr_events = 0;
2848        int ret = 0;
2849
2850        /*
2851         * We disallow the app entering submit/complete with polling, but we
2852         * still need to lock the ring to prevent racing with polled issue
2853         * that got punted to a workqueue.
2854         */
2855        mutex_lock(&ctx->uring_lock);
2856        /*
2857         * Don't enter poll loop if we already have events pending.
2858         * If we do, we can potentially be spinning for commands that
2859         * already triggered a CQE (eg in error).
2860         */
2861        if (test_bit(0, &ctx->check_cq_overflow))
2862                __io_cqring_overflow_flush(ctx, false);
2863        if (io_cqring_events(ctx))
2864                goto out;
2865        do {
2866                /*
2867                 * If a submit got punted to a workqueue, we can have the
2868                 * application entering polling for a command before it gets
2869                 * issued. That app will hold the uring_lock for the duration
2870                 * of the poll right here, so we need to take a breather every
2871                 * now and then to ensure that the issue has a chance to add
2872                 * the poll to the issued list. Otherwise we can spin here
2873                 * forever, while the workqueue is stuck trying to acquire the
2874                 * very same mutex.
2875                 */
2876                if (wq_list_empty(&ctx->iopoll_list)) {
2877                        u32 tail = ctx->cached_cq_tail;
2878
2879                        mutex_unlock(&ctx->uring_lock);
2880                        io_run_task_work();
2881                        mutex_lock(&ctx->uring_lock);
2882
2883                        /* some requests don't go through iopoll_list */
2884                        if (tail != ctx->cached_cq_tail ||
2885                            wq_list_empty(&ctx->iopoll_list))
2886                                break;
2887                }
2888                ret = io_do_iopoll(ctx, !min);
2889                if (ret < 0)
2890                        break;
2891                nr_events += ret;
2892                ret = 0;
2893        } while (nr_events < min && !need_resched());
2894out:
2895        mutex_unlock(&ctx->uring_lock);
2896        return ret;
2897}
2898
2899static void kiocb_end_write(struct io_kiocb *req)
2900{
2901        /*
2902         * Tell lockdep we inherited freeze protection from submission
2903         * thread.
2904         */
2905        if (req->flags & REQ_F_ISREG) {
2906                struct super_block *sb = file_inode(req->file)->i_sb;
2907
2908                __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2909                sb_end_write(sb);
2910        }
2911}
2912
2913#ifdef CONFIG_BLOCK
2914static bool io_resubmit_prep(struct io_kiocb *req)
2915{
2916        struct io_async_rw *rw = req->async_data;
2917
2918        if (!req_has_async_data(req))
2919                return !io_req_prep_async(req);
2920        iov_iter_restore(&rw->s.iter, &rw->s.iter_state);
2921        return true;
2922}
2923
2924static bool io_rw_should_reissue(struct io_kiocb *req)
2925{
2926        umode_t mode = file_inode(req->file)->i_mode;
2927        struct io_ring_ctx *ctx = req->ctx;
2928
2929        if (!S_ISBLK(mode) && !S_ISREG(mode))
2930                return false;
2931        if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2932            !(ctx->flags & IORING_SETUP_IOPOLL)))
2933                return false;
2934        /*
2935         * If ref is dying, we might be running poll reap from the exit work.
2936         * Don't attempt to reissue from that path, just let it fail with
2937         * -EAGAIN.
2938         */
2939        if (percpu_ref_is_dying(&ctx->refs))
2940                return false;
2941        /*
2942         * Play it safe and assume not safe to re-import and reissue if we're
2943         * not in the original thread group (or in task context).
2944         */
2945        if (!same_thread_group(req->task, current) || !in_task())
2946                return false;
2947        return true;
2948}
2949#else
2950static bool io_resubmit_prep(struct io_kiocb *req)
2951{
2952        return false;
2953}
2954static bool io_rw_should_reissue(struct io_kiocb *req)
2955{
2956        return false;
2957}
2958#endif
2959
2960static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2961{
2962        if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
2963                kiocb_end_write(req);
2964                fsnotify_modify(req->file);
2965        } else {
2966                fsnotify_access(req->file);
2967        }
2968        if (unlikely(res != req->result)) {
2969                if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2970                    io_rw_should_reissue(req)) {
2971                        req->flags |= REQ_F_REISSUE;
2972                        return true;
2973                }
2974                req_set_fail(req);
2975                req->result = res;
2976        }
2977        return false;
2978}
2979
2980static inline void io_req_task_complete(struct io_kiocb *req, bool *locked)
2981{
2982        int res = req->result;
2983
2984        if (*locked) {
2985                io_req_complete_state(req, res, io_put_kbuf(req, 0));
2986                io_req_add_compl_list(req);
2987        } else {
2988                io_req_complete_post(req, res,
2989                                        io_put_kbuf(req, IO_URING_F_UNLOCKED));
2990        }
2991}
2992
2993static void __io_complete_rw(struct io_kiocb *req, long res,
2994                             unsigned int issue_flags)
2995{
2996        if (__io_complete_rw_common(req, res))
2997                return;
2998        __io_req_complete(req, issue_flags, req->result,
2999                                io_put_kbuf(req, issue_flags));
3000}
3001
3002static void io_complete_rw(struct kiocb *kiocb, long res)
3003{
3004        struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3005
3006        if (__io_complete_rw_common(req, res))
3007                return;
3008        req->result = res;
3009        req->io_task_work.func = io_req_task_complete;
3010        io_req_task_work_add(req, !!(req->ctx->flags & IORING_SETUP_SQPOLL));
3011}
3012
3013static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
3014{
3015        struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3016
3017        if (kiocb->ki_flags & IOCB_WRITE)
3018                kiocb_end_write(req);
3019        if (unlikely(res != req->result)) {
3020                if (res == -EAGAIN && io_rw_should_reissue(req)) {
3021                        req->flags |= REQ_F_REISSUE;
3022                        return;
3023                }
3024                req->result = res;
3025        }
3026
3027        /* order with io_iopoll_complete() checking ->iopoll_completed */
3028        smp_store_release(&req->iopoll_completed, 1);
3029}
3030
3031/*
3032 * After the iocb has been issued, it's safe to be found on the poll list.
3033 * Adding the kiocb to the list AFTER submission ensures that we don't
3034 * find it from a io_do_iopoll() thread before the issuer is done
3035 * accessing the kiocb cookie.
3036 */
3037static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
3038{
3039        struct io_ring_ctx *ctx = req->ctx;
3040        const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
3041
3042        /* workqueue context doesn't hold uring_lock, grab it now */
3043        if (unlikely(needs_lock))
3044                mutex_lock(&ctx->uring_lock);
3045
3046        /*
3047         * Track whether we have multiple files in our lists. This will impact
3048         * how we do polling eventually, not spinning if we're on potentially
3049         * different devices.
3050         */
3051        if (wq_list_empty(&ctx->iopoll_list)) {
3052                ctx->poll_multi_queue = false;
3053        } else if (!ctx->poll_multi_queue) {
3054                struct io_kiocb *list_req;
3055
3056                list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
3057                                        comp_list);
3058                if (list_req->file != req->file)
3059                        ctx->poll_multi_queue = true;
3060        }
3061
3062        /*
3063         * For fast devices, IO may have already completed. If it has, add
3064         * it to the front so we find it first.
3065         */
3066        if (READ_ONCE(req->iopoll_completed))
3067                wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
3068        else
3069                wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
3070
3071        if (unlikely(needs_lock)) {
3072                /*
3073                 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
3074                 * in sq thread task context or in io worker task context. If
3075                 * current task context is sq thread, we don't need to check
3076                 * whether should wake up sq thread.
3077                 */
3078                if ((ctx->flags & IORING_SETUP_SQPOLL) &&
3079                    wq_has_sleeper(&ctx->sq_data->wait))
3080                        wake_up(&ctx->sq_data->wait);
3081
3082                mutex_unlock(&ctx->uring_lock);
3083        }
3084}
3085
3086static bool io_bdev_nowait(struct block_device *bdev)
3087{
3088        return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
3089}
3090
3091/*
3092 * If we tracked the file through the SCM inflight mechanism, we could support
3093 * any file. For now, just ensure that anything potentially problematic is done
3094 * inline.
3095 */
3096static bool __io_file_supports_nowait(struct file *file, umode_t mode)
3097{
3098        if (S_ISBLK(mode)) {
3099                if (IS_ENABLED(CONFIG_BLOCK) &&
3100                    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
3101                        return true;
3102                return false;
3103        }
3104        if (S_ISSOCK(mode))
3105                return true;
3106        if (S_ISREG(mode)) {
3107                if (IS_ENABLED(CONFIG_BLOCK) &&
3108                    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
3109                    file->f_op != &io_uring_fops)
3110                        return true;
3111                return false;
3112        }
3113
3114        /* any ->read/write should understand O_NONBLOCK */
3115        if (file->f_flags & O_NONBLOCK)
3116                return true;
3117        return file->f_mode & FMODE_NOWAIT;
3118}
3119
3120/*
3121 * If we tracked the file through the SCM inflight mechanism, we could support
3122 * any file. For now, just ensure that anything potentially problematic is done
3123 * inline.
3124 */
3125static unsigned int io_file_get_flags(struct file *file)
3126{
3127        umode_t mode = file_inode(file)->i_mode;
3128        unsigned int res = 0;
3129
3130        if (S_ISREG(mode))
3131                res |= FFS_ISREG;
3132        if (__io_file_supports_nowait(file, mode))
3133                res |= FFS_NOWAIT;
3134        return res;
3135}
3136
3137static inline bool io_file_supports_nowait(struct io_kiocb *req)
3138{
3139        return req->flags & REQ_F_SUPPORT_NOWAIT;
3140}
3141
3142static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3143{
3144        struct kiocb *kiocb = &req->rw.kiocb;
3145        unsigned ioprio;
3146        int ret;
3147
3148        kiocb->ki_pos = READ_ONCE(sqe->off);
3149
3150        ioprio = READ_ONCE(sqe->ioprio);
3151        if (ioprio) {
3152                ret = ioprio_check_cap(ioprio);
3153                if (ret)
3154                        return ret;
3155
3156                kiocb->ki_ioprio = ioprio;
3157        } else {
3158                kiocb->ki_ioprio = get_current_ioprio();
3159        }
3160
3161        req->imu = NULL;
3162        req->rw.addr = READ_ONCE(sqe->addr);
3163        req->rw.len = READ_ONCE(sqe->len);
3164        req->rw.flags = READ_ONCE(sqe->rw_flags);
3165        req->buf_index = READ_ONCE(sqe->buf_index);
3166        return 0;
3167}
3168
3169static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3170{
3171        switch (ret) {
3172        case -EIOCBQUEUED:
3173                break;
3174        case -ERESTARTSYS:
3175        case -ERESTARTNOINTR:
3176        case -ERESTARTNOHAND:
3177        case -ERESTART_RESTARTBLOCK:
3178                /*
3179                 * We can't just restart the syscall, since previously
3180                 * submitted sqes may already be in progress. Just fail this
3181                 * IO with EINTR.
3182                 */
3183                ret = -EINTR;
3184                fallthrough;
3185        default:
3186                kiocb->ki_complete(kiocb, ret);
3187        }
3188}
3189
3190static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3191{
3192        struct kiocb *kiocb = &req->rw.kiocb;
3193
3194        if (kiocb->ki_pos != -1)
3195                return &kiocb->ki_pos;
3196
3197        if (!(req->file->f_mode & FMODE_STREAM)) {
3198                req->flags |= REQ_F_CUR_POS;
3199                kiocb->ki_pos = req->file->f_pos;
3200                return &kiocb->ki_pos;
3201        }
3202
3203        kiocb->ki_pos = 0;
3204        return NULL;
3205}
3206
3207static void kiocb_done(struct io_kiocb *req, ssize_t ret,
3208                       unsigned int issue_flags)
3209{
3210        struct io_async_rw *io = req->async_data;
3211
3212        /* add previously done IO, if any */
3213        if (req_has_async_data(req) && io->bytes_done > 0) {
3214                if (ret < 0)
3215                        ret = io->bytes_done;
3216                else
3217                        ret += io->bytes_done;
3218        }
3219
3220        if (req->flags & REQ_F_CUR_POS)
3221                req->file->f_pos = req->rw.kiocb.ki_pos;
3222        if (ret >= 0 && (req->rw.kiocb.ki_complete == io_complete_rw))
3223                __io_complete_rw(req, ret, issue_flags);
3224        else
3225                io_rw_done(&req->rw.kiocb, ret);
3226
3227        if (req->flags & REQ_F_REISSUE) {
3228                req->flags &= ~REQ_F_REISSUE;
3229                if (io_resubmit_prep(req))
3230                        io_req_task_queue_reissue(req);
3231                else
3232                        io_req_task_queue_fail(req, ret);
3233        }
3234}
3235
3236static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3237                             struct io_mapped_ubuf *imu)
3238{
3239        size_t len = req->rw.len;
3240        u64 buf_end, buf_addr = req->rw.addr;
3241        size_t offset;
3242
3243        if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3244                return -EFAULT;
3245        /* not inside the mapped region */
3246        if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3247                return -EFAULT;
3248
3249        /*
3250         * May not be a start of buffer, set size appropriately
3251         * and advance us to the beginning.
3252         */
3253        offset = buf_addr - imu->ubuf;
3254        iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3255
3256        if (offset) {
3257                /*
3258                 * Don't use iov_iter_advance() here, as it's really slow for
3259                 * using the latter parts of a big fixed buffer - it iterates
3260                 * over each segment manually. We can cheat a bit here, because
3261                 * we know that:
3262                 *
3263                 * 1) it's a BVEC iter, we set it up
3264                 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3265                 *    first and last bvec
3266                 *
3267                 * So just find our index, and adjust the iterator afterwards.
3268                 * If the offset is within the first bvec (or the whole first
3269                 * bvec, just use iov_iter_advance(). This makes it easier
3270                 * since we can just skip the first segment, which may not
3271                 * be PAGE_SIZE aligned.
3272                 */
3273                const struct bio_vec *bvec = imu->bvec;
3274
3275                if (offset <= bvec->bv_len) {
3276                        iov_iter_advance(iter, offset);
3277                } else {
3278                        unsigned long seg_skip;
3279
3280                        /* skip first vec */
3281                        offset -= bvec->bv_len;
3282                        seg_skip = 1 + (offset >> PAGE_SHIFT);
3283
3284                        iter->bvec = bvec + seg_skip;
3285                        iter->nr_segs -= seg_skip;
3286                        iter->count -= bvec->bv_len + offset;
3287                        iter->iov_offset = offset & ~PAGE_MASK;
3288                }
3289        }
3290
3291        return 0;
3292}
3293
3294static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3295                           unsigned int issue_flags)
3296{
3297        struct io_mapped_ubuf *imu = req->imu;
3298        u16 index, buf_index = req->buf_index;
3299
3300        if (likely(!imu)) {
3301                struct io_ring_ctx *ctx = req->ctx;
3302
3303                if (unlikely(buf_index >= ctx->nr_user_bufs))
3304                        return -EFAULT;
3305                io_req_set_rsrc_node(req, ctx, issue_flags);
3306                index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3307                imu = READ_ONCE(ctx->user_bufs[index]);
3308                req->imu = imu;
3309        }
3310        return __io_import_fixed(req, rw, iter, imu);
3311}
3312
3313static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3314{
3315        if (needs_lock)
3316                mutex_unlock(&ctx->uring_lock);
3317}
3318
3319static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3320{
3321        /*
3322         * "Normal" inline submissions always hold the uring_lock, since we
3323         * grab it from the system call. Same is true for the SQPOLL offload.
3324         * The only exception is when we've detached the request and issue it
3325         * from an async worker thread, grab the lock for that case.
3326         */
3327        if (needs_lock)
3328                mutex_lock(&ctx->uring_lock);
3329}
3330
3331static void io_buffer_add_list(struct io_ring_ctx *ctx,
3332                               struct io_buffer_list *bl, unsigned int bgid)
3333{
3334        struct list_head *list;
3335
3336        list = &ctx->io_buffers[hash_32(bgid, IO_BUFFERS_HASH_BITS)];
3337        INIT_LIST_HEAD(&bl->buf_list);
3338        bl->bgid = bgid;
3339        list_add(&bl->list, list);
3340}
3341
3342static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3343                                          int bgid, unsigned int issue_flags)
3344{
3345        struct io_buffer *kbuf = req->kbuf;
3346        bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
3347        struct io_ring_ctx *ctx = req->ctx;
3348        struct io_buffer_list *bl;
3349
3350        if (req->flags & REQ_F_BUFFER_SELECTED)
3351                return kbuf;
3352
3353        io_ring_submit_lock(ctx, needs_lock);
3354
3355        lockdep_assert_held(&ctx->uring_lock);
3356
3357        bl = io_buffer_get_list(ctx, bgid);
3358        if (bl && !list_empty(&bl->buf_list)) {
3359                kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
3360                list_del(&kbuf->list);
3361                if (*len > kbuf->len)
3362                        *len = kbuf->len;
3363                req->flags |= REQ_F_BUFFER_SELECTED;
3364                req->kbuf = kbuf;
3365        } else {
3366                kbuf = ERR_PTR(-ENOBUFS);
3367        }
3368
3369        io_ring_submit_unlock(req->ctx, needs_lock);
3370        return kbuf;
3371}
3372
3373static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3374                                        unsigned int issue_flags)
3375{
3376        struct io_buffer *kbuf;
3377        u16 bgid;
3378
3379        bgid = req->buf_index;
3380        kbuf = io_buffer_select(req, len, bgid, issue_flags);
3381        if (IS_ERR(kbuf))
3382                return kbuf;
3383        return u64_to_user_ptr(kbuf->addr);
3384}
3385
3386#ifdef CONFIG_COMPAT
3387static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3388                                unsigned int issue_flags)
3389{
3390        struct compat_iovec __user *uiov;
3391        compat_ssize_t clen;
3392        void __user *buf;
3393        ssize_t len;
3394
3395        uiov = u64_to_user_ptr(req->rw.addr);
3396        if (!access_ok(uiov, sizeof(*uiov)))
3397                return -EFAULT;
3398        if (__get_user(clen, &uiov->iov_len))
3399                return -EFAULT;
3400        if (clen < 0)
3401                return -EINVAL;
3402
3403        len = clen;
3404        buf = io_rw_buffer_select(req, &len, issue_flags);
3405        if (IS_ERR(buf))
3406                return PTR_ERR(buf);
3407        iov[0].iov_base = buf;
3408        iov[0].iov_len = (compat_size_t) len;
3409        return 0;
3410}
3411#endif
3412
3413static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3414                                      unsigned int issue_flags)
3415{
3416        struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3417        void __user *buf;
3418        ssize_t len;
3419
3420        if (copy_from_user(iov, uiov, sizeof(*uiov)))
3421                return -EFAULT;
3422
3423        len = iov[0].iov_len;
3424        if (len < 0)
3425                return -EINVAL;
3426        buf = io_rw_buffer_select(req, &len, issue_flags);
3427        if (IS_ERR(buf))
3428                return PTR_ERR(buf);
3429        iov[0].iov_base = buf;
3430        iov[0].iov_len = len;
3431        return 0;
3432}
3433
3434static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3435                                    unsigned int issue_flags)
3436{
3437        if (req->flags & REQ_F_BUFFER_SELECTED) {
3438                struct io_buffer *kbuf = req->kbuf;
3439
3440                iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3441                iov[0].iov_len = kbuf->len;
3442                return 0;
3443        }
3444        if (req->rw.len != 1)
3445                return -EINVAL;
3446
3447#ifdef CONFIG_COMPAT
3448        if (req->ctx->compat)
3449                return io_compat_import(req, iov, issue_flags);
3450#endif
3451
3452        return __io_iov_buffer_select(req, iov, issue_flags);
3453}
3454
3455static struct iovec *__io_import_iovec(int rw, struct io_kiocb *req,
3456                                       struct io_rw_state *s,
3457                                       unsigned int issue_flags)
3458{
3459        struct iov_iter *iter = &s->iter;
3460        u8 opcode = req->opcode;
3461        struct iovec *iovec;
3462        void __user *buf;
3463        size_t sqe_len;
3464        ssize_t ret;
3465
3466        if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3467                ret = io_import_fixed(req, rw, iter, issue_flags);
3468                if (ret)
3469                        return ERR_PTR(ret);
3470                return NULL;
3471        }
3472
3473        /* buffer index only valid with fixed read/write, or buffer select  */
3474        if (unlikely(req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT)))
3475                return ERR_PTR(-EINVAL);
3476
3477        buf = u64_to_user_ptr(req->rw.addr);
3478        sqe_len = req->rw.len;
3479
3480        if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3481                if (req->flags & REQ_F_BUFFER_SELECT) {
3482                        buf = io_rw_buffer_select(req, &sqe_len, issue_flags);
3483                        if (IS_ERR(buf))
3484                                return ERR_CAST(buf);
3485                        req->rw.len = sqe_len;
3486                }
3487
3488                ret = import_single_range(rw, buf, sqe_len, s->fast_iov, iter);
3489                if (ret)
3490                        return ERR_PTR(ret);
3491                return NULL;
3492        }
3493
3494        iovec = s->fast_iov;
3495        if (req->flags & REQ_F_BUFFER_SELECT) {
3496                ret = io_iov_buffer_select(req, iovec, issue_flags);
3497                if (ret)
3498                        return ERR_PTR(ret);
3499                iov_iter_init(iter, rw, iovec, 1, iovec->iov_len);
3500                return NULL;
3501        }
3502
3503        ret = __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, &iovec, iter,
3504                              req->ctx->compat);
3505        if (unlikely(ret < 0))
3506                return ERR_PTR(ret);
3507        return iovec;
3508}
3509
3510static inline int io_import_iovec(int rw, struct io_kiocb *req,
3511                                  struct iovec **iovec, struct io_rw_state *s,
3512                                  unsigned int issue_flags)
3513{
3514        *iovec = __io_import_iovec(rw, req, s, issue_flags);
3515        if (unlikely(IS_ERR(*iovec)))
3516                return PTR_ERR(*iovec);
3517
3518        iov_iter_save_state(&s->iter, &s->iter_state);
3519        return 0;
3520}
3521
3522static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3523{
3524        return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3525}
3526
3527/*
3528 * For files that don't have ->read_iter() and ->write_iter(), handle them
3529 * by looping over ->read() or ->write() manually.
3530 */
3531static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3532{
3533        struct kiocb *kiocb = &req->rw.kiocb;
3534        struct file *file = req->file;
3535        ssize_t ret = 0;
3536        loff_t *ppos;
3537
3538        /*
3539         * Don't support polled IO through this interface, and we can't
3540         * support non-blocking either. For the latter, this just causes
3541         * the kiocb to be handled from an async context.
3542         */
3543        if (kiocb->ki_flags & IOCB_HIPRI)
3544                return -EOPNOTSUPP;
3545        if ((kiocb->ki_flags & IOCB_NOWAIT) &&
3546            !(kiocb->ki_filp->f_flags & O_NONBLOCK))
3547                return -EAGAIN;
3548
3549        ppos = io_kiocb_ppos(kiocb);
3550
3551        while (iov_iter_count(iter)) {
3552                struct iovec iovec;
3553                ssize_t nr;
3554
3555                if (!iov_iter_is_bvec(iter)) {
3556                        iovec = iov_iter_iovec(iter);
3557                } else {
3558                        iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3559                        iovec.iov_len = req->rw.len;
3560                }
3561
3562                if (rw == READ) {
3563                        nr = file->f_op->read(file, iovec.iov_base,
3564                                              iovec.iov_len, ppos);
3565                } else {
3566                        nr = file->f_op->write(file, iovec.iov_base,
3567                                               iovec.iov_len, ppos);
3568                }
3569
3570                if (nr < 0) {
3571                        if (!ret)
3572                                ret = nr;
3573                        break;
3574                }
3575                ret += nr;
3576                if (!iov_iter_is_bvec(iter)) {
3577                        iov_iter_advance(iter, nr);
3578                } else {
3579                        req->rw.addr += nr;
3580                        req->rw.len -= nr;
3581                        if (!req->rw.len)
3582                                break;
3583                }
3584                if (nr != iovec.iov_len)
3585                        break;
3586        }
3587
3588        return ret;
3589}
3590
3591static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3592                          const struct iovec *fast_iov, struct iov_iter *iter)
3593{
3594        struct io_async_rw *rw = req->async_data;
3595
3596        memcpy(&rw->s.iter, iter, sizeof(*iter));
3597        rw->free_iovec = iovec;
3598        rw->bytes_done = 0;
3599        /* can only be fixed buffers, no need to do anything */
3600        if (iov_iter_is_bvec(iter))
3601                return;
3602        if (!iovec) {
3603                unsigned iov_off = 0;
3604
3605                rw->s.iter.iov = rw->s.fast_iov;
3606                if (iter->iov != fast_iov) {
3607                        iov_off = iter->iov - fast_iov;
3608                        rw->s.iter.iov += iov_off;
3609                }
3610                if (rw->s.fast_iov != fast_iov)
3611                        memcpy(rw->s.fast_iov + iov_off, fast_iov + iov_off,
3612                               sizeof(struct iovec) * iter->nr_segs);
3613        } else {
3614                req->flags |= REQ_F_NEED_CLEANUP;
3615        }
3616}
3617
3618static inline bool io_alloc_async_data(struct io_kiocb *req)
3619{
3620        WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3621        req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3622        if (req->async_data) {
3623                req->flags |= REQ_F_ASYNC_DATA;
3624                return false;
3625        }
3626        return true;
3627}
3628
3629static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3630                             struct io_rw_state *s, bool force)
3631{
3632        if (!force && !io_op_defs[req->opcode].needs_async_setup)
3633                return 0;
3634        if (!req_has_async_data(req)) {
3635                struct io_async_rw *iorw;
3636
3637                if (io_alloc_async_data(req)) {
3638                        kfree(iovec);
3639                        return -ENOMEM;
3640                }
3641
3642                io_req_map_rw(req, iovec, s->fast_iov, &s->iter);
3643                iorw = req->async_data;
3644                /* we've copied and mapped the iter, ensure state is saved */
3645                iov_iter_save_state(&iorw->s.iter, &iorw->s.iter_state);
3646        }
3647        return 0;
3648}
3649
3650static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3651{
3652        struct io_async_rw *iorw = req->async_data;
3653        struct iovec *iov;
3654        int ret;
3655
3656        /* submission path, ->uring_lock should already be taken */
3657        ret = io_import_iovec(rw, req, &iov, &iorw->s, 0);
3658        if (unlikely(ret < 0))
3659                return ret;
3660
3661        iorw->bytes_done = 0;
3662        iorw->free_iovec = iov;
3663        if (iov)
3664                req->flags |= REQ_F_NEED_CLEANUP;
3665        return 0;
3666}
3667
3668/*
3669 * This is our waitqueue callback handler, registered through __folio_lock_async()
3670 * when we initially tried to do the IO with the iocb armed our waitqueue.
3671 * This gets called when the page is unlocked, and we generally expect that to
3672 * happen when the page IO is completed and the page is now uptodate. This will
3673 * queue a task_work based retry of the operation, attempting to copy the data
3674 * again. If the latter fails because the page was NOT uptodate, then we will
3675 * do a thread based blocking retry of the operation. That's the unexpected
3676 * slow path.
3677 */
3678static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3679                             int sync, void *arg)
3680{
3681        struct wait_page_queue *wpq;
3682        struct io_kiocb *req = wait->private;
3683        struct wait_page_key *key = arg;
3684
3685        wpq = container_of(wait, struct wait_page_queue, wait);
3686
3687        if (!wake_page_match(wpq, key))
3688                return 0;
3689
3690        req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3691        list_del_init(&wait->entry);
3692        io_req_task_queue(req);
3693        return 1;
3694}
3695
3696/*
3697 * This controls whether a given IO request should be armed for async page
3698 * based retry. If we return false here, the request is handed to the async
3699 * worker threads for retry. If we're doing buffered reads on a regular file,
3700 * we prepare a private wait_page_queue entry and retry the operation. This
3701 * will either succeed because the page is now uptodate and unlocked, or it
3702 * will register a callback when the page is unlocked at IO completion. Through
3703 * that callback, io_uring uses task_work to setup a retry of the operation.
3704 * That retry will attempt the buffered read again. The retry will generally
3705 * succeed, or in rare cases where it fails, we then fall back to using the
3706 * async worker threads for a blocking retry.
3707 */
3708static bool io_rw_should_retry(struct io_kiocb *req)
3709{
3710        struct io_async_rw *rw = req->async_data;
3711        struct wait_page_queue *wait = &rw->wpq;
3712        struct kiocb *kiocb = &req->rw.kiocb;
3713
3714        /* never retry for NOWAIT, we just complete with -EAGAIN */
3715        if (req->flags & REQ_F_NOWAIT)
3716                return false;
3717
3718        /* Only for buffered IO */
3719        if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3720                return false;
3721
3722        /*
3723         * just use poll if we can, and don't attempt if the fs doesn't
3724         * support callback based unlocks
3725         */
3726        if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3727                return false;
3728
3729        wait->wait.func = io_async_buf_func;
3730        wait->wait.private = req;
3731        wait->wait.flags = 0;
3732        INIT_LIST_HEAD(&wait->wait.entry);
3733        kiocb->ki_flags |= IOCB_WAITQ;
3734        kiocb->ki_flags &= ~IOCB_NOWAIT;
3735        kiocb->ki_waitq = wait;
3736        return true;
3737}
3738
3739static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3740{
3741        if (likely(req->file->f_op->read_iter))
3742                return call_read_iter(req->file, &req->rw.kiocb, iter);
3743        else if (req->file->f_op->read)
3744                return loop_rw_iter(READ, req, iter);
3745        else
3746                return -EINVAL;
3747}
3748
3749static bool need_read_all(struct io_kiocb *req)
3750{
3751        return req->flags & REQ_F_ISREG ||
3752                S_ISBLK(file_inode(req->file)->i_mode);
3753}
3754
3755static int io_rw_init_file(struct io_kiocb *req, fmode_t mode)
3756{
3757        struct kiocb *kiocb = &req->rw.kiocb;
3758        struct io_ring_ctx *ctx = req->ctx;
3759        struct file *file = req->file;
3760        int ret;
3761
3762        if (unlikely(!file || !(file->f_mode & mode)))
3763                return -EBADF;
3764
3765        if (!io_req_ffs_set(req))
3766                req->flags |= io_file_get_flags(file) << REQ_F_SUPPORT_NOWAIT_BIT;
3767
3768        kiocb->ki_flags = iocb_flags(file);
3769        ret = kiocb_set_rw_flags(kiocb, req->rw.flags);
3770        if (unlikely(ret))
3771                return ret;
3772
3773        /*
3774         * If the file is marked O_NONBLOCK, still allow retry for it if it
3775         * supports async. Otherwise it's impossible to use O_NONBLOCK files
3776         * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
3777         */
3778        if ((kiocb->ki_flags & IOCB_NOWAIT) ||
3779            ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req)))
3780                req->flags |= REQ_F_NOWAIT;
3781
3782        if (ctx->flags & IORING_SETUP_IOPOLL) {
3783                if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
3784                        return -EOPNOTSUPP;
3785
3786                kiocb->private = NULL;
3787                kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
3788                kiocb->ki_complete = io_complete_rw_iopoll;
3789                req->iopoll_completed = 0;
3790        } else {
3791                if (kiocb->ki_flags & IOCB_HIPRI)
3792                        return -EINVAL;
3793                kiocb->ki_complete = io_complete_rw;
3794        }
3795
3796        return 0;
3797}
3798
3799static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3800{
3801        struct io_rw_state __s, *s = &__s;
3802        struct iovec *iovec;
3803        struct kiocb *kiocb = &req->rw.kiocb;
3804        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3805        struct io_async_rw *rw;
3806        ssize_t ret, ret2;
3807        loff_t *ppos;
3808
3809        if (!req_has_async_data(req)) {
3810                ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
3811                if (unlikely(ret < 0))
3812                        return ret;
3813        } else {
3814                /*
3815                 * Safe and required to re-import if we're using provided
3816                 * buffers, as we dropped the selected one before retry.
3817                 */
3818                if (req->flags & REQ_F_BUFFER_SELECT) {
3819                        ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
3820                        if (unlikely(ret < 0))
3821                                return ret;
3822                }
3823
3824                rw = req->async_data;
3825                s = &rw->s;
3826                /*
3827                 * We come here from an earlier attempt, restore our state to
3828                 * match in case it doesn't. It's cheap enough that we don't
3829                 * need to make this conditional.
3830                 */
3831                iov_iter_restore(&s->iter, &s->iter_state);
3832                iovec = NULL;
3833        }
3834        ret = io_rw_init_file(req, FMODE_READ);
3835        if (unlikely(ret)) {
3836                kfree(iovec);
3837                return ret;
3838        }
3839        req->result = iov_iter_count(&s->iter);
3840
3841        if (force_nonblock) {
3842                /* If the file doesn't support async, just async punt */
3843                if (unlikely(!io_file_supports_nowait(req))) {
3844                        ret = io_setup_async_rw(req, iovec, s, true);
3845                        return ret ?: -EAGAIN;
3846                }
3847                kiocb->ki_flags |= IOCB_NOWAIT;
3848        } else {
3849                /* Ensure we clear previously set non-block flag */
3850                kiocb->ki_flags &= ~IOCB_NOWAIT;
3851        }
3852
3853        ppos = io_kiocb_update_pos(req);
3854
3855        ret = rw_verify_area(READ, req->file, ppos, req->result);
3856        if (unlikely(ret)) {
3857                kfree(iovec);
3858                return ret;
3859        }
3860
3861        ret = io_iter_do_read(req, &s->iter);
3862
3863        if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3864                req->flags &= ~REQ_F_REISSUE;
3865                /* if we can poll, just do that */
3866                if (req->opcode == IORING_OP_READ && file_can_poll(req->file))
3867                        return -EAGAIN;
3868                /* IOPOLL retry should happen for io-wq threads */
3869                if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3870                        goto done;
3871                /* no retry on NONBLOCK nor RWF_NOWAIT */
3872                if (req->flags & REQ_F_NOWAIT)
3873                        goto done;
3874                ret = 0;
3875        } else if (ret == -EIOCBQUEUED) {
3876                goto out_free;
3877        } else if (ret == req->result || ret <= 0 || !force_nonblock ||
3878                   (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3879                /* read all, failed, already did sync or don't want to retry */
3880                goto done;
3881        }
3882
3883        /*
3884         * Don't depend on the iter state matching what was consumed, or being
3885         * untouched in case of error. Restore it and we'll advance it
3886         * manually if we need to.
3887         */
3888        iov_iter_restore(&s->iter, &s->iter_state);
3889
3890        ret2 = io_setup_async_rw(req, iovec, s, true);
3891        if (ret2)
3892                return ret2;
3893
3894        iovec = NULL;
3895        rw = req->async_data;
3896        s = &rw->s;
3897        /*
3898         * Now use our persistent iterator and state, if we aren't already.
3899         * We've restored and mapped the iter to match.
3900         */
3901
3902        do {
3903                /*
3904                 * We end up here because of a partial read, either from
3905                 * above or inside this loop. Advance the iter by the bytes
3906                 * that were consumed.
