linux/fs/jbd2/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39        J_ASSERT(!transaction_cache);
  40        transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41                                        sizeof(transaction_t),
  42                                        0,
  43                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44                                        NULL);
  45        if (!transaction_cache) {
  46                pr_emerg("JBD2: failed to create transaction cache\n");
  47                return -ENOMEM;
  48        }
  49        return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54        kmem_cache_destroy(transaction_cache);
  55        transaction_cache = NULL;
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60        if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61                return;
  62        kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * Base amount of descriptor blocks we reserve for each transaction.
  67 */
  68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
  69{
  70        int tag_space = journal->j_blocksize - sizeof(journal_header_t);
  71        int tags_per_block;
  72
  73        /* Subtract UUID */
  74        tag_space -= 16;
  75        if (jbd2_journal_has_csum_v2or3(journal))
  76                tag_space -= sizeof(struct jbd2_journal_block_tail);
  77        /* Commit code leaves a slack space of 16 bytes at the end of block */
  78        tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
  79        /*
  80         * Revoke descriptors are accounted separately so we need to reserve
  81         * space for commit block and normal transaction descriptor blocks.
  82         */
  83        return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
  84                                tags_per_block);
  85}
  86
  87/*
  88 * jbd2_get_transaction: obtain a new transaction_t object.
  89 *
  90 * Simply initialise a new transaction. Initialize it in
  91 * RUNNING state and add it to the current journal (which should not
  92 * have an existing running transaction: we only make a new transaction
  93 * once we have started to commit the old one).
  94 *
  95 * Preconditions:
  96 *      The journal MUST be locked.  We don't perform atomic mallocs on the
  97 *      new transaction and we can't block without protecting against other
  98 *      processes trying to touch the journal while it is in transition.
  99 *
 100 */
 101
 102static void jbd2_get_transaction(journal_t *journal,
 103                                transaction_t *transaction)
 104{
 105        transaction->t_journal = journal;
 106        transaction->t_state = T_RUNNING;
 107        transaction->t_start_time = ktime_get();
 108        transaction->t_tid = journal->j_transaction_sequence++;
 109        transaction->t_expires = jiffies + journal->j_commit_interval;
 110        atomic_set(&transaction->t_updates, 0);
 111        atomic_set(&transaction->t_outstanding_credits,
 112                   jbd2_descriptor_blocks_per_trans(journal) +
 113                   atomic_read(&journal->j_reserved_credits));
 114        atomic_set(&transaction->t_outstanding_revokes, 0);
 115        atomic_set(&transaction->t_handle_count, 0);
 116        INIT_LIST_HEAD(&transaction->t_inode_list);
 117        INIT_LIST_HEAD(&transaction->t_private_list);
 118
 119        /* Set up the commit timer for the new transaction. */
 120        journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 121        add_timer(&journal->j_commit_timer);
 122
 123        J_ASSERT(journal->j_running_transaction == NULL);
 124        journal->j_running_transaction = transaction;
 125        transaction->t_max_wait = 0;
 126        transaction->t_start = jiffies;
 127        transaction->t_requested = 0;
 128}
 129
 130/*
 131 * Handle management.
 132 *
 133 * A handle_t is an object which represents a single atomic update to a
 134 * filesystem, and which tracks all of the modifications which form part
 135 * of that one update.
 136 */
 137
 138/*
 139 * Update transaction's maximum wait time, if debugging is enabled.
 140 *
 141 * t_max_wait is carefully updated here with use of atomic compare exchange.
 142 * Note that there could be multiplre threads trying to do this simultaneously
 143 * hence using cmpxchg to avoid any use of locks in this case.
 144 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
 145 */
 146static inline void update_t_max_wait(transaction_t *transaction,
 147                                     unsigned long ts)
 148{
 149        unsigned long oldts, newts;
 150
 151        if (time_after(transaction->t_start, ts)) {
 152                newts = jbd2_time_diff(ts, transaction->t_start);
 153                oldts = READ_ONCE(transaction->t_max_wait);
 154                while (oldts < newts)
 155                        oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
 156        }
 157}
 158
 159/*
 160 * Wait until running transaction passes to T_FLUSH state and new transaction
 161 * can thus be started. Also starts the commit if needed. The function expects
 162 * running transaction to exist and releases j_state_lock.
 163 */
 164static void wait_transaction_locked(journal_t *journal)
 165        __releases(journal->j_state_lock)
 166{
 167        DEFINE_WAIT(wait);
 168        int need_to_start;
 169        tid_t tid = journal->j_running_transaction->t_tid;
 170
 171        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 172                        TASK_UNINTERRUPTIBLE);
 173        need_to_start = !tid_geq(journal->j_commit_request, tid);
 174        read_unlock(&journal->j_state_lock);
 175        if (need_to_start)
 176                jbd2_log_start_commit(journal, tid);
 177        jbd2_might_wait_for_commit(journal);
 178        schedule();
 179        finish_wait(&journal->j_wait_transaction_locked, &wait);
 180}
 181
 182/*
 183 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 184 * state and new transaction can thus be started. The function releases
 185 * j_state_lock.
 186 */
 187static void wait_transaction_switching(journal_t *journal)
 188        __releases(journal->j_state_lock)
 189{
 190        DEFINE_WAIT(wait);
 191
 192        if (WARN_ON(!journal->j_running_transaction ||
 193                    journal->j_running_transaction->t_state != T_SWITCH)) {
 194                read_unlock(&journal->j_state_lock);
 195                return;
 196        }
 197        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 198                        TASK_UNINTERRUPTIBLE);
 199        read_unlock(&journal->j_state_lock);
 200        /*
 201         * We don't call jbd2_might_wait_for_commit() here as there's no
 202         * waiting for outstanding handles happening anymore in T_SWITCH state
 203         * and handling of reserved handles actually relies on that for
 204         * correctness.
 205         */
 206        schedule();
 207        finish_wait(&journal->j_wait_transaction_locked, &wait);
 208}
 209
 210static void sub_reserved_credits(journal_t *journal, int blocks)
 211{
 212        atomic_sub(blocks, &journal->j_reserved_credits);
 213        wake_up(&journal->j_wait_reserved);
 214}
 215
 216/*
 217 * Wait until we can add credits for handle to the running transaction.  Called
 218 * with j_state_lock held for reading. Returns 0 if handle joined the running
 219 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 220 * caller must retry.
 221 *
 222 * Note: because j_state_lock may be dropped depending on the return
 223 * value, we need to fake out sparse so ti doesn't complain about a
 224 * locking imbalance.  Callers of add_transaction_credits will need to
 225 * make a similar accomodation.
 226 */
 227static int add_transaction_credits(journal_t *journal, int blocks,
 228                                   int rsv_blocks)
 229__must_hold(&journal->j_state_lock)
 230{
 231        transaction_t *t = journal->j_running_transaction;
 232        int needed;
 233        int total = blocks + rsv_blocks;
 234
 235        /*
 236         * If the current transaction is locked down for commit, wait
 237         * for the lock to be released.
 238         */
 239        if (t->t_state != T_RUNNING) {
 240                WARN_ON_ONCE(t->t_state >= T_FLUSH);
 241                wait_transaction_locked(journal);
 242                __acquire(&journal->j_state_lock); /* fake out sparse */
 243                return 1;
 244        }
 245
 246        /*
 247         * If there is not enough space left in the log to write all
 248         * potential buffers requested by this operation, we need to
 249         * stall pending a log checkpoint to free some more log space.
 250         */
 251        needed = atomic_add_return(total, &t->t_outstanding_credits);
 252        if (needed > journal->j_max_transaction_buffers) {
 253                /*
 254                 * If the current transaction is already too large,
 255                 * then start to commit it: we can then go back and
 256                 * attach this handle to a new transaction.