3907                 */
3908                iov_iter_advance(&s->iter, ret);
3909                if (!iov_iter_count(&s->iter))
3910                        break;
3911                rw->bytes_done += ret;
3912                iov_iter_save_state(&s->iter, &s->iter_state);
3913
3914                /* if we can retry, do so with the callbacks armed */
3915                if (!io_rw_should_retry(req)) {
3916                        kiocb->ki_flags &= ~IOCB_WAITQ;
3917                        return -EAGAIN;
3918                }
3919
3920                /*
3921                 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3922                 * we get -EIOCBQUEUED, then we'll get a notification when the
3923                 * desired page gets unlocked. We can also get a partial read
3924                 * here, and if we do, then just retry at the new offset.
3925                 */
3926                ret = io_iter_do_read(req, &s->iter);
3927                if (ret == -EIOCBQUEUED)
3928                        return 0;
3929                /* we got some bytes, but not all. retry. */
3930                kiocb->ki_flags &= ~IOCB_WAITQ;
3931                iov_iter_restore(&s->iter, &s->iter_state);
3932        } while (ret > 0);
3933done:
3934        kiocb_done(req, ret, issue_flags);
3935out_free:
3936        /* it's faster to check here then delegate to kfree */
3937        if (iovec)
3938                kfree(iovec);
3939        return 0;
3940}
3941
3942static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3943{
3944        struct io_rw_state __s, *s = &__s;
3945        struct iovec *iovec;
3946        struct kiocb *kiocb = &req->rw.kiocb;
3947        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3948        ssize_t ret, ret2;
3949        loff_t *ppos;
3950
3951        if (!req_has_async_data(req)) {
3952                ret = io_import_iovec(WRITE, req, &iovec, s, issue_flags);
3953                if (unlikely(ret < 0))
3954                        return ret;
3955        } else {
3956                struct io_async_rw *rw = req->async_data;
3957
3958                s = &rw->s;
3959                iov_iter_restore(&s->iter, &s->iter_state);
3960                iovec = NULL;
3961        }
3962        ret = io_rw_init_file(req, FMODE_WRITE);
3963        if (unlikely(ret)) {
3964                kfree(iovec);
3965                return ret;
3966        }
3967        req->result = iov_iter_count(&s->iter);
3968
3969        if (force_nonblock) {
3970                /* If the file doesn't support async, just async punt */
3971                if (unlikely(!io_file_supports_nowait(req)))
3972                        goto copy_iov;
3973
3974                /* file path doesn't support NOWAIT for non-direct_IO */
3975                if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3976                    (req->flags & REQ_F_ISREG))
3977                        goto copy_iov;
3978
3979                kiocb->ki_flags |= IOCB_NOWAIT;
3980        } else {
3981                /* Ensure we clear previously set non-block flag */
3982                kiocb->ki_flags &= ~IOCB_NOWAIT;
3983        }
3984
3985        ppos = io_kiocb_update_pos(req);
3986
3987        ret = rw_verify_area(WRITE, req->file, ppos, req->result);
3988        if (unlikely(ret))
3989                goto out_free;
3990
3991        /*
3992         * Open-code file_start_write here to grab freeze protection,
3993         * which will be released by another thread in
3994         * io_complete_rw().  Fool lockdep by telling it the lock got
3995         * released so that it doesn't complain about the held lock when
3996         * we return to userspace.
3997         */
3998        if (req->flags & REQ_F_ISREG) {
3999                sb_start_write(file_inode(req->file)->i_sb);
4000                __sb_writers_release(file_inode(req->file)->i_sb,
4001                                        SB_FREEZE_WRITE);
4002        }
4003        kiocb->ki_flags |= IOCB_WRITE;
4004
4005        if (likely(req->file->f_op->write_iter))
4006                ret2 = call_write_iter(req->file, kiocb, &s->iter);
4007        else if (req->file->f_op->write)
4008                ret2 = loop_rw_iter(WRITE, req, &s->iter);
4009        else
4010                ret2 = -EINVAL;
4011
4012        if (req->flags & REQ_F_REISSUE) {
4013                req->flags &= ~REQ_F_REISSUE;
4014                ret2 = -EAGAIN;
4015        }
4016
4017        /*
4018         * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
4019         * retry them without IOCB_NOWAIT.
4020         */
4021        if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
4022                ret2 = -EAGAIN;
4023        /* no retry on NONBLOCK nor RWF_NOWAIT */
4024        if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
4025                goto done;
4026        if (!force_nonblock || ret2 != -EAGAIN) {
4027                /* IOPOLL retry should happen for io-wq threads */
4028                if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
4029                        goto copy_iov;
4030done:
4031                kiocb_done(req, ret2, issue_flags);
4032        } else {
4033copy_iov:
4034                iov_iter_restore(&s->iter, &s->iter_state);
4035                ret = io_setup_async_rw(req, iovec, s, false);
4036                return ret ?: -EAGAIN;
4037        }
4038out_free:
4039        /* it's reportedly faster than delegating the null check to kfree() */
4040        if (iovec)
4041                kfree(iovec);
4042        return ret;
4043}
4044
4045static int io_renameat_prep(struct io_kiocb *req,
4046                            const struct io_uring_sqe *sqe)
4047{
4048        struct io_rename *ren = &req->rename;
4049        const char __user *oldf, *newf;
4050
4051        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4052                return -EINVAL;
4053        if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4054                return -EINVAL;
4055        if (unlikely(req->flags & REQ_F_FIXED_FILE))
4056                return -EBADF;
4057
4058        ren->old_dfd = READ_ONCE(sqe->fd);
4059        oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
4060        newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4061        ren->new_dfd = READ_ONCE(sqe->len);
4062        ren->flags = READ_ONCE(sqe->rename_flags);
4063
4064        ren->oldpath = getname(oldf);
4065        if (IS_ERR(ren->oldpath))
4066                return PTR_ERR(ren->oldpath);
4067
4068        ren->newpath = getname(newf);
4069        if (IS_ERR(ren->newpath)) {
4070                putname(ren->oldpath);
4071                return PTR_ERR(ren->newpath);
4072        }
4073
4074        req->flags |= REQ_F_NEED_CLEANUP;
4075        return 0;
4076}
4077
4078static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
4079{
4080        struct io_rename *ren = &req->rename;
4081        int ret;
4082
4083        if (issue_flags & IO_URING_F_NONBLOCK)
4084                return -EAGAIN;
4085
4086        ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
4087                                ren->newpath, ren->flags);
4088
4089        req->flags &= ~REQ_F_NEED_CLEANUP;
4090        if (ret < 0)
4091                req_set_fail(req);
4092        io_req_complete(req, ret);
4093        return 0;
4094}
4095
4096static int io_unlinkat_prep(struct io_kiocb *req,
4097                            const struct io_uring_sqe *sqe)
4098{
4099        struct io_unlink *un = &req->unlink;
4100        const char __user *fname;
4101
4102        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4103                return -EINVAL;
4104        if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
4105            sqe->splice_fd_in)
4106                return -EINVAL;
4107        if (unlikely(req->flags & REQ_F_FIXED_FILE))
4108                return -EBADF;
4109
4110        un->dfd = READ_ONCE(sqe->fd);
4111
4112        un->flags = READ_ONCE(sqe->unlink_flags);
4113        if (un->flags & ~AT_REMOVEDIR)
4114                return -EINVAL;
4115
4116        fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4117        un->filename = getname(fname);
4118        if (IS_ERR(un->filename))
4119                return PTR_ERR(un->filename);
4120
4121        req->flags |= REQ_F_NEED_CLEANUP;
4122        return 0;
4123}
4124
4125static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
4126{
4127        struct io_unlink *un = &req->unlink;
4128        int ret;
4129
4130        if (issue_flags & IO_URING_F_NONBLOCK)
4131                return -EAGAIN;
4132
4133        if (un->flags & AT_REMOVEDIR)
4134                ret = do_rmdir(un->dfd, un->filename);
4135        else
4136                ret = do_unlinkat(un->dfd, un->filename);
4137
4138        req->flags &= ~REQ_F_NEED_CLEANUP;
4139        if (ret < 0)
4140                req_set_fail(req);
4141        io_req_complete(req, ret);
4142        return 0;
4143}
4144
4145static int io_mkdirat_prep(struct io_kiocb *req,
4146                            const struct io_uring_sqe *sqe)
4147{
4148        struct io_mkdir *mkd = &req->mkdir;
4149        const char __user *fname;
4150
4151        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4152                return -EINVAL;
4153        if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
4154            sqe->splice_fd_in)
4155                return -EINVAL;
4156        if (unlikely(req->flags & REQ_F_FIXED_FILE))
4157                return -EBADF;
4158
4159        mkd->dfd = READ_ONCE(sqe->fd);
4160        mkd->mode = READ_ONCE(sqe->len);
4161
4162        fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4163        mkd->filename = getname(fname);
4164        if (IS_ERR(mkd->filename))
4165                return PTR_ERR(mkd->filename);
4166
4167        req->flags |= REQ_F_NEED_CLEANUP;
4168        return 0;
4169}
4170
4171static int io_mkdirat(struct io_kiocb *req, unsigned int issue_flags)
4172{
4173        struct io_mkdir *mkd = &req->mkdir;
4174        int ret;
4175
4176        if (issue_flags & IO_URING_F_NONBLOCK)
4177                return -EAGAIN;
4178
4179        ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
4180
4181        req->flags &= ~REQ_F_NEED_CLEANUP;
4182        if (ret < 0)
4183                req_set_fail(req);
4184        io_req_complete(req, ret);
4185        return 0;
4186}
4187
4188static int io_symlinkat_prep(struct io_kiocb *req,
4189                            const struct io_uring_sqe *sqe)
4190{
4191        struct io_symlink *sl = &req->symlink;
4192        const char __user *oldpath, *newpath;
4193
4194        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4195                return -EINVAL;
4196        if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
4197            sqe->splice_fd_in)
4198                return -EINVAL;
4199        if (unlikely(req->flags & REQ_F_FIXED_FILE))
4200                return -EBADF;
4201
4202        sl->new_dfd = READ_ONCE(sqe->fd);
4203        oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
4204        newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4205
4206        sl->oldpath = getname(oldpath);
4207        if (IS_ERR(sl->oldpath))
4208                return PTR_ERR(sl->oldpath);
4209
4210        sl->newpath = getname(newpath);
4211        if (IS_ERR(sl->newpath)) {
4212                putname(sl->oldpath);
4213                return PTR_ERR(sl->newpath);
4214        }
4215
4216        req->flags |= REQ_F_NEED_CLEANUP;
4217        return 0;
4218}
4219
4220static int io_symlinkat(struct io_kiocb *req, unsigned int issue_flags)
4221{
4222        struct io_symlink *sl = &req->symlink;
4223        int ret;
4224
4225        if (issue_flags & IO_URING_F_NONBLOCK)
4226                return -EAGAIN;
4227
4228        ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
4229
4230        req->flags &= ~REQ_F_NEED_CLEANUP;
4231        if (ret < 0)
4232                req_set_fail(req);
4233        io_req_complete(req, ret);
4234        return 0;
4235}
4236
4237static int io_linkat_prep(struct io_kiocb *req,
4238                            const struct io_uring_sqe *sqe)
4239{
4240        struct io_hardlink *lnk = &req->hardlink;
4241        const char __user *oldf, *newf;
4242
4243        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4244                return -EINVAL;
4245        if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4246                return -EINVAL;
4247        if (unlikely(req->flags & REQ_F_FIXED_FILE))
4248                return -EBADF;
4249
4250        lnk->old_dfd = READ_ONCE(sqe->fd);
4251        lnk->new_dfd = READ_ONCE(sqe->len);
4252        oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
4253        newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4254        lnk->flags = READ_ONCE(sqe->hardlink_flags);
4255
4256        lnk->oldpath = getname(oldf);
4257        if (IS_ERR(lnk->oldpath))
4258                return PTR_ERR(lnk->oldpath);
4259
4260        lnk->newpath = getname(newf);
4261        if (IS_ERR(lnk->newpath)) {
4262                putname(lnk->oldpath);
4263                return PTR_ERR(lnk->newpath);
4264        }
4265
4266        req->flags |= REQ_F_NEED_CLEANUP;
4267        return 0;
4268}
4269
4270static int io_linkat(struct io_kiocb *req, unsigned int issue_flags)
4271{
4272        struct io_hardlink *lnk = &req->hardlink;
4273        int ret;
4274
4275        if (issue_flags & IO_URING_F_NONBLOCK)
4276                return -EAGAIN;
4277
4278        ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
4279                                lnk->newpath, lnk->flags);
4280
4281        req->flags &= ~REQ_F_NEED_CLEANUP;
4282        if (ret < 0)
4283                req_set_fail(req);
4284        io_req_complete(req, ret);
4285        return 0;
4286}
4287
4288static int io_shutdown_prep(struct io_kiocb *req,
4289                            const struct io_uring_sqe *sqe)
4290{
4291#if defined(CONFIG_NET)
4292        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4293                return -EINVAL;
4294        if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
4295                     sqe->buf_index || sqe->splice_fd_in))
4296                return -EINVAL;
4297
4298        req->shutdown.how = READ_ONCE(sqe->len);
4299        return 0;
4300#else
4301        return -EOPNOTSUPP;
4302#endif
4303}
4304
4305static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
4306{
4307#if defined(CONFIG_NET)
4308        struct socket *sock;
4309        int ret;
4310
4311        if (issue_flags & IO_URING_F_NONBLOCK)
4312                return -EAGAIN;
4313
4314        sock = sock_from_file(req->file);
4315        if (unlikely(!sock))
4316                return -ENOTSOCK;
4317
4318        ret = __sys_shutdown_sock(sock, req->shutdown.how);
4319        if (ret < 0)
4320                req_set_fail(req);
4321        io_req_complete(req, ret);
4322        return 0;
4323#else
4324        return -EOPNOTSUPP;
4325#endif
4326}
4327
4328static int __io_splice_prep(struct io_kiocb *req,
4329                            const struct io_uring_sqe *sqe)
4330{
4331        struct io_splice *sp = &req->splice;
4332        unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4333
4334        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4335                return -EINVAL;
4336
4337        sp->len = READ_ONCE(sqe->len);
4338        sp->flags = READ_ONCE(sqe->splice_flags);
4339        if (unlikely(sp->flags & ~valid_flags))
4340                return -EINVAL;
4341        sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4342        return 0;
4343}
4344
4345static int io_tee_prep(struct io_kiocb *req,
4346                       const struct io_uring_sqe *sqe)
4347{
4348        if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4349                return -EINVAL;
4350        return __io_splice_prep(req, sqe);
4351}
4352
4353static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4354{
4355        struct io_splice *sp = &req->splice;
4356        struct file *out = sp->file_out;
4357        unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4358        struct file *in;
4359        long ret = 0;
4360
4361        if (issue_flags & IO_URING_F_NONBLOCK)
4362                return -EAGAIN;
4363
4364        if (sp->flags & SPLICE_F_FD_IN_FIXED)
4365                in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
4366        else
4367                in = io_file_get_normal(req, sp->splice_fd_in);
4368        if (!in) {
4369                ret = -EBADF;
4370                goto done;
4371        }
4372
4373        if (sp->len)
4374                ret = do_tee(in, out, sp->len, flags);
4375
4376        if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4377                io_put_file(in);
4378done:
4379        if (ret != sp->len)
4380                req_set_fail(req);
4381        io_req_complete(req, ret);
4382        return 0;
4383}
4384
4385static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4386{
4387        struct io_splice *sp = &req->splice;
4388
4389        sp->off_in = READ_ONCE(sqe->splice_off_in);
4390        sp->off_out = READ_ONCE(sqe->off);
4391        return __io_splice_prep(req, sqe);
4392}
4393
4394static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4395{
4396        struct io_splice *sp = &req->splice;
4397        struct file *out = sp->file_out;
4398        unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4399        loff_t *poff_in, *poff_out;
4400        struct file *in;
4401        long ret = 0;
4402
4403        if (issue_flags & IO_URING_F_NONBLOCK)
4404                return -EAGAIN;
4405
4406        if (sp->flags & SPLICE_F_FD_IN_FIXED)
4407                in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
4408        else
4409                in = io_file_get_normal(req, sp->splice_fd_in);
4410        if (!in) {
4411                ret = -EBADF;
4412                goto done;
4413        }
4414
4415        poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4416        poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4417
4418        if (sp->len)
4419                ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4420
4421        if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4422                io_put_file(in);
4423done:
4424        if (ret != sp->len)
4425                req_set_fail(req);
4426        io_req_complete(req, ret);
4427        return 0;
4428}
4429
4430/*
4431 * IORING_OP_NOP just posts a completion event, nothing else.
4432 */
4433static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4434{
4435        struct io_ring_ctx *ctx = req->ctx;
4436
4437        if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4438                return -EINVAL;
4439
4440        __io_req_complete(req, issue_flags, 0, 0);
4441        return 0;
4442}
4443
4444static int io_msg_ring_prep(struct io_kiocb *req,
4445                            const struct io_uring_sqe *sqe)
4446{
4447        if (unlikely(sqe->addr || sqe->ioprio || sqe->rw_flags ||
4448                     sqe->splice_fd_in || sqe->buf_index || sqe->personality))
4449                return -EINVAL;
4450
4451        req->msg.user_data = READ_ONCE(sqe->off);
4452        req->msg.len = READ_ONCE(sqe->len);
4453        return 0;
4454}
4455
4456static int io_msg_ring(struct io_kiocb *req, unsigned int issue_flags)
4457{
4458        struct io_ring_ctx *target_ctx;
4459        struct io_msg *msg = &req->msg;
4460        bool filled;
4461        int ret;
4462
4463        ret = -EBADFD;
4464        if (req->file->f_op != &io_uring_fops)
4465                goto done;
4466
4467        ret = -EOVERFLOW;
4468        target_ctx = req->file->private_data;
4469
4470        spin_lock(&target_ctx->completion_lock);
4471        filled = io_fill_cqe_aux(target_ctx, msg->user_data, msg->len, 0);
4472        io_commit_cqring(target_ctx);
4473        spin_unlock(&target_ctx->completion_lock);
4474
4475        if (filled) {
4476                io_cqring_ev_posted(target_ctx);
4477                ret = 0;
4478        }
4479
4480done:
4481        if (ret < 0)
4482                req_set_fail(req);
4483        __io_req_complete(req, issue_flags, ret, 0);
4484        /* put file to avoid an attempt to IOPOLL the req */
4485        io_put_file(req->file);
4486        req->file = NULL;
4487        return 0;
4488}
4489
4490static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4491{
4492        struct io_ring_ctx *ctx = req->ctx;
4493
4494        if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4495                return -EINVAL;
4496        if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4497                     sqe->splice_fd_in))
4498                return -EINVAL;
4499
4500        req->sync.flags = READ_ONCE(sqe->fsync_flags);
4501        if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4502                return -EINVAL;
4503
4504        req->sync.off = READ_ONCE(sqe->off);
4505        req->sync.len = READ_ONCE(sqe->len);
4506        return 0;
4507}
4508
4509static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4510{
4511        loff_t end = req->sync.off + req->sync.len;
4512        int ret;
4513
4514        /* fsync always requires a blocking context */
4515        if (issue_flags & IO_URING_F_NONBLOCK)
4516                return -EAGAIN;
4517
4518        ret = vfs_fsync_range(req->file, req->sync.off,
4519                                end > 0 ? end : LLONG_MAX,
4520                                req->sync.flags & IORING_FSYNC_DATASYNC);
4521        if (ret < 0)
4522                req_set_fail(req);
4523        io_req_complete(req, ret);
4524        return 0;
4525}
4526
4527static int io_fallocate_prep(struct io_kiocb *req,
4528                             const struct io_uring_sqe *sqe)
4529{
4530        if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4531            sqe->splice_fd_in)
4532                return -EINVAL;
4533        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4534                return -EINVAL;
4535
4536        req->sync.off = READ_ONCE(sqe->off);
4537        req->sync.len = READ_ONCE(sqe->addr);
4538        req->sync.mode = READ_ONCE(sqe->len);
4539        return 0;
4540}
4541
4542static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4543{
4544        int ret;
4545
4546        /* fallocate always requiring blocking context */
4547        if (issue_flags & IO_URING_F_NONBLOCK)
4548                return -EAGAIN;
4549        ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4550                                req->sync.len);
4551        if (ret < 0)
4552                req_set_fail(req);
4553        else
4554                fsnotify_modify(req->file);
4555        io_req_complete(req, ret);
4556        return 0;
4557}
4558
4559static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4560{
4561        const char __user *fname;
4562        int ret;
4563
4564        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4565                return -EINVAL;
4566        if (unlikely(sqe->ioprio || sqe->buf_index))
4567                return -EINVAL;
4568        if (unlikely(req->flags & REQ_F_FIXED_FILE))
4569                return -EBADF;
4570
4571        /* open.how should be already initialised */
4572        if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4573                req->open.how.flags |= O_LARGEFILE;
4574
4575        req->open.dfd = READ_ONCE(sqe->fd);
4576        fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4577        req->open.filename = getname(fname);
4578        if (IS_ERR(req->open.filename)) {
4579                ret = PTR_ERR(req->open.filename);
4580                req->open.filename = NULL;
4581                return ret;
4582        }
4583
4584        req->open.file_slot = READ_ONCE(sqe->file_index);
4585        if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4586                return -EINVAL;
4587
4588        req->open.nofile = rlimit(RLIMIT_NOFILE);
4589        req->flags |= REQ_F_NEED_CLEANUP;
4590        return 0;
4591}
4592
4593static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4594{
4595        u64 mode = READ_ONCE(sqe->len);
4596        u64 flags = READ_ONCE(sqe->open_flags);
4597
4598        req->open.how = build_open_how(flags, mode);
4599        return __io_openat_prep(req, sqe);
4600}
4601
4602static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4603{
4604        struct open_how __user *how;
4605        size_t len;
4606        int ret;
4607
4608        how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4609        len = READ_ONCE(sqe->len);
4610        if (len < OPEN_HOW_SIZE_VER0)
4611                return -EINVAL;
4612
4613        ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4614                                        len);
4615        if (ret)
4616                return ret;
4617
4618        return __io_openat_prep(req, sqe);
4619}
4620
4621static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4622{
4623        struct open_flags op;
4624        struct file *file;
4625        bool resolve_nonblock, nonblock_set;
4626        bool fixed = !!req->open.file_slot;
4627        int ret;
4628
4629        ret = build_open_flags(&req->open.how, &op);
4630        if (ret)
4631                goto err;
4632        nonblock_set = op.open_flag & O_NONBLOCK;
4633        resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4634        if (issue_flags & IO_URING_F_NONBLOCK) {
4635                /*
4636                 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4637                 * it'll always -EAGAIN
4638                 */
4639                if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4640                        return -EAGAIN;
4641                op.lookup_flags |= LOOKUP_CACHED;
4642                op.open_flag |= O_NONBLOCK;
4643        }
4644
4645        if (!fixed) {
4646                ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4647                if (ret < 0)
4648                        goto err;
4649        }
4650
4651        file = do_filp_open(req->open.dfd, req->open.filename, &op);
4652        if (IS_ERR(file)) {
4653                /*
4654                 * We could hang on to this 'fd' on retrying, but seems like
4655                 * marginal gain for something that is now known to be a slower
4656                 * path. So just put it, and we'll get a new one when we retry.
4657                 */
4658                if (!fixed)
4659                        put_unused_fd(ret);
4660
4661                ret = PTR_ERR(file);
4662                /* only retry if RESOLVE_CACHED wasn't already set by application */
4663                if (ret == -EAGAIN &&
4664                    (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4665                        return -EAGAIN;
4666                goto err;
4667        }
4668
4669        if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4670                file->f_flags &= ~O_NONBLOCK;
4671        fsnotify_open(file);
4672
4673        if (!fixed)
4674                fd_install(ret, file);
4675        else
4676                ret = io_install_fixed_file(req, file, issue_flags,
4677                                            req->open.file_slot - 1);
4678err:
4679        putname(req->open.filename);
4680        req->flags &= ~REQ_F_NEED_CLEANUP;
4681        if (ret < 0)
4682                req_set_fail(req);
4683        __io_req_complete(req, issue_flags, ret, 0);
4684        return 0;
4685}
4686
4687static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4688{
4689        return io_openat2(req, issue_flags);
4690}
4691
4692static int io_remove_buffers_prep(struct io_kiocb *req,
4693                                  const struct io_uring_sqe *sqe)
4694{
4695        struct io_provide_buf *p = &req->pbuf;
4696        u64 tmp;
4697
4698        if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4699            sqe->splice_fd_in)
4700                return -EINVAL;
4701
4702        tmp = READ_ONCE(sqe->fd);
4703        if (!tmp || tmp > USHRT_MAX)
4704                return -EINVAL;
4705
4706        memset(p, 0, sizeof(*p));
4707        p->nbufs = tmp;
4708        p->bgid = READ_ONCE(sqe->buf_group);
4709        return 0;
4710}
4711
4712static int __io_remove_buffers(struct io_ring_ctx *ctx,
4713                               struct io_buffer_list *bl, unsigned nbufs)
4714{
4715        unsigned i = 0;
4716
4717        /* shouldn't happen */
4718        if (!nbufs)
4719                return 0;
4720
4721        /* the head kbuf is the list itself */
4722        while (!list_empty(&bl->buf_list)) {
4723                struct io_buffer *nxt;
4724
4725                nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
4726                list_del(&nxt->list);
4727                if (++i == nbufs)
4728                        return i;
4729                cond_resched();
4730        }
4731        i++;
4732
4733        return i;
4734}
4735
4736static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4737{
4738        struct io_provide_buf *p = &req->pbuf;
4739        struct io_ring_ctx *ctx = req->ctx;
4740        struct io_buffer_list *bl;
4741        int ret = 0;
4742        bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
4743
4744        io_ring_submit_lock(ctx, needs_lock);
4745
4746        lockdep_assert_held(&ctx->uring_lock);
4747
4748        ret = -ENOENT;
4749        bl = io_buffer_get_list(ctx, p->bgid);
4750        if (bl)
4751                ret = __io_remove_buffers(ctx, bl, p->nbufs);
4752        if (ret < 0)
4753                req_set_fail(req);
4754
4755        /* complete before unlock, IOPOLL may need the lock */
4756        __io_req_complete(req, issue_flags, ret, 0);
4757        io_ring_submit_unlock(ctx, needs_lock);
4758        return 0;
4759}
4760
4761static int io_provide_buffers_prep(struct io_kiocb *req,
4762                                   const struct io_uring_sqe *sqe)
4763{
4764        unsigned long size, tmp_check;
4765        struct io_provide_buf *p = &req->pbuf;
4766        u64 tmp;
4767
4768        if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4769                return -EINVAL;
4770
4771        tmp = READ_ONCE(sqe->fd);
4772        if (!tmp || tmp > USHRT_MAX)
4773                return -E2BIG;
4774        p->nbufs = tmp;
4775        p->addr = READ_ONCE(sqe->addr);
4776        p->len = READ_ONCE(sqe->len);
4777
4778        if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4779                                &size))
4780                return -EOVERFLOW;
4781        if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4782                return -EOVERFLOW;
4783
4784        size = (unsigned long)p->len * p->nbufs;
4785        if (!access_ok(u64_to_user_ptr(p->addr), size))
4786                return -EFAULT;
4787
4788        p->bgid = READ_ONCE(sqe->buf_group);
4789        tmp = READ_ONCE(sqe->off);
4790        if (tmp > USHRT_MAX)
4791                return -E2BIG;
4792        p->bid = tmp;
4793        return 0;
4794}
4795
4796static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
4797{
4798        struct io_buffer *buf;
4799        struct page *page;
4800        int bufs_in_page;
4801
4802        /*
4803         * Completions that don't happen inline (eg not under uring_lock) will
4804         * add to ->io_buffers_comp. If we don't have any free buffers, check
4805         * the completion list and splice those entries first.
4806         */
4807        if (!list_empty_careful(&ctx->io_buffers_comp)) {
4808                spin_lock(&ctx->completion_lock);
4809                if (!list_empty(&ctx->io_buffers_comp)) {
4810                        list_splice_init(&ctx->io_buffers_comp,
4811                                                &ctx->io_buffers_cache);
4812                        spin_unlock(&ctx->completion_lock);
4813                        return 0;
4814                }
4815                spin_unlock(&ctx->completion_lock);
4816        }
4817
4818        /*
4819         * No free buffers and no completion entries either. Allocate a new
4820         * page worth of buffer entries and add those to our freelist.
4821         */
4822        page = alloc_page(GFP_KERNEL_ACCOUNT);
4823        if (!page)
4824                return -ENOMEM;
4825
4826        list_add(&page->lru, &ctx->io_buffers_pages);
4827
4828        buf = page_address(page);
4829        bufs_in_page = PAGE_SIZE / sizeof(*buf);
4830        while (bufs_in_page) {
4831                list_add_tail(&buf->list, &ctx->io_buffers_cache);
4832                buf++;
4833                bufs_in_page--;
4834        }
4835
4836        return 0;
4837}
4838
4839static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
4840                          struct io_buffer_list *bl)
4841{
4842        struct io_buffer *buf;
4843        u64 addr = pbuf->addr;
4844        int i, bid = pbuf->bid;
4845
4846        for (i = 0; i < pbuf->nbufs; i++) {
4847                if (list_empty(&ctx->io_buffers_cache) &&
4848                    io_refill_buffer_cache(ctx))
4849                        break;
4850                buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
4851                                        list);
4852                list_move_tail(&buf->list, &bl->buf_list);
4853                buf->addr = addr;
4854                buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4855                buf->bid = bid;
4856                buf->bgid = pbuf->bgid;
4857                addr += pbuf->len;
4858                bid++;
4859                cond_resched();
4860        }
4861
4862        return i ? 0 : -ENOMEM;
4863}
4864
4865static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4866{
4867        struct io_provide_buf *p = &req->pbuf;
4868        struct io_ring_ctx *ctx = req->ctx;
4869        struct io_buffer_list *bl;
4870        int ret = 0;
4871        bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
4872
4873        io_ring_submit_lock(ctx, needs_lock);
4874
4875        lockdep_assert_held(&ctx->uring_lock);
4876
4877        bl = io_buffer_get_list(ctx, p->bgid);
4878        if (unlikely(!bl)) {
4879                bl = kmalloc(sizeof(*bl), GFP_KERNEL);
4880                if (!bl) {
4881                        ret = -ENOMEM;
4882                        goto err;
4883                }
4884                io_buffer_add_list(ctx, bl, p->bgid);
4885        }
4886
4887        ret = io_add_buffers(ctx, p, bl);
4888err:
4889        if (ret < 0)
4890                req_set_fail(req);
4891        /* complete before unlock, IOPOLL may need the lock */
4892        __io_req_complete(req, issue_flags, ret, 0);
4893        io_ring_submit_unlock(ctx, needs_lock);
4894        return 0;
4895}
4896
4897static int io_epoll_ctl_prep(struct io_kiocb *req,
4898                             const struct io_uring_sqe *sqe)
4899{
4900#if defined(CONFIG_EPOLL)
4901        if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4902                return -EINVAL;
4903        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4904                return -EINVAL;
4905
4906        req->epoll.epfd = READ_ONCE(sqe->fd);
4907        req->epoll.op = READ_ONCE(sqe->len);
4908        req->epoll.fd = READ_ONCE(sqe->off);
4909
4910        if (ep_op_has_event(req->epoll.op)) {
4911                struct epoll_event __user *ev;
4912
4913                ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4914                if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4915                        return -EFAULT;
4916        }
4917
4918        return 0;
4919#else
4920        return -EOPNOTSUPP;
4921#endif
4922}
4923
4924static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4925{
4926#if defined(CONFIG_EPOLL)
4927        struct io_epoll *ie = &req->epoll;
4928        int ret;
4929        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4930
4931        ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4932        if (force_nonblock && ret == -EAGAIN)
4933                return -EAGAIN;
4934
4935        if (ret < 0)
4936                req_set_fail(req);
4937        __io_req_complete(req, issue_flags, ret, 0);
4938        return 0;
4939#else
4940        return -EOPNOTSUPP;
4941#endif
4942}
4943
4944static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4945{
4946#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4947        if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4948                return -EINVAL;
4949        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4950                return -EINVAL;
4951
4952        req->madvise.addr = READ_ONCE(sqe->addr);
4953        req->madvise.len = READ_ONCE(sqe->len);
4954        req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4955        return 0;
4956#else
4957        return -EOPNOTSUPP;
4958#endif
4959}
4960
4961static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4962{
4963#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4964        struct io_madvise *ma = &req->madvise;
4965        int ret;
4966
4967        if (issue_flags & IO_URING_F_NONBLOCK)
4968                return -EAGAIN;
4969
4970        ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4971        if (ret < 0)
4972                req_set_fail(req);
4973        io_req_complete(req, ret);
4974        return 0;
4975#else
4976        return -EOPNOTSUPP;
4977#endif
4978}
4979
4980static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4981{
4982        if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4983                return -EINVAL;
4984        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4985                return -EINVAL;
4986
4987        req->fadvise.offset = READ_ONCE(sqe->off);
4988        req->fadvise.len = READ_ONCE(sqe->len);
4989        req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4990        return 0;
4991}
4992
4993static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4994{
4995        struct io_fadvise *fa = &req->fadvise;
4996        int ret;
4997
4998        if (issue_flags & IO_URING_F_NONBLOCK) {
4999                switch (fa->advice) {
5000                case POSIX_FADV_NORMAL:
5001                case POSIX_FADV_RANDOM:
5002                case POSIX_FADV_SEQUENTIAL:
5003                        break;
5004                default:
5005                        return -EAGAIN;
5006                }
5007        }
5008
5009        ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
5010        if (ret < 0)
5011                req_set_fail(req);
5012        __io_req_complete(req, issue_flags, ret, 0);
5013        return 0;
5014}
5015
5016static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5017{
5018        const char __user *path;
5019
5020        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5021                return -EINVAL;
5022        if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5023                return -EINVAL;
5024        if (req->flags & REQ_F_FIXED_FILE)
5025                return -EBADF;
5026
5027        req->statx.dfd = READ_ONCE(sqe->fd);
5028        req->statx.mask = READ_ONCE(sqe->len);
5029        path = u64_to_user_ptr(READ_ONCE(sqe->addr));
5030        req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5031        req->statx.flags = READ_ONCE(sqe->statx_flags);
5032
5033        req->statx.filename = getname_flags(path,
5034                                        getname_statx_lookup_flags(req->statx.flags),
5035                                        NULL);
5036
5037        if (IS_ERR(req->statx.filename)) {
5038                int ret = PTR_ERR(req->statx.filename);
5039
5040                req->statx.filename = NULL;
5041                return ret;
5042        }
5043
5044        req->flags |= REQ_F_NEED_CLEANUP;
5045        return 0;
5046}
5047
5048static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
5049{
5050        struct io_statx *ctx = &req->statx;
5051        int ret;
5052
5053        if (issue_flags & IO_URING_F_NONBLOCK)
5054                return -EAGAIN;
5055
5056        ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
5057                       ctx->buffer);
5058
5059        if (ret < 0)
5060                req_set_fail(req);
5061        io_req_complete(req, ret);
5062        return 0;
5063}
5064
5065static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5066{
5067        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5068                return -EINVAL;
5069        if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
5070            sqe->rw_flags || sqe->buf_index)
5071                return -EINVAL;
5072        if (req->flags & REQ_F_FIXED_FILE)
5073                return -EBADF;
5074
5075        req->close.fd = READ_ONCE(sqe->fd);
5076        req->close.file_slot = READ_ONCE(sqe->file_index);
5077        if (req->close.file_slot && req->close.fd)
5078                return -EINVAL;
5079
5080        return 0;
5081}
5082
5083static int io_close(struct io_kiocb *req, unsigned int issue_flags)
5084{
5085        struct files_struct *files = current->files;
5086        struct io_close *close = &req->close;
5087        struct fdtable *fdt;
5088        struct file *file = NULL;
5089        int ret = -EBADF;
5090
5091        if (req->close.file_slot) {
5092                ret = io_close_fixed(req, issue_flags);
5093                goto err;
5094        }
5095
5096        spin_lock(&files->file_lock);
5097        fdt = files_fdtable(files);
5098        if (close->fd >= fdt->max_fds) {
5099                spin_unlock(&files->file_lock);
5100                goto err;
5101        }
5102        file = fdt->fd[close->fd];
5103        if (!file || file->f_op == &io_uring_fops) {
5104                spin_unlock(&files->file_lock);
5105                file = NULL;
5106                goto err;
5107        }
5108
5109        /* if the file has a flush method, be safe and punt to async */
5110        if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
5111                spin_unlock(&files->file_lock);
5112                return -EAGAIN;
5113        }
5114
5115        ret = __close_fd_get_file(close->fd, &file);
5116        spin_unlock(&files->file_lock);
5117        if (ret < 0) {
5118                if (ret == -ENOENT)
5119                        ret = -EBADF;
5120                goto err;
5121        }
5122
5123        /* No ->flush() or already async, safely close from here */
5124        ret = filp_close(file, current->files);
5125err:
5126        if (ret < 0)
5127                req_set_fail(req);
5128        if (file)
5129                fput(file);
5130        __io_req_complete(req, issue_flags, ret, 0);
5131        return 0;
5132}
5133
5134static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5135{
5136        struct io_ring_ctx *ctx = req->ctx;
5137
5138        if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
5139                return -EINVAL;
5140        if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
5141                     sqe->splice_fd_in))
5142                return -EINVAL;
5143
5144        req->sync.off = READ_ONCE(sqe->off);
5145        req->sync.len = READ_ONCE(sqe->len);
5146        req->sync.flags = READ_ONCE(sqe->sync_range_flags);
5147        return 0;
5148}
5149
5150static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
5151{
5152        int ret;
5153
5154        /* sync_file_range always requires a blocking context */
5155        if (issue_flags & IO_URING_F_NONBLOCK)
5156                return -EAGAIN;
5157
5158        ret = sync_file_range(req->file, req->sync.off, req->sync.len,
5159                                req->sync.flags);
5160        if (ret < 0)
5161                req_set_fail(req);
5162        io_req_complete(req, ret);
5163        return 0;
5164}
5165
5166#if defined(CONFIG_NET)
5167static int io_setup_async_msg(struct io_kiocb *req,
5168                              struct io_async_msghdr *kmsg)
5169{
5170        struct io_async_msghdr *async_msg = req->async_data;
5171
5172        if (async_msg)
5173                return -EAGAIN;
5174        if (io_alloc_async_data(req)) {
5175                kfree(kmsg->free_iov);
5176                return -ENOMEM;
5177        }
5178        async_msg = req->async_data;
5179        req->flags |= REQ_F_NEED_CLEANUP;
5180        memcpy(async_msg, kmsg, sizeof(*kmsg));
5181        async_msg->msg.msg_name = &async_msg->addr;
5182        /* if were using fast_iov, set it to the new one */
5183        if (!async_msg->free_iov)
5184                async_msg->msg.msg_iter.iov = async_msg->fast_iov;
5185
5186        return -EAGAIN;
5187}
5188
5189static int io_sendmsg_copy_hdr(struct io_kiocb *req,
5190                               struct io_async_msghdr *iomsg)
5191{
5192        iomsg->msg.msg_name = &iomsg->addr;
5193        iomsg->free_iov = iomsg->fast_iov;
5194        return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
5195                                   req->sr_msg.msg_flags, &iomsg->free_iov);
5196}
5197
5198static int io_sendmsg_prep_async(struct io_kiocb *req)
5199{
5200        int ret;
5201
5202        ret = io_sendmsg_copy_hdr(req, req->async_data);
5203        if (!ret)
5204                req->flags |= REQ_F_NEED_CLEANUP;
5205        return ret;
5206}
5207
5208static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5209{
5210        struct io_sr_msg *sr = &req->sr_msg;
5211
5212        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5213                return -EINVAL;
5214        if (unlikely(sqe->addr2 || sqe->file_index))
5215                return -EINVAL;
5216
5217        sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5218        sr->len = READ_ONCE(sqe->len);
5219        sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5220        if (sr->msg_flags & MSG_DONTWAIT)
5221                req->flags |= REQ_F_NOWAIT;
5222
5223#ifdef CONFIG_COMPAT
5224        if (req->ctx->compat)
5225                sr->msg_flags |= MSG_CMSG_COMPAT;
5226#endif
5227        return 0;
5228}
5229
5230static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
5231{
5232        struct io_async_msghdr iomsg, *kmsg;
5233        struct socket *sock;
5234        unsigned flags;
5235        int min_ret = 0;
5236        int ret;
5237
5238        sock = sock_from_file(req->file);
5239        if (unlikely(!sock))
5240                return -ENOTSOCK;
5241
5242        if (req_has_async_data(req)) {
5243                kmsg = req->async_data;
5244        } else {
5245                ret = io_sendmsg_copy_hdr(req, &iomsg);
5246                if (ret)
5247                        return ret;
5248                kmsg = &iomsg;
5249        }
5250
5251        flags = req->sr_msg.msg_flags;
5252        if (issue_flags & IO_URING_F_NONBLOCK)
5253                flags |= MSG_DONTWAIT;
5254        if (flags & MSG_WAITALL)
5255                min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5256
5257        ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
5258
5259        if (ret < min_ret) {
5260                if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
5261                        return io_setup_async_msg(req, kmsg);
5262                if (ret == -ERESTARTSYS)
5263                        ret = -EINTR;
5264                req_set_fail(req);
5265        }
5266        /* fast path, check for non-NULL to avoid function call */
5267        if (kmsg->free_iov)
5268                kfree(kmsg->free_iov);
5269        req->flags &= ~REQ_F_NEED_CLEANUP;
5270        __io_req_complete(req, issue_flags, ret, 0);
5271        return 0;
5272}
5273
5274static int io_send(struct io_kiocb *req, unsigned int issue_flags)
5275{
5276        struct io_sr_msg *sr = &req->sr_msg;
5277        struct msghdr msg;
5278        struct iovec iov;
5279        struct socket *sock;
5280        unsigned flags;
5281        int min_ret = 0;
5282        int ret;
5283
5284        sock = sock_from_file(req->file);
5285        if (unlikely(!sock))
5286                return -ENOTSOCK;
5287
5288        ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
5289        if (unlikely(ret))
5290                return ret;
5291
5292        msg.msg_name = NULL;
5293        msg.msg_control = NULL;
5294        msg.msg_controllen = 0;
5295        msg.msg_namelen = 0;
5296
5297        flags = req->sr_msg.msg_flags;
5298        if (issue_flags & IO_URING_F_NONBLOCK)
5299                flags |= MSG_DONTWAIT;
5300        if (flags & MSG_WAITALL)
5301                min_ret = iov_iter_count(&msg.msg_iter);
5302
5303        msg.msg_flags = flags;
5304        ret = sock_sendmsg(sock, &msg);
5305        if (ret < min_ret) {
5306                if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
5307                        return -EAGAIN;
5308                if (ret == -ERESTARTSYS)
5309                        ret = -EINTR;
5310                req_set_fail(req);
5311        }
5312        __io_req_complete(req, issue_flags, ret, 0);
5313        return 0;
5314}
5315
5316static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
5317                                 struct io_async_msghdr *iomsg)
5318{
5319        struct io_sr_msg *sr = &req->sr_msg;
5320        struct iovec __user *uiov;
5321        size_t iov_len;
5322        int ret;
5323
5324        ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
5325                                        &iomsg->uaddr, &uiov, &iov_len);
5326        if (ret)
5327                return ret;
5328
5329        if (req->flags & REQ_F_BUFFER_SELECT) {
5330                if (iov_len > 1)
5331                        return -EINVAL;
5332                if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
5333                        return -EFAULT;
5334                sr->len = iomsg->fast_iov[0].iov_len;
5335                iomsg->free_iov = NULL;
5336        } else {
5337                iomsg->free_iov = iomsg->fast_iov;
5338                ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
5339                                     &iomsg->free_iov, &iomsg->msg.msg_iter,
5340                                     false);
5341                if (ret > 0)
5342                        ret = 0;
5343        }
5344
5345        return ret;
5346}
5347
5348#ifdef CONFIG_COMPAT
5349static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
5350                                        struct io_async_msghdr *iomsg)
5351{
5352        struct io_sr_msg *sr = &req->sr_msg;
5353        struct compat_iovec __user *uiov;
5354        compat_uptr_t ptr;
5355        compat_size_t len;
5356        int ret;
5357
5358        ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
5359                                  &ptr, &len);
5360        if (ret)
5361                return ret;
5362
5363        uiov = compat_ptr(ptr);
5364        if (req->flags & REQ_F_BUFFER_SELECT) {
5365                compat_ssize_t clen;
5366
5367                if (len > 1)
5368                        return -EINVAL;
5369                if (!access_ok(uiov, sizeof(*uiov)))
5370                        return -EFAULT;
5371                if (__get_user(clen, &uiov->iov_len))
5372                        return -EFAULT;
5373                if (clen < 0)
5374                        return -EINVAL;
5375                sr->len = clen;
5376                iomsg->free_iov = NULL;
5377        } else {
5378                iomsg->free_iov = iomsg->fast_iov;
5379                ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
5380                                   UIO_FASTIOV, &iomsg->free_iov,
5381                                   &iomsg->msg.msg_iter, true);
5382                if (ret < 0)
5383                        return ret;
5384        }
5385
5386        return 0;
5387}
5388#endif
5389
5390static int io_recvmsg_copy_hdr(struct io_kiocb *req,
5391                               struct io_async_msghdr *iomsg)
5392{
5393        iomsg->msg.msg_name = &iomsg->addr;
5394
5395#ifdef CONFIG_COMPAT
5396        if (req->ctx->compat)
5397                return __io_compat_recvmsg_copy_hdr(req, iomsg);
5398#endif
5399
5400        return __io_recvmsg_copy_hdr(req, iomsg);
5401}
5402
5403static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
5404                                               unsigned int issue_flags)
5405{
5406        struct io_sr_msg *sr = &req->sr_msg;
5407
5408        return io_buffer_select(req, &sr->len, sr->bgid, issue_flags);
5409}
5410
5411static int io_recvmsg_prep_async(struct io_kiocb *req)
5412{
5413        int ret;
5414
5415        ret = io_recvmsg_copy_hdr(req, req->async_data);
5416        if (!ret)
5417                req->flags |= REQ_F_NEED_CLEANUP;
5418        return ret;
5419}
5420
5421static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5422{
5423        struct io_sr_msg *sr = &req->sr_msg;
5424
5425        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5426                return -EINVAL;
5427        if (unlikely(sqe->addr2 || sqe->file_index))
5428                return -EINVAL;
5429
5430        sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5431        sr->len = READ_ONCE(sqe->len);
5432        sr->bgid = READ_ONCE(sqe->buf_group);
5433        sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5434        if (sr->msg_flags & MSG_DONTWAIT)
5435                req->flags |= REQ_F_NOWAIT;
5436
5437#ifdef CONFIG_COMPAT
5438        if (req->ctx->compat)
5439                sr->msg_flags |= MSG_CMSG_COMPAT;
5440#endif
5441        sr->done_io = 0;
5442        return 0;
5443}
5444
5445static bool io_net_retry(struct socket *sock, int flags)
5446{
5447        if (!(flags & MSG_WAITALL))
5448                return false;
5449        return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
5450}
5451
5452static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5453{
5454        struct io_async_msghdr iomsg, *kmsg;
5455        struct io_sr_msg *sr = &req->sr_msg;
5456        struct socket *sock;
5457        struct io_buffer *kbuf;
5458        unsigned flags;
5459        int ret, min_ret = 0;
5460        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5461
5462        sock = sock_from_file(req->file);
5463        if (unlikely(!sock))
5464                return -ENOTSOCK;
5465
5466        if (req_has_async_data(req)) {
5467                kmsg = req->async_data;
5468        } else {
5469                ret = io_recvmsg_copy_hdr(req, &iomsg);
5470                if (ret)
5471                        return ret;
5472                kmsg = &iomsg;
5473        }
5474
5475        if (req->flags & REQ_F_BUFFER_SELECT) {
5476                kbuf = io_recv_buffer_select(req, issue_flags);
5477                if (IS_ERR(kbuf))
5478                        return PTR_ERR(kbuf);
5479                kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5480                kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5481                iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5482                                1, req->sr_msg.len);
5483        }
5484
5485        flags = req->sr_msg.msg_flags;
5486        if (force_nonblock)
5487                flags |= MSG_DONTWAIT;
5488        if (flags & MSG_WAITALL)
5489                min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5490
5491        ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5492                                        kmsg->uaddr, flags);
5493        if (ret < min_ret) {
5494                if (ret == -EAGAIN && force_nonblock)
5495                        return io_setup_async_msg(req, kmsg);
5496                if (ret == -ERESTARTSYS)
5497                        ret = -EINTR;
5498                if (ret > 0 && io_net_retry(sock, flags)) {
5499                        sr->done_io += ret;
5500                        req->flags |= REQ_F_PARTIAL_IO;
5501                        return io_setup_async_msg(req, kmsg);
5502                }
5503                req_set_fail(req);
5504        } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5505                req_set_fail(req);
5506        }
5507
5508        /* fast path, check for non-NULL to avoid function call */
5509        if (kmsg->free_iov)
5510                kfree(kmsg->free_iov);
5511        req->flags &= ~REQ_F_NEED_CLEANUP;
5512        if (ret >= 0)
5513                ret += sr->done_io;
5514        else if (sr->done_io)
5515                ret = sr->done_io;
5516        __io_req_complete(req, issue_flags, ret, io_put_kbuf(req, issue_flags));
5517        return 0;
5518}
5519
5520static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5521{
5522        struct io_buffer *kbuf;
5523        struct io_sr_msg *sr = &req->sr_msg;
5524        struct msghdr msg;
5525        void __user *buf = sr->buf;
5526        struct socket *sock;
5527        struct iovec iov;
5528        unsigned flags;
5529        int ret, min_ret = 0;
5530        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5531
5532        sock = sock_from_file(req->file);
5533        if (unlikely(!sock))
5534                return -ENOTSOCK;
5535
5536        if (req->flags & REQ_F_BUFFER_SELECT) {
5537                kbuf = io_recv_buffer_select(req, issue_flags);
5538                if (IS_ERR(kbuf))
5539                        return PTR_ERR(kbuf);
5540                buf = u64_to_user_ptr(kbuf->addr);
5541        }
5542
5543        ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5544        if (unlikely(ret))
5545                goto out_free;
5546
5547        msg.msg_name = NULL;
5548        msg.msg_control = NULL;
5549        msg.msg_controllen = 0;
5550        msg.msg_namelen = 0;
5551        msg.msg_iocb = NULL;
5552        msg.msg_flags = 0;
5553
5554        flags = req->sr_msg.msg_flags;
5555        if (force_nonblock)
5556                flags |= MSG_DONTWAIT;
5557        if (flags & MSG_WAITALL)
5558                min_ret = iov_iter_count(&msg.msg_iter);
5559
5560        ret = sock_recvmsg(sock, &msg, flags);
5561        if (ret < min_ret) {
5562                if (ret == -EAGAIN && force_nonblock)
5563                        return -EAGAIN;
5564                if (ret == -ERESTARTSYS)
5565                        ret = -EINTR;
5566                if (ret > 0 && io_net_retry(sock, flags)) {
5567                        sr->len -= ret;
5568                        sr->buf += ret;
5569                        sr->done_io += ret;
5570                        req->flags |= REQ_F_PARTIAL_IO;
5571                        return -EAGAIN;
5572                }
5573                req_set_fail(req);
5574        } else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5575out_free:
5576                req_set_fail(req);
5577        }
5578
5579        if (ret >= 0)
5580                ret += sr->done_io;
5581        else if (sr->done_io)
5582                ret = sr->done_io;
5583        __io_req_complete(req, issue_flags, ret, io_put_kbuf(req, issue_flags));
5584        return 0;
5585}
5586
5587static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5588{
5589        struct io_accept *accept = &req->accept;
5590
5591        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5592                return -EINVAL;
5593        if (sqe->ioprio || sqe->len || sqe->buf_index)
5594                return -EINVAL;
5595
5596        accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5597        accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5598        accept->flags = READ_ONCE(sqe->accept_flags);
5599        accept->nofile = rlimit(RLIMIT_NOFILE);
5600
5601        accept->file_slot = READ_ONCE(sqe->file_index);
5602        if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5603                return -EINVAL;
5604        if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5605                return -EINVAL;
5606        if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5607                accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5608        return 0;
5609}
5610
5611static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5612{
5613        struct io_accept *accept = &req->accept;
5614        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5615        unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5616        bool fixed = !!accept->file_slot;
5617        struct file *file;
5618        int ret, fd;
5619
5620        if (!fixed) {
5621                fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5622                if (unlikely(fd < 0))
5623                        return fd;
5624        }
5625        file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5626                         accept->flags);
5627        if (IS_ERR(file)) {
5628                if (!fixed)
5629                        put_unused_fd(fd);
5630                ret = PTR_ERR(file);
5631                if (ret == -EAGAIN && force_nonblock)
5632                        return -EAGAIN;
5633                if (ret == -ERESTARTSYS)
5634                        ret = -EINTR;
5635                req_set_fail(req);
5636        } else if (!fixed) {
5637                fd_install(fd, file);
5638                ret = fd;
5639        } else {
5640                ret = io_install_fixed_file(req, file, issue_flags,
5641                                            accept->file_slot - 1);
5642        }
5643        __io_req_complete(req, issue_flags, ret, 0);
5644        return 0;
5645}
5646
5647static int io_connect_prep_async(struct io_kiocb *req)
5648{
5649        struct io_async_connect *io = req->async_data;
5650        struct io_connect *conn = &req->connect;
5651
5652        return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5653}
5654
5655static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5656{
5657        struct io_connect *conn = &req->connect;
5658
5659        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5660                return -EINVAL;
5661        if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5662            sqe->splice_fd_in)
5663                return -EINVAL;
5664
5665        conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5666        conn->addr_len =  READ_ONCE(sqe->addr2);
5667        return 0;
5668}
5669
5670static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5671{
5672        struct io_async_connect __io, *io;
5673        unsigned file_flags;
5674        int ret;
5675        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5676
5677        if (req_has_async_data(req)) {
5678                io = req->async_data;
5679        } else {
5680                ret = move_addr_to_kernel(req->connect.addr,
5681                                                req->connect.addr_len,
5682                                                &__io.address);
5683                if (ret)
5684                        goto out;
5685                io = &__io;
5686        }
5687
5688        file_flags = force_nonblock ? O_NONBLOCK : 0;
5689
5690        ret = __sys_connect_file(req->file, &io->address,
5691                                        req->connect.addr_len, file_flags);
5692        if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5693                if (req_has_async_data(req))
5694                        return -EAGAIN;
5695                if (io_alloc_async_data(req)) {
5696                        ret = -ENOMEM;
5697                        goto out;
5698                }
5699                memcpy(req->async_data, &__io, sizeof(__io));
5700                return -EAGAIN;
5701        }
5702        if (ret == -ERESTARTSYS)
5703                ret = -EINTR;
5704out:
5705        if (ret < 0)
5706                req_set_fail(req);
5707        __io_req_complete(req, issue_flags, ret, 0);
5708        return 0;
5709}
5710#else /* !CONFIG_NET */
5711#define IO_NETOP_FN(op)                                                 \
5712static int io_##op(struct io_kiocb *req, unsigned int issue_flags)      \
5713{                                                                       \
5714        return -EOPNOTSUPP;                                             \
5715}
5716
5717#define IO_NETOP_PREP(op)                                               \
5718IO_NETOP_FN(op)                                                         \
5719static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5720{                                                                       \
5721        return -EOPNOTSUPP;                                             \
5722}                                                                       \
5723
5724#define IO_NETOP_PREP_ASYNC(op)                                         \
5725IO_NETOP_PREP(op)                                                       \
5726static int io_##op##_prep_async(struct io_kiocb *req)                   \
5727{                                                                       \
5728        return -EOPNOTSUPP;                                             \
5729}
5730
5731IO_NETOP_PREP_ASYNC(sendmsg);
5732IO_NETOP_PREP_ASYNC(recvmsg);
5733IO_NETOP_PREP_ASYNC(connect);
5734IO_NETOP_PREP(accept);
5735IO_NETOP_FN(send);
5736IO_NETOP_FN(recv);
5737#endif /* CONFIG_NET */
5738
5739struct io_poll_table {
5740        struct poll_table_struct pt;
5741        struct io_kiocb *req;
5742        int nr_entries;
5743        int error;
5744};
5745
5746#define IO_POLL_CANCEL_FLAG     BIT(31)
5747#define IO_POLL_REF_MASK        GENMASK(30, 0)
5748
5749/*
5750 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5751 * bump it and acquire ownership. It's disallowed to modify requests while not
5752 * owning it, that prevents from races for enqueueing task_work's and b/w
5753 * arming poll and wakeups.
5754 */
5755static inline bool io_poll_get_ownership(struct io_kiocb *req)
5756{
5757        return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5758}
5759
5760static void io_poll_mark_cancelled(struct io_kiocb *req)
5761{
5762        atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5763}
5764
5765static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5766{
5767        /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5768        if (req->opcode == IORING_OP_POLL_ADD)
5769                return req->async_data;
5770        return req->apoll->double_poll;
5771}
5772
5773static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5774{
5775        if (req->opcode == IORING_OP_POLL_ADD)
5776                return &req->poll;
5777        return &req->apoll->poll;
5778}
5779
5780static void io_poll_req_insert(struct io_kiocb *req)
5781{
5782        struct io_ring_ctx *ctx = req->ctx;
5783        struct hlist_head *list;
5784
5785        list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5786        hlist_add_head(&req->hash_node, list);
5787}
5788
5789static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5790                              wait_queue_func_t wake_func)
5791{
5792        poll->head = NULL;
5793#define IO_POLL_UNMASK  (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5794        /* mask in events that we always want/need */
5795        poll->events = events | IO_POLL_UNMASK;
5796        INIT_LIST_HEAD(&poll->wait.entry);
5797        init_waitqueue_func_entry(&poll->wait, wake_func);
5798}
5799
5800static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5801{
5802        struct wait_queue_head *head = smp_load_acquire(&poll->head);
5803
5804        if (head) {
5805                spin_lock_irq(&head->lock);
5806                list_del_init(&poll->wait.entry);
5807                poll->head = NULL;
5808                spin_unlock_irq(&head->lock);
5809        }
5810}
5811
5812static void io_poll_remove_entries(struct io_kiocb *req)
5813{
5814        /*
5815         * Nothing to do if neither of those flags are set. Avoid dipping
5816         * into the poll/apoll/double cachelines if we can.
5817         */
5818        if (!(req->flags & (REQ_F_SINGLE_POLL | REQ_F_DOUBLE_POLL)))
5819                return;
5820
5821        /*
5822         * While we hold the waitqueue lock and the waitqueue is nonempty,
5823         * wake_up_pollfree() will wait for us.  However, taking the waitqueue
5824         * lock in the first place can race with the waitqueue being freed.
5825         *
5826         * We solve this as eventpoll does: by taking advantage of the fact that
5827         * all users of wake_up_pollfree() will RCU-delay the actual free.  If
5828         * we enter rcu_read_lock() and see that the pointer to the queue is
5829         * non-NULL, we can then lock it without the memory being freed out from
5830         * under us.
5831         *
5832         * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5833         * case the caller deletes the entry from the queue, leaving it empty.
5834         * In that case, only RCU prevents the queue memory from being freed.
5835         */
5836        rcu_read_lock();
5837        if (req->flags & REQ_F_SINGLE_POLL)
5838                io_poll_remove_entry(io_poll_get_single(req));
5839        if (req->flags & REQ_F_DOUBLE_POLL)
5840                io_poll_remove_entry(io_poll_get_double(req));
5841        rcu_read_unlock();
5842}
5843
5844/*
5845 * All poll tw should go through this. Checks for poll events, manages
5846 * references, does rewait, etc.
5847 *
5848 * Returns a negative error on failure. >0 when no action require, which is
5849 * either spurious wakeup or multishot CQE is served. 0 when it's done with
5850 * the request, then the mask is stored in req->result.
5851 */
5852static int io_poll_check_events(struct io_kiocb *req, bool locked)
5853{
5854        struct io_ring_ctx *ctx = req->ctx;
5855        int v;
5856
5857        /* req->task == current here, checking PF_EXITING is safe */
5858        if (unlikely(req->task->flags & PF_EXITING))
5859                io_poll_mark_cancelled(req);
5860
5861        do {
5862                v = atomic_read(&req->poll_refs);
5863
5864                /* tw handler should be the owner, and so have some references */
5865                if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5866                        return 0;
5867                if (v & IO_POLL_CANCEL_FLAG)
5868                        return -ECANCELED;
5869
5870                if (!req->result) {
5871                        struct poll_table_struct pt = { ._key = req->apoll_events };
5872                        unsigned flags = locked ? 0 : IO_URING_F_UNLOCKED;
5873
5874                        if (unlikely(!io_assign_file(req, flags)))
5875                                return -EBADF;
5876                        req->result = vfs_poll(req->file, &pt) & req->apoll_events;
5877                }
5878
5879                /* multishot, just fill an CQE and proceed */
5880                if (req->result && !(req->apoll_events & EPOLLONESHOT)) {
5881                        __poll_t mask = mangle_poll(req->result & req->apoll_events);
5882                        bool filled;
5883
5884                        spin_lock(&ctx->completion_lock);
5885                        filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5886                                                 IORING_CQE_F_MORE);
5887                        io_commit_cqring(ctx);
5888                        spin_unlock(&ctx->completion_lock);
5889                        if (unlikely(!filled))
5890                                return -ECANCELED;
5891                        io_cqring_ev_posted(ctx);
5892                } else if (req->result) {
5893                        return 0;
5894                }
5895
5896                /*
5897                 * Release all references, retry if someone tried to restart
5898                 * task_work while we were executing it.
5899                 */
5900        } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs));
5901
5902        return 1;
5903}
5904
5905static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5906{
5907        struct io_ring_ctx *ctx = req->ctx;
5908        int ret;
5909
5910        ret = io_poll_check_events(req, *locked);
5911        if (ret > 0)
5912                return;
5913
5914        if (!ret) {
5915                req->result = mangle_poll(req->result & req->poll.events);
5916        } else {
5917                req->result = ret;
5918                req_set_fail(req);
5919        }
5920
5921        io_poll_remove_entries(req);
5922        spin_lock(&ctx->completion_lock);
5923        hash_del(&req->hash_node);
5924        __io_req_complete_post(req, req->result, 0);
5925        io_commit_cqring(ctx);
5926        spin_unlock(&ctx->completion_lock);
5927        io_cqring_ev_posted(ctx);
5928}
5929
5930static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5931{
5932        struct io_ring_ctx *ctx = req->ctx;
5933        int ret;
5934
5935        ret = io_poll_check_events(req, *locked);
5936        if (ret > 0)
5937                return;
5938
5939        io_poll_remove_entries(req);
5940        spin_lock(&ctx->completion_lock);
5941        hash_del(&req->hash_node);
5942        spin_unlock(&ctx->completion_lock);
5943
5944        if (!ret)
5945                io_req_task_submit(req, locked);
5946        else
5947                io_req_complete_failed(req, ret);
5948}
5949
5950static void __io_poll_execute(struct io_kiocb *req, int mask, int events)
5951{
5952        req->result = mask;
5953        /*
5954         * This is useful for poll that is armed on behalf of another
5955         * request, and where the wakeup path could be on a different
5956         * CPU. We want to avoid pulling in req->apoll->events for that
5957         * case.
5958         */
5959        req->apoll_events = events;
5960        if (req->opcode == IORING_OP_POLL_ADD)
5961                req->io_task_work.func = io_poll_task_func;
5962        else
5963                req->io_task_work.func = io_apoll_task_func;
5964
5965        trace_io_uring_task_add(req->ctx, req, req->user_data, req->opcode, mask);
5966        io_req_task_work_add(req, false);
5967}
5968
5969static inline void io_poll_execute(struct io_kiocb *req, int res, int events)
5970{
5971        if (io_poll_get_ownership(req))
5972                __io_poll_execute(req, res, events);
5973}
5974
5975static void io_poll_cancel_req(struct io_kiocb *req)
5976{
5977        io_poll_mark_cancelled(req);
5978        /* kick tw, which should complete the request */
5979        io_poll_execute(req, 0, 0);
5980}
5981
5982#define wqe_to_req(wait)        ((void *)((unsigned long) (wait)->private & ~1))
5983#define wqe_is_double(wait)     ((unsigned long) (wait)->private & 1)
5984
5985static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5986                        void *key)
5987{
5988        struct io_kiocb *req = wqe_to_req(wait);
5989        struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5990                                                 wait);
5991        __poll_t mask = key_to_poll(key);
5992
5993        if (unlikely(mask & POLLFREE)) {
5994                io_poll_mark_cancelled(req);
5995                /* we have to kick tw in case it's not already */
5996                io_poll_execute(req, 0, poll->events);
5997
5998                /*
5999                 * If the waitqueue is being freed early but someone is already
6000                 * holds ownership over it, we have to tear down the request as
6001                 * best we can. That means immediately removing the request from
6002                 * its waitqueue and preventing all further accesses to the
6003                 * waitqueue via the request.
6004                 */
6005                list_del_init(&poll->wait.entry);
6006
6007                /*
6008                 * Careful: this *must* be the last step, since as soon
6009                 * as req->head is NULL'ed out, the request can be
6010                 * completed and freed, since aio_poll_complete_work()
6011                 * will no longer need to take the waitqueue lock.
6012                 */
6013                smp_store_release(&poll->head, NULL);
6014                return 1;
6015        }
6016
6017        /* for instances that support it check for an event match first */
6018        if (mask && !(mask & poll->events))
6019                return 0;
6020
6021        if (io_poll_get_ownership(req)) {
6022                /* optional, saves extra locking for removal in tw handler */
6023                if (mask && poll->events & EPOLLONESHOT) {
6024                        list_del_init(&poll->wait.entry);
6025                        poll->head = NULL;
6026                        if (wqe_is_double(wait))
6027                                req->flags &= ~REQ_F_DOUBLE_POLL;
6028                        else
6029                                req->flags &= ~REQ_F_SINGLE_POLL;
6030                }
6031                __io_poll_execute(req, mask, poll->events);
6032        }
6033        return 1;
6034}
6035
6036static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
6037                            struct wait_queue_head *head,
6038                            struct io_poll_iocb **poll_ptr)
6039{
6040        struct io_kiocb *req = pt->req;
6041        unsigned long wqe_private = (unsigned long) req;
6042
6043        /*
6044         * The file being polled uses multiple waitqueues for poll handling
6045         * (e.g. one for read, one for write). Setup a separate io_poll_iocb
6046         * if this happens.
6047         */
6048        if (unlikely(pt->nr_entries)) {
6049                struct io_poll_iocb *first = poll;
6050
6051                /* double add on the same waitqueue head, ignore */
6052                if (first->head == head)
6053                        return;
6054                /* already have a 2nd entry, fail a third attempt */
6055                if (*poll_ptr) {
6056                        if ((*poll_ptr)->head == head)
6057                                return;
6058                        pt->error = -EINVAL;
6059                        return;
6060                }
6061
6062                poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
6063                if (!poll) {
6064                        pt->error = -ENOMEM;
6065                        return;
6066                }
6067                /* mark as double wq entry */
6068                wqe_private |= 1;
6069                req->flags |= REQ_F_DOUBLE_POLL;
6070                io_init_poll_iocb(poll, first->events, first->wait.func);
6071                *poll_ptr = poll;
6072                if (req->opcode == IORING_OP_POLL_ADD)
6073                        req->flags |= REQ_F_ASYNC_DATA;
6074        }
6075
6076        req->flags |= REQ_F_SINGLE_POLL;
6077        pt->nr_entries++;
6078        poll->head = head;
6079        poll->wait.private = (void *) wqe_private;
6080
6081        if (poll->events & EPOLLEXCLUSIVE)
6082                add_wait_queue_exclusive(head, &poll->wait);
6083        else
6084                add_wait_queue(head, &poll->wait);
6085}
6086
6087static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
6088                               struct poll_table_struct *p)
6089{
6090        struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
6091
6092        __io_queue_proc(&pt->req->poll, pt, head,
6093                        (struct io_poll_iocb **) &pt->req->async_data);
6094}
6095
6096static int __io_arm_poll_handler(struct io_kiocb *req,
6097                                 struct io_poll_iocb *poll,
6098                                 struct io_poll_table *ipt, __poll_t mask)
6099{
6100        struct io_ring_ctx *ctx = req->ctx;
6101        int v;
6102
6103        INIT_HLIST_NODE(&req->hash_node);
6104        io_init_poll_iocb(poll, mask, io_poll_wake);
6105        poll->file = req->file;
6106
6107        ipt->pt._key = mask;
6108        ipt->req = req;
6109        ipt->error = 0;
6110        ipt->nr_entries = 0;
6111
6112        /*
6113         * Take the ownership to delay any tw execution up until we're done
6114         * with poll arming. see io_poll_get_ownership().
6115         */
6116        atomic_set(&req->poll_refs, 1);
6117        mask = vfs_poll(req->file, &ipt->pt) & poll->events;
6118
6119        if (mask && (poll->events & EPOLLONESHOT)) {
6120                io_poll_remove_entries(req);
6121                /* no one else has access to the req, forget about the ref */
6122                return mask;
6123        }
6124        if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
6125                io_poll_remove_entries(req);
6126                if (!ipt->error)
6127                        ipt->error = -EINVAL;
6128                return 0;
6129        }
6130
6131        spin_lock(&ctx->completion_lock);
6132        io_poll_req_insert(req);
6133        spin_unlock(&ctx->completion_lock);
6134
6135        if (mask) {
6136                /* can't multishot if failed, just queue the event we've got */
6137                if (unlikely(ipt->error || !ipt->nr_entries))
6138                        poll->events |= EPOLLONESHOT;
6139                __io_poll_execute(req, mask, poll->events);
6140                return 0;
6141        }
6142
6143        /*
6144         * Release ownership. If someone tried to queue a tw while it was
6145         * locked, kick it off for them.