 257                 */
 258                atomic_sub(total, &t->t_outstanding_credits);
 259
 260                /*
 261                 * Is the number of reserved credits in the current transaction too
 262                 * big to fit this handle? Wait until reserved credits are freed.
 263                 */
 264                if (atomic_read(&journal->j_reserved_credits) + total >
 265                    journal->j_max_transaction_buffers) {
 266                        read_unlock(&journal->j_state_lock);
 267                        jbd2_might_wait_for_commit(journal);
 268                        wait_event(journal->j_wait_reserved,
 269                                   atomic_read(&journal->j_reserved_credits) + total <=
 270                                   journal->j_max_transaction_buffers);
 271                        __acquire(&journal->j_state_lock); /* fake out sparse */
 272                        return 1;
 273                }
 274
 275                wait_transaction_locked(journal);
 276                __acquire(&journal->j_state_lock); /* fake out sparse */
 277                return 1;
 278        }
 279
 280        /*
 281         * The commit code assumes that it can get enough log space
 282         * without forcing a checkpoint.  This is *critical* for
 283         * correctness: a checkpoint of a buffer which is also
 284         * associated with a committing transaction creates a deadlock,
 285         * so commit simply cannot force through checkpoints.
 286         *
 287         * We must therefore ensure the necessary space in the journal
 288         * *before* starting to dirty potentially checkpointed buffers
 289         * in the new transaction.
 290         */
 291        if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
 292                atomic_sub(total, &t->t_outstanding_credits);
 293                read_unlock(&journal->j_state_lock);
 294                jbd2_might_wait_for_commit(journal);
 295                write_lock(&journal->j_state_lock);
 296                if (jbd2_log_space_left(journal) <
 297                                        journal->j_max_transaction_buffers)
 298                        __jbd2_log_wait_for_space(journal);
 299                write_unlock(&journal->j_state_lock);
 300                __acquire(&journal->j_state_lock); /* fake out sparse */
 301                return 1;
 302        }
 303
 304        /* No reservation? We are done... */
 305        if (!rsv_blocks)
 306                return 0;
 307
 308        needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 309        /* We allow at most half of a transaction to be reserved */
 310        if (needed > journal->j_max_transaction_buffers / 2) {
 311                sub_reserved_credits(journal, rsv_blocks);
 312                atomic_sub(total, &t->t_outstanding_credits);
 313                read_unlock(&journal->j_state_lock);
 314                jbd2_might_wait_for_commit(journal);
 315                wait_event(journal->j_wait_reserved,
 316                         atomic_read(&journal->j_reserved_credits) + rsv_blocks
 317                         <= journal->j_max_transaction_buffers / 2);
 318                __acquire(&journal->j_state_lock); /* fake out sparse */
 319                return 1;
 320        }
 321        return 0;
 322}
 323
 324/*
 325 * start_this_handle: Given a handle, deal with any locking or stalling
 326 * needed to make sure that there is enough journal space for the handle
 327 * to begin.  Attach the handle to a transaction and set up the
 328 * transaction's buffer credits.
 329 */
 330
 331static int start_this_handle(journal_t *journal, handle_t *handle,
 332                             gfp_t gfp_mask)
 333{
 334        transaction_t   *transaction, *new_transaction = NULL;
 335        int             blocks = handle->h_total_credits;
 336        int             rsv_blocks = 0;
 337        unsigned long ts = jiffies;
 338
 339        if (handle->h_rsv_handle)
 340                rsv_blocks = handle->h_rsv_handle->h_total_credits;
 341
 342        /*
 343         * Limit the number of reserved credits to 1/2 of maximum transaction
 344         * size and limit the number of total credits to not exceed maximum
 345         * transaction size per operation.
 346         */
 347        if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 348            (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 349                printk(KERN_ERR "JBD2: %s wants too many credits "
 350                       "credits:%d rsv_credits:%d max:%d\n",
 351                       current->comm, blocks, rsv_blocks,
 352                       journal->j_max_transaction_buffers);
 353                WARN_ON(1);
 354                return -ENOSPC;
 355        }
 356
 357alloc_transaction:
 358        /*
 359         * This check is racy but it is just an optimization of allocating new
 360         * transaction early if there are high chances we'll need it. If we
 361         * guess wrong, we'll retry or free unused transaction.
 362         */
 363        if (!data_race(journal->j_running_transaction)) {
 364                /*
 365                 * If __GFP_FS is not present, then we may be being called from
 366                 * inside the fs writeback layer, so we MUST NOT fail.
 367                 */
 368                if ((gfp_mask & __GFP_FS) == 0)
 369                        gfp_mask |= __GFP_NOFAIL;
 370                new_transaction = kmem_cache_zalloc(transaction_cache,
 371                                                    gfp_mask);
 372                if (!new_transaction)
 373                        return -ENOMEM;
 374        }
 375
 376        jbd_debug(3, "New handle %p going live.\n", handle);
 377
 378        /*
 379         * We need to hold j_state_lock until t_updates has been incremented,
 380         * for proper journal barrier handling
 381         */
 382repeat:
 383        read_lock(&journal->j_state_lock);
 384        BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 385        if (is_journal_aborted(journal) ||
 386            (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 387                read_unlock(&journal->j_state_lock);
 388                jbd2_journal_free_transaction(new_transaction);
 389                return -EROFS;
 390        }
 391
 392        /*
 393         * Wait on the journal's transaction barrier if necessary. Specifically
 394         * we allow reserved handles to proceed because otherwise commit could
 395         * deadlock on page writeback not being able to complete.
 396         */
 397        if (!handle->h_reserved && journal->j_barrier_count) {
 398                read_unlock(&journal->j_state_lock);
 399                wait_event(journal->j_wait_transaction_locked,
 400                                journal->j_barrier_count == 0);
 401                goto repeat;
 402        }
 403
 404        if (!journal->j_running_transaction) {
 405                read_unlock(&journal->j_state_lock);
 406                if (!new_transaction)
 407                        goto alloc_transaction;
 408                write_lock(&journal->j_state_lock);
 409                if (!journal->j_running_transaction &&
 410                    (handle->h_reserved || !journal->j_barrier_count)) {
 411                        jbd2_get_transaction(journal, new_transaction);
 412                        new_transaction = NULL;
 413                }
 414                write_unlock(&journal->j_state_lock);
 415                goto repeat;
 416        }
 417
 418        transaction = journal->j_running_transaction;
 419
 420        if (!handle->h_reserved) {
 421                /* We may have dropped j_state_lock - restart in that case */
 422                if (add_transaction_credits(journal, blocks, rsv_blocks)) {
 423                        /*
 424                         * add_transaction_credits releases
 425                         * j_state_lock on a non-zero return
 426                         */
 427                        __release(&journal->j_state_lock);
 428                        goto repeat;
 429                }
 430        } else {
 431                /*
 432                 * We have handle reserved so we are allowed to join T_LOCKED
 433                 * transaction and we don't have to check for transaction size
 434                 * and journal space. But we still have to wait while running
 435                 * transaction is being switched to a committing one as it
 436                 * won't wait for any handles anymore.
 437                 */
 438                if (transaction->t_state == T_SWITCH) {
 439                        wait_transaction_switching(journal);
 440                        goto repeat;
 441                }
 442                sub_reserved_credits(journal, blocks);
 443                handle->h_reserved = 0;
 444        }
 445
 446        /* OK, account for the buffers that this operation expects to
 447         * use and add the handle to the running transaction.