6146         */
6147        v = atomic_dec_return(&req->poll_refs);
6148        if (unlikely(v & IO_POLL_REF_MASK))
6149                __io_poll_execute(req, 0, poll->events);
6150        return 0;
6151}
6152
6153static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
6154                               struct poll_table_struct *p)
6155{
6156        struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
6157        struct async_poll *apoll = pt->req->apoll;
6158
6159        __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
6160}
6161
6162enum {
6163        IO_APOLL_OK,
6164        IO_APOLL_ABORTED,
6165        IO_APOLL_READY
6166};
6167
6168static int io_arm_poll_handler(struct io_kiocb *req, unsigned issue_flags)
6169{
6170        const struct io_op_def *def = &io_op_defs[req->opcode];
6171        struct io_ring_ctx *ctx = req->ctx;
6172        struct async_poll *apoll;
6173        struct io_poll_table ipt;
6174        __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
6175        int ret;
6176
6177        if (!def->pollin && !def->pollout)
6178                return IO_APOLL_ABORTED;
6179        if (!file_can_poll(req->file) || (req->flags & REQ_F_POLLED))
6180                return IO_APOLL_ABORTED;
6181
6182        if (def->pollin) {
6183                mask |= POLLIN | POLLRDNORM;
6184
6185                /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
6186                if ((req->opcode == IORING_OP_RECVMSG) &&
6187                    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
6188                        mask &= ~POLLIN;
6189        } else {
6190                mask |= POLLOUT | POLLWRNORM;
6191        }
6192        if (def->poll_exclusive)
6193                mask |= EPOLLEXCLUSIVE;
6194        if (!(issue_flags & IO_URING_F_UNLOCKED) &&
6195            !list_empty(&ctx->apoll_cache)) {
6196                apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
6197                                                poll.wait.entry);
6198                list_del_init(&apoll->poll.wait.entry);
6199        } else {
6200                apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
6201                if (unlikely(!apoll))
6202                        return IO_APOLL_ABORTED;
6203        }
6204        apoll->double_poll = NULL;
6205        req->apoll = apoll;
6206        req->flags |= REQ_F_POLLED;
6207        ipt.pt._qproc = io_async_queue_proc;
6208
6209        io_kbuf_recycle(req, issue_flags);
6210
6211        ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
6212        if (ret || ipt.error)
6213                return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
6214
6215        trace_io_uring_poll_arm(ctx, req, req->user_data, req->opcode,
6216                                mask, apoll->poll.events);
6217        return IO_APOLL_OK;
6218}
6219
6220/*
6221 * Returns true if we found and killed one or more poll requests
6222 */
6223static __cold bool io_poll_remove_all(struct io_ring_ctx *ctx,
6224                                      struct task_struct *tsk, bool cancel_all)
6225{
6226        struct hlist_node *tmp;
6227        struct io_kiocb *req;
6228        bool found = false;
6229        int i;
6230
6231        spin_lock(&ctx->completion_lock);
6232        for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
6233                struct hlist_head *list;
6234
6235                list = &ctx->cancel_hash[i];
6236                hlist_for_each_entry_safe(req, tmp, list, hash_node) {
6237                        if (io_match_task_safe(req, tsk, cancel_all)) {
6238                                hlist_del_init(&req->hash_node);
6239                                io_poll_cancel_req(req);
6240                                found = true;
6241                        }
6242                }
6243        }
6244        spin_unlock(&ctx->completion_lock);
6245        return found;
6246}
6247
6248static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
6249                                     bool poll_only)
6250        __must_hold(&ctx->completion_lock)
6251{
6252        struct hlist_head *list;
6253        struct io_kiocb *req;
6254
6255        list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
6256        hlist_for_each_entry(req, list, hash_node) {
6257                if (sqe_addr != req->user_data)
6258                        continue;
6259                if (poll_only && req->opcode != IORING_OP_POLL_ADD)
6260                        continue;
6261                return req;
6262        }
6263        return NULL;
6264}
6265
6266static bool io_poll_disarm(struct io_kiocb *req)
6267        __must_hold(&ctx->completion_lock)
6268{
6269        if (!io_poll_get_ownership(req))
6270                return false;
6271        io_poll_remove_entries(req);
6272        hash_del(&req->hash_node);
6273        return true;
6274}
6275
6276static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
6277                          bool poll_only)
6278        __must_hold(&ctx->completion_lock)
6279{
6280        struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
6281
6282        if (!req)
6283                return -ENOENT;
6284        io_poll_cancel_req(req);
6285        return 0;
6286}
6287
6288static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
6289                                     unsigned int flags)
6290{
6291        u32 events;
6292
6293        events = READ_ONCE(sqe->poll32_events);
6294#ifdef __BIG_ENDIAN
6295        events = swahw32(events);
6296#endif
6297        if (!(flags & IORING_POLL_ADD_MULTI))
6298                events |= EPOLLONESHOT;
6299        return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
6300}
6301
6302static int io_poll_update_prep(struct io_kiocb *req,
6303                               const struct io_uring_sqe *sqe)
6304{
6305        struct io_poll_update *upd = &req->poll_update;
6306        u32 flags;
6307
6308        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6309                return -EINVAL;
6310        if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
6311                return -EINVAL;
6312        flags = READ_ONCE(sqe->len);
6313        if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
6314                      IORING_POLL_ADD_MULTI))
6315                return -EINVAL;
6316        /* meaningless without update */
6317        if (flags == IORING_POLL_ADD_MULTI)
6318                return -EINVAL;
6319
6320        upd->old_user_data = READ_ONCE(sqe->addr);
6321        upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
6322        upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
6323
6324        upd->new_user_data = READ_ONCE(sqe->off);
6325        if (!upd->update_user_data && upd->new_user_data)
6326                return -EINVAL;
6327        if (upd->update_events)
6328                upd->events = io_poll_parse_events(sqe, flags);
6329        else if (sqe->poll32_events)
6330                return -EINVAL;
6331
6332        return 0;
6333}
6334
6335static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6336{
6337        struct io_poll_iocb *poll = &req->poll;
6338        u32 flags;
6339
6340        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6341                return -EINVAL;
6342        if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
6343                return -EINVAL;
6344        flags = READ_ONCE(sqe->len);
6345        if (flags & ~IORING_POLL_ADD_MULTI)
6346                return -EINVAL;
6347        if ((flags & IORING_POLL_ADD_MULTI) && (req->flags & REQ_F_CQE_SKIP))
6348                return -EINVAL;
6349
6350        io_req_set_refcount(req);
6351        req->apoll_events = poll->events = io_poll_parse_events(sqe, flags);
6352        return 0;
6353}
6354
6355static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
6356{
6357        struct io_poll_iocb *poll = &req->poll;
6358        struct io_poll_table ipt;
6359        int ret;
6360
6361        ipt.pt._qproc = io_poll_queue_proc;
6362
6363        ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
6364        ret = ret ?: ipt.error;
6365        if (ret)
6366                __io_req_complete(req, issue_flags, ret, 0);
6367        return 0;
6368}
6369
6370static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
6371{
6372        struct io_ring_ctx *ctx = req->ctx;
6373        struct io_kiocb *preq;
6374        int ret2, ret = 0;
6375        bool locked;
6376
6377        spin_lock(&ctx->completion_lock);
6378        preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
6379        if (!preq || !io_poll_disarm(preq)) {
6380                spin_unlock(&ctx->completion_lock);
6381                ret = preq ? -EALREADY : -ENOENT;
6382                goto out;
6383        }
6384        spin_unlock(&ctx->completion_lock);
6385
6386        if (req->poll_update.update_events || req->poll_update.update_user_data) {
6387                /* only mask one event flags, keep behavior flags */
6388                if (req->poll_update.update_events) {
6389                        preq->poll.events &= ~0xffff;
6390                        preq->poll.events |= req->poll_update.events & 0xffff;
6391                        preq->poll.events |= IO_POLL_UNMASK;
6392                }
6393                if (req->poll_update.update_user_data)
6394                        preq->user_data = req->poll_update.new_user_data;
6395
6396                ret2 = io_poll_add(preq, issue_flags);
6397                /* successfully updated, don't complete poll request */
6398                if (!ret2)
6399                        goto out;
6400        }
6401
6402        req_set_fail(preq);
6403        preq->result = -ECANCELED;
6404        locked = !(issue_flags & IO_URING_F_UNLOCKED);
6405        io_req_task_complete(preq, &locked);
6406out:
6407        if (ret < 0)
6408                req_set_fail(req);
6409        /* complete update request, we're done with it */
6410        __io_req_complete(req, issue_flags, ret, 0);
6411        return 0;
6412}
6413
6414static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
6415{
6416        struct io_timeout_data *data = container_of(timer,
6417                                                struct io_timeout_data, timer);
6418        struct io_kiocb *req = data->req;
6419        struct io_ring_ctx *ctx = req->ctx;
6420        unsigned long flags;
6421
6422        spin_lock_irqsave(&ctx->timeout_lock, flags);
6423        list_del_init(&req->timeout.list);
6424        atomic_set(&req->ctx->cq_timeouts,
6425                atomic_read(&req->ctx->cq_timeouts) + 1);
6426        spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6427
6428        if (!(data->flags & IORING_TIMEOUT_ETIME_SUCCESS))
6429                req_set_fail(req);
6430
6431        req->result = -ETIME;
6432        req->io_task_work.func = io_req_task_complete;
6433        io_req_task_work_add(req, false);
6434        return HRTIMER_NORESTART;
6435}
6436
6437static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6438                                           __u64 user_data)
6439        __must_hold(&ctx->timeout_lock)
6440{
6441        struct io_timeout_data *io;
6442        struct io_kiocb *req;
6443        bool found = false;
6444
6445        list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6446                found = user_data == req->user_data;
6447                if (found)
6448                        break;
6449        }
6450        if (!found)
6451                return ERR_PTR(-ENOENT);
6452
6453        io = req->async_data;
6454        if (hrtimer_try_to_cancel(&io->timer) == -1)
6455                return ERR_PTR(-EALREADY);
6456        list_del_init(&req->timeout.list);
6457        return req;
6458}
6459
6460static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6461        __must_hold(&ctx->completion_lock)
6462        __must_hold(&ctx->timeout_lock)
6463{
6464        struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6465
6466        if (IS_ERR(req))
6467                return PTR_ERR(req);
6468        io_req_task_queue_fail(req, -ECANCELED);
6469        return 0;
6470}
6471
6472static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6473{
6474        switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6475        case IORING_TIMEOUT_BOOTTIME:
6476                return CLOCK_BOOTTIME;
6477        case IORING_TIMEOUT_REALTIME:
6478                return CLOCK_REALTIME;
6479        default:
6480                /* can't happen, vetted at prep time */
6481                WARN_ON_ONCE(1);
6482                fallthrough;
6483        case 0:
6484                return CLOCK_MONOTONIC;
6485        }
6486}
6487
6488static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6489                                    struct timespec64 *ts, enum hrtimer_mode mode)
6490        __must_hold(&ctx->timeout_lock)
6491{
6492        struct io_timeout_data *io;
6493        struct io_kiocb *req;
6494        bool found = false;
6495
6496        list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6497                found = user_data == req->user_data;
6498                if (found)
6499                        break;
6500        }
6501        if (!found)
6502                return -ENOENT;
6503
6504        io = req->async_data;
6505        if (hrtimer_try_to_cancel(&io->timer) == -1)
6506                return -EALREADY;
6507        hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6508        io->timer.function = io_link_timeout_fn;
6509        hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6510        return 0;
6511}
6512
6513static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6514                             struct timespec64 *ts, enum hrtimer_mode mode)
6515        __must_hold(&ctx->timeout_lock)
6516{
6517        struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6518        struct io_timeout_data *data;
6519
6520        if (IS_ERR(req))
6521                return PTR_ERR(req);
6522
6523        req->timeout.off = 0; /* noseq */
6524        data = req->async_data;
6525        list_add_tail(&req->timeout.list, &ctx->timeout_list);
6526        hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6527        data->timer.function = io_timeout_fn;
6528        hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6529        return 0;
6530}
6531
6532static int io_timeout_remove_prep(struct io_kiocb *req,
6533                                  const struct io_uring_sqe *sqe)
6534{
6535        struct io_timeout_rem *tr = &req->timeout_rem;
6536
6537        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6538                return -EINVAL;
6539        if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6540                return -EINVAL;
6541        if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6542                return -EINVAL;
6543
6544        tr->ltimeout = false;
6545        tr->addr = READ_ONCE(sqe->addr);
6546        tr->flags = READ_ONCE(sqe->timeout_flags);
6547        if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6548                if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6549                        return -EINVAL;
6550                if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6551                        tr->ltimeout = true;
6552                if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6553                        return -EINVAL;
6554                if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6555                        return -EFAULT;
6556                if (tr->ts.tv_sec < 0 || tr->ts.tv_nsec < 0)
6557                        return -EINVAL;
6558        } else if (tr->flags) {
6559                /* timeout removal doesn't support flags */
6560                return -EINVAL;
6561        }
6562
6563        return 0;
6564}
6565
6566static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6567{
6568        return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6569                                            : HRTIMER_MODE_REL;
6570}
6571
6572/*
6573 * Remove or update an existing timeout command
6574 */
6575static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6576{
6577        struct io_timeout_rem *tr = &req->timeout_rem;
6578        struct io_ring_ctx *ctx = req->ctx;
6579        int ret;
6580
6581        if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6582                spin_lock(&ctx->completion_lock);
6583                spin_lock_irq(&ctx->timeout_lock);
6584                ret = io_timeout_cancel(ctx, tr->addr);
6585                spin_unlock_irq(&ctx->timeout_lock);
6586                spin_unlock(&ctx->completion_lock);
6587        } else {
6588                enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6589
6590                spin_lock_irq(&ctx->timeout_lock);
6591                if (tr->ltimeout)
6592                        ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6593                else
6594                        ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6595                spin_unlock_irq(&ctx->timeout_lock);
6596        }
6597
6598        if (ret < 0)
6599                req_set_fail(req);
6600        io_req_complete_post(req, ret, 0);
6601        return 0;
6602}
6603
6604static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6605                           bool is_timeout_link)
6606{
6607        struct io_timeout_data *data;
6608        unsigned flags;
6609        u32 off = READ_ONCE(sqe->off);
6610
6611        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6612                return -EINVAL;
6613        if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6614            sqe->splice_fd_in)
6615                return -EINVAL;
6616        if (off && is_timeout_link)
6617                return -EINVAL;
6618        flags = READ_ONCE(sqe->timeout_flags);
6619        if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK |
6620                      IORING_TIMEOUT_ETIME_SUCCESS))
6621                return -EINVAL;
6622        /* more than one clock specified is invalid, obviously */
6623        if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6624                return -EINVAL;
6625
6626        INIT_LIST_HEAD(&req->timeout.list);
6627        req->timeout.off = off;
6628        if (unlikely(off && !req->ctx->off_timeout_used))
6629                req->ctx->off_timeout_used = true;
6630
6631        if (WARN_ON_ONCE(req_has_async_data(req)))
6632                return -EFAULT;
6633        if (io_alloc_async_data(req))
6634                return -ENOMEM;
6635
6636        data = req->async_data;
6637        data->req = req;
6638        data->flags = flags;
6639
6640        if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6641                return -EFAULT;
6642
6643        if (data->ts.tv_sec < 0 || data->ts.tv_nsec < 0)
6644                return -EINVAL;
6645
6646        INIT_LIST_HEAD(&req->timeout.list);
6647        data->mode = io_translate_timeout_mode(flags);
6648        hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6649
6650        if (is_timeout_link) {
6651                struct io_submit_link *link = &req->ctx->submit_state.link;
6652
6653                if (!link->head)
6654                        return -EINVAL;
6655                if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6656                        return -EINVAL;
6657                req->timeout.head = link->last;
6658                link->last->flags |= REQ_F_ARM_LTIMEOUT;
6659        }
6660        return 0;
6661}
6662
6663static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6664{
6665        struct io_ring_ctx *ctx = req->ctx;
6666        struct io_timeout_data *data = req->async_data;
6667        struct list_head *entry;
6668        u32 tail, off = req->timeout.off;
6669
6670        spin_lock_irq(&ctx->timeout_lock);
6671
6672        /*
6673         * sqe->off holds how many events that need to occur for this
6674         * timeout event to be satisfied. If it isn't set, then this is
6675         * a pure timeout request, sequence isn't used.
6676         */
6677        if (io_is_timeout_noseq(req)) {
6678                entry = ctx->timeout_list.prev;
6679                goto add;
6680        }
6681
6682        tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6683        req->timeout.target_seq = tail + off;
6684
6685        /* Update the last seq here in case io_flush_timeouts() hasn't.
6686         * This is safe because ->completion_lock is held, and submissions
6687         * and completions are never mixed in the same ->completion_lock section.
6688         */
6689        ctx->cq_last_tm_flush = tail;
6690
6691        /*
6692         * Insertion sort, ensuring the first entry in the list is always
6693         * the one we need first.
6694         */
6695        list_for_each_prev(entry, &ctx->timeout_list) {
6696                struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6697                                                  timeout.list);
6698
6699                if (io_is_timeout_noseq(nxt))
6700                        continue;
6701                /* nxt.seq is behind @tail, otherwise would've been completed */
6702                if (off >= nxt->timeout.target_seq - tail)
6703                        break;
6704        }
6705add:
6706        list_add(&req->timeout.list, entry);
6707        data->timer.function = io_timeout_fn;
6708        hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6709        spin_unlock_irq(&ctx->timeout_lock);
6710        return 0;
6711}
6712
6713struct io_cancel_data {
6714        struct io_ring_ctx *ctx;
6715        u64 user_data;
6716};
6717
6718static bool io_cancel_cb(struct io_wq_work *work, void *data)
6719{
6720        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6721        struct io_cancel_data *cd = data;
6722
6723        return req->ctx == cd->ctx && req->user_data == cd->user_data;
6724}
6725
6726static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6727                               struct io_ring_ctx *ctx)
6728{
6729        struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6730        enum io_wq_cancel cancel_ret;
6731        int ret = 0;
6732
6733        if (!tctx || !tctx->io_wq)
6734                return -ENOENT;
6735
6736        cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6737        switch (cancel_ret) {
6738        case IO_WQ_CANCEL_OK:
6739                ret = 0;
6740                break;
6741        case IO_WQ_CANCEL_RUNNING:
6742                ret = -EALREADY;
6743                break;
6744        case IO_WQ_CANCEL_NOTFOUND:
6745                ret = -ENOENT;
6746                break;
6747        }
6748
6749        return ret;
6750}
6751
6752static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6753{
6754        struct io_ring_ctx *ctx = req->ctx;
6755        int ret;
6756
6757        WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6758
6759        ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6760        /*
6761         * Fall-through even for -EALREADY, as we may have poll armed
6762         * that need unarming.
6763         */
6764        if (!ret)
6765                return 0;
6766
6767        spin_lock(&ctx->completion_lock);
6768        ret = io_poll_cancel(ctx, sqe_addr, false);
6769        if (ret != -ENOENT)
6770                goto out;
6771
6772        spin_lock_irq(&ctx->timeout_lock);
6773        ret = io_timeout_cancel(ctx, sqe_addr);
6774        spin_unlock_irq(&ctx->timeout_lock);
6775out:
6776        spin_unlock(&ctx->completion_lock);
6777        return ret;
6778}
6779
6780static int io_async_cancel_prep(struct io_kiocb *req,
6781                                const struct io_uring_sqe *sqe)
6782{
6783        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6784                return -EINVAL;
6785        if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6786                return -EINVAL;
6787        if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6788            sqe->splice_fd_in)
6789                return -EINVAL;
6790
6791        req->cancel.addr = READ_ONCE(sqe->addr);
6792        return 0;
6793}
6794
6795static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6796{
6797        struct io_ring_ctx *ctx = req->ctx;
6798        u64 sqe_addr = req->cancel.addr;
6799        bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
6800        struct io_tctx_node *node;
6801        int ret;
6802
6803        ret = io_try_cancel_userdata(req, sqe_addr);
6804        if (ret != -ENOENT)
6805                goto done;
6806
6807        /* slow path, try all io-wq's */
6808        io_ring_submit_lock(ctx, needs_lock);
6809        ret = -ENOENT;
6810        list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6811                struct io_uring_task *tctx = node->task->io_uring;
6812
6813                ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6814                if (ret != -ENOENT)
6815                        break;
6816        }
6817        io_ring_submit_unlock(ctx, needs_lock);
6818done:
6819        if (ret < 0)
6820                req_set_fail(req);
6821        io_req_complete_post(req, ret, 0);
6822        return 0;
6823}
6824
6825static int io_rsrc_update_prep(struct io_kiocb *req,
6826                                const struct io_uring_sqe *sqe)
6827{
6828        if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6829                return -EINVAL;
6830        if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6831                return -EINVAL;
6832
6833        req->rsrc_update.offset = READ_ONCE(sqe->off);
6834        req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6835        if (!req->rsrc_update.nr_args)
6836                return -EINVAL;
6837        req->rsrc_update.arg = READ_ONCE(sqe->addr);
6838        return 0;
6839}
6840
6841static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6842{
6843        struct io_ring_ctx *ctx = req->ctx;
6844        bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
6845        struct io_uring_rsrc_update2 up;
6846        int ret;
6847
6848        up.offset = req->rsrc_update.offset;
6849        up.data = req->rsrc_update.arg;
6850        up.nr = 0;
6851        up.tags = 0;
6852        up.resv = 0;
6853        up.resv2 = 0;
6854
6855        io_ring_submit_lock(ctx, needs_lock);
6856        ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6857                                        &up, req->rsrc_update.nr_args);
6858        io_ring_submit_unlock(ctx, needs_lock);
6859
6860        if (ret < 0)
6861                req_set_fail(req);
6862        __io_req_complete(req, issue_flags, ret, 0);
6863        return 0;
6864}
6865
6866static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6867{
6868        switch (req->opcode) {
6869        case IORING_OP_NOP:
6870                return 0;
6871        case IORING_OP_READV:
6872        case IORING_OP_READ_FIXED:
6873        case IORING_OP_READ:
6874        case IORING_OP_WRITEV:
6875        case IORING_OP_WRITE_FIXED:
6876        case IORING_OP_WRITE:
6877                return io_prep_rw(req, sqe);
6878        case IORING_OP_POLL_ADD:
6879                return io_poll_add_prep(req, sqe);
6880        case IORING_OP_POLL_REMOVE:
6881                return io_poll_update_prep(req, sqe);
6882        case IORING_OP_FSYNC:
6883                return io_fsync_prep(req, sqe);
6884        case IORING_OP_SYNC_FILE_RANGE:
6885                return io_sfr_prep(req, sqe);
6886        case IORING_OP_SENDMSG:
6887        case IORING_OP_SEND:
6888                return io_sendmsg_prep(req, sqe);
6889        case IORING_OP_RECVMSG:
6890        case IORING_OP_RECV:
6891                return io_recvmsg_prep(req, sqe);
6892        case IORING_OP_CONNECT:
6893                return io_connect_prep(req, sqe);
6894        case IORING_OP_TIMEOUT:
6895                return io_timeout_prep(req, sqe, false);
6896        case IORING_OP_TIMEOUT_REMOVE:
6897                return io_timeout_remove_prep(req, sqe);
6898        case IORING_OP_ASYNC_CANCEL:
6899                return io_async_cancel_prep(req, sqe);
6900        case IORING_OP_LINK_TIMEOUT:
6901                return io_timeout_prep(req, sqe, true);
6902        case IORING_OP_ACCEPT:
6903                return io_accept_prep(req, sqe);
6904        case IORING_OP_FALLOCATE:
6905                return io_fallocate_prep(req, sqe);
6906        case IORING_OP_OPENAT:
6907                return io_openat_prep(req, sqe);
6908        case IORING_OP_CLOSE:
6909                return io_close_prep(req, sqe);
6910        case IORING_OP_FILES_UPDATE:
6911                return io_rsrc_update_prep(req, sqe);
6912        case IORING_OP_STATX:
6913                return io_statx_prep(req, sqe);
6914        case IORING_OP_FADVISE:
6915                return io_fadvise_prep(req, sqe);
6916        case IORING_OP_MADVISE:
6917                return io_madvise_prep(req, sqe);
6918        case IORING_OP_OPENAT2:
6919                return io_openat2_prep(req, sqe);
6920        case IORING_OP_EPOLL_CTL:
6921                return io_epoll_ctl_prep(req, sqe);
6922        case IORING_OP_SPLICE:
6923                return io_splice_prep(req, sqe);
6924        case IORING_OP_PROVIDE_BUFFERS:
6925                return io_provide_buffers_prep(req, sqe);
6926        case IORING_OP_REMOVE_BUFFERS:
6927                return io_remove_buffers_prep(req, sqe);
6928        case IORING_OP_TEE:
6929                return io_tee_prep(req, sqe);
6930        case IORING_OP_SHUTDOWN:
6931                return io_shutdown_prep(req, sqe);
6932        case IORING_OP_RENAMEAT:
6933                return io_renameat_prep(req, sqe);
6934        case IORING_OP_UNLINKAT:
6935                return io_unlinkat_prep(req, sqe);
6936        case IORING_OP_MKDIRAT:
6937                return io_mkdirat_prep(req, sqe);
6938        case IORING_OP_SYMLINKAT:
6939                return io_symlinkat_prep(req, sqe);
6940        case IORING_OP_LINKAT:
6941                return io_linkat_prep(req, sqe);
6942        case IORING_OP_MSG_RING:
6943                return io_msg_ring_prep(req, sqe);
6944        }
6945
6946        printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6947                        req->opcode);
6948        return -EINVAL;
6949}
6950
6951static int io_req_prep_async(struct io_kiocb *req)
6952{
6953        const struct io_op_def *def = &io_op_defs[req->opcode];
6954
6955        /* assign early for deferred execution for non-fixed file */
6956        if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
6957                req->file = io_file_get_normal(req, req->fd);
6958        if (!def->needs_async_setup)
6959                return 0;
6960        if (WARN_ON_ONCE(req_has_async_data(req)))
6961                return -EFAULT;
6962        if (io_alloc_async_data(req))
6963                return -EAGAIN;
6964
6965        switch (req->opcode) {
6966        case IORING_OP_READV:
6967                return io_rw_prep_async(req, READ);
6968        case IORING_OP_WRITEV:
6969                return io_rw_prep_async(req, WRITE);
6970        case IORING_OP_SENDMSG:
6971                return io_sendmsg_prep_async(req);
6972        case IORING_OP_RECVMSG:
6973                return io_recvmsg_prep_async(req);
6974        case IORING_OP_CONNECT:
6975                return io_connect_prep_async(req);
6976        }
6977        printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6978                    req->opcode);
6979        return -EFAULT;
6980}
6981
6982static u32 io_get_sequence(struct io_kiocb *req)
6983{
6984        u32 seq = req->ctx->cached_sq_head;
6985
6986        /* need original cached_sq_head, but it was increased for each req */
6987        io_for_each_link(req, req)
6988                seq--;
6989        return seq;
6990}
6991
6992static __cold void io_drain_req(struct io_kiocb *req)
6993{
6994        struct io_ring_ctx *ctx = req->ctx;
6995        struct io_defer_entry *de;
6996        int ret;
6997        u32 seq = io_get_sequence(req);
6998
6999        /* Still need defer if there is pending req in defer list. */
7000        spin_lock(&ctx->completion_lock);
7001        if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
7002                spin_unlock(&ctx->completion_lock);
7003queue:
7004                ctx->drain_active = false;
7005                io_req_task_queue(req);
7006                return;
7007        }
7008        spin_unlock(&ctx->completion_lock);
7009
7010        ret = io_req_prep_async(req);
7011        if (ret) {
7012fail:
7013                io_req_complete_failed(req, ret);
7014                return;
7015        }
7016        io_prep_async_link(req);
7017        de = kmalloc(sizeof(*de), GFP_KERNEL);
7018        if (!de) {
7019                ret = -ENOMEM;
7020                goto fail;
7021        }
7022
7023        spin_lock(&ctx->completion_lock);
7024        if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
7025                spin_unlock(&ctx->completion_lock);
7026                kfree(de);
7027                goto queue;
7028        }
7029
7030        trace_io_uring_defer(ctx, req, req->user_data, req->opcode);
7031        de->req = req;
7032        de->seq = seq;
7033        list_add_tail(&de->list, &ctx->defer_list);
7034        spin_unlock(&ctx->completion_lock);
7035}
7036
7037static void io_clean_op(struct io_kiocb *req)
7038{
7039        if (req->flags & REQ_F_BUFFER_SELECTED) {
7040                spin_lock(&req->ctx->completion_lock);
7041                io_put_kbuf_comp(req);
7042                spin_unlock(&req->ctx->completion_lock);
7043        }
7044
7045        if (req->flags & REQ_F_NEED_CLEANUP) {
7046                switch (req->opcode) {
7047                case IORING_OP_READV:
7048                case IORING_OP_READ_FIXED:
7049                case IORING_OP_READ:
7050                case IORING_OP_WRITEV:
7051                case IORING_OP_WRITE_FIXED:
7052                case IORING_OP_WRITE: {
7053                        struct io_async_rw *io = req->async_data;
7054
7055                        kfree(io->free_iovec);
7056                        break;
7057                        }
7058                case IORING_OP_RECVMSG:
7059                case IORING_OP_SENDMSG: {
7060                        struct io_async_msghdr *io = req->async_data;
7061
7062                        kfree(io->free_iov);
7063                        break;
7064                        }
7065                case IORING_OP_OPENAT:
7066                case IORING_OP_OPENAT2:
7067                        if (req->open.filename)
7068                                putname(req->open.filename);
7069                        break;
7070                case IORING_OP_RENAMEAT:
7071                        putname(req->rename.oldpath);
7072                        putname(req->rename.newpath);
7073                        break;
7074                case IORING_OP_UNLINKAT:
7075                        putname(req->unlink.filename);
7076                        break;
7077                case IORING_OP_MKDIRAT:
7078                        putname(req->mkdir.filename);
7079                        break;
7080                case IORING_OP_SYMLINKAT:
7081                        putname(req->symlink.oldpath);
7082                        putname(req->symlink.newpath);
7083                        break;
7084                case IORING_OP_LINKAT:
7085                        putname(req->hardlink.oldpath);
7086                        putname(req->hardlink.newpath);
7087                        break;
7088                case IORING_OP_STATX:
7089                        if (req->statx.filename)
7090                                putname(req->statx.filename);
7091                        break;
7092                }
7093        }
7094        if ((req->flags & REQ_F_POLLED) && req->apoll) {
7095                kfree(req->apoll->double_poll);
7096                kfree(req->apoll);
7097                req->apoll = NULL;
7098        }
7099        if (req->flags & REQ_F_CREDS)
7100                put_cred(req->creds);
7101        if (req->flags & REQ_F_ASYNC_DATA) {
7102                kfree(req->async_data);
7103                req->async_data = NULL;
7104        }
7105        req->flags &= ~IO_REQ_CLEAN_FLAGS;
7106}
7107
7108static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
7109{
7110        if (req->file || !io_op_defs[req->opcode].needs_file)
7111                return true;
7112
7113        if (req->flags & REQ_F_FIXED_FILE)
7114                req->file = io_file_get_fixed(req, req->fd, issue_flags);
7115        else
7116                req->file = io_file_get_normal(req, req->fd);
7117        if (req->file)
7118                return true;
7119
7120        req_set_fail(req);
7121        req->result = -EBADF;
7122        return false;
7123}
7124
7125static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
7126{
7127        const struct cred *creds = NULL;
7128        int ret;
7129
7130        if (unlikely(!io_assign_file(req, issue_flags)))
7131                return -EBADF;
7132
7133        if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
7134                creds = override_creds(req->creds);
7135
7136        if (!io_op_defs[req->opcode].audit_skip)
7137                audit_uring_entry(req->opcode);
7138
7139        switch (req->opcode) {
7140        case IORING_OP_NOP:
7141                ret = io_nop(req, issue_flags);
7142                break;
7143        case IORING_OP_READV:
7144        case IORING_OP_READ_FIXED:
7145        case IORING_OP_READ:
7146                ret = io_read(req, issue_flags);
7147                break;
7148        case IORING_OP_WRITEV:
7149        case IORING_OP_WRITE_FIXED:
7150        case IORING_OP_WRITE:
7151                ret = io_write(req, issue_flags);
7152                break;
7153        case IORING_OP_FSYNC:
7154                ret = io_fsync(req, issue_flags);
7155                break;
7156        case IORING_OP_POLL_ADD:
7157                ret = io_poll_add(req, issue_flags);
7158                break;
7159        case IORING_OP_POLL_REMOVE:
7160                ret = io_poll_update(req, issue_flags);
7161                break;
7162        case IORING_OP_SYNC_FILE_RANGE:
7163                ret = io_sync_file_range(req, issue_flags);
7164                break;
7165        case IORING_OP_SENDMSG:
7166                ret = io_sendmsg(req, issue_flags);
7167                break;
7168        case IORING_OP_SEND:
7169                ret = io_send(req, issue_flags);
7170                break;
7171        case IORING_OP_RECVMSG:
7172                ret = io_recvmsg(req, issue_flags);
7173                break;
7174        case IORING_OP_RECV:
7175                ret = io_recv(req, issue_flags);
7176                break;
7177        case IORING_OP_TIMEOUT:
7178                ret = io_timeout(req, issue_flags);
7179                break;
7180        case IORING_OP_TIMEOUT_REMOVE:
7181                ret = io_timeout_remove(req, issue_flags);
7182                break;
7183        case IORING_OP_ACCEPT:
7184                ret = io_accept(req, issue_flags);
7185                break;
7186        case IORING_OP_CONNECT:
7187                ret = io_connect(req, issue_flags);
7188                break;
7189        case IORING_OP_ASYNC_CANCEL:
7190                ret = io_async_cancel(req, issue_flags);
7191                break;
7192        case IORING_OP_FALLOCATE:
7193                ret = io_fallocate(req, issue_flags);
7194                break;
7195        case IORING_OP_OPENAT:
7196                ret = io_openat(req, issue_flags);
7197                break;
7198        case IORING_OP_CLOSE:
7199                ret = io_close(req, issue_flags);
7200                break;
7201        case IORING_OP_FILES_UPDATE:
7202                ret = io_files_update(req, issue_flags);
7203                break;
7204        case IORING_OP_STATX:
7205                ret = io_statx(req, issue_flags);
7206                break;
7207        case IORING_OP_FADVISE:
7208                ret = io_fadvise(req, issue_flags);
7209                break;
7210        case IORING_OP_MADVISE:
7211                ret = io_madvise(req, issue_flags);
7212                break;
7213        case IORING_OP_OPENAT2:
7214                ret = io_openat2(req, issue_flags);
7215                break;
7216        case IORING_OP_EPOLL_CTL:
7217                ret = io_epoll_ctl(req, issue_flags);
7218                break;
7219        case IORING_OP_SPLICE:
7220                ret = io_splice(req, issue_flags);
7221                break;
7222        case IORING_OP_PROVIDE_BUFFERS:
7223                ret = io_provide_buffers(req, issue_flags);
7224                break;
7225        case IORING_OP_REMOVE_BUFFERS:
7226                ret = io_remove_buffers(req, issue_flags);
7227                break;
7228        case IORING_OP_TEE:
7229                ret = io_tee(req, issue_flags);
7230                break;
7231        case IORING_OP_SHUTDOWN:
7232                ret = io_shutdown(req, issue_flags);
7233                break;
7234        case IORING_OP_RENAMEAT:
7235                ret = io_renameat(req, issue_flags);
7236                break;
7237        case IORING_OP_UNLINKAT:
7238                ret = io_unlinkat(req, issue_flags);
7239                break;
7240        case IORING_OP_MKDIRAT:
7241                ret = io_mkdirat(req, issue_flags);
7242                break;
7243        case IORING_OP_SYMLINKAT:
7244                ret = io_symlinkat(req, issue_flags);
7245                break;
7246        case IORING_OP_LINKAT:
7247                ret = io_linkat(req, issue_flags);
7248                break;
7249        case IORING_OP_MSG_RING:
7250                ret = io_msg_ring(req, issue_flags);
7251                break;
7252        default:
7253                ret = -EINVAL;
7254                break;
7255        }
7256
7257        if (!io_op_defs[req->opcode].audit_skip)
7258                audit_uring_exit(!ret, ret);
7259
7260        if (creds)
7261                revert_creds(creds);
7262        if (ret)
7263                return ret;
7264        /* If the op doesn't have a file, we're not polling for it */
7265        if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
7266                io_iopoll_req_issued(req, issue_flags);
7267
7268        return 0;
7269}
7270
7271static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
7272{
7273        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7274
7275        req = io_put_req_find_next(req);
7276        return req ? &req->work : NULL;
7277}
7278
7279static void io_wq_submit_work(struct io_wq_work *work)
7280{
7281        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7282        const struct io_op_def *def = &io_op_defs[req->opcode];
7283        unsigned int issue_flags = IO_URING_F_UNLOCKED;
7284        bool needs_poll = false;
7285        struct io_kiocb *timeout;
7286        int ret = 0, err = -ECANCELED;
7287
7288        /* one will be dropped by ->io_free_work() after returning to io-wq */
7289        if (!(req->flags & REQ_F_REFCOUNT))
7290                __io_req_set_refcount(req, 2);
7291        else
7292                req_ref_get(req);
7293
7294        timeout = io_prep_linked_timeout(req);
7295        if (timeout)
7296                io_queue_linked_timeout(timeout);
7297
7298
7299        /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
7300        if (work->flags & IO_WQ_WORK_CANCEL) {
7301fail:
7302                io_req_task_queue_fail(req, err);
7303                return;
7304        }
7305        if (!io_assign_file(req, issue_flags)) {
7306                err = -EBADF;
7307                work->flags |= IO_WQ_WORK_CANCEL;
7308                goto fail;
7309        }
7310
7311        if (req->flags & REQ_F_FORCE_ASYNC) {
7312                bool opcode_poll = def->pollin || def->pollout;
7313
7314                if (opcode_poll && file_can_poll(req->file)) {
7315                        needs_poll = true;
7316                        issue_flags |= IO_URING_F_NONBLOCK;
7317                }
7318        }
7319
7320        do {
7321                ret = io_issue_sqe(req, issue_flags);
7322                if (ret != -EAGAIN)
7323                        break;
7324                /*
7325                 * We can get EAGAIN for iopolled IO even though we're
7326                 * forcing a sync submission from here, since we can't
7327                 * wait for request slots on the block side.