 448         */
 449        update_t_max_wait(transaction, ts);
 450        handle->h_transaction = transaction;
 451        handle->h_requested_credits = blocks;
 452        handle->h_revoke_credits_requested = handle->h_revoke_credits;
 453        handle->h_start_jiffies = jiffies;
 454        atomic_inc(&transaction->t_updates);
 455        atomic_inc(&transaction->t_handle_count);
 456        jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 457                  handle, blocks,
 458                  atomic_read(&transaction->t_outstanding_credits),
 459                  jbd2_log_space_left(journal));
 460        read_unlock(&journal->j_state_lock);
 461        current->journal_info = handle;
 462
 463        rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 464        jbd2_journal_free_transaction(new_transaction);
 465        /*
 466         * Ensure that no allocations done while the transaction is open are
 467         * going to recurse back to the fs layer.
 468         */
 469        handle->saved_alloc_context = memalloc_nofs_save();
 470        return 0;
 471}
 472
 473/* Allocate a new handle.  This should probably be in a slab... */
 474static handle_t *new_handle(int nblocks)
 475{
 476        handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 477        if (!handle)
 478                return NULL;
 479        handle->h_total_credits = nblocks;
 480        handle->h_ref = 1;
 481
 482        return handle;
 483}
 484
 485handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 486                              int revoke_records, gfp_t gfp_mask,
 487                              unsigned int type, unsigned int line_no)
 488{
 489        handle_t *handle = journal_current_handle();
 490        int err;
 491
 492        if (!journal)
 493                return ERR_PTR(-EROFS);
 494
 495        if (handle) {
 496                J_ASSERT(handle->h_transaction->t_journal == journal);
 497                handle->h_ref++;
 498                return handle;
 499        }
 500
 501        nblocks += DIV_ROUND_UP(revoke_records,
 502                                journal->j_revoke_records_per_block);
 503        handle = new_handle(nblocks);
 504        if (!handle)
 505                return ERR_PTR(-ENOMEM);
 506        if (rsv_blocks) {
 507                handle_t *rsv_handle;
 508
 509                rsv_handle = new_handle(rsv_blocks);
 510                if (!rsv_handle) {
 511                        jbd2_free_handle(handle);
 512                        return ERR_PTR(-ENOMEM);
 513                }
 514                rsv_handle->h_reserved = 1;
 515                rsv_handle->h_journal = journal;
 516                handle->h_rsv_handle = rsv_handle;
 517        }
 518        handle->h_revoke_credits = revoke_records;
 519
 520        err = start_this_handle(journal, handle, gfp_mask);
 521        if (err < 0) {
 522                if (handle->h_rsv_handle)
 523                        jbd2_free_handle(handle->h_rsv_handle);
 524                jbd2_free_handle(handle);
 525                return ERR_PTR(err);
 526        }
 527        handle->h_type = type;
 528        handle->h_line_no = line_no;
 529        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 530                                handle->h_transaction->t_tid, type,
 531                                line_no, nblocks);
 532
 533        return handle;
 534}
 535EXPORT_SYMBOL(jbd2__journal_start);
 536
 537
 538/**
 539 * jbd2_journal_start() - Obtain a new handle.
 540 * @journal: Journal to start transaction on.
 541 * @nblocks: number of block buffer we might modify
 542 *
 543 * We make sure that the transaction can guarantee at least nblocks of
 544 * modified buffers in the log.  We block until the log can guarantee
 545 * that much space. Additionally, if rsv_blocks > 0, we also create another
 546 * handle with rsv_blocks reserved blocks in the journal. This handle is
 547 * stored in h_rsv_handle. It is not attached to any particular transaction
 548 * and thus doesn't block transaction commit. If the caller uses this reserved
 549 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 550 * on the parent handle will dispose the reserved one. Reserved handle has to
 551 * be converted to a normal handle using jbd2_journal_start_reserved() before
 552 * it can be used.
 553 *
 554 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 555 * on failure.
 556 */
 557handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 558{
 559        return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
 560}
 561EXPORT_SYMBOL(jbd2_journal_start);
 562
 563static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
 564{
 565        journal_t *journal = handle->h_journal;
 566
 567        WARN_ON(!handle->h_reserved);
 568        sub_reserved_credits(journal, handle->h_total_credits);
 569        if (t)
 570                atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
 571}
 572
 573void jbd2_journal_free_reserved(handle_t *handle)
 574{
 575        journal_t *journal = handle->h_journal;
 576
 577        /* Get j_state_lock to pin running transaction if it exists */
 578        read_lock(&journal->j_state_lock);
 579        __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
 580        read_unlock(&journal->j_state_lock);
 581        jbd2_free_handle(handle);
 582}
 583EXPORT_SYMBOL(jbd2_journal_free_reserved);
 584
 585/**
 586 * jbd2_journal_start_reserved() - start reserved handle
 587 * @handle: handle to start
 588 * @type: for handle statistics
 589 * @line_no: for handle statistics
 590 *
 591 * Start handle that has been previously reserved with jbd2_journal_reserve().
 592 * This attaches @handle to the running transaction (or creates one if there's
 593 * not transaction running). Unlike jbd2_journal_start() this function cannot
 594 * block on journal commit, checkpointing, or similar stuff. It can block on
 595 * memory allocation or frozen journal though.
 596 *
 597 * Return 0 on success, non-zero on error - handle is freed in that case.
 598 */
 599int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 600                                unsigned int line_no)
 601{
 602        journal_t *journal = handle->h_journal;
 603        int ret = -EIO;
 604
 605        if (WARN_ON(!handle->h_reserved)) {
 606                /* Someone passed in normal handle? Just stop it. */
 607                jbd2_journal_stop(handle);
 608                return ret;
 609        }
 610        /*
 611         * Usefulness of mixing of reserved and unreserved handles is
 612         * questionable. So far nobody seems to need it so just error out.
 613         */
 614        if (WARN_ON(current->journal_info)) {
 615                jbd2_journal_free_reserved(handle);
 616                return ret;
 617        }
 618
 619        handle->h_journal = NULL;
 620        /*
 621         * GFP_NOFS is here because callers are likely from writeback or
 622         * similarly constrained call sites
 623         */
 624        ret = start_this_handle(journal, handle, GFP_NOFS);
 625        if (ret < 0) {
 626                handle->h_journal = journal;
 627                jbd2_journal_free_reserved(handle);
 628                return ret;
 629        }
 630        handle->h_type = type;
 631        handle->h_line_no = line_no;
 632        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 633                                handle->h_transaction->t_tid, type,
 634                                line_no, handle->h_total_credits);
 635        return 0;
 636}
 637EXPORT_SYMBOL(jbd2_journal_start_reserved);
 638
 639/**
 640 * jbd2_journal_extend() - extend buffer credits.
 641 * @handle:  handle to 'extend'
 642 * @nblocks: nr blocks to try to extend by.
 643 * @revoke_records: number of revoke records to try to extend by.
 644 *
 645 * Some transactions, such as large extends and truncates, can be done
 646 * atomically all at once or in several stages.  The operation requests
 647 * a credit for a number of buffer modifications in advance, but can
 648 * extend its credit if it needs more.
 649 *
 650 * jbd2_journal_extend tries to give the running handle more buffer credits.
 651 * It does not guarantee that allocation - this is a best-effort only.
 652 * The calling process MUST be able to deal cleanly with a failure to
 653 * extend here.
 654 *
 655 * Return 0 on success, non-zero on failure.
 656 *
 657 * return code < 0 implies an error
 658 * return code > 0 implies normal transaction-full status.
 659 */
 660int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
 661{
 662        transaction_t *transaction = handle->h_transaction;
 663        journal_t *journal;
 664        int result;
 665        int wanted;
 666
 667        if (is_handle_aborted(handle))
 668                return -EROFS;
 669        journal = transaction->t_journal;
 670
 671        result = 1;
 672
 673        read_lock(&journal->j_state_lock);
 674
 675        /* Don't extend a locked-down transaction! */
 676        if (transaction->t_state != T_RUNNING) {
 677                jbd_debug(3, "denied handle %p %d blocks: "
 678                          "transaction not running\n", handle, nblocks);
 679                goto error_out;
 680        }
 681
 682        nblocks += DIV_ROUND_UP(
 683                        handle->h_revoke_credits_requested + revoke_records,
 684                        journal->j_revoke_records_per_block) -
 685                DIV_ROUND_UP(
 686                        handle->h_revoke_credits_requested,
 687                        journal->j_revoke_records_per_block);
 688        wanted = atomic_add_return(nblocks,
 689                                   &transaction->t_outstanding_credits);
 690
 691        if (wanted > journal->j_max_transaction_buffers) {
 692                jbd_debug(3, "denied handle %p %d blocks: "
 693                          "transaction too large\n", handle, nblocks);
 694                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 695                goto error_out;
 696        }
 697
 698        trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 699                                 transaction->t_tid,
 700                                 handle->h_type, handle->h_line_no,
 701                                 handle->h_total_credits,
 702                                 nblocks);
 703
 704        handle->h_total_credits += nblocks;
 705        handle->h_requested_credits += nblocks;
 706        handle->h_revoke_credits += revoke_records;
 707        handle->h_revoke_credits_requested += revoke_records;
 708        result = 0;
 709
 710        jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 711error_out:
 712        read_unlock(&journal->j_state_lock);
 713        return result;
 714}
 715
 716static void stop_this_handle(handle_t *handle)
 717{
 718        transaction_t *transaction = handle->h_transaction;
 719        journal_t *journal = transaction->t_journal;
 720        int revokes;
 721
 722        J_ASSERT(journal_current_handle() == handle);
 723        J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 724        current->journal_info = NULL;
 725        /*
 726         * Subtract necessary revoke descriptor blocks from handle credits. We
 727         * take care to account only for revoke descriptor blocks the
 728         * transaction will really need as large sequences of transactions with
 729         * small numbers of revokes are relatively common.
 730         */
 731        revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
 732        if (revokes) {
 733                int t_revokes, revoke_descriptors;
 734                int rr_per_blk = journal->j_revoke_records_per_block;
 735
 736                WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
 737                                > handle->h_total_credits);
 738                t_revokes = atomic_add_return(revokes,
 739                                &transaction->t_outstanding_revokes);
 740                revoke_descriptors =
 741                        DIV_ROUND_UP(t_revokes, rr_per_blk) -
 742                        DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
 743                handle->h_total_credits -= revoke_descriptors;
 744        }
 745        atomic_sub(handle->h_total_credits,
 746                   &transaction->t_outstanding_credits);
 747        if (handle->h_rsv_handle)
 748                __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
 749                                                transaction);
 750        if (atomic_dec_and_test(&transaction->t_updates))
 751                wake_up(&journal->j_wait_updates);
 752
 753        rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
 754        /*
 755         * Scope of the GFP_NOFS context is over here and so we can restore the
 756         * original alloc context.
 757         */
 758        memalloc_nofs_restore(handle->saved_alloc_context);
 759}
 760
 761/**
 762 * jbd2__journal_restart() - restart a handle .
 763 * @handle:  handle to restart
 764 * @nblocks: nr credits requested
 765 * @revoke_records: number of revoke record credits requested
 766 * @gfp_mask: memory allocation flags (for start_this_handle)
 767 *
 768 * Restart a handle for a multi-transaction filesystem
 769 * operation.
 770 *
 771 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 772 * to a running handle, a call to jbd2_journal_restart will commit the
 773 * handle's transaction so far and reattach the handle to a new
 774 * transaction capable of guaranteeing the requested number of
 775 * credits. We preserve reserved handle if there's any attached to the
 776 * passed in handle.
 777 */
 778int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
 779                          gfp_t gfp_mask)
 780{
 781        transaction_t *transaction = handle->h_transaction;
 782        journal_t *journal;
 783        tid_t           tid;
 784        int             need_to_start;
 785        int             ret;
 786
 787        /* If we've had an abort of any type, don't even think about
 788         * actually doing the restart! */
 789        if (is_handle_aborted(handle))
 790                return 0;
 791        journal = transaction->t_journal;
 792        tid = transaction->t_tid;
 793
 794        /*
 795         * First unlink the handle from its current transaction, and start the
 796         * commit on that.
 797         */
 798        jbd_debug(2, "restarting handle %p\n", handle);
 799        stop_this_handle(handle);
 800        handle->h_transaction = NULL;
 801
 802        /*
 803         * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
 804         * get rid of pointless j_state_lock traffic like this.
 805         */
 806        read_lock(&journal->j_state_lock);
 807        need_to_start = !tid_geq(journal->j_commit_request, tid);
 808        read_unlock(&journal->j_state_lock);
 809        if (need_to_start)
 810                jbd2_log_start_commit(journal, tid);
 811        handle->h_total_credits = nblocks +
 812                DIV_ROUND_UP(revoke_records,
 813                             journal->j_revoke_records_per_block);
 814        handle->h_revoke_credits = revoke_records;
 815        ret = start_this_handle(journal, handle, gfp_mask);
 816        trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
 817                                 ret ? 0 : handle->h_transaction->t_tid,
 818                                 handle->h_type, handle->h_line_no,
 819                                 handle->h_total_credits);
 820        return ret;
 821}
 822EXPORT_SYMBOL(jbd2__journal_restart);
 823
 824
 825int jbd2_journal_restart(handle_t *handle, int nblocks)
 826{
 827        return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
 828}
 829EXPORT_SYMBOL(jbd2_journal_restart);
 830
 831/*
 832 * Waits for any outstanding t_updates to finish.
 833 * This is called with write j_state_lock held.
 834 */
 835void jbd2_journal_wait_updates(journal_t *journal)
 836{
 837        DEFINE_WAIT(wait);
 838
 839        while (1) {
 840                /*
 841                 * Note that the running transaction can get freed under us if
 842                 * this transaction is getting committed in
 843                 * jbd2_journal_commit_transaction() ->
 844                 * jbd2_journal_free_transaction(). This can only happen when we
 845                 * release j_state_lock -> schedule() -> acquire j_state_lock.
 846                 * Hence we should everytime retrieve new j_running_transaction
 847                 * value (after j_state_lock release acquire cycle), else it may
 848                 * lead to use-after-free of old freed transaction.
 849                 */
 850                transaction_t *transaction = journal->j_running_transaction;
 851
 852                if (!transaction)
 853                        break;
 854
 855                prepare_to_wait(&journal->j_wait_updates, &wait,
 856                                TASK_UNINTERRUPTIBLE);
 857                if (!atomic_read(&transaction->t_updates)) {
 858                        finish_wait(&journal->j_wait_updates, &wait);
 859                        break;
 860                }
 861                write_unlock(&journal->j_state_lock);
 862                schedule();
 863                finish_wait(&journal->j_wait_updates, &wait);
 864                write_lock(&journal->j_state_lock);
 865        }
 866}
 867
 868/**
 869 * jbd2_journal_lock_updates () - establish a transaction barrier.
 870 * @journal:  Journal to establish a barrier on.
 871 *
 872 * This locks out any further updates from being started, and blocks
 873 * until all existing updates have completed, returning only once the
 874 * journal is in a quiescent state with no updates running.
 875 *
 876 * The journal lock should not be held on entry.