7328                 */
7329                if (!needs_poll) {
7330                        cond_resched();
7331                        continue;
7332                }
7333
7334                if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
7335                        return;
7336                /* aborted or ready, in either case retry blocking */
7337                needs_poll = false;
7338                issue_flags &= ~IO_URING_F_NONBLOCK;
7339        } while (1);
7340
7341        /* avoid locking problems by failing it from a clean context */
7342        if (ret)
7343                io_req_task_queue_fail(req, ret);
7344}
7345
7346static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
7347                                                       unsigned i)
7348{
7349        return &table->files[i];
7350}
7351
7352static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
7353                                              int index)
7354{
7355        struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
7356
7357        return (struct file *) (slot->file_ptr & FFS_MASK);
7358}
7359
7360static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
7361{
7362        unsigned long file_ptr = (unsigned long) file;
7363
7364        file_ptr |= io_file_get_flags(file);
7365        file_slot->file_ptr = file_ptr;
7366}
7367
7368static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
7369                                             unsigned int issue_flags)
7370{
7371        struct io_ring_ctx *ctx = req->ctx;
7372        struct file *file = NULL;
7373        unsigned long file_ptr;
7374
7375        if (issue_flags & IO_URING_F_UNLOCKED)
7376                mutex_lock(&ctx->uring_lock);
7377
7378        if (unlikely((unsigned int)fd >= ctx->nr_user_files))
7379                goto out;
7380        fd = array_index_nospec(fd, ctx->nr_user_files);
7381        file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
7382        file = (struct file *) (file_ptr & FFS_MASK);
7383        file_ptr &= ~FFS_MASK;
7384        /* mask in overlapping REQ_F and FFS bits */
7385        req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
7386        io_req_set_rsrc_node(req, ctx, 0);
7387out:
7388        if (issue_flags & IO_URING_F_UNLOCKED)
7389                mutex_unlock(&ctx->uring_lock);
7390        return file;
7391}
7392
7393/*
7394 * Drop the file for requeue operations. Only used of req->file is the
7395 * io_uring descriptor itself.
7396 */
7397static void io_drop_inflight_file(struct io_kiocb *req)
7398{
7399        if (unlikely(req->flags & REQ_F_INFLIGHT)) {
7400                fput(req->file);
7401                req->file = NULL;
7402                req->flags &= ~REQ_F_INFLIGHT;
7403        }
7404}
7405
7406static struct file *io_file_get_normal(struct io_kiocb *req, int fd)
7407{
7408        struct file *file = fget(fd);
7409
7410        trace_io_uring_file_get(req->ctx, req, req->user_data, fd);
7411
7412        /* we don't allow fixed io_uring files */
7413        if (file && file->f_op == &io_uring_fops)
7414                req->flags |= REQ_F_INFLIGHT;
7415        return file;
7416}
7417
7418static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
7419{
7420        struct io_kiocb *prev = req->timeout.prev;
7421        int ret = -ENOENT;
7422
7423        if (prev) {
7424                if (!(req->task->flags & PF_EXITING))
7425                        ret = io_try_cancel_userdata(req, prev->user_data);
7426                io_req_complete_post(req, ret ?: -ETIME, 0);
7427                io_put_req(prev);
7428        } else {
7429                io_req_complete_post(req, -ETIME, 0);
7430        }
7431}
7432
7433static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
7434{
7435        struct io_timeout_data *data = container_of(timer,
7436                                                struct io_timeout_data, timer);
7437        struct io_kiocb *prev, *req = data->req;
7438        struct io_ring_ctx *ctx = req->ctx;
7439        unsigned long flags;
7440
7441        spin_lock_irqsave(&ctx->timeout_lock, flags);
7442        prev = req->timeout.head;
7443        req->timeout.head = NULL;
7444
7445        /*
7446         * We don't expect the list to be empty, that will only happen if we
7447         * race with the completion of the linked work.
7448         */
7449        if (prev) {
7450                io_remove_next_linked(prev);
7451                if (!req_ref_inc_not_zero(prev))
7452                        prev = NULL;
7453        }
7454        list_del(&req->timeout.list);
7455        req->timeout.prev = prev;
7456        spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7457
7458        req->io_task_work.func = io_req_task_link_timeout;
7459        io_req_task_work_add(req, false);
7460        return HRTIMER_NORESTART;
7461}
7462
7463static void io_queue_linked_timeout(struct io_kiocb *req)
7464{
7465        struct io_ring_ctx *ctx = req->ctx;
7466
7467        spin_lock_irq(&ctx->timeout_lock);
7468        /*
7469         * If the back reference is NULL, then our linked request finished
7470         * before we got a chance to setup the timer
7471         */
7472        if (req->timeout.head) {
7473                struct io_timeout_data *data = req->async_data;
7474
7475                data->timer.function = io_link_timeout_fn;
7476                hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7477                                data->mode);
7478                list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7479        }
7480        spin_unlock_irq(&ctx->timeout_lock);
7481        /* drop submission reference */
7482        io_put_req(req);
7483}
7484
7485static void io_queue_sqe_arm_apoll(struct io_kiocb *req)
7486        __must_hold(&req->ctx->uring_lock)
7487{
7488        struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
7489
7490        switch (io_arm_poll_handler(req, 0)) {
7491        case IO_APOLL_READY:
7492                io_req_task_queue(req);
7493                break;
7494        case IO_APOLL_ABORTED:
7495                /*
7496                 * Queued up for async execution, worker will release
7497                 * submit reference when the iocb is actually submitted.
7498                 */
7499                io_queue_async_work(req, NULL);
7500                break;
7501        case IO_APOLL_OK:
7502                break;
7503        }
7504
7505        if (linked_timeout)
7506                io_queue_linked_timeout(linked_timeout);
7507}
7508
7509static inline void __io_queue_sqe(struct io_kiocb *req)
7510        __must_hold(&req->ctx->uring_lock)
7511{
7512        struct io_kiocb *linked_timeout;
7513        int ret;
7514
7515        ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7516
7517        if (req->flags & REQ_F_COMPLETE_INLINE) {
7518                io_req_add_compl_list(req);
7519                return;
7520        }
7521        /*
7522         * We async punt it if the file wasn't marked NOWAIT, or if the file
7523         * doesn't support non-blocking read/write attempts
7524         */
7525        if (likely(!ret)) {
7526                linked_timeout = io_prep_linked_timeout(req);
7527                if (linked_timeout)
7528                        io_queue_linked_timeout(linked_timeout);
7529        } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7530                io_queue_sqe_arm_apoll(req);
7531        } else {
7532                io_req_complete_failed(req, ret);
7533        }
7534}
7535
7536static void io_queue_sqe_fallback(struct io_kiocb *req)
7537        __must_hold(&req->ctx->uring_lock)
7538{
7539        if (req->flags & REQ_F_FAIL) {
7540                io_req_complete_fail_submit(req);
7541        } else if (unlikely(req->ctx->drain_active)) {
7542                io_drain_req(req);
7543        } else {
7544                int ret = io_req_prep_async(req);
7545
7546                if (unlikely(ret))
7547                        io_req_complete_failed(req, ret);
7548                else
7549                        io_queue_async_work(req, NULL);
7550        }
7551}
7552
7553static inline void io_queue_sqe(struct io_kiocb *req)
7554        __must_hold(&req->ctx->uring_lock)
7555{
7556        if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))))
7557                __io_queue_sqe(req);
7558        else
7559                io_queue_sqe_fallback(req);
7560}
7561
7562/*
7563 * Check SQE restrictions (opcode and flags).
7564 *
7565 * Returns 'true' if SQE is allowed, 'false' otherwise.
7566 */
7567static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7568                                        struct io_kiocb *req,
7569                                        unsigned int sqe_flags)
7570{
7571        if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7572                return false;
7573
7574        if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7575            ctx->restrictions.sqe_flags_required)
7576                return false;
7577
7578        if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7579                          ctx->restrictions.sqe_flags_required))
7580                return false;
7581
7582        return true;
7583}
7584
7585static void io_init_req_drain(struct io_kiocb *req)
7586{
7587        struct io_ring_ctx *ctx = req->ctx;
7588        struct io_kiocb *head = ctx->submit_state.link.head;
7589
7590        ctx->drain_active = true;
7591        if (head) {
7592                /*
7593                 * If we need to drain a request in the middle of a link, drain
7594                 * the head request and the next request/link after the current
7595                 * link. Considering sequential execution of links,
7596                 * REQ_F_IO_DRAIN will be maintained for every request of our
7597                 * link.
7598                 */
7599                head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
7600                ctx->drain_next = true;
7601        }
7602}
7603
7604static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7605                       const struct io_uring_sqe *sqe)
7606        __must_hold(&ctx->uring_lock)
7607{
7608        unsigned int sqe_flags;
7609        int personality;
7610        u8 opcode;
7611
7612        /* req is partially pre-initialised, see io_preinit_req() */
7613        req->opcode = opcode = READ_ONCE(sqe->opcode);
7614        /* same numerical values with corresponding REQ_F_*, safe to copy */
7615        req->flags = sqe_flags = READ_ONCE(sqe->flags);
7616        req->user_data = READ_ONCE(sqe->user_data);
7617        req->file = NULL;
7618        req->fixed_rsrc_refs = NULL;
7619        req->task = current;
7620
7621        if (unlikely(opcode >= IORING_OP_LAST)) {
7622                req->opcode = 0;
7623                return -EINVAL;
7624        }
7625        if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
7626                /* enforce forwards compatibility on users */
7627                if (sqe_flags & ~SQE_VALID_FLAGS)
7628                        return -EINVAL;
7629                if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7630                    !io_op_defs[opcode].buffer_select)
7631                        return -EOPNOTSUPP;
7632                if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
7633                        ctx->drain_disabled = true;
7634                if (sqe_flags & IOSQE_IO_DRAIN) {
7635                        if (ctx->drain_disabled)
7636                                return -EOPNOTSUPP;
7637                        io_init_req_drain(req);
7638                }
7639        }
7640        if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
7641                if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
7642                        return -EACCES;
7643                /* knock it to the slow queue path, will be drained there */
7644                if (ctx->drain_active)
7645                        req->flags |= REQ_F_FORCE_ASYNC;
7646                /* if there is no link, we're at "next" request and need to drain */
7647                if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
7648                        ctx->drain_next = false;
7649                        ctx->drain_active = true;
7650                        req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
7651                }
7652        }
7653
7654        if (io_op_defs[opcode].needs_file) {
7655                struct io_submit_state *state = &ctx->submit_state;
7656
7657                req->fd = READ_ONCE(sqe->fd);
7658
7659                /*
7660                 * Plug now if we have more than 2 IO left after this, and the
7661                 * target is potentially a read/write to block based storage.
7662                 */
7663                if (state->need_plug && io_op_defs[opcode].plug) {
7664                        state->plug_started = true;
7665                        state->need_plug = false;
7666                        blk_start_plug_nr_ios(&state->plug, state->submit_nr);
7667                }
7668        }
7669
7670        personality = READ_ONCE(sqe->personality);
7671        if (personality) {
7672                int ret;
7673
7674                req->creds = xa_load(&ctx->personalities, personality);
7675                if (!req->creds)
7676                        return -EINVAL;
7677                get_cred(req->creds);
7678                ret = security_uring_override_creds(req->creds);
7679                if (ret) {
7680                        put_cred(req->creds);
7681                        return ret;
7682                }
7683                req->flags |= REQ_F_CREDS;
7684        }
7685
7686        return io_req_prep(req, sqe);
7687}
7688
7689static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7690                         const struct io_uring_sqe *sqe)
7691        __must_hold(&ctx->uring_lock)
7692{
7693        struct io_submit_link *link = &ctx->submit_state.link;
7694        int ret;
7695
7696        ret = io_init_req(ctx, req, sqe);
7697        if (unlikely(ret)) {
7698                trace_io_uring_req_failed(sqe, ctx, req, ret);
7699
7700                /* fail even hard links since we don't submit */
7701                if (link->head) {
7702                        /*
7703                         * we can judge a link req is failed or cancelled by if
7704                         * REQ_F_FAIL is set, but the head is an exception since
7705                         * it may be set REQ_F_FAIL because of other req's failure
7706                         * so let's leverage req->result to distinguish if a head
7707                         * is set REQ_F_FAIL because of its failure or other req's
7708                         * failure so that we can set the correct ret code for it.
7709                         * init result here to avoid affecting the normal path.
7710                         */
7711                        if (!(link->head->flags & REQ_F_FAIL))
7712                                req_fail_link_node(link->head, -ECANCELED);
7713                } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7714                        /*
7715                         * the current req is a normal req, we should return
7716                         * error and thus break the submittion loop.
7717                         */
7718                        io_req_complete_failed(req, ret);
7719                        return ret;
7720                }
7721                req_fail_link_node(req, ret);
7722        }
7723
7724        /* don't need @sqe from now on */
7725        trace_io_uring_submit_sqe(ctx, req, req->user_data, req->opcode,
7726                                  req->flags, true,
7727                                  ctx->flags & IORING_SETUP_SQPOLL);
7728
7729        /*
7730         * If we already have a head request, queue this one for async
7731         * submittal once the head completes. If we don't have a head but
7732         * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7733         * submitted sync once the chain is complete. If none of those
7734         * conditions are true (normal request), then just queue it.
7735         */
7736        if (link->head) {
7737                struct io_kiocb *head = link->head;
7738
7739                if (!(req->flags & REQ_F_FAIL)) {
7740                        ret = io_req_prep_async(req);
7741                        if (unlikely(ret)) {
7742                                req_fail_link_node(req, ret);
7743                                if (!(head->flags & REQ_F_FAIL))
7744                                        req_fail_link_node(head, -ECANCELED);
7745                        }
7746                }
7747                trace_io_uring_link(ctx, req, head);
7748                link->last->link = req;
7749                link->last = req;
7750
7751                if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
7752                        return 0;
7753                /* last request of a link, enqueue the link */
7754                link->head = NULL;
7755                req = head;
7756        } else if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7757                link->head = req;
7758                link->last = req;
7759                return 0;
7760        }
7761
7762        io_queue_sqe(req);
7763        return 0;
7764}
7765
7766/*
7767 * Batched submission is done, ensure local IO is flushed out.
7768 */
7769static void io_submit_state_end(struct io_ring_ctx *ctx)
7770{
7771        struct io_submit_state *state = &ctx->submit_state;
7772
7773        if (state->link.head)
7774                io_queue_sqe(state->link.head);
7775        /* flush only after queuing links as they can generate completions */
7776        io_submit_flush_completions(ctx);
7777        if (state->plug_started)
7778                blk_finish_plug(&state->plug);
7779}
7780
7781/*
7782 * Start submission side cache.
7783 */
7784static void io_submit_state_start(struct io_submit_state *state,
7785                                  unsigned int max_ios)
7786{
7787        state->plug_started = false;
7788        state->need_plug = max_ios > 2;
7789        state->submit_nr = max_ios;
7790        /* set only head, no need to init link_last in advance */
7791        state->link.head = NULL;
7792}
7793
7794static void io_commit_sqring(struct io_ring_ctx *ctx)
7795{
7796        struct io_rings *rings = ctx->rings;
7797
7798        /*
7799         * Ensure any loads from the SQEs are done at this point,
7800         * since once we write the new head, the application could
7801         * write new data to them.
7802         */
7803        smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7804}
7805
7806/*
7807 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7808 * that is mapped by userspace. This means that care needs to be taken to
7809 * ensure that reads are stable, as we cannot rely on userspace always
7810 * being a good citizen. If members of the sqe are validated and then later
7811 * used, it's important that those reads are done through READ_ONCE() to
7812 * prevent a re-load down the line.
7813 */
7814static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7815{
7816        unsigned head, mask = ctx->sq_entries - 1;
7817        unsigned sq_idx = ctx->cached_sq_head++ & mask;
7818
7819        /*
7820         * The cached sq head (or cq tail) serves two purposes:
7821         *
7822         * 1) allows us to batch the cost of updating the user visible
7823         *    head updates.
7824         * 2) allows the kernel side to track the head on its own, even
7825         *    though the application is the one updating it.
7826         */
7827        head = READ_ONCE(ctx->sq_array[sq_idx]);
7828        if (likely(head < ctx->sq_entries))
7829                return &ctx->sq_sqes[head];
7830
7831        /* drop invalid entries */
7832        ctx->cq_extra--;
7833        WRITE_ONCE(ctx->rings->sq_dropped,
7834                   READ_ONCE(ctx->rings->sq_dropped) + 1);
7835        return NULL;
7836}
7837
7838static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7839        __must_hold(&ctx->uring_lock)
7840{
7841        unsigned int entries = io_sqring_entries(ctx);
7842        int submitted = 0;
7843
7844        if (unlikely(!entries))
7845                return 0;
7846        /* make sure SQ entry isn't read before tail */
7847        nr = min3(nr, ctx->sq_entries, entries);
7848        io_get_task_refs(nr);
7849
7850        io_submit_state_start(&ctx->submit_state, nr);
7851        do {
7852                const struct io_uring_sqe *sqe;
7853                struct io_kiocb *req;
7854
7855                if (unlikely(!io_alloc_req_refill(ctx))) {
7856                        if (!submitted)
7857                                submitted = -EAGAIN;
7858                        break;
7859                }
7860                req = io_alloc_req(ctx);
7861                sqe = io_get_sqe(ctx);
7862                if (unlikely(!sqe)) {
7863                        wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
7864                        break;
7865                }
7866                /* will complete beyond this point, count as submitted */
7867                submitted++;
7868                if (io_submit_sqe(ctx, req, sqe)) {
7869                        /*
7870                         * Continue submitting even for sqe failure if the
7871                         * ring was setup with IORING_SETUP_SUBMIT_ALL
7872                         */
7873                        if (!(ctx->flags & IORING_SETUP_SUBMIT_ALL))
7874                                break;
7875                }
7876        } while (submitted < nr);
7877
7878        if (unlikely(submitted != nr)) {
7879                int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7880                int unused = nr - ref_used;
7881
7882                current->io_uring->cached_refs += unused;
7883        }
7884
7885        io_submit_state_end(ctx);
7886         /* Commit SQ ring head once we've consumed and submitted all SQEs */
7887        io_commit_sqring(ctx);
7888
7889        return submitted;
7890}
7891
7892static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7893{
7894        return READ_ONCE(sqd->state);
7895}
7896
7897static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7898{
7899        /* Tell userspace we may need a wakeup call */
7900        spin_lock(&ctx->completion_lock);
7901        WRITE_ONCE(ctx->rings->sq_flags,
7902                   ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7903        spin_unlock(&ctx->completion_lock);
7904}
7905
7906static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7907{
7908        spin_lock(&ctx->completion_lock);
7909        WRITE_ONCE(ctx->rings->sq_flags,
7910                   ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7911        spin_unlock(&ctx->completion_lock);
7912}
7913
7914static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7915{
7916        unsigned int to_submit;
7917        int ret = 0;
7918
7919        to_submit = io_sqring_entries(ctx);
7920        /* if we're handling multiple rings, cap submit size for fairness */
7921        if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7922                to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7923
7924        if (!wq_list_empty(&ctx->iopoll_list) || to_submit) {
7925                const struct cred *creds = NULL;
7926
7927                if (ctx->sq_creds != current_cred())
7928                        creds = override_creds(ctx->sq_creds);
7929
7930                mutex_lock(&ctx->uring_lock);
7931                if (!wq_list_empty(&ctx->iopoll_list))
7932                        io_do_iopoll(ctx, true);
7933
7934                /*
7935                 * Don't submit if refs are dying, good for io_uring_register(),
7936                 * but also it is relied upon by io_ring_exit_work()
7937                 */
7938                if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7939                    !(ctx->flags & IORING_SETUP_R_DISABLED))
7940                        ret = io_submit_sqes(ctx, to_submit);
7941                mutex_unlock(&ctx->uring_lock);
7942
7943                if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7944                        wake_up(&ctx->sqo_sq_wait);
7945                if (creds)
7946                        revert_creds(creds);
7947        }
7948
7949        return ret;
7950}
7951
7952static __cold void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7953{
7954        struct io_ring_ctx *ctx;
7955        unsigned sq_thread_idle = 0;
7956
7957        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7958                sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7959        sqd->sq_thread_idle = sq_thread_idle;
7960}
7961
7962static bool io_sqd_handle_event(struct io_sq_data *sqd)
7963{
7964        bool did_sig = false;
7965        struct ksignal ksig;
7966
7967        if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7968            signal_pending(current)) {
7969                mutex_unlock(&sqd->lock);
7970                if (signal_pending(current))
7971                        did_sig = get_signal(&ksig);
7972                cond_resched();
7973                mutex_lock(&sqd->lock);
7974        }
7975        return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7976}
7977
7978static int io_sq_thread(void *data)
7979{
7980        struct io_sq_data *sqd = data;
7981        struct io_ring_ctx *ctx;
7982        unsigned long timeout = 0;
7983        char buf[TASK_COMM_LEN];
7984        DEFINE_WAIT(wait);
7985
7986        snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7987        set_task_comm(current, buf);
7988
7989        if (sqd->sq_cpu != -1)
7990                set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7991        else
7992                set_cpus_allowed_ptr(current, cpu_online_mask);
7993        current->flags |= PF_NO_SETAFFINITY;
7994
7995        audit_alloc_kernel(current);
7996
7997        mutex_lock(&sqd->lock);
7998        while (1) {
7999                bool cap_entries, sqt_spin = false;
8000
8001                if (io_sqd_events_pending(sqd) || signal_pending(current)) {
8002                        if (io_sqd_handle_event(sqd))
8003                                break;
8004                        timeout = jiffies + sqd->sq_thread_idle;
8005                }
8006
8007                cap_entries = !list_is_singular(&sqd->ctx_list);
8008                list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
8009                        int ret = __io_sq_thread(ctx, cap_entries);
8010
8011                        if (!sqt_spin && (ret > 0 || !wq_list_empty(&ctx->iopoll_list)))
8012                                sqt_spin = true;
8013                }
8014                if (io_run_task_work())
8015                        sqt_spin = true;
8016
8017                if (sqt_spin || !time_after(jiffies, timeout)) {
8018                        cond_resched();
8019                        if (sqt_spin)
8020                                timeout = jiffies + sqd->sq_thread_idle;
8021                        continue;
8022                }
8023
8024                prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
8025                if (!io_sqd_events_pending(sqd) && !task_work_pending(current)) {
8026                        bool needs_sched = true;
8027
8028                        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
8029                                io_ring_set_wakeup_flag(ctx);
8030
8031                                if ((ctx->flags & IORING_SETUP_IOPOLL) &&
8032                                    !wq_list_empty(&ctx->iopoll_list)) {
8033                                        needs_sched = false;
8034                                        break;
8035                                }
8036
8037                                /*
8038                                 * Ensure the store of the wakeup flag is not
8039                                 * reordered with the load of the SQ tail
8040                                 */
8041                                smp_mb();
8042
8043                                if (io_sqring_entries(ctx)) {
8044                                        needs_sched = false;
8045                                        break;
8046                                }
8047                        }
8048
8049                        if (needs_sched) {
8050                                mutex_unlock(&sqd->lock);
8051                                schedule();
8052                                mutex_lock(&sqd->lock);
8053                        }
8054                        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
8055                                io_ring_clear_wakeup_flag(ctx);
8056                }
8057
8058                finish_wait(&sqd->wait, &wait);
8059                timeout = jiffies + sqd->sq_thread_idle;
8060        }
8061
8062        io_uring_cancel_generic(true, sqd);
8063        sqd->thread = NULL;
8064        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
8065                io_ring_set_wakeup_flag(ctx);
8066        io_run_task_work();
8067        mutex_unlock(&sqd->lock);
8068
8069        audit_free(current);
8070
8071        complete(&sqd->exited);
8072        do_exit(0);
8073}
8074
8075struct io_wait_queue {
8076        struct wait_queue_entry wq;
8077        struct io_ring_ctx *ctx;
8078        unsigned cq_tail;
8079        unsigned nr_timeouts;
8080};
8081
8082static inline bool io_should_wake(struct io_wait_queue *iowq)
8083{
8084        struct io_ring_ctx *ctx = iowq->ctx;
8085        int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
8086
8087        /*
8088         * Wake up if we have enough events, or if a timeout occurred since we
8089         * started waiting. For timeouts, we always want to return to userspace,
8090         * regardless of event count.
8091         */
8092        return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
8093}
8094
8095static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
8096                            int wake_flags, void *key)
8097{
8098        struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
8099                                                        wq);
8100
8101        /*
8102         * Cannot safely flush overflowed CQEs from here, ensure we wake up
8103         * the task, and the next invocation will do it.
8104         */
8105        if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
8106                return autoremove_wake_function(curr, mode, wake_flags, key);
8107        return -1;
8108}
8109
8110static int io_run_task_work_sig(void)
8111{
8112        if (io_run_task_work())
8113                return 1;
8114        if (test_thread_flag(TIF_NOTIFY_SIGNAL))
8115                return -ERESTARTSYS;
8116        if (task_sigpending(current))
8117                return -EINTR;
8118        return 0;
8119}
8120
8121/* when returns >0, the caller should retry */
8122static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
8123                                          struct io_wait_queue *iowq,
8124                                          ktime_t timeout)
8125{
8126        int ret;
8127
8128        /* make sure we run task_work before checking for signals */
8129        ret = io_run_task_work_sig();
8130        if (ret || io_should_wake(iowq))
8131                return ret;
8132        /* let the caller flush overflows, retry */
8133        if (test_bit(0, &ctx->check_cq_overflow))
8134                return 1;
8135
8136        if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
8137                return -ETIME;
8138        return 1;
8139}
8140
8141/*
8142 * Wait until events become available, if we don't already have some. The
8143 * application must reap them itself, as they reside on the shared cq ring.
8144 */
8145static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
8146                          const sigset_t __user *sig, size_t sigsz,
8147                          struct __kernel_timespec __user *uts)
8148{
8149        struct io_wait_queue iowq;
8150        struct io_rings *rings = ctx->rings;
8151        ktime_t timeout = KTIME_MAX;
8152        int ret;
8153
8154        do {
8155                io_cqring_overflow_flush(ctx);
8156                if (io_cqring_events(ctx) >= min_events)
8157                        return 0;
8158                if (!io_run_task_work())
8159                        break;
8160        } while (1);
8161
8162        if (sig) {
8163#ifdef CONFIG_COMPAT
8164                if (in_compat_syscall())
8165                        ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
8166                                                      sigsz);
8167                else
8168#endif
8169                        ret = set_user_sigmask(sig, sigsz);
8170
8171                if (ret)
8172                        return ret;
8173        }
8174
8175        if (uts) {
8176                struct timespec64 ts;
8177
8178                if (get_timespec64(&ts, uts))
8179                        return -EFAULT;
8180                timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
8181        }
8182
8183        init_waitqueue_func_entry(&iowq.wq, io_wake_function);
8184        iowq.wq.private = current;
8185        INIT_LIST_HEAD(&iowq.wq.entry);
8186        iowq.ctx = ctx;
8187        iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
8188        iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
8189
8190        trace_io_uring_cqring_wait(ctx, min_events);
8191        do {
8192                /* if we can't even flush overflow, don't wait for more */
8193                if (!io_cqring_overflow_flush(ctx)) {
8194                        ret = -EBUSY;
8195                        break;
8196                }
8197                prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
8198                                                TASK_INTERRUPTIBLE);
8199                ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
8200                finish_wait(&ctx->cq_wait, &iowq.wq);
8201                cond_resched();
8202        } while (ret > 0);
8203
8204        restore_saved_sigmask_unless(ret == -EINTR);
8205
8206        return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
8207}
8208
8209static void io_free_page_table(void **table, size_t size)
8210{
8211        unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
8212
8213        for (i = 0; i < nr_tables; i++)
8214                kfree(table[i]);
8215        kfree(table);
8216}
8217
8218static __cold void **io_alloc_page_table(size_t size)
8219{
8220        unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
8221        size_t init_size = size;
8222        void **table;
8223
8224        table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
8225        if (!table)
8226                return NULL;
8227
8228        for (i = 0; i < nr_tables; i++) {
8229                unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
8230
8231                table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
8232                if (!table[i]) {
8233                        io_free_page_table(table, init_size);
8234                        return NULL;
8235                }
8236                size -= this_size;
8237        }
8238        return table;
8239}
8240
8241static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
8242{
8243        percpu_ref_exit(&ref_node->refs);
8244        kfree(ref_node);
8245}
8246
8247static __cold void io_rsrc_node_ref_zero(struct percpu_ref *ref)
8248{
8249        struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
8250        struct io_ring_ctx *ctx = node->rsrc_data->ctx;
8251        unsigned long flags;
8252        bool first_add = false;
8253        unsigned long delay = HZ;
8254
8255        spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
8256        node->done = true;
8257
8258        /* if we are mid-quiesce then do not delay */
8259        if (node->rsrc_data->quiesce)
8260                delay = 0;
8261
8262        while (!list_empty(&ctx->rsrc_ref_list)) {
8263                node = list_first_entry(&ctx->rsrc_ref_list,
8264                                            struct io_rsrc_node, node);
8265                /* recycle ref nodes in order */
8266                if (!node->done)
8267                        break;
8268                list_del(&node->node);
8269                first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
8270        }
8271        spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
8272
8273        if (first_add)
8274                mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
8275}
8276
8277static struct io_rsrc_node *io_rsrc_node_alloc(void)
8278{
8279        struct io_rsrc_node *ref_node;
8280
8281        ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
8282        if (!ref_node)
8283                return NULL;
8284
8285        if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
8286                            0, GFP_KERNEL)) {
8287                kfree(ref_node);
8288                return NULL;
8289        }
8290        INIT_LIST_HEAD(&ref_node->node);
8291        INIT_LIST_HEAD(&ref_node->rsrc_list);
8292        ref_node->done = false;
8293        return ref_node;
8294}
8295
8296static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
8297                                struct io_rsrc_data *data_to_kill)
8298        __must_hold(&ctx->uring_lock)
8299{
8300        WARN_ON_ONCE(!ctx->rsrc_backup_node);
8301        WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
8302
8303        io_rsrc_refs_drop(ctx);
8304
8305        if (data_to_kill) {
8306                struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
8307
8308                rsrc_node->rsrc_data = data_to_kill;
8309                spin_lock_irq(&ctx->rsrc_ref_lock);
8310                list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
8311                spin_unlock_irq(&ctx->rsrc_ref_lock);
8312
8313                atomic_inc(&data_to_kill->refs);
8314                percpu_ref_kill(&rsrc_node->refs);
8315                ctx->rsrc_node = NULL;
8316        }
8317
8318        if (!ctx->rsrc_node) {
8319                ctx->rsrc_node = ctx->rsrc_backup_node;
8320                ctx->rsrc_backup_node = NULL;
8321        }
8322}
8323
8324static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
8325{
8326        if (ctx->rsrc_backup_node)
8327                return 0;
8328        ctx->rsrc_backup_node = io_rsrc_node_alloc();
8329        return ctx->rsrc_backup_node ? 0 : -ENOMEM;
8330}
8331
8332static __cold int io_rsrc_ref_quiesce(struct io_rsrc_data *data,
8333                                      struct io_ring_ctx *ctx)
8334{
8335        int ret;
8336
8337        /* As we may drop ->uring_lock, other task may have started quiesce */
8338        if (data->quiesce)
8339                return -ENXIO;
8340
8341        data->quiesce = true;
8342        do {
8343                ret = io_rsrc_node_switch_start(ctx);
8344                if (ret)
8345                        break;
8346                io_rsrc_node_switch(ctx, data);
8347
8348                /* kill initial ref, already quiesced if zero */
8349                if (atomic_dec_and_test(&data->refs))
8350                        break;
8351                mutex_unlock(&ctx->uring_lock);
8352                flush_delayed_work(&ctx->rsrc_put_work);
8353                ret = wait_for_completion_interruptible(&data->done);
8354                if (!ret) {
8355                        mutex_lock(&ctx->uring_lock);
8356                        if (atomic_read(&data->refs) > 0) {
8357                                /*
8358                                 * it has been revived by another thread while
8359                                 * we were unlocked
8360                                 */
8361                                mutex_unlock(&ctx->uring_lock);
8362                        } else {
8363                                break;
8364                        }
8365                }
8366
8367                atomic_inc(&data->refs);
8368                /* wait for all works potentially completing data->done */
8369                flush_delayed_work(&ctx->rsrc_put_work);
8370                reinit_completion(&data->done);
8371
8372                ret = io_run_task_work_sig();
8373                mutex_lock(&ctx->uring_lock);
8374        } while (ret >= 0);
8375        data->quiesce = false;
8376
8377        return ret;
8378}
8379
8380static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
8381{
8382        unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
8383        unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
8384
8385        return &data->tags[table_idx][off];
8386}
8387
8388static void io_rsrc_data_free(struct io_rsrc_data *data)
8389{
8390        size_t size = data->nr * sizeof(data->tags[0][0]);
8391
8392        if (data->tags)
8393                io_free_page_table((void **)data->tags, size);
8394        kfree(data);
8395}
8396
8397static __cold int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
8398                                     u64 __user *utags, unsigned nr,
8399                                     struct io_rsrc_data **pdata)
8400{
8401        struct io_rsrc_data *data;
8402        int ret = -ENOMEM;
8403        unsigned i;
8404
8405        data = kzalloc(sizeof(*data), GFP_KERNEL);
8406        if (!data)
8407                return -ENOMEM;
8408        data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
8409        if (!data->tags) {
8410                kfree(data);
8411                return -ENOMEM;
8412        }
8413
8414        data->nr = nr;
8415        data->ctx = ctx;
8416        data->do_put = do_put;
8417        if (utags) {
8418                ret = -EFAULT;
8419                for (i = 0; i < nr; i++) {
8420                        u64 *tag_slot = io_get_tag_slot(data, i);
8421
8422                        if (copy_from_user(tag_slot, &utags[i],
8423                                           sizeof(*tag_slot)))
8424                                goto fail;
8425                }
8426        }
8427
8428        atomic_set(&data->refs, 1);
8429        init_completion(&data->done);
8430        *pdata = data;
8431        return 0;
8432fail:
8433        io_rsrc_data_free(data);
8434        return ret;
8435}
8436
8437static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
8438{
8439        table->files = kvcalloc(nr_files, sizeof(table->files[0]),
8440                                GFP_KERNEL_ACCOUNT);
8441        return !!table->files;
8442}
8443
8444static void io_free_file_tables(struct io_file_table *table)
8445{
8446        kvfree(table->files);
8447        table->files = NULL;
8448}
8449
8450static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
8451{
8452#if defined(CONFIG_UNIX)
8453        if (ctx->ring_sock) {
8454                struct sock *sock = ctx->ring_sock->sk;
8455                struct sk_buff *skb;
8456
8457                while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
8458                        kfree_skb(skb);
8459        }
8460#else
8461        int i;
8462
8463        for (i = 0; i < ctx->nr_user_files; i++) {
8464                struct file *file;
8465
8466                file = io_file_from_index(ctx, i);
8467                if (file)
8468                        fput(file);
8469        }
8470#endif
8471        io_free_file_tables(&ctx->file_table);
8472        io_rsrc_data_free(ctx->file_data);
8473        ctx->file_data = NULL;
8474        ctx->nr_user_files = 0;
8475}
8476
8477static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
8478{
8479        int ret;
8480
8481        if (!ctx->file_data)
8482                return -ENXIO;
8483        ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
8484        if (!ret)
8485                __io_sqe_files_unregister(ctx);
8486        return ret;
8487}
8488
8489static void io_sq_thread_unpark(struct io_sq_data *sqd)
8490        __releases(&sqd->lock)
8491{
8492        WARN_ON_ONCE(sqd->thread == current);
8493
8494        /*
8495         * Do the dance but not conditional clear_bit() because it'd race with
8496         * other threads incrementing park_pending and setting the bit.