 877 */
 878void jbd2_journal_lock_updates(journal_t *journal)
 879{
 880        jbd2_might_wait_for_commit(journal);
 881
 882        write_lock(&journal->j_state_lock);
 883        ++journal->j_barrier_count;
 884
 885        /* Wait until there are no reserved handles */
 886        if (atomic_read(&journal->j_reserved_credits)) {
 887                write_unlock(&journal->j_state_lock);
 888                wait_event(journal->j_wait_reserved,
 889                           atomic_read(&journal->j_reserved_credits) == 0);
 890                write_lock(&journal->j_state_lock);
 891        }
 892
 893        /* Wait until there are no running t_updates */
 894        jbd2_journal_wait_updates(journal);
 895
 896        write_unlock(&journal->j_state_lock);
 897
 898        /*
 899         * We have now established a barrier against other normal updates, but
 900         * we also need to barrier against other jbd2_journal_lock_updates() calls
 901         * to make sure that we serialise special journal-locked operations
 902         * too.
 903         */
 904        mutex_lock(&journal->j_barrier);
 905}
 906
 907/**
 908 * jbd2_journal_unlock_updates () - release barrier
 909 * @journal:  Journal to release the barrier on.
 910 *
 911 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 912 *
 913 * Should be called without the journal lock held.
 914 */
 915void jbd2_journal_unlock_updates (journal_t *journal)
 916{
 917        J_ASSERT(journal->j_barrier_count != 0);
 918
 919        mutex_unlock(&journal->j_barrier);
 920        write_lock(&journal->j_state_lock);
 921        --journal->j_barrier_count;
 922        write_unlock(&journal->j_state_lock);
 923        wake_up(&journal->j_wait_transaction_locked);
 924}
 925
 926static void warn_dirty_buffer(struct buffer_head *bh)
 927{
 928        printk(KERN_WARNING
 929               "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 930               "There's a risk of filesystem corruption in case of system "
 931               "crash.\n",
 932               bh->b_bdev, (unsigned long long)bh->b_blocknr);
 933}
 934
 935/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 936static void jbd2_freeze_jh_data(struct journal_head *jh)
 937{
 938        struct page *page;
 939        int offset;
 940        char *source;
 941        struct buffer_head *bh = jh2bh(jh);
 942
 943        J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 944        page = bh->b_page;
 945        offset = offset_in_page(bh->b_data);
 946        source = kmap_atomic(page);
 947        /* Fire data frozen trigger just before we copy the data */
 948        jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 949        memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 950        kunmap_atomic(source);
 951
 952        /*
 953         * Now that the frozen data is saved off, we need to store any matching
 954         * triggers.
 955         */
 956        jh->b_frozen_triggers = jh->b_triggers;
 957}
 958
 959/*
 960 * If the buffer is already part of the current transaction, then there
 961 * is nothing we need to do.  If it is already part of a prior
 962 * transaction which we are still committing to disk, then we need to
 963 * make sure that we do not overwrite the old copy: we do copy-out to
 964 * preserve the copy going to disk.  We also account the buffer against
 965 * the handle's metadata buffer credits (unless the buffer is already
 966 * part of the transaction, that is).
 967 *
 968 */
 969static int
 970do_get_write_access(handle_t *handle, struct journal_head *jh,
 971                        int force_copy)
 972{
 973        struct buffer_head *bh;
 974        transaction_t *transaction = handle->h_transaction;
 975        journal_t *journal;
 976        int error;
 977        char *frozen_buffer = NULL;
 978        unsigned long start_lock, time_lock;
 979
 980        journal = transaction->t_journal;
 981
 982        jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 983
 984        JBUFFER_TRACE(jh, "entry");
 985repeat:
 986        bh = jh2bh(jh);
 987
 988        /* @@@ Need to check for errors here at some point. */
 989
 990        start_lock = jiffies;
 991        lock_buffer(bh);
 992        spin_lock(&jh->b_state_lock);
 993
 994        /* If it takes too long to lock the buffer, trace it */
 995        time_lock = jbd2_time_diff(start_lock, jiffies);
 996        if (time_lock > HZ/10)
 997                trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 998                        jiffies_to_msecs(time_lock));
 999
1000        /* We now hold the buffer lock so it is safe to query the buffer
1001         * state.  Is the buffer dirty?
1002         *
1003         * If so, there are two possibilities.  The buffer may be
1004         * non-journaled, and undergoing a quite legitimate writeback.
1005         * Otherwise, it is journaled, and we don't expect dirty buffers
1006         * in that state (the buffers should be marked JBD_Dirty
1007         * instead.)  So either the IO is being done under our own
1008         * control and this is a bug, or it's a third party IO such as
1009         * dump(8) (which may leave the buffer scheduled for read ---
1010         * ie. locked but not dirty) or tune2fs (which may actually have
1011         * the buffer dirtied, ugh.)  */
1012
1013        if (buffer_dirty(bh)) {
1014                /*
1015                 * First question: is this buffer already part of the current
1016                 * transaction or the existing committing transaction?
1017                 */
1018                if (jh->b_transaction) {
1019                        J_ASSERT_JH(jh,
1020                                jh->b_transaction == transaction ||
1021                                jh->b_transaction ==
1022                                        journal->j_committing_transaction);
1023                        if (jh->b_next_transaction)
1024                                J_ASSERT_JH(jh, jh->b_next_transaction ==
1025                                                        transaction);
1026                        warn_dirty_buffer(bh);
1027                }
1028                /*
1029                 * In any case we need to clean the dirty flag and we must
1030                 * do it under the buffer lock to be sure we don't race
1031                 * with running write-out.
1032                 */
1033                JBUFFER_TRACE(jh, "Journalling dirty buffer");
1034                clear_buffer_dirty(bh);
1035                set_buffer_jbddirty(bh);
1036        }
1037
1038        unlock_buffer(bh);
1039
1040        error = -EROFS;
1041        if (is_handle_aborted(handle)) {
1042                spin_unlock(&jh->b_state_lock);
1043                goto out;
1044        }
1045        error = 0;
1046
1047        /*
1048         * The buffer is already part of this transaction if b_transaction or
1049         * b_next_transaction points to it
1050         */
1051        if (jh->b_transaction == transaction ||
1052            jh->b_next_transaction == transaction)
1053                goto done;
1054
1055        /*
1056         * this is the first time this transaction is touching this buffer,
1057         * reset the modified flag
1058         */
1059        jh->b_modified = 0;
1060
1061        /*
1062         * If the buffer is not journaled right now, we need to make sure it
1063         * doesn't get written to disk before the caller actually commits the
1064         * new data
1065         */
1066        if (!jh->b_transaction) {
1067                JBUFFER_TRACE(jh, "no transaction");
1068                J_ASSERT_JH(jh, !jh->b_next_transaction);
1069                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1070                /*
1071                 * Make sure all stores to jh (b_modified, b_frozen_data) are
1072                 * visible before attaching it to the running transaction.
1073                 * Paired with barrier in jbd2_write_access_granted()
1074                 */
1075                smp_wmb();
1076                spin_lock(&journal->j_list_lock);
1077                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1078                spin_unlock(&journal->j_list_lock);
1079                goto done;
1080        }
1081        /*
1082         * If there is already a copy-out version of this buffer, then we don't
1083         * need to make another one
1084         */
1085        if (jh->b_frozen_data) {
1086                JBUFFER_TRACE(jh, "has frozen data");
1087                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1088                goto attach_next;
1089        }
1090
1091        JBUFFER_TRACE(jh, "owned by older transaction");
1092        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1093        J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1094
1095        /*
1096         * There is one case we have to be very careful about.  If the
1097         * committing transaction is currently writing this buffer out to disk
1098         * and has NOT made a copy-out, then we cannot modify the buffer
1099         * contents at all right now.  The essence of copy-out is that it is
1100         * the extra copy, not the primary copy, which gets journaled.  If the
1101         * primary copy is already going to disk then we cannot do copy-out
1102         * here.
1103         */
1104        if (buffer_shadow(bh)) {
1105                JBUFFER_TRACE(jh, "on shadow: sleep");
1106                spin_unlock(&jh->b_state_lock);
1107                wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1108                goto repeat;
1109        }
1110
1111        /*
1112         * Only do the copy if the currently-owning transaction still needs it.
1113         * If buffer isn't on BJ_Metadata list, the committing transaction is
1114         * past that stage (here we use the fact that BH_Shadow is set under
1115         * bh_state lock together with refiling to BJ_Shadow list and at this
1116         * point we know the buffer doesn't have BH_Shadow set).
1117         *
1118         * Subtle point, though: if this is a get_undo_access, then we will be
1119         * relying on the frozen_data to contain the new value of the
1120         * committed_data record after the transaction, so we HAVE to force the
1121         * frozen_data copy in that case.
1122         */
1123        if (jh->b_jlist == BJ_Metadata || force_copy) {
1124                JBUFFER_TRACE(jh, "generate frozen data");
1125                if (!frozen_buffer) {
1126                        JBUFFER_TRACE(jh, "allocate memory for buffer");
1127                        spin_unlock(&jh->b_state_lock);
1128                        frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1129                                                   GFP_NOFS | __GFP_NOFAIL);
1130                        goto repeat;
1131                }
1132                jh->b_frozen_data = frozen_buffer;
1133                frozen_buffer = NULL;
1134                jbd2_freeze_jh_data(jh);
1135        }
1136attach_next:
1137        /*
1138         * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1139         * before attaching it to the running transaction. Paired with barrier
1140         * in jbd2_write_access_granted()
1141         */
1142        smp_wmb();
1143        jh->b_next_transaction = transaction;
1144
1145done:
1146        spin_unlock(&jh->b_state_lock);
1147
1148        /*
1149         * If we are about to journal a buffer, then any revoke pending on it is
1150         * no longer valid
1151         */
1152        jbd2_journal_cancel_revoke(handle, jh);
1153
1154out:
1155        if (unlikely(frozen_buffer))    /* It's usually NULL */
1156                jbd2_free(frozen_buffer, bh->b_size);
1157
1158        JBUFFER_TRACE(jh, "exit");
1159        return error;
1160}
1161
1162/* Fast check whether buffer is already attached to the required transaction */
1163static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1164                                                        bool undo)
1165{
1166        struct journal_head *jh;
1167        bool ret = false;
1168
1169        /* Dirty buffers require special handling... */
1170        if (buffer_dirty(bh))
1171                return false;
1172
1173        /*
1174         * RCU protects us from dereferencing freed pages. So the checks we do
1175         * are guaranteed not to oops. However the jh slab object can get freed
1176         * & reallocated while we work with it. So we have to be careful. When
1177         * we see jh attached to the running transaction, we know it must stay
1178         * so until the transaction is committed. Thus jh won't be freed and
1179         * will be attached to the same bh while we run.  However it can
1180         * happen jh gets freed, reallocated, and attached to the transaction
1181         * just after we get pointer to it from bh. So we have to be careful
1182         * and recheck jh still belongs to our bh before we return success.
1183         */
1184        rcu_read_lock();
1185        if (!buffer_jbd(bh))
1186                goto out;
1187        /* This should be bh2jh() but that doesn't work with inline functions */
1188        jh = READ_ONCE(bh->b_private);
1189        if (!jh)
1190                goto out;
1191        /* For undo access buffer must have data copied */
1192        if (undo && !jh->b_committed_data)
1193                goto out;
1194        if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1195            READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1196                goto out;
1197        /*
1198         * There are two reasons for the barrier here:
1199         * 1) Make sure to fetch b_bh after we did previous checks so that we
1200         * detect when jh went through free, realloc, attach to transaction
1201         * while we were checking. Paired with implicit barrier in that path.
1202         * 2) So that access to bh done after jbd2_write_access_granted()
1203         * doesn't get reordered and see inconsistent state of concurrent
1204         * do_get_write_access().
1205         */
1206        smp_mb();
1207        if (unlikely(jh->b_bh != bh))
1208                goto out;
1209        ret = true;
1210out:
1211        rcu_read_unlock();
1212        return ret;
1213}
1214
1215/**
1216 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1217 *                                   for metadata (not data) update.
1218 * @handle: transaction to add buffer modifications to
1219 * @bh:     bh to be used for metadata writes
1220 *
1221 * Returns: error code or 0 on success.
1222 *
1223 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1224 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1225 */
1226
1227int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1228{
1229        struct journal_head *jh;
1230        int rc;
1231
1232        if (is_handle_aborted(handle))
1233                return -EROFS;
1234
1235        if (jbd2_write_access_granted(handle, bh, false))
1236                return 0;
1237
1238        jh = jbd2_journal_add_journal_head(bh);
1239        /* We do not want to get caught playing with fields which the
1240         * log thread also manipulates.  Make sure that the buffer
1241         * completes any outstanding IO before proceeding. */
1242        rc = do_get_write_access(handle, jh, 0);
1243        jbd2_journal_put_journal_head(jh);
1244        return rc;
1245}
1246
1247
1248/*
1249 * When the user wants to journal a newly created buffer_head
1250 * (ie. getblk() returned a new buffer and we are going to populate it
1251 * manually rather than reading off disk), then we need to keep the
1252 * buffer_head locked until it has been completely filled with new
1253 * data.  In this case, we should be able to make the assertion that
1254 * the bh is not already part of an existing transaction.
1255 *
1256 * The buffer should already be locked by the caller by this point.
1257 * There is no lock ranking violation: it was a newly created,
1258 * unlocked buffer beforehand. */
1259
1260/**
1261 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1262 * @handle: transaction to new buffer to
1263 * @bh: new buffer.
1264 *
1265 * Call this if you create a new bh.
1266 */
1267int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1268{
1269        transaction_t *transaction = handle->h_transaction;
1270        journal_t *journal;
1271        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1272        int err;
1273
1274        jbd_debug(5, "journal_head %p\n", jh);
1275        err = -EROFS;
1276        if (is_handle_aborted(handle))
1277                goto out;
1278        journal = transaction->t_journal;
1279        err = 0;
1280
1281        JBUFFER_TRACE(jh, "entry");
1282        /*
1283         * The buffer may already belong to this transaction due to pre-zeroing
1284         * in the filesystem's new_block code.  It may also be on the previous,
1285         * committing transaction's lists, but it HAS to be in Forget state in
1286         * that case: the transaction must have deleted the buffer for it to be
1287         * reused here.
1288         */
1289        spin_lock(&jh->b_state_lock);
1290        J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1291                jh->b_transaction == NULL ||
1292                (jh->b_transaction == journal->j_committing_transaction &&
1293                          jh->b_jlist == BJ_Forget)));
1294
1295        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1296        J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1297
1298        if (jh->b_transaction == NULL) {
1299                /*
1300                 * Previous jbd2_journal_forget() could have left the buffer
1301                 * with jbddirty bit set because it was being committed. When
1302                 * the commit finished, we've filed the buffer for
1303                 * checkpointing and marked it dirty. Now we are reallocating
1304                 * the buffer so the transaction freeing it must have
1305                 * committed and so it's safe to clear the dirty bit.