8497         */
8498        clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8499        if (atomic_dec_return(&sqd->park_pending))
8500                set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8501        mutex_unlock(&sqd->lock);
8502}
8503
8504static void io_sq_thread_park(struct io_sq_data *sqd)
8505        __acquires(&sqd->lock)
8506{
8507        WARN_ON_ONCE(sqd->thread == current);
8508
8509        atomic_inc(&sqd->park_pending);
8510        set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8511        mutex_lock(&sqd->lock);
8512        if (sqd->thread)
8513                wake_up_process(sqd->thread);
8514}
8515
8516static void io_sq_thread_stop(struct io_sq_data *sqd)
8517{
8518        WARN_ON_ONCE(sqd->thread == current);
8519        WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
8520
8521        set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8522        mutex_lock(&sqd->lock);
8523        if (sqd->thread)
8524                wake_up_process(sqd->thread);
8525        mutex_unlock(&sqd->lock);
8526        wait_for_completion(&sqd->exited);
8527}
8528
8529static void io_put_sq_data(struct io_sq_data *sqd)
8530{
8531        if (refcount_dec_and_test(&sqd->refs)) {
8532                WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8533
8534                io_sq_thread_stop(sqd);
8535                kfree(sqd);
8536        }
8537}
8538
8539static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8540{
8541        struct io_sq_data *sqd = ctx->sq_data;
8542
8543        if (sqd) {
8544                io_sq_thread_park(sqd);
8545                list_del_init(&ctx->sqd_list);
8546                io_sqd_update_thread_idle(sqd);
8547                io_sq_thread_unpark(sqd);
8548
8549                io_put_sq_data(sqd);
8550                ctx->sq_data = NULL;
8551        }
8552}
8553
8554static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8555{
8556        struct io_ring_ctx *ctx_attach;
8557        struct io_sq_data *sqd;
8558        struct fd f;
8559
8560        f = fdget(p->wq_fd);
8561        if (!f.file)
8562                return ERR_PTR(-ENXIO);
8563        if (f.file->f_op != &io_uring_fops) {
8564                fdput(f);
8565                return ERR_PTR(-EINVAL);
8566        }
8567
8568        ctx_attach = f.file->private_data;
8569        sqd = ctx_attach->sq_data;
8570        if (!sqd) {
8571                fdput(f);
8572                return ERR_PTR(-EINVAL);
8573        }
8574        if (sqd->task_tgid != current->tgid) {
8575                fdput(f);
8576                return ERR_PTR(-EPERM);
8577        }
8578
8579        refcount_inc(&sqd->refs);
8580        fdput(f);
8581        return sqd;
8582}
8583
8584static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8585                                         bool *attached)
8586{
8587        struct io_sq_data *sqd;
8588
8589        *attached = false;
8590        if (p->flags & IORING_SETUP_ATTACH_WQ) {
8591                sqd = io_attach_sq_data(p);
8592                if (!IS_ERR(sqd)) {
8593                        *attached = true;
8594                        return sqd;
8595                }
8596                /* fall through for EPERM case, setup new sqd/task */
8597                if (PTR_ERR(sqd) != -EPERM)
8598                        return sqd;
8599        }
8600
8601        sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8602        if (!sqd)
8603                return ERR_PTR(-ENOMEM);
8604
8605        atomic_set(&sqd->park_pending, 0);
8606        refcount_set(&sqd->refs, 1);
8607        INIT_LIST_HEAD(&sqd->ctx_list);
8608        mutex_init(&sqd->lock);
8609        init_waitqueue_head(&sqd->wait);
8610        init_completion(&sqd->exited);
8611        return sqd;
8612}
8613
8614#if defined(CONFIG_UNIX)
8615/*
8616 * Ensure the UNIX gc is aware of our file set, so we are certain that
8617 * the io_uring can be safely unregistered on process exit, even if we have
8618 * loops in the file referencing.
8619 */
8620static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8621{
8622        struct sock *sk = ctx->ring_sock->sk;
8623        struct scm_fp_list *fpl;
8624        struct sk_buff *skb;
8625        int i, nr_files;
8626
8627        fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8628        if (!fpl)
8629                return -ENOMEM;
8630
8631        skb = alloc_skb(0, GFP_KERNEL);
8632        if (!skb) {
8633                kfree(fpl);
8634                return -ENOMEM;
8635        }
8636
8637        skb->sk = sk;
8638
8639        nr_files = 0;
8640        fpl->user = get_uid(current_user());
8641        for (i = 0; i < nr; i++) {
8642                struct file *file = io_file_from_index(ctx, i + offset);
8643
8644                if (!file)
8645                        continue;
8646                fpl->fp[nr_files] = get_file(file);
8647                unix_inflight(fpl->user, fpl->fp[nr_files]);
8648                nr_files++;
8649        }
8650
8651        if (nr_files) {
8652                fpl->max = SCM_MAX_FD;
8653                fpl->count = nr_files;
8654                UNIXCB(skb).fp = fpl;
8655                skb->destructor = unix_destruct_scm;
8656                refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8657                skb_queue_head(&sk->sk_receive_queue, skb);
8658
8659                for (i = 0; i < nr; i++) {
8660                        struct file *file = io_file_from_index(ctx, i + offset);
8661
8662                        if (file)
8663                                fput(file);
8664                }
8665        } else {
8666                kfree_skb(skb);
8667                free_uid(fpl->user);
8668                kfree(fpl);
8669        }
8670
8671        return 0;
8672}
8673
8674/*
8675 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8676 * causes regular reference counting to break down. We rely on the UNIX
8677 * garbage collection to take care of this problem for us.
8678 */
8679static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8680{
8681        unsigned left, total;
8682        int ret = 0;
8683
8684        total = 0;
8685        left = ctx->nr_user_files;
8686        while (left) {
8687                unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8688
8689                ret = __io_sqe_files_scm(ctx, this_files, total);
8690                if (ret)
8691                        break;
8692                left -= this_files;
8693                total += this_files;
8694        }
8695
8696        if (!ret)
8697                return 0;
8698
8699        while (total < ctx->nr_user_files) {
8700                struct file *file = io_file_from_index(ctx, total);
8701
8702                if (file)
8703                        fput(file);
8704                total++;
8705        }
8706
8707        return ret;
8708}
8709#else
8710static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8711{
8712        return 0;
8713}
8714#endif
8715
8716static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8717{
8718        struct file *file = prsrc->file;
8719#if defined(CONFIG_UNIX)
8720        struct sock *sock = ctx->ring_sock->sk;
8721        struct sk_buff_head list, *head = &sock->sk_receive_queue;
8722        struct sk_buff *skb;
8723        int i;
8724
8725        __skb_queue_head_init(&list);
8726
8727        /*
8728         * Find the skb that holds this file in its SCM_RIGHTS. When found,
8729         * remove this entry and rearrange the file array.
8730         */
8731        skb = skb_dequeue(head);
8732        while (skb) {
8733                struct scm_fp_list *fp;
8734
8735                fp = UNIXCB(skb).fp;
8736                for (i = 0; i < fp->count; i++) {
8737                        int left;
8738
8739                        if (fp->fp[i] != file)
8740                                continue;
8741
8742                        unix_notinflight(fp->user, fp->fp[i]);
8743                        left = fp->count - 1 - i;
8744                        if (left) {
8745                                memmove(&fp->fp[i], &fp->fp[i + 1],
8746                                                left * sizeof(struct file *));
8747                        }
8748                        fp->count--;
8749                        if (!fp->count) {
8750                                kfree_skb(skb);
8751                                skb = NULL;
8752                        } else {
8753                                __skb_queue_tail(&list, skb);
8754                        }
8755                        fput(file);
8756                        file = NULL;
8757                        break;
8758                }
8759
8760                if (!file)
8761                        break;
8762
8763                __skb_queue_tail(&list, skb);
8764
8765                skb = skb_dequeue(head);
8766        }
8767
8768        if (skb_peek(&list)) {
8769                spin_lock_irq(&head->lock);
8770                while ((skb = __skb_dequeue(&list)) != NULL)
8771                        __skb_queue_tail(head, skb);
8772                spin_unlock_irq(&head->lock);
8773        }
8774#else
8775        fput(file);
8776#endif
8777}
8778
8779static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8780{
8781        struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8782        struct io_ring_ctx *ctx = rsrc_data->ctx;
8783        struct io_rsrc_put *prsrc, *tmp;
8784
8785        list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8786                list_del(&prsrc->list);
8787
8788                if (prsrc->tag) {
8789                        bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8790
8791                        io_ring_submit_lock(ctx, lock_ring);
8792                        spin_lock(&ctx->completion_lock);
8793                        io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8794                        io_commit_cqring(ctx);
8795                        spin_unlock(&ctx->completion_lock);
8796                        io_cqring_ev_posted(ctx);
8797                        io_ring_submit_unlock(ctx, lock_ring);
8798                }
8799
8800                rsrc_data->do_put(ctx, prsrc);
8801                kfree(prsrc);
8802        }
8803
8804        io_rsrc_node_destroy(ref_node);
8805        if (atomic_dec_and_test(&rsrc_data->refs))
8806                complete(&rsrc_data->done);
8807}
8808
8809static void io_rsrc_put_work(struct work_struct *work)
8810{
8811        struct io_ring_ctx *ctx;
8812        struct llist_node *node;
8813
8814        ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8815        node = llist_del_all(&ctx->rsrc_put_llist);
8816
8817        while (node) {
8818                struct io_rsrc_node *ref_node;
8819                struct llist_node *next = node->next;
8820
8821                ref_node = llist_entry(node, struct io_rsrc_node, llist);
8822                __io_rsrc_put_work(ref_node);
8823                node = next;
8824        }
8825}
8826
8827static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8828                                 unsigned nr_args, u64 __user *tags)
8829{
8830        __s32 __user *fds = (__s32 __user *) arg;
8831        struct file *file;
8832        int fd, ret;
8833        unsigned i;
8834
8835        if (ctx->file_data)
8836                return -EBUSY;
8837        if (!nr_args)
8838                return -EINVAL;
8839        if (nr_args > IORING_MAX_FIXED_FILES)
8840                return -EMFILE;
8841        if (nr_args > rlimit(RLIMIT_NOFILE))
8842                return -EMFILE;
8843        ret = io_rsrc_node_switch_start(ctx);
8844        if (ret)
8845                return ret;
8846        ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8847                                 &ctx->file_data);
8848        if (ret)
8849                return ret;
8850
8851        ret = -ENOMEM;
8852        if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8853                goto out_free;
8854
8855        for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8856                if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8857                        ret = -EFAULT;
8858                        goto out_fput;
8859                }
8860                /* allow sparse sets */
8861                if (fd == -1) {
8862                        ret = -EINVAL;
8863                        if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8864                                goto out_fput;
8865                        continue;
8866                }
8867
8868                file = fget(fd);
8869                ret = -EBADF;
8870                if (unlikely(!file))
8871                        goto out_fput;
8872
8873                /*
8874                 * Don't allow io_uring instances to be registered. If UNIX
8875                 * isn't enabled, then this causes a reference cycle and this
8876                 * instance can never get freed. If UNIX is enabled we'll
8877                 * handle it just fine, but there's still no point in allowing
8878                 * a ring fd as it doesn't support regular read/write anyway.
8879                 */
8880                if (file->f_op == &io_uring_fops) {
8881                        fput(file);
8882                        goto out_fput;
8883                }
8884                io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8885        }
8886
8887        ret = io_sqe_files_scm(ctx);
8888        if (ret) {
8889                __io_sqe_files_unregister(ctx);
8890                return ret;
8891        }
8892
8893        io_rsrc_node_switch(ctx, NULL);
8894        return ret;
8895out_fput:
8896        for (i = 0; i < ctx->nr_user_files; i++) {
8897                file = io_file_from_index(ctx, i);
8898                if (file)
8899                        fput(file);
8900        }
8901        io_free_file_tables(&ctx->file_table);
8902        ctx->nr_user_files = 0;
8903out_free:
8904        io_rsrc_data_free(ctx->file_data);
8905        ctx->file_data = NULL;
8906        return ret;
8907}
8908
8909static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8910                                int index)
8911{
8912#if defined(CONFIG_UNIX)
8913        struct sock *sock = ctx->ring_sock->sk;
8914        struct sk_buff_head *head = &sock->sk_receive_queue;
8915        struct sk_buff *skb;
8916
8917        /*
8918         * See if we can merge this file into an existing skb SCM_RIGHTS
8919         * file set. If there's no room, fall back to allocating a new skb
8920         * and filling it in.
8921         */
8922        spin_lock_irq(&head->lock);
8923        skb = skb_peek(head);
8924        if (skb) {
8925                struct scm_fp_list *fpl = UNIXCB(skb).fp;
8926
8927                if (fpl->count < SCM_MAX_FD) {
8928                        __skb_unlink(skb, head);
8929                        spin_unlock_irq(&head->lock);
8930                        fpl->fp[fpl->count] = get_file(file);
8931                        unix_inflight(fpl->user, fpl->fp[fpl->count]);
8932                        fpl->count++;
8933                        spin_lock_irq(&head->lock);
8934                        __skb_queue_head(head, skb);
8935                } else {
8936                        skb = NULL;
8937                }
8938        }
8939        spin_unlock_irq(&head->lock);
8940
8941        if (skb) {
8942                fput(file);
8943                return 0;
8944        }
8945
8946        return __io_sqe_files_scm(ctx, 1, index);
8947#else
8948        return 0;
8949#endif
8950}
8951
8952static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8953                                 struct io_rsrc_node *node, void *rsrc)
8954{
8955        u64 *tag_slot = io_get_tag_slot(data, idx);
8956        struct io_rsrc_put *prsrc;
8957
8958        prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8959        if (!prsrc)
8960                return -ENOMEM;
8961
8962        prsrc->tag = *tag_slot;
8963        *tag_slot = 0;
8964        prsrc->rsrc = rsrc;
8965        list_add(&prsrc->list, &node->rsrc_list);
8966        return 0;
8967}
8968
8969static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8970                                 unsigned int issue_flags, u32 slot_index)
8971{
8972        struct io_ring_ctx *ctx = req->ctx;
8973        bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
8974        bool needs_switch = false;
8975        struct io_fixed_file *file_slot;
8976        int ret = -EBADF;
8977
8978        io_ring_submit_lock(ctx, needs_lock);
8979        if (file->f_op == &io_uring_fops)
8980                goto err;
8981        ret = -ENXIO;
8982        if (!ctx->file_data)
8983                goto err;
8984        ret = -EINVAL;
8985        if (slot_index >= ctx->nr_user_files)
8986                goto err;
8987
8988        slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8989        file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8990
8991        if (file_slot->file_ptr) {
8992                struct file *old_file;
8993
8994                ret = io_rsrc_node_switch_start(ctx);
8995                if (ret)
8996                        goto err;
8997
8998                old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8999                ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
9000                                            ctx->rsrc_node, old_file);
9001                if (ret)
9002                        goto err;
9003                file_slot->file_ptr = 0;
9004                needs_switch = true;
9005        }
9006
9007        *io_get_tag_slot(ctx->file_data, slot_index) = 0;
9008        io_fixed_file_set(file_slot, file);
9009        ret = io_sqe_file_register(ctx, file, slot_index);
9010        if (ret) {
9011                file_slot->file_ptr = 0;
9012                goto err;
9013        }
9014
9015        ret = 0;
9016err:
9017        if (needs_switch)
9018                io_rsrc_node_switch(ctx, ctx->file_data);
9019        io_ring_submit_unlock(ctx, needs_lock);
9020        if (ret)
9021                fput(file);
9022        return ret;
9023}
9024
9025static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
9026{
9027        unsigned int offset = req->close.file_slot - 1;
9028        struct io_ring_ctx *ctx = req->ctx;
9029        bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
9030        struct io_fixed_file *file_slot;
9031        struct file *file;
9032        int ret;
9033
9034        io_ring_submit_lock(ctx, needs_lock);
9035        ret = -ENXIO;
9036        if (unlikely(!ctx->file_data))
9037                goto out;
9038        ret = -EINVAL;
9039        if (offset >= ctx->nr_user_files)
9040                goto out;
9041        ret = io_rsrc_node_switch_start(ctx);
9042        if (ret)
9043                goto out;
9044
9045        offset = array_index_nospec(offset, ctx->nr_user_files);
9046        file_slot = io_fixed_file_slot(&ctx->file_table, offset);
9047        ret = -EBADF;
9048        if (!file_slot->file_ptr)
9049                goto out;
9050
9051        file = (struct file *)(file_slot->file_ptr & FFS_MASK);
9052        ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
9053        if (ret)
9054                goto out;
9055
9056        file_slot->file_ptr = 0;
9057        io_rsrc_node_switch(ctx, ctx->file_data);
9058        ret = 0;
9059out:
9060        io_ring_submit_unlock(ctx, needs_lock);
9061        return ret;
9062}
9063
9064static int __io_sqe_files_update(struct io_ring_ctx *ctx,
9065                                 struct io_uring_rsrc_update2 *up,
9066                                 unsigned nr_args)
9067{
9068        u64 __user *tags = u64_to_user_ptr(up->tags);
9069        __s32 __user *fds = u64_to_user_ptr(up->data);
9070        struct io_rsrc_data *data = ctx->file_data;
9071        struct io_fixed_file *file_slot;
9072        struct file *file;
9073        int fd, i, err = 0;
9074        unsigned int done;
9075        bool needs_switch = false;
9076
9077        if (!ctx->file_data)
9078                return -ENXIO;
9079        if (up->offset + nr_args > ctx->nr_user_files)
9080                return -EINVAL;
9081
9082        for (done = 0; done < nr_args; done++) {
9083                u64 tag = 0;
9084
9085                if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
9086                    copy_from_user(&fd, &fds[done], sizeof(fd))) {
9087                        err = -EFAULT;
9088                        break;
9089                }
9090                if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
9091                        err = -EINVAL;
9092                        break;
9093                }
9094                if (fd == IORING_REGISTER_FILES_SKIP)
9095                        continue;
9096
9097                i = array_index_nospec(up->offset + done, ctx->nr_user_files);
9098                file_slot = io_fixed_file_slot(&ctx->file_table, i);
9099
9100                if (file_slot->file_ptr) {
9101                        file = (struct file *)(file_slot->file_ptr & FFS_MASK);
9102                        err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
9103                        if (err)
9104                                break;
9105                        file_slot->file_ptr = 0;
9106                        needs_switch = true;
9107                }
9108                if (fd != -1) {
9109                        file = fget(fd);
9110                        if (!file) {
9111                                err = -EBADF;
9112                                break;
9113                        }
9114                        /*
9115                         * Don't allow io_uring instances to be registered. If
9116                         * UNIX isn't enabled, then this causes a reference
9117                         * cycle and this instance can never get freed. If UNIX
9118                         * is enabled we'll handle it just fine, but there's
9119                         * still no point in allowing a ring fd as it doesn't
9120                         * support regular read/write anyway.
9121                         */
9122                        if (file->f_op == &io_uring_fops) {
9123                                fput(file);
9124                                err = -EBADF;
9125                                break;
9126                        }
9127                        *io_get_tag_slot(data, i) = tag;
9128                        io_fixed_file_set(file_slot, file);
9129                        err = io_sqe_file_register(ctx, file, i);
9130                        if (err) {
9131                                file_slot->file_ptr = 0;
9132                                fput(file);
9133                                break;
9134                        }
9135                }
9136        }
9137
9138        if (needs_switch)
9139                io_rsrc_node_switch(ctx, data);
9140        return done ? done : err;
9141}
9142
9143static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
9144                                        struct task_struct *task)
9145{
9146        struct io_wq_hash *hash;
9147        struct io_wq_data data;
9148        unsigned int concurrency;
9149
9150        mutex_lock(&ctx->uring_lock);
9151        hash = ctx->hash_map;
9152        if (!hash) {
9153                hash = kzalloc(sizeof(*hash), GFP_KERNEL);
9154                if (!hash) {
9155                        mutex_unlock(&ctx->uring_lock);
9156                        return ERR_PTR(-ENOMEM);
9157                }
9158                refcount_set(&hash->refs, 1);
9159                init_waitqueue_head(&hash->wait);
9160                ctx->hash_map = hash;
9161        }
9162        mutex_unlock(&ctx->uring_lock);
9163
9164        data.hash = hash;
9165        data.task = task;
9166        data.free_work = io_wq_free_work;
9167        data.do_work = io_wq_submit_work;
9168
9169        /* Do QD, or 4 * CPUS, whatever is smallest */
9170        concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
9171
9172        return io_wq_create(concurrency, &data);
9173}
9174
9175static __cold int io_uring_alloc_task_context(struct task_struct *task,
9176                                              struct io_ring_ctx *ctx)
9177{
9178        struct io_uring_task *tctx;
9179        int ret;
9180
9181        tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
9182        if (unlikely(!tctx))
9183                return -ENOMEM;
9184
9185        tctx->registered_rings = kcalloc(IO_RINGFD_REG_MAX,
9186                                         sizeof(struct file *), GFP_KERNEL);
9187        if (unlikely(!tctx->registered_rings)) {
9188                kfree(tctx);
9189                return -ENOMEM;
9190        }
9191
9192        ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
9193        if (unlikely(ret)) {
9194                kfree(tctx->registered_rings);
9195                kfree(tctx);
9196                return ret;
9197        }
9198
9199        tctx->io_wq = io_init_wq_offload(ctx, task);
9200        if (IS_ERR(tctx->io_wq)) {
9201                ret = PTR_ERR(tctx->io_wq);
9202                percpu_counter_destroy(&tctx->inflight);
9203                kfree(tctx->registered_rings);
9204                kfree(tctx);
9205                return ret;
9206        }
9207
9208        xa_init(&tctx->xa);
9209        init_waitqueue_head(&tctx->wait);
9210        atomic_set(&tctx->in_idle, 0);
9211        task->io_uring = tctx;
9212        spin_lock_init(&tctx->task_lock);
9213        INIT_WQ_LIST(&tctx->task_list);
9214        INIT_WQ_LIST(&tctx->prior_task_list);
9215        init_task_work(&tctx->task_work, tctx_task_work);
9216        return 0;
9217}
9218
9219void __io_uring_free(struct task_struct *tsk)
9220{
9221        struct io_uring_task *tctx = tsk->io_uring;
9222
9223        WARN_ON_ONCE(!xa_empty(&tctx->xa));
9224        WARN_ON_ONCE(tctx->io_wq);
9225        WARN_ON_ONCE(tctx->cached_refs);
9226
9227        kfree(tctx->registered_rings);
9228        percpu_counter_destroy(&tctx->inflight);
9229        kfree(tctx);
9230        tsk->io_uring = NULL;
9231}
9232
9233static __cold int io_sq_offload_create(struct io_ring_ctx *ctx,
9234                                       struct io_uring_params *p)
9235{
9236        int ret;
9237
9238        /* Retain compatibility with failing for an invalid attach attempt */
9239        if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
9240                                IORING_SETUP_ATTACH_WQ) {
9241                struct fd f;
9242
9243                f = fdget(p->wq_fd);
9244                if (!f.file)
9245                        return -ENXIO;
9246                if (f.file->f_op != &io_uring_fops) {
9247                        fdput(f);
9248                        return -EINVAL;
9249                }
9250                fdput(f);
9251        }
9252        if (ctx->flags & IORING_SETUP_SQPOLL) {
9253                struct task_struct *tsk;
9254                struct io_sq_data *sqd;
9255                bool attached;
9256
9257                ret = security_uring_sqpoll();
9258                if (ret)
9259                        return ret;
9260
9261                sqd = io_get_sq_data(p, &attached);
9262                if (IS_ERR(sqd)) {
9263                        ret = PTR_ERR(sqd);
9264                        goto err;
9265                }
9266
9267                ctx->sq_creds = get_current_cred();
9268                ctx->sq_data = sqd;
9269                ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
9270                if (!ctx->sq_thread_idle)
9271                        ctx->sq_thread_idle = HZ;
9272
9273                io_sq_thread_park(sqd);
9274                list_add(&ctx->sqd_list, &sqd->ctx_list);
9275                io_sqd_update_thread_idle(sqd);
9276                /* don't attach to a dying SQPOLL thread, would be racy */
9277                ret = (attached && !sqd->thread) ? -ENXIO : 0;
9278                io_sq_thread_unpark(sqd);
9279
9280                if (ret < 0)
9281                        goto err;
9282                if (attached)
9283                        return 0;
9284
9285                if (p->flags & IORING_SETUP_SQ_AFF) {
9286                        int cpu = p->sq_thread_cpu;
9287
9288                        ret = -EINVAL;
9289                        if (cpu >= nr_cpu_ids || !cpu_online(cpu))
9290                                goto err_sqpoll;
9291                        sqd->sq_cpu = cpu;
9292                } else {
9293                        sqd->sq_cpu = -1;
9294                }
9295
9296                sqd->task_pid = current->pid;
9297                sqd->task_tgid = current->tgid;
9298                tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
9299                if (IS_ERR(tsk)) {
9300                        ret = PTR_ERR(tsk);
9301                        goto err_sqpoll;
9302                }
9303
9304                sqd->thread = tsk;
9305                ret = io_uring_alloc_task_context(tsk, ctx);
9306                wake_up_new_task(tsk);
9307                if (ret)
9308                        goto err;
9309        } else if (p->flags & IORING_SETUP_SQ_AFF) {
9310                /* Can't have SQ_AFF without SQPOLL */
9311                ret = -EINVAL;
9312                goto err;
9313        }
9314
9315        return 0;
9316err_sqpoll:
9317        complete(&ctx->sq_data->exited);
9318err:
9319        io_sq_thread_finish(ctx);
9320        return ret;
9321}
9322
9323static inline void __io_unaccount_mem(struct user_struct *user,
9324                                      unsigned long nr_pages)
9325{
9326        atomic_long_sub(nr_pages, &user->locked_vm);
9327}
9328
9329static inline int __io_account_mem(struct user_struct *user,
9330                                   unsigned long nr_pages)
9331{
9332        unsigned long page_limit, cur_pages, new_pages;
9333
9334        /* Don't allow more pages than we can safely lock */
9335        page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
9336
9337        do {
9338                cur_pages = atomic_long_read(&user->locked_vm);
9339                new_pages = cur_pages + nr_pages;
9340                if (new_pages > page_limit)
9341                        return -ENOMEM;
9342        } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
9343                                        new_pages) != cur_pages);
9344
9345        return 0;
9346}
9347
9348static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
9349{
9350        if (ctx->user)
9351                __io_unaccount_mem(ctx->user, nr_pages);
9352
9353        if (ctx->mm_account)
9354                atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
9355}
9356
9357static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
9358{
9359        int ret;
9360
9361        if (ctx->user) {
9362                ret = __io_account_mem(ctx->user, nr_pages);
9363                if (ret)
9364                        return ret;
9365        }
9366
9367        if (ctx->mm_account)
9368                atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
9369
9370        return 0;
9371}
9372
9373static void io_mem_free(void *ptr)
9374{
9375        struct page *page;
9376
9377        if (!ptr)
9378                return;
9379
9380        page = virt_to_head_page(ptr);
9381        if (put_page_testzero(page))
9382                free_compound_page(page);
9383}
9384
9385static void *io_mem_alloc(size_t size)
9386{
9387        gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
9388
9389        return (void *) __get_free_pages(gfp, get_order(size));
9390}
9391
9392static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
9393                                size_t *sq_offset)
9394{
9395        struct io_rings *rings;
9396        size_t off, sq_array_size;
9397
9398        off = struct_size(rings, cqes, cq_entries);
9399        if (off == SIZE_MAX)
9400                return SIZE_MAX;
9401
9402#ifdef CONFIG_SMP
9403        off = ALIGN(off, SMP_CACHE_BYTES);
9404        if (off == 0)
9405                return SIZE_MAX;
9406#endif
9407
9408        if (sq_offset)
9409                *sq_offset = off;
9410
9411        sq_array_size = array_size(sizeof(u32), sq_entries);
9412        if (sq_array_size == SIZE_MAX)
9413                return SIZE_MAX;
9414
9415        if (check_add_overflow(off, sq_array_size, &off))
9416                return SIZE_MAX;
9417
9418        return off;
9419}
9420
9421static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
9422{
9423        struct io_mapped_ubuf *imu = *slot;
9424        unsigned int i;
9425
9426        if (imu != ctx->dummy_ubuf) {
9427                for (i = 0; i < imu->nr_bvecs; i++)
9428                        unpin_user_page(imu->bvec[i].bv_page);
9429                if (imu->acct_pages)
9430                        io_unaccount_mem(ctx, imu->acct_pages);
9431                kvfree(imu);
9432        }
9433        *slot = NULL;
9434}
9435
9436static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
9437{
9438        io_buffer_unmap(ctx, &prsrc->buf);
9439        prsrc->buf = NULL;
9440}
9441
9442static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
9443{
9444        unsigned int i;
9445
9446        for (i = 0; i < ctx->nr_user_bufs; i++)
9447                io_buffer_unmap(ctx, &ctx->user_bufs[i]);
9448        kfree(ctx->user_bufs);
9449        io_rsrc_data_free(ctx->buf_data);
9450        ctx->user_bufs = NULL;
9451        ctx->buf_data = NULL;
9452        ctx->nr_user_bufs = 0;
9453}
9454
9455static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
9456{
9457        int ret;
9458
9459        if (!ctx->buf_data)
9460                return -ENXIO;
9461
9462        ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
9463        if (!ret)
9464                __io_sqe_buffers_unregister(ctx);
9465        return ret;
9466}
9467
9468static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
9469                       void __user *arg, unsigned index)
9470{
9471        struct iovec __user *src;
9472
9473#ifdef CONFIG_COMPAT
9474        if (ctx->compat) {
9475                struct compat_iovec __user *ciovs;
9476                struct compat_iovec ciov;
9477
9478                ciovs = (struct compat_iovec __user *) arg;
9479                if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
9480                        return -EFAULT;
9481
9482                dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
9483                dst->iov_len = ciov.iov_len;
9484                return 0;
9485        }
9486#endif
9487        src = (struct iovec __user *) arg;
9488        if (copy_from_user(dst, &src[index], sizeof(*dst)))
9489                return -EFAULT;
9490        return 0;
9491}
9492
9493/*
9494 * Not super efficient, but this is just a registration time. And we do cache
9495 * the last compound head, so generally we'll only do a full search if we don't
9496 * match that one.
9497 *
9498 * We check if the given compound head page has already been accounted, to
9499 * avoid double accounting it. This allows us to account the full size of the
9500 * page, not just the constituent pages of a huge page.
9501 */
9502static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
9503                                  int nr_pages, struct page *hpage)
9504{
9505        int i, j;
9506
9507        /* check current page array */
9508        for (i = 0; i < nr_pages; i++) {
9509                if (!PageCompound(pages[i]))
9510                        continue;
9511                if (compound_head(pages[i]) == hpage)
9512                        return true;
9513        }
9514
9515        /* check previously registered pages */
9516        for (i = 0; i < ctx->nr_user_bufs; i++) {
9517                struct io_mapped_ubuf *imu = ctx->user_bufs[i];
9518
9519                for (j = 0; j < imu->nr_bvecs; j++) {
9520                        if (!PageCompound(imu->bvec[j].bv_page))
9521                                continue;
9522                        if (compound_head(imu->bvec[j].bv_page) == hpage)
9523                                return true;
9524                }
9525        }
9526
9527        return false;
9528}
9529
9530static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
9531                                 int nr_pages, struct io_mapped_ubuf *imu,
9532                                 struct page **last_hpage)
9533{
9534        int i, ret;
9535
9536        imu->acct_pages = 0;
9537        for (i = 0; i < nr_pages; i++) {
9538                if (!PageCompound(pages[i])) {
9539                        imu->acct_pages++;
9540                } else {
9541                        struct page *hpage;
9542
9543                        hpage = compound_head(pages[i]);
9544                        if (hpage == *last_hpage)
9545                                continue;
9546                        *last_hpage = hpage;
9547                        if (headpage_already_acct(ctx, pages, i, hpage))
9548                                continue;
9549                        imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9550                }
9551        }
9552
9553        if (!imu->acct_pages)
9554                return 0;
9555
9556        ret = io_account_mem(ctx, imu->acct_pages);
9557        if (ret)
9558                imu->acct_pages = 0;
9559        return ret;
9560}
9561
9562static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9563                                  struct io_mapped_ubuf **pimu,
9564                                  struct page **last_hpage)
9565{
9566        struct io_mapped_ubuf *imu = NULL;
9567        struct vm_area_struct **vmas = NULL;
9568        struct page **pages = NULL;
9569        unsigned long off, start, end, ubuf;
9570        size_t size;
9571        int ret, pret, nr_pages, i;
9572
9573        if (!iov->iov_base) {
9574                *pimu = ctx->dummy_ubuf;
9575                return 0;
9576        }
9577
9578        ubuf = (unsigned long) iov->iov_base;
9579        end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9580        start = ubuf >> PAGE_SHIFT;
9581        nr_pages = end - start;
9582
9583        *pimu = NULL;
9584        ret = -ENOMEM;
9585
9586        pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9587        if (!pages)
9588                goto done;
9589
9590        vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9591                              GFP_KERNEL);
9592        if (!vmas)
9593                goto done;
9594
9595        imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9596        if (!imu)
9597                goto done;
9598
9599        ret = 0;
9600        mmap_read_lock(current->mm);
9601        pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9602                              pages, vmas);
9603        if (pret == nr_pages) {
9604                /* don't support file backed memory */
9605                for (i = 0; i < nr_pages; i++) {
9606                        struct vm_area_struct *vma = vmas[i];
9607
9608                        if (vma_is_shmem(vma))
9609                                continue;
9610                        if (vma->vm_file &&
9611                            !is_file_hugepages(vma->vm_file)) {
9612                                ret = -EOPNOTSUPP;
9613                                break;
9614                        }
9615                }
9616        } else {
9617                ret = pret < 0 ? pret : -EFAULT;
9618        }
9619        mmap_read_unlock(current->mm);
9620        if (ret) {
9621                /*
9622                 * if we did partial map, or found file backed vmas,
9623                 * release any pages we did get
9624                 */
9625                if (pret > 0)
9626                        unpin_user_pages(pages, pret);
9627                goto done;
9628        }
9629
9630        ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9631        if (ret) {
9632                unpin_user_pages(pages, pret);
9633                goto done;
9634        }
9635
9636        off = ubuf & ~PAGE_MASK;
9637        size = iov->iov_len;
9638        for (i = 0; i < nr_pages; i++) {
9639                size_t vec_len;
9640
9641                vec_len = min_t(size_t, size, PAGE_SIZE - off);
9642                imu->bvec[i].bv_page = pages[i];
9643                imu->bvec[i].bv_len = vec_len;
9644                imu->bvec[i].bv_offset = off;
9645                off = 0;
9646                size -= vec_len;
9647        }
9648        /* store original address for later verification */
9649        imu->ubuf = ubuf;
9650        imu->ubuf_end = ubuf + iov->iov_len;
9651        imu->nr_bvecs = nr_pages;
9652        *pimu = imu;
9653        ret = 0;
9654done:
9655        if (ret)
9656                kvfree(imu);
9657        kvfree(pages);
9658        kvfree(vmas);
9659        return ret;
9660}
9661
9662static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9663{
9664        ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9665        return ctx->user_bufs ? 0 : -ENOMEM;
9666}
9667
9668static int io_buffer_validate(struct iovec *iov)
9669{
9670        unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9671
9672        /*
9673         * Don't impose further limits on the size and buffer
9674         * constraints here, we'll -EINVAL later when IO is
9675         * submitted if they are wrong.