1306                 */
1307                clear_buffer_dirty(jh2bh(jh));
1308                /* first access by this transaction */
1309                jh->b_modified = 0;
1310
1311                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1312                spin_lock(&journal->j_list_lock);
1313                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1314                spin_unlock(&journal->j_list_lock);
1315        } else if (jh->b_transaction == journal->j_committing_transaction) {
1316                /* first access by this transaction */
1317                jh->b_modified = 0;
1318
1319                JBUFFER_TRACE(jh, "set next transaction");
1320                spin_lock(&journal->j_list_lock);
1321                jh->b_next_transaction = transaction;
1322                spin_unlock(&journal->j_list_lock);
1323        }
1324        spin_unlock(&jh->b_state_lock);
1325
1326        /*
1327         * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1328         * blocks which contain freed but then revoked metadata.  We need
1329         * to cancel the revoke in case we end up freeing it yet again
1330         * and the reallocating as data - this would cause a second revoke,
1331         * which hits an assertion error.
1332         */
1333        JBUFFER_TRACE(jh, "cancelling revoke");
1334        jbd2_journal_cancel_revoke(handle, jh);
1335out:
1336        jbd2_journal_put_journal_head(jh);
1337        return err;
1338}
1339
1340/**
1341 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1342 *     non-rewindable consequences
1343 * @handle: transaction
1344 * @bh: buffer to undo
1345 *
1346 * Sometimes there is a need to distinguish between metadata which has
1347 * been committed to disk and that which has not.  The ext3fs code uses
1348 * this for freeing and allocating space, we have to make sure that we
1349 * do not reuse freed space until the deallocation has been committed,
1350 * since if we overwrote that space we would make the delete
1351 * un-rewindable in case of a crash.
1352 *
1353 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1354 * buffer for parts of non-rewindable operations such as delete
1355 * operations on the bitmaps.  The journaling code must keep a copy of
1356 * the buffer's contents prior to the undo_access call until such time
1357 * as we know that the buffer has definitely been committed to disk.
1358 *
1359 * We never need to know which transaction the committed data is part
1360 * of, buffers touched here are guaranteed to be dirtied later and so
1361 * will be committed to a new transaction in due course, at which point
1362 * we can discard the old committed data pointer.
1363 *
1364 * Returns error number or 0 on success.
1365 */
1366int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1367{
1368        int err;
1369        struct journal_head *jh;
1370        char *committed_data = NULL;
1371
1372        if (is_handle_aborted(handle))
1373                return -EROFS;
1374
1375        if (jbd2_write_access_granted(handle, bh, true))
1376                return 0;
1377
1378        jh = jbd2_journal_add_journal_head(bh);
1379        JBUFFER_TRACE(jh, "entry");
1380
1381        /*
1382         * Do this first --- it can drop the journal lock, so we want to
1383         * make sure that obtaining the committed_data is done
1384         * atomically wrt. completion of any outstanding commits.
1385         */
1386        err = do_get_write_access(handle, jh, 1);
1387        if (err)
1388                goto out;
1389
1390repeat:
1391        if (!jh->b_committed_data)
1392                committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1393                                            GFP_NOFS|__GFP_NOFAIL);
1394
1395        spin_lock(&jh->b_state_lock);
1396        if (!jh->b_committed_data) {
1397                /* Copy out the current buffer contents into the
1398                 * preserved, committed copy. */
1399                JBUFFER_TRACE(jh, "generate b_committed data");
1400                if (!committed_data) {
1401                        spin_unlock(&jh->b_state_lock);
1402                        goto repeat;
1403                }
1404
1405                jh->b_committed_data = committed_data;
1406                committed_data = NULL;
1407                memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1408        }
1409        spin_unlock(&jh->b_state_lock);
1410out:
1411        jbd2_journal_put_journal_head(jh);
1412        if (unlikely(committed_data))
1413                jbd2_free(committed_data, bh->b_size);
1414        return err;
1415}
1416
1417/**
1418 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1419 * @bh: buffer to trigger on
1420 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1421 *
1422 * Set any triggers on this journal_head.  This is always safe, because
1423 * triggers for a committing buffer will be saved off, and triggers for
1424 * a running transaction will match the buffer in that transaction.
1425 *
1426 * Call with NULL to clear the triggers.
1427 */
1428void jbd2_journal_set_triggers(struct buffer_head *bh,
1429                               struct jbd2_buffer_trigger_type *type)
1430{
1431        struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1432
1433        if (WARN_ON_ONCE(!jh))
1434                return;
1435        jh->b_triggers = type;
1436        jbd2_journal_put_journal_head(jh);
1437}
1438
1439void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1440                                struct jbd2_buffer_trigger_type *triggers)
1441{
1442        struct buffer_head *bh = jh2bh(jh);
1443
1444        if (!triggers || !triggers->t_frozen)
1445                return;
1446
1447        triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1448}
1449
1450void jbd2_buffer_abort_trigger(struct journal_head *jh,
1451                               struct jbd2_buffer_trigger_type *triggers)
1452{
1453        if (!triggers || !triggers->t_abort)
1454                return;
1455
1456        triggers->t_abort(triggers, jh2bh(jh));
1457}
1458
1459/**
1460 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1461 * @handle: transaction to add buffer to.
1462 * @bh: buffer to mark
1463 *
1464 * mark dirty metadata which needs to be journaled as part of the current
1465 * transaction.
1466 *
1467 * The buffer must have previously had jbd2_journal_get_write_access()
1468 * called so that it has a valid journal_head attached to the buffer
1469 * head.
1470 *
1471 * The buffer is placed on the transaction's metadata list and is marked
1472 * as belonging to the transaction.
1473 *
1474 * Returns error number or 0 on success.
1475 *
1476 * Special care needs to be taken if the buffer already belongs to the
1477 * current committing transaction (in which case we should have frozen
1478 * data present for that commit).  In that case, we don't relink the
1479 * buffer: that only gets done when the old transaction finally
1480 * completes its commit.
1481 */
1482int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1483{
1484        transaction_t *transaction = handle->h_transaction;
1485        journal_t *journal;
1486        struct journal_head *jh;
1487        int ret = 0;
1488
1489        if (is_handle_aborted(handle))
1490                return -EROFS;
1491        if (!buffer_jbd(bh))
1492                return -EUCLEAN;
1493
1494        /*
1495         * We don't grab jh reference here since the buffer must be part
1496         * of the running transaction.
1497         */
1498        jh = bh2jh(bh);
1499        jbd_debug(5, "journal_head %p\n", jh);
1500        JBUFFER_TRACE(jh, "entry");
1501
1502        /*
1503         * This and the following assertions are unreliable since we may see jh
1504         * in inconsistent state unless we grab bh_state lock. But this is
1505         * crucial to catch bugs so let's do a reliable check until the
1506         * lockless handling is fully proven.