9676         */
9677        if (!iov->iov_base)
9678                return iov->iov_len ? -EFAULT : 0;
9679        if (!iov->iov_len)
9680                return -EFAULT;
9681
9682        /* arbitrary limit, but we need something */
9683        if (iov->iov_len > SZ_1G)
9684                return -EFAULT;
9685
9686        if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9687                return -EOVERFLOW;
9688
9689        return 0;
9690}
9691
9692static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9693                                   unsigned int nr_args, u64 __user *tags)
9694{
9695        struct page *last_hpage = NULL;
9696        struct io_rsrc_data *data;
9697        int i, ret;
9698        struct iovec iov;
9699
9700        if (ctx->user_bufs)
9701                return -EBUSY;
9702        if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9703                return -EINVAL;
9704        ret = io_rsrc_node_switch_start(ctx);
9705        if (ret)
9706                return ret;
9707        ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9708        if (ret)
9709                return ret;
9710        ret = io_buffers_map_alloc(ctx, nr_args);
9711        if (ret) {
9712                io_rsrc_data_free(data);
9713                return ret;
9714        }
9715
9716        for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9717                ret = io_copy_iov(ctx, &iov, arg, i);
9718                if (ret)
9719                        break;
9720                ret = io_buffer_validate(&iov);
9721                if (ret)
9722                        break;
9723                if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9724                        ret = -EINVAL;
9725                        break;
9726                }
9727
9728                ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9729                                             &last_hpage);
9730                if (ret)
9731                        break;
9732        }
9733
9734        WARN_ON_ONCE(ctx->buf_data);
9735
9736        ctx->buf_data = data;
9737        if (ret)
9738                __io_sqe_buffers_unregister(ctx);
9739        else
9740                io_rsrc_node_switch(ctx, NULL);
9741        return ret;
9742}
9743
9744static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9745                                   struct io_uring_rsrc_update2 *up,
9746                                   unsigned int nr_args)
9747{
9748        u64 __user *tags = u64_to_user_ptr(up->tags);
9749        struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9750        struct page *last_hpage = NULL;
9751        bool needs_switch = false;
9752        __u32 done;
9753        int i, err;
9754
9755        if (!ctx->buf_data)
9756                return -ENXIO;
9757        if (up->offset + nr_args > ctx->nr_user_bufs)
9758                return -EINVAL;
9759
9760        for (done = 0; done < nr_args; done++) {
9761                struct io_mapped_ubuf *imu;
9762                int offset = up->offset + done;
9763                u64 tag = 0;
9764
9765                err = io_copy_iov(ctx, &iov, iovs, done);
9766                if (err)
9767                        break;
9768                if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9769                        err = -EFAULT;
9770                        break;
9771                }
9772                err = io_buffer_validate(&iov);
9773                if (err)
9774                        break;
9775                if (!iov.iov_base && tag) {
9776                        err = -EINVAL;
9777                        break;
9778                }
9779                err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9780                if (err)
9781                        break;
9782
9783                i = array_index_nospec(offset, ctx->nr_user_bufs);
9784                if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9785                        err = io_queue_rsrc_removal(ctx->buf_data, i,
9786                                                    ctx->rsrc_node, ctx->user_bufs[i]);
9787                        if (unlikely(err)) {
9788                                io_buffer_unmap(ctx, &imu);
9789                                break;
9790                        }
9791                        ctx->user_bufs[i] = NULL;
9792                        needs_switch = true;
9793                }
9794
9795                ctx->user_bufs[i] = imu;
9796                *io_get_tag_slot(ctx->buf_data, offset) = tag;
9797        }
9798
9799        if (needs_switch)
9800                io_rsrc_node_switch(ctx, ctx->buf_data);
9801        return done ? done : err;
9802}
9803
9804static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
9805                               unsigned int eventfd_async)
9806{
9807        struct io_ev_fd *ev_fd;
9808        __s32 __user *fds = arg;
9809        int fd;
9810
9811        ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
9812                                        lockdep_is_held(&ctx->uring_lock));
9813        if (ev_fd)
9814                return -EBUSY;
9815
9816        if (copy_from_user(&fd, fds, sizeof(*fds)))
9817                return -EFAULT;
9818
9819        ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
9820        if (!ev_fd)
9821                return -ENOMEM;
9822
9823        ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
9824        if (IS_ERR(ev_fd->cq_ev_fd)) {
9825                int ret = PTR_ERR(ev_fd->cq_ev_fd);
9826                kfree(ev_fd);
9827                return ret;
9828        }
9829        ev_fd->eventfd_async = eventfd_async;
9830        ctx->has_evfd = true;
9831        rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
9832        return 0;
9833}
9834
9835static void io_eventfd_put(struct rcu_head *rcu)
9836{
9837        struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
9838
9839        eventfd_ctx_put(ev_fd->cq_ev_fd);
9840        kfree(ev_fd);
9841}
9842
9843static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9844{
9845        struct io_ev_fd *ev_fd;
9846
9847        ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
9848                                        lockdep_is_held(&ctx->uring_lock));
9849        if (ev_fd) {
9850                ctx->has_evfd = false;
9851                rcu_assign_pointer(ctx->io_ev_fd, NULL);
9852                call_rcu(&ev_fd->rcu, io_eventfd_put);
9853                return 0;
9854        }
9855
9856        return -ENXIO;
9857}
9858
9859static void io_destroy_buffers(struct io_ring_ctx *ctx)
9860{
9861        int i;
9862
9863        for (i = 0; i < (1U << IO_BUFFERS_HASH_BITS); i++) {
9864                struct list_head *list = &ctx->io_buffers[i];
9865
9866                while (!list_empty(list)) {
9867                        struct io_buffer_list *bl;
9868
9869                        bl = list_first_entry(list, struct io_buffer_list, list);
9870                        __io_remove_buffers(ctx, bl, -1U);
9871                        list_del(&bl->list);
9872                        kfree(bl);
9873                }
9874        }
9875
9876        while (!list_empty(&ctx->io_buffers_pages)) {
9877                struct page *page;
9878
9879                page = list_first_entry(&ctx->io_buffers_pages, struct page, lru);
9880                list_del_init(&page->lru);
9881                __free_page(page);
9882        }
9883}
9884
9885static void io_req_caches_free(struct io_ring_ctx *ctx)
9886{
9887        struct io_submit_state *state = &ctx->submit_state;
9888        int nr = 0;
9889
9890        mutex_lock(&ctx->uring_lock);
9891        io_flush_cached_locked_reqs(ctx, state);
9892
9893        while (state->free_list.next) {
9894                struct io_wq_work_node *node;
9895                struct io_kiocb *req;
9896
9897                node = wq_stack_extract(&state->free_list);
9898                req = container_of(node, struct io_kiocb, comp_list);
9899                kmem_cache_free(req_cachep, req);
9900                nr++;
9901        }
9902        if (nr)
9903                percpu_ref_put_many(&ctx->refs, nr);
9904        mutex_unlock(&ctx->uring_lock);
9905}
9906
9907static void io_wait_rsrc_data(struct io_rsrc_data *data)
9908{
9909        if (data && !atomic_dec_and_test(&data->refs))
9910                wait_for_completion(&data->done);
9911}
9912
9913static void io_flush_apoll_cache(struct io_ring_ctx *ctx)
9914{
9915        struct async_poll *apoll;
9916
9917        while (!list_empty(&ctx->apoll_cache)) {
9918                apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
9919                                                poll.wait.entry);
9920                list_del(&apoll->poll.wait.entry);
9921                kfree(apoll);
9922        }
9923}
9924
9925static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
9926{
9927        io_sq_thread_finish(ctx);
9928
9929        if (ctx->mm_account) {
9930                mmdrop(ctx->mm_account);
9931                ctx->mm_account = NULL;
9932        }
9933
9934        io_rsrc_refs_drop(ctx);
9935        /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9936        io_wait_rsrc_data(ctx->buf_data);
9937        io_wait_rsrc_data(ctx->file_data);
9938
9939        mutex_lock(&ctx->uring_lock);
9940        if (ctx->buf_data)
9941                __io_sqe_buffers_unregister(ctx);
9942        if (ctx->file_data)
9943                __io_sqe_files_unregister(ctx);
9944        if (ctx->rings)
9945                __io_cqring_overflow_flush(ctx, true);
9946        io_eventfd_unregister(ctx);
9947        io_flush_apoll_cache(ctx);
9948        mutex_unlock(&ctx->uring_lock);
9949        io_destroy_buffers(ctx);
9950        if (ctx->sq_creds)
9951                put_cred(ctx->sq_creds);
9952
9953        /* there are no registered resources left, nobody uses it */
9954        if (ctx->rsrc_node)
9955                io_rsrc_node_destroy(ctx->rsrc_node);
9956        if (ctx->rsrc_backup_node)
9957                io_rsrc_node_destroy(ctx->rsrc_backup_node);
9958        flush_delayed_work(&ctx->rsrc_put_work);
9959        flush_delayed_work(&ctx->fallback_work);
9960
9961        WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9962        WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9963
9964#if defined(CONFIG_UNIX)
9965        if (ctx->ring_sock) {
9966                ctx->ring_sock->file = NULL; /* so that iput() is called */
9967                sock_release(ctx->ring_sock);
9968        }
9969#endif
9970        WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9971
9972        io_mem_free(ctx->rings);
9973        io_mem_free(ctx->sq_sqes);
9974
9975        percpu_ref_exit(&ctx->refs);
9976        free_uid(ctx->user);
9977        io_req_caches_free(ctx);
9978        if (ctx->hash_map)
9979                io_wq_put_hash(ctx->hash_map);
9980        kfree(ctx->cancel_hash);
9981        kfree(ctx->dummy_ubuf);
9982        kfree(ctx->io_buffers);
9983        kfree(ctx);
9984}
9985
9986static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9987{
9988        struct io_ring_ctx *ctx = file->private_data;
9989        __poll_t mask = 0;
9990
9991        poll_wait(file, &ctx->cq_wait, wait);
9992        /*
9993         * synchronizes with barrier from wq_has_sleeper call in
9994         * io_commit_cqring
9995         */
9996        smp_rmb();
9997        if (!io_sqring_full(ctx))
9998                mask |= EPOLLOUT | EPOLLWRNORM;
9999
10000        /*
10001         * Don't flush cqring overflow list here, just do a simple check.
10002         * Otherwise there could possible be ABBA deadlock:
10003         *      CPU0                    CPU1
10004         *      ----                    ----
10005         * lock(&ctx->uring_lock);
10006         *                              lock(&ep->mtx);
10007         *                              lock(&ctx->uring_lock);
10008         * lock(&ep->mtx);
10009         *
10010         * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
10011         * pushs them to do the flush.
10012         */
10013        if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
10014                mask |= EPOLLIN | EPOLLRDNORM;
10015
10016        return mask;
10017}
10018
10019static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
10020{
10021        const struct cred *creds;
10022
10023        creds = xa_erase(&ctx->personalities, id);
10024        if (creds) {
10025                put_cred(creds);
10026                return 0;
10027        }
10028
10029        return -EINVAL;
10030}
10031
10032struct io_tctx_exit {
10033        struct callback_head            task_work;
10034        struct completion               completion;
10035        struct io_ring_ctx              *ctx;
10036};
10037
10038static __cold void io_tctx_exit_cb(struct callback_head *cb)
10039{
10040        struct io_uring_task *tctx = current->io_uring;
10041        struct io_tctx_exit *work;
10042
10043        work = container_of(cb, struct io_tctx_exit, task_work);
10044        /*
10045         * When @in_idle, we're in cancellation and it's racy to remove the
10046         * node. It'll be removed by the end of cancellation, just ignore it.
10047         */
10048        if (!atomic_read(&tctx->in_idle))
10049                io_uring_del_tctx_node((unsigned long)work->ctx);
10050        complete(&work->completion);
10051}
10052
10053static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
10054{
10055        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
10056
10057        return req->ctx == data;
10058}
10059
10060static __cold void io_ring_exit_work(struct work_struct *work)
10061{
10062        struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
10063        unsigned long timeout = jiffies + HZ * 60 * 5;
10064        unsigned long interval = HZ / 20;
10065        struct io_tctx_exit exit;
10066        struct io_tctx_node *node;
10067        int ret;
10068
10069        /*
10070         * If we're doing polled IO and end up having requests being
10071         * submitted async (out-of-line), then completions can come in while
10072         * we're waiting for refs to drop. We need to reap these manually,
10073         * as nobody else will be looking for them.
10074         */
10075        do {
10076                io_uring_try_cancel_requests(ctx, NULL, true);
10077                if (ctx->sq_data) {
10078                        struct io_sq_data *sqd = ctx->sq_data;
10079                        struct task_struct *tsk;
10080
10081                        io_sq_thread_park(sqd);
10082                        tsk = sqd->thread;
10083                        if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
10084                                io_wq_cancel_cb(tsk->io_uring->io_wq,
10085                                                io_cancel_ctx_cb, ctx, true);
10086                        io_sq_thread_unpark(sqd);
10087                }
10088
10089                io_req_caches_free(ctx);
10090
10091                if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
10092                        /* there is little hope left, don't run it too often */
10093                        interval = HZ * 60;
10094                }
10095        } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
10096
10097        init_completion(&exit.completion);
10098        init_task_work(&exit.task_work, io_tctx_exit_cb);
10099        exit.ctx = ctx;
10100        /*
10101         * Some may use context even when all refs and requests have been put,
10102         * and they are free to do so while still holding uring_lock or
10103         * completion_lock, see io_req_task_submit(). Apart from other work,
10104         * this lock/unlock section also waits them to finish.
10105         */
10106        mutex_lock(&ctx->uring_lock);
10107        while (!list_empty(&ctx->tctx_list)) {
10108                WARN_ON_ONCE(time_after(jiffies, timeout));
10109
10110                node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
10111                                        ctx_node);
10112                /* don't spin on a single task if cancellation failed */
10113                list_rotate_left(&ctx->tctx_list);
10114                ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
10115                if (WARN_ON_ONCE(ret))
10116                        continue;
10117
10118                mutex_unlock(&ctx->uring_lock);
10119                wait_for_completion(&exit.completion);
10120                mutex_lock(&ctx->uring_lock);
10121        }
10122        mutex_unlock(&ctx->uring_lock);
10123        spin_lock(&ctx->completion_lock);
10124        spin_unlock(&ctx->completion_lock);
10125
10126        io_ring_ctx_free(ctx);
10127}
10128
10129/* Returns true if we found and killed one or more timeouts */
10130static __cold bool io_kill_timeouts(struct io_ring_ctx *ctx,
10131                                    struct task_struct *tsk, bool cancel_all)
10132{
10133        struct io_kiocb *req, *tmp;
10134        int canceled = 0;
10135
10136        spin_lock(&ctx->completion_lock);
10137        spin_lock_irq(&ctx->timeout_lock);
10138        list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
10139                if (io_match_task(req, tsk, cancel_all)) {
10140                        io_kill_timeout(req, -ECANCELED);
10141                        canceled++;
10142                }
10143        }
10144        spin_unlock_irq(&ctx->timeout_lock);
10145        if (canceled != 0)
10146                io_commit_cqring(ctx);
10147        spin_unlock(&ctx->completion_lock);
10148        if (canceled != 0)
10149                io_cqring_ev_posted(ctx);
10150        return canceled != 0;
10151}
10152
10153static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
10154{
10155        unsigned long index;
10156        struct creds *creds;
10157
10158        mutex_lock(&ctx->uring_lock);
10159        percpu_ref_kill(&ctx->refs);
10160        if (ctx->rings)
10161                __io_cqring_overflow_flush(ctx, true);
10162        xa_for_each(&ctx->personalities, index, creds)
10163                io_unregister_personality(ctx, index);
10164        mutex_unlock(&ctx->uring_lock);
10165
10166        io_kill_timeouts(ctx, NULL, true);
10167        io_poll_remove_all(ctx, NULL, true);
10168
10169        /* if we failed setting up the ctx, we might not have any rings */
10170        io_iopoll_try_reap_events(ctx);
10171
10172        INIT_WORK(&ctx->exit_work, io_ring_exit_work);
10173        /*
10174         * Use system_unbound_wq to avoid spawning tons of event kworkers
10175         * if we're exiting a ton of rings at the same time. It just adds
10176         * noise and overhead, there's no discernable change in runtime
10177         * over using system_wq.
10178         */
10179        queue_work(system_unbound_wq, &ctx->exit_work);
10180}
10181
10182static int io_uring_release(struct inode *inode, struct file *file)
10183{
10184        struct io_ring_ctx *ctx = file->private_data;
10185
10186        file->private_data = NULL;
10187        io_ring_ctx_wait_and_kill(ctx);
10188        return 0;
10189}
10190
10191struct io_task_cancel {
10192        struct task_struct *task;
10193        bool all;
10194};
10195
10196static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
10197{
10198        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
10199        struct io_task_cancel *cancel = data;
10200
10201        return io_match_task_safe(req, cancel->task, cancel->all);
10202}
10203
10204static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
10205                                         struct task_struct *task,
10206                                         bool cancel_all)
10207{
10208        struct io_defer_entry *de;
10209        LIST_HEAD(list);
10210
10211        spin_lock(&ctx->completion_lock);
10212        list_for_each_entry_reverse(de, &ctx->defer_list, list) {
10213                if (io_match_task_safe(de->req, task, cancel_all)) {
10214                        list_cut_position(&list, &ctx->defer_list, &de->list);
10215                        break;
10216                }
10217        }
10218        spin_unlock(&ctx->completion_lock);
10219        if (list_empty(&list))
10220                return false;
10221
10222        while (!list_empty(&list)) {
10223                de = list_first_entry(&list, struct io_defer_entry, list);
10224                list_del_init(&de->list);
10225                io_req_complete_failed(de->req, -ECANCELED);
10226                kfree(de);
10227        }
10228        return true;
10229}
10230
10231static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
10232{
10233        struct io_tctx_node *node;
10234        enum io_wq_cancel cret;
10235        bool ret = false;
10236
10237        mutex_lock(&ctx->uring_lock);
10238        list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10239                struct io_uring_task *tctx = node->task->io_uring;
10240
10241                /*
10242                 * io_wq will stay alive while we hold uring_lock, because it's
10243                 * killed after ctx nodes, which requires to take the lock.
10244                 */
10245                if (!tctx || !tctx->io_wq)
10246                        continue;
10247                cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
10248                ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
10249        }
10250        mutex_unlock(&ctx->uring_lock);
10251
10252        return ret;
10253}
10254
10255static __cold void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
10256                                                struct task_struct *task,
10257                                                bool cancel_all)
10258{
10259        struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
10260        struct io_uring_task *tctx = task ? task->io_uring : NULL;
10261
10262        while (1) {
10263                enum io_wq_cancel cret;
10264                bool ret = false;
10265
10266                if (!task) {
10267                        ret |= io_uring_try_cancel_iowq(ctx);
10268                } else if (tctx && tctx->io_wq) {
10269                        /*
10270                         * Cancels requests of all rings, not only @ctx, but
10271                         * it's fine as the task is in exit/exec.
10272                         */
10273                        cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
10274                                               &cancel, true);
10275                        ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
10276                }
10277
10278                /* SQPOLL thread does its own polling */
10279                if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
10280                    (ctx->sq_data && ctx->sq_data->thread == current)) {
10281                        while (!wq_list_empty(&ctx->iopoll_list)) {
10282                                io_iopoll_try_reap_events(ctx);
10283                                ret = true;
10284                        }
10285                }
10286
10287                ret |= io_cancel_defer_files(ctx, task, cancel_all);
10288                ret |= io_poll_remove_all(ctx, task, cancel_all);
10289                ret |= io_kill_timeouts(ctx, task, cancel_all);
10290                if (task)
10291                        ret |= io_run_task_work();
10292                if (!ret)
10293                        break;
10294                cond_resched();
10295        }
10296}
10297
10298static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
10299{
10300        struct io_uring_task *tctx = current->io_uring;
10301        struct io_tctx_node *node;
10302        int ret;
10303
10304        if (unlikely(!tctx)) {
10305                ret = io_uring_alloc_task_context(current, ctx);
10306                if (unlikely(ret))
10307                        return ret;
10308
10309                tctx = current->io_uring;
10310                if (ctx->iowq_limits_set) {
10311                        unsigned int limits[2] = { ctx->iowq_limits[0],
10312                                                   ctx->iowq_limits[1], };
10313
10314                        ret = io_wq_max_workers(tctx->io_wq, limits);
10315                        if (ret)
10316                                return ret;
10317                }
10318        }
10319        if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
10320                node = kmalloc(sizeof(*node), GFP_KERNEL);
10321                if (!node)
10322                        return -ENOMEM;
10323                node->ctx = ctx;
10324                node->task = current;
10325
10326                ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
10327                                        node, GFP_KERNEL));
10328                if (ret) {
10329                        kfree(node);
10330                        return ret;
10331                }
10332
10333                mutex_lock(&ctx->uring_lock);
10334                list_add(&node->ctx_node, &ctx->tctx_list);
10335                mutex_unlock(&ctx->uring_lock);
10336        }
10337        tctx->last = ctx;
10338        return 0;
10339}
10340
10341/*
10342 * Note that this task has used io_uring. We use it for cancelation purposes.
10343 */
10344static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
10345{
10346        struct io_uring_task *tctx = current->io_uring;
10347
10348        if (likely(tctx && tctx->last == ctx))
10349                return 0;
10350        return __io_uring_add_tctx_node(ctx);
10351}
10352
10353/*
10354 * Remove this io_uring_file -> task mapping.
10355 */
10356static __cold void io_uring_del_tctx_node(unsigned long index)
10357{
10358        struct io_uring_task *tctx = current->io_uring;
10359        struct io_tctx_node *node;
10360
10361        if (!tctx)
10362                return;
10363        node = xa_erase(&tctx->xa, index);
10364        if (!node)
10365                return;
10366
10367        WARN_ON_ONCE(current != node->task);
10368        WARN_ON_ONCE(list_empty(&node->ctx_node));
10369
10370        mutex_lock(&node->ctx->uring_lock);
10371        list_del(&node->ctx_node);
10372        mutex_unlock(&node->ctx->uring_lock);
10373
10374        if (tctx->last == node->ctx)
10375                tctx->last = NULL;
10376        kfree(node);
10377}
10378
10379static __cold void io_uring_clean_tctx(struct io_uring_task *tctx)
10380{
10381        struct io_wq *wq = tctx->io_wq;
10382        struct io_tctx_node *node;
10383        unsigned long index;
10384
10385        xa_for_each(&tctx->xa, index, node) {
10386                io_uring_del_tctx_node(index);
10387                cond_resched();
10388        }
10389        if (wq) {
10390                /*
10391                 * Must be after io_uring_del_tctx_node() (removes nodes under
10392                 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
10393                 */
10394                io_wq_put_and_exit(wq);
10395                tctx->io_wq = NULL;
10396        }
10397}
10398
10399static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
10400{
10401        if (tracked)
10402                return 0;
10403        return percpu_counter_sum(&tctx->inflight);
10404}
10405
10406/*
10407 * Find any io_uring ctx that this task has registered or done IO on, and cancel
10408 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
10409 */
10410static __cold void io_uring_cancel_generic(bool cancel_all,
10411                                           struct io_sq_data *sqd)
10412{
10413        struct io_uring_task *tctx = current->io_uring;
10414        struct io_ring_ctx *ctx;
10415        s64 inflight;
10416        DEFINE_WAIT(wait);
10417
10418        WARN_ON_ONCE(sqd && sqd->thread != current);
10419
10420        if (!current->io_uring)
10421                return;
10422        if (tctx->io_wq)
10423                io_wq_exit_start(tctx->io_wq);
10424
10425        atomic_inc(&tctx->in_idle);
10426        do {
10427                io_uring_drop_tctx_refs(current);
10428                /* read completions before cancelations */
10429                inflight = tctx_inflight(tctx, !cancel_all);
10430                if (!inflight)
10431                        break;
10432
10433                if (!sqd) {
10434                        struct io_tctx_node *node;
10435                        unsigned long index;
10436
10437                        xa_for_each(&tctx->xa, index, node) {
10438                                /* sqpoll task will cancel all its requests */
10439                                if (node->ctx->sq_data)
10440                                        continue;
10441                                io_uring_try_cancel_requests(node->ctx, current,
10442                                                             cancel_all);
10443                        }
10444                } else {
10445                        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
10446                                io_uring_try_cancel_requests(ctx, current,
10447                                                             cancel_all);
10448                }
10449
10450                prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
10451                io_run_task_work();
10452                io_uring_drop_tctx_refs(current);
10453
10454                /*
10455                 * If we've seen completions, retry without waiting. This
10456                 * avoids a race where a completion comes in before we did
10457                 * prepare_to_wait().
10458                 */
10459                if (inflight == tctx_inflight(tctx, !cancel_all))
10460                        schedule();
10461                finish_wait(&tctx->wait, &wait);
10462        } while (1);
10463
10464        io_uring_clean_tctx(tctx);
10465        if (cancel_all) {
10466                /*
10467                 * We shouldn't run task_works after cancel, so just leave
10468                 * ->in_idle set for normal exit.
10469                 */
10470                atomic_dec(&tctx->in_idle);
10471                /* for exec all current's requests should be gone, kill tctx */
10472                __io_uring_free(current);
10473        }
10474}
10475
10476void __io_uring_cancel(bool cancel_all)
10477{
10478        io_uring_cancel_generic(cancel_all, NULL);
10479}
10480
10481void io_uring_unreg_ringfd(void)
10482{
10483        struct io_uring_task *tctx = current->io_uring;
10484        int i;
10485
10486        for (i = 0; i < IO_RINGFD_REG_MAX; i++) {
10487                if (tctx->registered_rings[i]) {
10488                        fput(tctx->registered_rings[i]);
10489                        tctx->registered_rings[i] = NULL;
10490                }
10491        }
10492}
10493
10494static int io_ring_add_registered_fd(struct io_uring_task *tctx, int fd,
10495                                     int start, int end)
10496{
10497        struct file *file;
10498        int offset;
10499
10500        for (offset = start; offset < end; offset++) {
10501                offset = array_index_nospec(offset, IO_RINGFD_REG_MAX);
10502                if (tctx->registered_rings[offset])
10503                        continue;
10504
10505                file = fget(fd);
10506                if (!file) {
10507                        return -EBADF;
10508                } else if (file->f_op != &io_uring_fops) {
10509                        fput(file);
10510                        return -EOPNOTSUPP;
10511                }
10512                tctx->registered_rings[offset] = file;
10513                return offset;
10514        }
10515
10516        return -EBUSY;
10517}
10518
10519/*
10520 * Register a ring fd to avoid fdget/fdput for each io_uring_enter()
10521 * invocation. User passes in an array of struct io_uring_rsrc_update
10522 * with ->data set to the ring_fd, and ->offset given for the desired
10523 * index. If no index is desired, application may set ->offset == -1U
10524 * and we'll find an available index. Returns number of entries
10525 * successfully processed, or < 0 on error if none were processed.
10526 */
10527static int io_ringfd_register(struct io_ring_ctx *ctx, void __user *__arg,
10528                              unsigned nr_args)
10529{
10530        struct io_uring_rsrc_update __user *arg = __arg;
10531        struct io_uring_rsrc_update reg;
10532        struct io_uring_task *tctx;
10533        int ret, i;
10534
10535        if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
10536                return -EINVAL;
10537
10538        mutex_unlock(&ctx->uring_lock);
10539        ret = io_uring_add_tctx_node(ctx);
10540        mutex_lock(&ctx->uring_lock);
10541        if (ret)
10542                return ret;
10543
10544        tctx = current->io_uring;
10545        for (i = 0; i < nr_args; i++) {
10546                int start, end;
10547
10548                if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
10549                        ret = -EFAULT;
10550                        break;
10551                }
10552
10553                if (reg.resv) {
10554                        ret = -EINVAL;
10555                        break;
10556                }
10557
10558                if (reg.offset == -1U) {
10559                        start = 0;
10560                        end = IO_RINGFD_REG_MAX;
10561                } else {
10562                        if (reg.offset >= IO_RINGFD_REG_MAX) {
10563                                ret = -EINVAL;
10564                                break;
10565                        }
10566                        start = reg.offset;
10567                        end = start + 1;
10568                }
10569
10570                ret = io_ring_add_registered_fd(tctx, reg.data, start, end);
10571                if (ret < 0)
10572                        break;
10573
10574                reg.offset = ret;
10575                if (copy_to_user(&arg[i], &reg, sizeof(reg))) {
10576                        fput(tctx->registered_rings[reg.offset]);
10577                        tctx->registered_rings[reg.offset] = NULL;
10578                        ret = -EFAULT;
10579                        break;
10580                }
10581        }
10582
10583        return i ? i : ret;
10584}
10585
10586static int io_ringfd_unregister(struct io_ring_ctx *ctx, void __user *__arg,
10587                                unsigned nr_args)
10588{
10589        struct io_uring_rsrc_update __user *arg = __arg;
10590        struct io_uring_task *tctx = current->io_uring;
10591        struct io_uring_rsrc_update reg;
10592        int ret = 0, i;
10593
10594        if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
10595                return -EINVAL;
10596        if (!tctx)
10597                return 0;
10598
10599        for (i = 0; i < nr_args; i++) {
10600                if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
10601                        ret = -EFAULT;
10602                        break;
10603                }
10604                if (reg.resv || reg.data || reg.offset >= IO_RINGFD_REG_MAX) {
10605                        ret = -EINVAL;
10606                        break;
10607                }
10608
10609                reg.offset = array_index_nospec(reg.offset, IO_RINGFD_REG_MAX);
10610                if (tctx->registered_rings[reg.offset]) {
10611                        fput(tctx->registered_rings[reg.offset]);
10612                        tctx->registered_rings[reg.offset] = NULL;
10613                }
10614        }
10615
10616        return i ? i : ret;
10617}
10618
10619static void *io_uring_validate_mmap_request(struct file *file,
10620                                            loff_t pgoff, size_t sz)
10621{
10622        struct io_ring_ctx *ctx = file->private_data;
10623        loff_t offset = pgoff << PAGE_SHIFT;
10624        struct page *page;
10625        void *ptr;
10626
10627        switch (offset) {
10628        case IORING_OFF_SQ_RING:
10629        case IORING_OFF_CQ_RING:
10630                ptr = ctx->rings;
10631                break;
10632        case IORING_OFF_SQES:
10633                ptr = ctx->sq_sqes;
10634                break;
10635        default:
10636                return ERR_PTR(-EINVAL);
10637        }
10638
10639        page = virt_to_head_page(ptr);
10640        if (sz > page_size(page))
10641                return ERR_PTR(-EINVAL);
10642
10643        return ptr;
10644}
10645
10646#ifdef CONFIG_MMU
10647
10648static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
10649{
10650        size_t sz = vma->vm_end - vma->vm_start;
10651        unsigned long pfn;
10652        void *ptr;
10653
10654        ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
10655        if (IS_ERR(ptr))
10656                return PTR_ERR(ptr);
10657
10658        pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
10659        return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
10660}
10661
10662#else /* !CONFIG_MMU */
10663
10664static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
10665{
10666        return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
10667}
10668
10669static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
10670{
10671        return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
10672}
10673
10674static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
10675        unsigned long addr, unsigned long len,
10676        unsigned long pgoff, unsigned long flags)
10677{
10678        void *ptr;
10679
10680        ptr = io_uring_validate_mmap_request(file, pgoff, len);
10681        if (IS_ERR(ptr))
10682                return PTR_ERR(ptr);
10683
10684        return (unsigned long) ptr;
10685}
10686
10687#endif /* !CONFIG_MMU */
10688
10689static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
10690{
10691        DEFINE_WAIT(wait);
10692
10693        do {
10694                if (!io_sqring_full(ctx))
10695                        break;
10696                prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
10697
10698                if (!io_sqring_full(ctx))
10699                        break;
10700                schedule();
10701        } while (!signal_pending(current));
10702
10703        finish_wait(&ctx->sqo_sq_wait, &wait);
10704        return 0;
10705}
10706
10707static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
10708                          struct __kernel_timespec __user **ts,
10709                          const sigset_t __user **sig)
10710{
10711        struct io_uring_getevents_arg arg;
10712
10713        /*
10714         * If EXT_ARG isn't set, then we have no timespec and the argp pointer
10715         * is just a pointer to the sigset_t.
10716         */
10717        if (!(flags & IORING_ENTER_EXT_ARG)) {
10718                *sig = (const sigset_t __user *) argp;
10719                *ts = NULL;
10720                return 0;
10721        }
10722
10723        /*
10724         * EXT_ARG is set - ensure we agree on the size of it and copy in our
10725         * timespec and sigset_t pointers if good.
10726         */
10727        if (*argsz != sizeof(arg))
10728                return -EINVAL;
10729        if (copy_from_user(&arg, argp, sizeof(arg)))
10730                return -EFAULT;
10731        if (arg.pad)
10732                return -EINVAL;
10733        *sig = u64_to_user_ptr(arg.sigmask);
10734        *argsz = arg.sigmask_sz;
10735        *ts = u64_to_user_ptr(arg.ts);
10736        return 0;
10737}
10738
10739SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10740                u32, min_complete, u32, flags, const void __user *, argp,
10741                size_t, argsz)
10742{
10743        struct io_ring_ctx *ctx;
10744        int submitted = 0;
10745        struct fd f;
10746        long ret;
10747
10748        io_run_task_work();
10749
10750        if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10751                               IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
10752                               IORING_ENTER_REGISTERED_RING)))
10753                return -EINVAL;
10754
10755        /*
10756         * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
10757         * need only dereference our task private array to find it.
10758         */
10759        if (flags & IORING_ENTER_REGISTERED_RING) {
10760                struct io_uring_task *tctx = current->io_uring;
10761
10762                if (!tctx || fd >= IO_RINGFD_REG_MAX)
10763                        return -EINVAL;
10764                fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
10765                f.file = tctx->registered_rings[fd];
10766                if (unlikely(!f.file))
10767                        return -EBADF;
10768        } else {
10769                f = fdget(fd);
10770                if (unlikely(!f.file))
10771                        return -EBADF;
10772        }
10773
10774        ret = -EOPNOTSUPP;
10775        if (unlikely(f.file->f_op != &io_uring_fops))
10776                goto out_fput;
10777
10778        ret = -ENXIO;
10779        ctx = f.file->private_data;
10780        if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10781                goto out_fput;
10782
10783        ret = -EBADFD;
10784        if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10785                goto out;
10786
10787        /*
10788         * For SQ polling, the thread will do all submissions and completions.
10789         * Just return the requested submit count, and wake the thread if
10790         * we were asked to.
10791         */
10792        ret = 0;
10793        if (ctx->flags & IORING_SETUP_SQPOLL) {
10794                io_cqring_overflow_flush(ctx);
10795
10796                if (unlikely(ctx->sq_data->thread == NULL)) {
10797                        ret = -EOWNERDEAD;
10798                        goto out;
10799                }
10800                if (flags & IORING_ENTER_SQ_WAKEUP)
10801                        wake_up(&ctx->sq_data->wait);
10802                if (flags & IORING_ENTER_SQ_WAIT) {
10803                        ret = io_sqpoll_wait_sq(ctx);
10804                        if (ret)
10805                                goto out;
10806                }
10807                submitted = to_submit;
10808        } else if (to_submit) {
10809                ret = io_uring_add_tctx_node(ctx);
10810                if (unlikely(ret))
10811                        goto out;
10812                mutex_lock(&ctx->uring_lock);
10813                submitted = io_submit_sqes(ctx, to_submit);
10814                mutex_unlock(&ctx->uring_lock);
10815
10816                if (submitted != to_submit)
10817                        goto out;
10818        }
10819        if (flags & IORING_ENTER_GETEVENTS) {
10820                const sigset_t __user *sig;
10821                struct __kernel_timespec __user *ts;
10822
10823                ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10824                if (unlikely(ret))
10825                        goto out;
10826
10827                min_complete = min(min_complete, ctx->cq_entries);
10828
10829                /*
10830                 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10831                 * space applications don't need to do io completion events
10832                 * polling again, they can rely on io_sq_thread to do polling
10833                 * work, which can reduce cpu usage and uring_lock contention.
10834                 */
10835                if (ctx->flags & IORING_SETUP_IOPOLL &&
10836                    !(ctx->flags & IORING_SETUP_SQPOLL)) {
10837                        ret = io_iopoll_check(ctx, min_complete);
10838                } else {
10839                        ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10840                }
10841        }
10842
10843out:
10844        percpu_ref_put(&ctx->refs);
10845out_fput:
10846        if (!(flags & IORING_ENTER_REGISTERED_RING))
10847                fdput(f);
10848        return submitted ? submitted : ret;
10849}
10850
10851#ifdef CONFIG_PROC_FS
10852static __cold int io_uring_show_cred(struct seq_file *m, unsigned int id,
10853                const struct cred *cred)
10854{
10855        struct user_namespace *uns = seq_user_ns(m);
10856        struct group_info *gi;
10857        kernel_cap_t cap;
10858        unsigned __capi;
10859        int g;
10860
10861        seq_printf(m, "%5d\n", id);
10862        seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10863        seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10864        seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10865        seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10866        seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10867        seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10868        seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10869        seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10870        seq_puts(m, "\n\tGroups:\t");
10871        gi = cred->group_info;
10872        for (g = 0; g < gi->ngroups; g++) {
10873                seq_put_decimal_ull(m, g ? " " : "",
10874                                        from_kgid_munged(uns, gi->gid[g]));
10875        }
10876        seq_puts(m, "\n\tCapEff:\t");
10877        cap = cred->cap_effective;
10878        CAP_FOR_EACH_U32(__capi)
10879                seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10880        seq_putc(m, '\n');
10881        return 0;
10882}
10883
10884static __cold void __io_uring_show_fdinfo(struct io_ring_ctx *ctx,
10885                                          struct seq_file *m)
10886{
10887        struct io_sq_data *sq = NULL;
10888        struct io_overflow_cqe *ocqe;
10889        struct io_rings *r = ctx->rings;
10890        unsigned int sq_mask = ctx->sq_entries - 1, cq_mask = ctx->cq_entries - 1;
10891        unsigned int sq_head = READ_ONCE(r->sq.head);
10892        unsigned int sq_tail = READ_ONCE(r->sq.tail);
10893        unsigned int cq_head = READ_ONCE(r->cq.head);
10894        unsigned int cq_tail = READ_ONCE(r->cq.tail);
10895        unsigned int sq_entries, cq_entries;
10896        bool has_lock;
10897        unsigned int i;
10898
10899        /*
10900         * we may get imprecise sqe and cqe info if uring is actively running
10901         * since we get cached_sq_head and cached_cq_tail without uring_lock
10902         * and sq_tail and cq_head are changed by userspace. But it's ok since
10903         * we usually use these info when it is stuck.
10904         */
10905        seq_printf(m, "SqMask:\t0x%x\n", sq_mask);
10906        seq_printf(m, "SqHead:\t%u\n", sq_head);
10907        seq_printf(m, "SqTail:\t%u\n", sq_tail);
10908        seq_printf(m, "CachedSqHead:\t%u\n", ctx->cached_sq_head);
10909        seq_printf(m, "CqMask:\t0x%x\n", cq_mask);
10910        seq_printf(m, "CqHead:\t%u\n", cq_head);
10911        seq_printf(m, "CqTail:\t%u\n", cq_tail);
10912        seq_printf(m, "CachedCqTail:\t%u\n", ctx->cached_cq_tail);
10913        seq_printf(m, "SQEs:\t%u\n", sq_tail - ctx->cached_sq_head);
10914        sq_entries = min(sq_tail - sq_head, ctx->sq_entries);
10915        for (i = 0; i < sq_entries; i++) {
10916                unsigned int entry = i + sq_head;
10917                unsigned int sq_idx = READ_ONCE(ctx->sq_array[entry & sq_mask]);
10918                struct io_uring_sqe *sqe;
10919
10920                if (sq_idx > sq_mask)
10921                        continue;
10922                sqe = &ctx->sq_sqes[sq_idx];
10923                seq_printf(m, "%5u: opcode:%d, fd:%d, flags:%x, user_data:%llu\n",
10924                           sq_idx, sqe->opcode, sqe->fd, sqe->flags,
10925                           sqe->user_data);
10926        }
10927        seq_printf(m, "CQEs:\t%u\n", cq_tail - cq_head);
10928        cq_entries = min(cq_tail - cq_head, ctx->cq_entries);
10929        for (i = 0; i < cq_entries; i++) {
10930                unsigned int entry = i + cq_head;
10931                struct io_uring_cqe *cqe = &r->cqes[entry & cq_mask];
10932
10933                seq_printf(m, "%5u: user_data:%llu, res:%d, flag:%x\n",
10934                           entry & cq_mask, cqe->user_data, cqe->res,
10935                           cqe->flags);
10936        }
10937
10938        /*
10939         * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10940         * since fdinfo case grabs it in the opposite direction of normal use
10941         * cases. If we fail to get the lock, we just don't iterate any
10942         * structures that could be going away outside the io_uring mutex.
10943         */
10944        has_lock = mutex_trylock(&ctx->uring_lock);
10945
10946        if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10947                sq = ctx->sq_data;
10948                if (!sq->thread)
10949                        sq = NULL;
10950        }
10951
10952        seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10953        seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10954        seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10955        for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10956                struct file *f = io_file_from_index(ctx, i);
10957
10958                if (f)
10959                        seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10960                else
10961                        seq_printf(m, "%5u: <none>\n", i);
10962        }
10963        seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10964        for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10965                struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10966                unsigned int len = buf->ubuf_end - buf->ubuf;
10967
10968                seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10969        }
10970        if (has_lock && !xa_empty(&ctx->personalities)) {
10971                unsigned long index;
10972                const struct cred *cred;
10973
10974                seq_printf(m, "Personalities:\n");
10975                xa_for_each(&ctx->personalities, index, cred)
10976                        io_uring_show_cred(m, index, cred);
10977        }
10978        if (has_lock)
10979                mutex_unlock(&ctx->uring_lock);
10980
10981        seq_puts(m, "PollList:\n");
10982        spin_lock(&ctx->completion_lock);
10983        for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10984                struct hlist_head *list = &ctx->cancel_hash[i];
10985                struct io_kiocb *req;
10986
10987                hlist_for_each_entry(req, list, hash_node)
10988                        seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
10989                                        task_work_pending(req->task));
10990        }
10991
10992        seq_puts(m, "CqOverflowList:\n");
10993        list_for_each_entry(ocqe, &ctx->cq_overflow_list, list) {
10994                struct io_uring_cqe *cqe = &ocqe->cqe;
10995
10996                seq_printf(m, "  user_data=%llu, res=%d, flags=%x\n",
10997                           cqe->user_data, cqe->res, cqe->flags);
10998
10999        }
11000
11001        spin_unlock(&ctx->completion_lock);
11002}
11003
11004static __cold void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
11005{
11006        struct io_ring_ctx *ctx = f->private_data;
11007
11008        if (percpu_ref_tryget(&ctx->refs)) {
11009                __io_uring_show_fdinfo(ctx, m);
11010                percpu_ref_put(&ctx->refs);
11011        }
11012}
11013#endif
11014
11015static const struct file_operations io_uring_fops = {
11016        .release        = io_uring_release,
11017        .mmap           = io_uring_mmap,
11018#ifndef CONFIG_MMU
11019        .get_unmapped_area = io_uring_nommu_get_unmapped_area,
11020        .mmap_capabilities = io_uring_nommu_mmap_capabilities,
11021#endif
11022        .poll           = io_uring_poll,
11023#ifdef CONFIG_PROC_FS
11024        .show_fdinfo    = io_uring_show_fdinfo,
11025#endif
11026};
11027
11028static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
11029                                         struct io_uring_params *p)
11030{
11031        struct io_rings *rings;
11032        size_t size, sq_array_offset;
11033
11034        /* make sure these are sane, as we already accounted them */
11035        ctx->sq_entries = p->sq_entries;
11036        ctx->cq_entries = p->cq_entries;
11037
11038        size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
11039        if (size == SIZE_MAX)
11040                return -EOVERFLOW;
11041
11042        rings = io_mem_alloc(size);
11043        if (!rings)
11044                return -ENOMEM;
11045
11046        ctx->rings = rings;
11047        ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
11048        rings->sq_ring_mask = p->sq_entries - 1;
11049        rings->cq_ring_mask = p->cq_entries - 1;
11050        rings->sq_ring_entries = p->sq_entries;
11051        rings->cq_ring_entries = p->cq_entries;
11052
11053        size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
11054        if (size == SIZE_MAX) {
11055                io_mem_free(ctx->rings);
11056                ctx->rings = NULL;
11057                return -EOVERFLOW;
11058        }
11059
11060        ctx->sq_sqes = io_mem_alloc(size);
11061        if (!ctx->sq_sqes) {
11062                io_mem_free(ctx->rings);
11063                ctx->rings = NULL;
11064                return -ENOMEM;
11065        }
11066
11067        return 0;
11068}
11069
11070static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
11071{
11072        int ret, fd;
11073
11074        fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
11075        if (fd < 0)
11076                return fd;
11077
11078        ret = io_uring_add_tctx_node(ctx);
11079        if (ret) {
11080                put_unused_fd(fd);
11081                return ret;
11082        }
11083        fd_install(fd, file);
11084        return fd;
11085}
11086
11087/*
11088 * Allocate an anonymous fd, this is what constitutes the application
11089 * visible backing of an io_uring instance. The application mmaps this
11090 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
11091 * we have to tie this fd to a socket for file garbage collection purposes.
11092 */
11093static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
11094{
11095        struct file *file;
11096#if defined(CONFIG_UNIX)
11097        int ret;
11098
11099        ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
11100                                &ctx->ring_sock);
11101        if (ret)
11102                return ERR_PTR(ret);
11103#endif
11104
11105        file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
11106                                         O_RDWR | O_CLOEXEC, NULL);
11107#if defined(CONFIG_UNIX)
11108        if (IS_ERR(file)) {
11109                sock_release(ctx->ring_sock);
11110                ctx->ring_sock = NULL;
11111        } else {
11112                ctx->ring_sock->file = file;
11113        }
11114#endif
11115        return file;
11116}
11117
11118static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
11119                                  struct io_uring_params __user *params)
11120{
11121        struct io_ring_ctx *ctx;
11122        struct file *file;
11123        int ret;
11124
11125        if (!entries)
11126                return -EINVAL;
11127        if (entries > IORING_MAX_ENTRIES) {
11128                if (!(p->flags & IORING_SETUP_CLAMP))
11129                        return -EINVAL;
11130                entries = IORING_MAX_ENTRIES;
11131        }
11132
11133        /*
11134         * Use twice as many entries for the CQ ring. It's possible for the
11135         * application to drive a higher depth than the size of the SQ ring,
11136         * since the sqes are only used at submission time. This allows for
11137         * some flexibility in overcommitting a bit. If the application has
11138         * set IORING_SETUP_CQSIZE, it will have passed in the desired number
11139         * of CQ ring entries manually.
11140         */
11141        p->sq_entries = roundup_pow_of_two(entries);
11142        if (p->flags & IORING_SETUP_CQSIZE) {
11143                /*
11144                 * If IORING_SETUP_CQSIZE is set, we do the same roundup
11145                 * to a power-of-two, if it isn't already. We do NOT impose
11146                 * any cq vs sq ring sizing.
11147                 */
11148                if (!p->cq_entries)
11149                        return -EINVAL;
11150                if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
11151                        if (!(p->flags & IORING_SETUP_CLAMP))
11152                                return -EINVAL;
11153                        p->cq_entries = IORING_MAX_CQ_ENTRIES;
11154                }
11155                p->cq_entries = roundup_pow_of_two(p->cq_entries);
11156                if (p->cq_entries < p->sq_entries)
11157                        return -EINVAL;
11158        } else {
11159                p->cq_entries = 2 * p->sq_entries;
11160        }
11161
11162        ctx = io_ring_ctx_alloc(p);
11163        if (!ctx)
11164                return -ENOMEM;
11165        ctx->compat = in_compat_syscall();
11166        if (!capable(CAP_IPC_LOCK))
11167                ctx->user = get_uid(current_user());
11168
11169        /*
11170         * This is just grabbed for accounting purposes. When a process exits,
11171         * the mm is exited and dropped before the files, hence we need to hang
11172         * on to this mm purely for the purposes of being able to unaccount
11173         * memory (locked/pinned vm). It's not used for anything else.
11174         */
11175        mmgrab(current->mm);
11176        ctx->mm_account = current->mm;
11177
11178        ret = io_allocate_scq_urings(ctx, p);
11179        if (ret)
11180                goto err;
11181
11182        ret = io_sq_offload_create(ctx, p);
11183        if (ret)
11184                goto err;
11185        /* always set a rsrc node */
11186        ret = io_rsrc_node_switch_start(ctx);
11187        if (ret)
11188                goto err;
11189        io_rsrc_node_switch(ctx, NULL);
11190
11191        memset(&p->sq_off, 0, sizeof(p->sq_off));
11192        p->sq_off.head = offsetof(struct io_rings, sq.head);
11193        p->sq_off.tail = offsetof(struct io_rings, sq.tail);
11194        p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
11195        p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
11196        p->sq_off.flags = offsetof(struct io_rings, sq_flags);
11197        p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
11198        p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
11199
11200        memset(&p->cq_off, 0, sizeof(p->cq_off));
11201        p->cq_off.head = offsetof(struct io_rings, cq.head);
11202        p->cq_off.tail = offsetof(struct io_rings, cq.tail);
11203        p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
11204        p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
11205        p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
11206        p->cq_off.cqes = offsetof(struct io_rings, cqes);
11207        p->cq_off.flags = offsetof(struct io_rings, cq_flags);
11208
11209        p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
11210                        IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
11211                        IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
11212                        IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
11213                        IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
11214                        IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
11215                        IORING_FEAT_LINKED_FILE;
11216
11217        if (copy_to_user(params, p, sizeof(*p))) {
11218                ret = -EFAULT;
11219                goto err;
11220        }
11221
11222        file = io_uring_get_file(ctx);
11223        if (IS_ERR(file)) {
11224                ret = PTR_ERR(file);
11225                goto err;
11226        }
11227
11228        /*
11229         * Install ring fd as the very last thing, so we don't risk someone
11230         * having closed it before we finish setup
11231         */
11232        ret = io_uring_install_fd(ctx, file);
11233        if (ret < 0) {
11234                /* fput will clean it up */
11235                fput(file);
11236                return ret;
11237        }
11238
11239        trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
11240        return ret;
11241err:
11242        io_ring_ctx_wait_and_kill(ctx);
11243        return ret;
11244}
11245
11246/*
11247 * Sets up an aio uring context, and returns the fd. Applications asks for a
11248 * ring size, we return the actual sq/cq ring sizes (among other things) in the
11249 * params structure passed in.
11250 */
11251static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
11252{
11253        struct io_uring_params p;
11254        int i;
11255
11256        if (copy_from_user(&p, params, sizeof(p)))
11257                return -EFAULT;
11258        for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
11259                if (p.resv[i])
11260                        return -EINVAL;
11261        }
11262
11263        if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
11264                        IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
11265                        IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
11266                        IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL))
11267                return -EINVAL;
11268
11269        return  io_uring_create(entries, &p, params);
11270}
11271
11272SYSCALL_DEFINE2(io_uring_setup, u32, entries,
11273                struct io_uring_params __user *, params)
11274{
11275        return io_uring_setup(entries, params);
11276}
11277
11278static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
11279                           unsigned nr_args)
11280{
11281        struct io_uring_probe *p;
11282        size_t size;
11283        int i, ret;
11284
11285        size = struct_size(p, ops, nr_args);
11286        if (size == SIZE_MAX)
11287                return -EOVERFLOW;
11288        p = kzalloc(size, GFP_KERNEL);
11289        if (!p)
11290                return -ENOMEM;
11291
11292        ret = -EFAULT;
11293        if (copy_from_user(p, arg, size))
11294                goto out;
11295        ret = -EINVAL;
11296        if (memchr_inv(p, 0, size))
11297                goto out;
11298
11299        p->last_op = IORING_OP_LAST - 1;
11300        if (nr_args > IORING_OP_LAST)
11301                nr_args = IORING_OP_LAST;
11302
11303        for (i = 0; i < nr_args; i++) {
11304                p->ops[i].op = i;
11305                if (!io_op_defs[i].not_supported)
11306                        p->ops[i].flags = IO_URING_OP_SUPPORTED;
11307        }
11308        p->ops_len = i;
11309
11310        ret = 0;
11311        if (copy_to_user(arg, p, size))
11312                ret = -EFAULT;
11313out:
11314        kfree(p);
11315        return ret;
11316}
11317
11318static int io_register_personality(struct io_ring_ctx *ctx)
11319{
11320        const struct cred *creds;
11321        u32 id;
11322        int ret;
11323
11324        creds = get_current_cred();
11325
11326        ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
11327                        XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
11328        if (ret < 0) {
11329                put_cred(creds);
11330                return ret;
11331        }
11332        return id;
11333}
11334
11335static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
11336                                           void __user *arg, unsigned int nr_args)
11337{
11338        struct io_uring_restriction *res;
11339        size_t size;
11340        int i, ret;
11341
11342        /* Restrictions allowed only if rings started disabled */
11343        if (!(ctx->flags & IORING_SETUP_R_DISABLED))
11344                return -EBADFD;
11345
11346        /* We allow only a single restrictions registration */
11347        if (ctx->restrictions.registered)
11348                return -EBUSY;
11349
11350        if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
11351                return -EINVAL;
11352
11353        size = array_size(nr_args, sizeof(*res));
11354        if (size == SIZE_MAX)
11355                return -EOVERFLOW;
11356
11357        res = memdup_user(arg, size);
11358        if (IS_ERR(res))
11359                return PTR_ERR(res);
11360
11361        ret = 0;
11362
11363        for (i = 0; i < nr_args; i++) {
11364                switch (res[i].opcode) {
11365                case IORING_RESTRICTION_REGISTER_OP:
11366                        if (res[i].register_op >= IORING_REGISTER_LAST) {
11367                                ret = -EINVAL;
11368                                goto out;
11369                        }
11370
11371                        __set_bit(res[i].register_op,
11372                                  ctx->restrictions.register_op);
11373                        break;
11374                case IORING_RESTRICTION_SQE_OP:
11375                        if (res[i].sqe_op >= IORING_OP_LAST) {
11376                                ret = -EINVAL;
11377                                goto out;
11378                        }
11379
11380                        __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
11381                        break;
11382                case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
11383                        ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
11384                        break;
11385                case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
11386                        ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
11387                        break;
11388                default:
11389                        ret = -EINVAL;
11390                        goto out;
11391                }
11392        }
11393
11394out:
11395        /* Reset all restrictions if an error happened */
11396        if (ret != 0)
11397                memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
11398        else
11399                ctx->restrictions.registered = true;
11400
11401        kfree(res);
11402        return ret;
11403}
11404
11405static int io_register_enable_rings(struct io_ring_ctx *ctx)
11406{
11407        if (!(ctx->flags & IORING_SETUP_R_DISABLED))
11408                return -EBADFD;
11409
11410        if (ctx->restrictions.registered)
11411                ctx->restricted = 1;
11412
11413        ctx->flags &= ~IORING_SETUP_R_DISABLED;
11414        if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
11415                wake_up(&ctx->sq_data->wait);
11416        return 0;
11417}
11418
11419static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
11420                                     struct io_uring_rsrc_update2 *up,
11421                                     unsigned nr_args)
11422{
11423        __u32 tmp;
11424        int err;
11425
11426        if (check_add_overflow(up->offset, nr_args, &tmp))
11427                return -EOVERFLOW;
11428        err = io_rsrc_node_switch_start(ctx);
11429        if (err)
11430                return err;
11431
11432        switch (type) {
11433        case IORING_RSRC_FILE:
11434                return __io_sqe_files_update(ctx, up, nr_args);
11435        case IORING_RSRC_BUFFER:
11436                return __io_sqe_buffers_update(ctx, up, nr_args);
11437        }
11438        return -EINVAL;
11439}
11440
11441static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
11442                                    unsigned nr_args)
11443{
11444        struct io_uring_rsrc_update2 up;
11445
11446        if (!nr_args)
11447                return -EINVAL;
11448        memset(&up, 0, sizeof(up));
11449        if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
11450                return -EFAULT;
11451        if (up.resv || up.resv2)
11452                return -EINVAL;
11453        return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
11454}
11455
11456static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
11457                                   unsigned size, unsigned type)
11458{
11459        struct io_uring_rsrc_update2 up;
11460
11461        if (size != sizeof(up))
11462                return -EINVAL;
11463        if (copy_from_user(&up, arg, sizeof(up)))
11464                return -EFAULT;
11465        if (!up.nr || up.resv || up.resv2)
11466                return -EINVAL;
11467        return __io_register_rsrc_update(ctx, type, &up, up.nr);
11468}
11469
11470static __cold int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
11471                            unsigned int size, unsigned int type)
11472{
11473        struct io_uring_rsrc_register rr;
11474
11475        /* keep it extendible */
11476        if (size != sizeof(rr))
11477                return -EINVAL;
11478
11479        memset(&rr, 0, sizeof(rr));
11480        if (copy_from_user(&rr, arg, size))
11481                return -EFAULT;
11482        if (!rr.nr || rr.resv || rr.resv2)
11483                return -EINVAL;
11484
11485        switch (type) {
11486        case IORING_RSRC_FILE:
11487                return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
11488                                             rr.nr, u64_to_user_ptr(rr.tags));
11489        case IORING_RSRC_BUFFER:
11490                return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
11491                                               rr.nr, u64_to_user_ptr(rr.tags));
11492        }
11493        return -EINVAL;
11494}
11495
11496static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
11497                                       void __user *arg, unsigned len)
11498{
11499        struct io_uring_task *tctx = current->io_uring;
11500        cpumask_var_t new_mask;
11501        int ret;
11502
11503        if (!tctx || !tctx->io_wq)
11504                return -EINVAL;
11505
11506        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
11507                return -ENOMEM;
11508
11509        cpumask_clear(new_mask);
11510        if (len > cpumask_size())
11511                len = cpumask_size();
11512
11513        if (in_compat_syscall()) {
11514                ret = compat_get_bitmap(cpumask_bits(new_mask),
11515                                        (const compat_ulong_t __user *)arg,
11516                                        len * 8 /* CHAR_BIT */);
11517        } else {
11518                ret = copy_from_user(new_mask, arg, len);
11519        }
11520
11521        if (ret) {
11522                free_cpumask_var(new_mask);
11523                return -EFAULT;
11524        }
11525
11526        ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
11527        free_cpumask_var(new_mask);
11528        return ret;
11529}
11530
11531static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
11532{
11533        struct io_uring_task *tctx = current->io_uring;
11534
11535        if (!tctx || !tctx->io_wq)
11536                return -EINVAL;
11537
11538        return io_wq_cpu_affinity(tctx->io_wq, NULL);
11539}
11540
11541static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
11542                                               void __user *arg)
11543        __must_hold(&ctx->uring_lock)
11544{
11545        struct io_tctx_node *node;
11546        struct io_uring_task *tctx = NULL;
11547        struct io_sq_data *sqd = NULL;
11548        __u32 new_count[2];
11549        int i, ret;
11550
11551        if (copy_from_user(new_count, arg, sizeof(new_count)))
11552                return -EFAULT;
11553        for (i = 0; i < ARRAY_SIZE(new_count); i++)
11554                if (new_count[i] > INT_MAX)
11555                        return -EINVAL;
11556
11557        if (ctx->flags & IORING_SETUP_SQPOLL) {
11558                sqd = ctx->sq_data;
11559                if (sqd) {
11560                        /*
11561                         * Observe the correct sqd->lock -> ctx->uring_lock
11562                         * ordering. Fine to drop uring_lock here, we hold
11563                         * a ref to the ctx.
11564                         */
11565                        refcount_inc(&sqd->refs);
11566                        mutex_unlock(&ctx->uring_lock);
11567                        mutex_lock(&sqd->lock);
11568                        mutex_lock(&ctx->uring_lock);
11569                        if (sqd->thread)
11570                                tctx = sqd->thread->io_uring;
11571                }
11572        } else {
11573                tctx = current->io_uring;
11574        }
11575
11576        BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
11577
11578        for (i = 0; i < ARRAY_SIZE(new_count); i++)
11579                if (new_count[i])
11580                        ctx->iowq_limits[i] = new_count[i];
11581        ctx->iowq_limits_set = true;
11582
11583        if (tctx && tctx->io_wq) {
11584                ret = io_wq_max_workers(tctx->io_wq, new_count);
11585                if (ret)
11586                        goto err;
11587        } else {
11588                memset(new_count, 0, sizeof(new_count));
11589        }
11590
11591        if (sqd) {
11592                mutex_unlock(&sqd->lock);
11593                io_put_sq_data(sqd);
11594        }
11595
11596        if (copy_to_user(arg, new_count, sizeof(new_count)))
11597                return -EFAULT;
11598
11599        /* that's it for SQPOLL, only the SQPOLL task creates requests */
11600        if (sqd)
11601                return 0;
11602
11603        /* now propagate the restriction to all registered users */
11604        list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
11605                struct io_uring_task *tctx = node->task->io_uring;
11606
11607                if (WARN_ON_ONCE(!tctx->io_wq))
11608                        continue;
11609
11610                for (i = 0; i < ARRAY_SIZE(new_count); i++)
11611                        new_count[i] = ctx->iowq_limits[i];
11612                /* ignore errors, it always returns zero anyway */
11613                (void)io_wq_max_workers(tctx->io_wq, new_count);
11614        }
11615        return 0;
11616err:
11617        if (sqd) {
11618                mutex_unlock(&sqd->lock);
11619                io_put_sq_data(sqd);
11620        }
11621        return ret;
11622}
11623
11624static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
11625                               void __user *arg, unsigned nr_args)
11626        __releases(ctx->uring_lock)
11627        __acquires(ctx->uring_lock)
11628{
11629        int ret;
11630
11631        /*
11632         * We're inside the ring mutex, if the ref is already dying, then
11633         * someone else killed the ctx or is already going through
11634         * io_uring_register().
11635         */
11636        if (percpu_ref_is_dying(&ctx->refs))
11637                return -ENXIO;
11638
11639        if (ctx->restricted) {
11640                if (opcode >= IORING_REGISTER_LAST)
11641                        return -EINVAL;
11642                opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
11643                if (!test_bit(opcode, ctx->restrictions.register_op))
11644                        return -EACCES;
11645        }
11646
11647        switch (opcode) {
11648        case IORING_REGISTER_BUFFERS:
11649                ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
11650                break;
11651        case IORING_UNREGISTER_BUFFERS:
11652                ret = -EINVAL;
11653                if (arg || nr_args)
11654                        break;
11655                ret = io_sqe_buffers_unregister(ctx);
11656                break;
11657        case IORING_REGISTER_FILES:
11658                ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
11659                break;
11660        case IORING_UNREGISTER_FILES:
11661                ret = -EINVAL;
11662                if (arg || nr_args)
11663                        break;
11664                ret = io_sqe_files_unregister(ctx);
11665                break;
11666        case IORING_REGISTER_FILES_UPDATE:
11667                ret = io_register_files_update(ctx, arg, nr_args);
11668                break;
11669        case IORING_REGISTER_EVENTFD:
11670                ret = -EINVAL;
11671                if (nr_args != 1)
11672                        break;
11673                ret = io_eventfd_register(ctx, arg, 0);
11674                break;
11675        case IORING_REGISTER_EVENTFD_ASYNC:
11676                ret = -EINVAL;
11677                if (nr_args != 1)
11678                        break;
11679                ret = io_eventfd_register(ctx, arg, 1);
11680                break;
11681        case IORING_UNREGISTER_EVENTFD:
11682                ret = -EINVAL;
11683                if (arg || nr_args)
11684                        break;
11685                ret = io_eventfd_unregister(ctx);
11686                break;
11687        case IORING_REGISTER_PROBE:
11688                ret = -EINVAL;
11689                if (!arg || nr_args > 256)
11690                        break;
11691                ret = io_probe(ctx, arg, nr_args);
11692                break;
11693        case IORING_REGISTER_PERSONALITY:
11694                ret = -EINVAL;
11695                if (arg || nr_args)
11696                        break;
11697                ret = io_register_personality(ctx);
11698                break;
11699        case IORING_UNREGISTER_PERSONALITY:
11700                ret = -EINVAL;
11701                if (arg)
11702                        break;
11703                ret = io_unregister_personality(ctx, nr_args);
11704                break;
11705        case IORING_REGISTER_ENABLE_RINGS:
11706                ret = -EINVAL;
11707                if (arg || nr_args)
11708                        break;
11709                ret = io_register_enable_rings(ctx);
11710                break;
11711        case IORING_REGISTER_RESTRICTIONS:
11712                ret = io_register_restrictions(ctx, arg, nr_args);
11713                break;
11714        case IORING_REGISTER_FILES2:
11715                ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
11716                break;
11717        case IORING_REGISTER_FILES_UPDATE2:
11718                ret = io_register_rsrc_update(ctx, arg, nr_args,
11719                                              IORING_RSRC_FILE);
11720                break;
11721        case IORING_REGISTER_BUFFERS2:
11722                ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
11723                break;
11724        case IORING_REGISTER_BUFFERS_UPDATE:
11725                ret = io_register_rsrc_update(ctx, arg, nr_args,
11726                                              IORING_RSRC_BUFFER);
11727                break;
11728        case IORING_REGISTER_IOWQ_AFF:
11729                ret = -EINVAL;
11730                if (!arg || !nr_args)
11731                        break;
11732                ret = io_register_iowq_aff(ctx, arg, nr_args);
11733                break;
11734        case IORING_UNREGISTER_IOWQ_AFF:
11735                ret = -EINVAL;
11736                if (arg || nr_args)
11737                        break;
11738                ret = io_unregister_iowq_aff(ctx);
11739                break;
11740        case IORING_REGISTER_IOWQ_MAX_WORKERS:
11741                ret = -EINVAL;
11742                if (!arg || nr_args != 2)
11743                        break;
11744                ret = io_register_iowq_max_workers(ctx, arg);
11745                break;
11746        case IORING_REGISTER_RING_FDS:
11747                ret = io_ringfd_register(ctx, arg, nr_args);
11748                break;
11749        case IORING_UNREGISTER_RING_FDS:
11750                ret = io_ringfd_unregister(ctx, arg, nr_args);
11751                break;
11752        default:
11753                ret = -EINVAL;
11754                break;
11755        }
11756
11757        return ret;
11758}
11759
11760SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11761                void __user *, arg, unsigned int, nr_args)
11762{
11763        struct io_ring_ctx *ctx;
11764        long ret = -EBADF;
11765        struct fd f;
11766
11767        f = fdget(fd);
11768        if (!f.file)
11769                return -EBADF;
11770
11771        ret = -EOPNOTSUPP;
11772        if (f.file->f_op != &io_uring_fops)
11773                goto out_fput;
11774
11775        ctx = f.file->private_data;
11776
11777        io_run_task_work();
11778
11779        mutex_lock(&ctx->uring_lock);
11780        ret = __io_uring_register(ctx, opcode, arg, nr_args);
11781        mutex_unlock(&ctx->uring_lock);
11782        trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
11783out_fput:
11784        fdput(f);
11785        return ret;
11786}
11787
11788static int __init io_uring_init(void)
11789{
11790#define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11791        BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11792        BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11793} while (0)
11794
11795#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11796        __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11797        BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11798        BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
11799        BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
11800        BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
11801        BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
11802        BUILD_BUG_SQE_ELEM(8,  __u64,  off);
11803        BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
11804        BUILD_BUG_SQE_ELEM(16, __u64,  addr);
11805        BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
11806        BUILD_BUG_SQE_ELEM(24, __u32,  len);
11807        BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
11808        BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
11809        BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11810        BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
11811        BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
11812        BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
11813        BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
11814        BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
11815        BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
11816        BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
11817        BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
11818        BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
11819        BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
11820        BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
11821        BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
11822        BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
11823        BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
11824        BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
11825        BUILD_BUG_SQE_ELEM(42, __u16,  personality);
11826        BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
11827        BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
11828
11829        BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11830                     sizeof(struct io_uring_rsrc_update));
11831        BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11832                     sizeof(struct io_uring_rsrc_update2));
11833
11834        /* ->buf_index is u16 */
11835        BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11836
11837        /* should fit into one byte */
11838        BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11839        BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
11840        BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
11841
11842        BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11843        BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11844
11845        req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11846                                SLAB_ACCOUNT);
11847        return 0;
11848};
11849__initcall(io_uring_init);
11850