1507         */
1508        if (data_race(jh->b_transaction != transaction &&
1509            jh->b_next_transaction != transaction)) {
1510                spin_lock(&jh->b_state_lock);
1511                J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1512                                jh->b_next_transaction == transaction);
1513                spin_unlock(&jh->b_state_lock);
1514        }
1515        if (jh->b_modified == 1) {
1516                /* If it's in our transaction it must be in BJ_Metadata list. */
1517                if (data_race(jh->b_transaction == transaction &&
1518                    jh->b_jlist != BJ_Metadata)) {
1519                        spin_lock(&jh->b_state_lock);
1520                        if (jh->b_transaction == transaction &&
1521                            jh->b_jlist != BJ_Metadata)
1522                                pr_err("JBD2: assertion failure: h_type=%u "
1523                                       "h_line_no=%u block_no=%llu jlist=%u\n",
1524                                       handle->h_type, handle->h_line_no,
1525                                       (unsigned long long) bh->b_blocknr,
1526                                       jh->b_jlist);
1527                        J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1528                                        jh->b_jlist == BJ_Metadata);
1529                        spin_unlock(&jh->b_state_lock);
1530                }
1531                goto out;
1532        }
1533
1534        journal = transaction->t_journal;
1535        spin_lock(&jh->b_state_lock);
1536
1537        if (jh->b_modified == 0) {
1538                /*
1539                 * This buffer's got modified and becoming part
1540                 * of the transaction. This needs to be done
1541                 * once a transaction -bzzz
1542                 */
1543                if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1544                        ret = -ENOSPC;
1545                        goto out_unlock_bh;
1546                }
1547                jh->b_modified = 1;
1548                handle->h_total_credits--;
1549        }
1550
1551        /*
1552         * fastpath, to avoid expensive locking.  If this buffer is already
1553         * on the running transaction's metadata list there is nothing to do.
1554         * Nobody can take it off again because there is a handle open.
1555         * I _think_ we're OK here with SMP barriers - a mistaken decision will
1556         * result in this test being false, so we go in and take the locks.
1557         */
1558        if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1559                JBUFFER_TRACE(jh, "fastpath");
1560                if (unlikely(jh->b_transaction !=
1561                             journal->j_running_transaction)) {
1562                        printk(KERN_ERR "JBD2: %s: "
1563                               "jh->b_transaction (%llu, %p, %u) != "
1564                               "journal->j_running_transaction (%p, %u)\n",
1565                               journal->j_devname,
1566                               (unsigned long long) bh->b_blocknr,
1567                               jh->b_transaction,
1568                               jh->b_transaction ? jh->b_transaction->t_tid : 0,
1569                               journal->j_running_transaction,
1570                               journal->j_running_transaction ?
1571                               journal->j_running_transaction->t_tid : 0);
1572                        ret = -EINVAL;
1573                }
1574                goto out_unlock_bh;
1575        }
1576
1577        set_buffer_jbddirty(bh);
1578
1579        /*
1580         * Metadata already on the current transaction list doesn't
1581         * need to be filed.  Metadata on another transaction's list must
1582         * be committing, and will be refiled once the commit completes:
1583         * leave it alone for now.
1584         */
1585        if (jh->b_transaction != transaction) {
1586                JBUFFER_TRACE(jh, "already on other transaction");
1587                if (unlikely(((jh->b_transaction !=
1588                               journal->j_committing_transaction)) ||
1589                             (jh->b_next_transaction != transaction))) {
1590                        printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1591                               "bad jh for block %llu: "
1592                               "transaction (%p, %u), "
1593                               "jh->b_transaction (%p, %u), "
1594                               "jh->b_next_transaction (%p, %u), jlist %u\n",
1595                               journal->j_devname,
1596                               (unsigned long long) bh->b_blocknr,
1597                               transaction, transaction->t_tid,
1598                               jh->b_transaction,
1599                               jh->b_transaction ?
1600                               jh->b_transaction->t_tid : 0,
1601                               jh->b_next_transaction,
1602                               jh->b_next_transaction ?
1603                               jh->b_next_transaction->t_tid : 0,
1604                               jh->b_jlist);
1605                        WARN_ON(1);
1606                        ret = -EINVAL;
1607                }
1608                /* And this case is illegal: we can't reuse another
1609                 * transaction's data buffer, ever. */
1610                goto out_unlock_bh;
1611        }
1612
1613        /* That test should have eliminated the following case: */
1614        J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1615
1616        JBUFFER_TRACE(jh, "file as BJ_Metadata");
1617        spin_lock(&journal->j_list_lock);
1618        __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1619        spin_unlock(&journal->j_list_lock);
1620out_unlock_bh:
1621        spin_unlock(&jh->b_state_lock);
1622out:
1623        JBUFFER_TRACE(jh, "exit");
1624        return ret;
1625}
1626
1627/**
1628 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1629 * @handle: transaction handle
1630 * @bh:     bh to 'forget'
1631 *
1632 * We can only do the bforget if there are no commits pending against the
1633 * buffer.  If the buffer is dirty in the current running transaction we
1634 * can safely unlink it.
1635 *
1636 * bh may not be a journalled buffer at all - it may be a non-JBD
1637 * buffer which came off the hashtable.  Check for this.
1638 *
1639 * Decrements bh->b_count by one.
1640 *
1641 * Allow this call even if the handle has aborted --- it may be part of
1642 * the caller's cleanup after an abort.
1643 */
1644int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1645{
1646        transaction_t *transaction = handle->h_transaction;
1647        journal_t *journal;
1648        struct journal_head *jh;
1649        int drop_reserve = 0;
1650        int err = 0;
1651        int was_modified = 0;
1652
1653        if (is_handle_aborted(handle))
1654                return -EROFS;
1655        journal = transaction->t_journal;
1656
1657        BUFFER_TRACE(bh, "entry");
1658
1659        jh = jbd2_journal_grab_journal_head(bh);
1660        if (!jh) {
1661                __bforget(bh);
1662                return 0;
1663        }
1664
1665        spin_lock(&jh->b_state_lock);
1666
1667        /* Critical error: attempting to delete a bitmap buffer, maybe?
1668         * Don't do any jbd operations, and return an error. */
1669        if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1670                         "inconsistent data on disk")) {
1671                err = -EIO;
1672                goto drop;
1673        }
1674
1675        /* keep track of whether or not this transaction modified us */
1676        was_modified = jh->b_modified;
1677
1678        /*
1679         * The buffer's going from the transaction, we must drop
1680         * all references -bzzz
1681         */
1682        jh->b_modified = 0;
1683
1684        if (jh->b_transaction == transaction) {
1685                J_ASSERT_JH(jh, !jh->b_frozen_data);
1686
1687                /* If we are forgetting a buffer which is already part
1688                 * of this transaction, then we can just drop it from
1689                 * the transaction immediately. */
1690                clear_buffer_dirty(bh);
1691                clear_buffer_jbddirty(bh);
1692
1693                JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1694
1695                /*
1696                 * we only want to drop a reference if this transaction
1697                 * modified the buffer
1698                 */
1699                if (was_modified)
1700                        drop_reserve = 1;
1701
1702                /*
1703                 * We are no longer going to journal this buffer.
1704                 * However, the commit of this transaction is still
1705                 * important to the buffer: the delete that we are now
1706                 * processing might obsolete an old log entry, so by
1707                 * committing, we can satisfy the buffer's checkpoint.
1708                 *
1709                 * So, if we have a checkpoint on the buffer, we should
1710                 * now refile the buffer on our BJ_Forget list so that
1711                 * we know to remove the checkpoint after we commit.
1712                 */
1713
1714                spin_lock(&journal->j_list_lock);
1715                if (jh->b_cp_transaction) {
1716                        __jbd2_journal_temp_unlink_buffer(jh);
1717                        __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1718                } else {
1719                        __jbd2_journal_unfile_buffer(jh);
1720                        jbd2_journal_put_journal_head(jh);
1721                }
1722                spin_unlock(&journal->j_list_lock);
1723        } else if (jh->b_transaction) {
1724                J_ASSERT_JH(jh, (jh->b_transaction ==
1725                                 journal->j_committing_transaction));
1726                /* However, if the buffer is still owned by a prior
1727                 * (committing) transaction, we can't drop it yet... */
1728                JBUFFER_TRACE(jh, "belongs to older transaction");
1729                /* ... but we CAN drop it from the new transaction through
1730                 * marking the buffer as freed and set j_next_transaction to
1731                 * the new transaction, so that not only the commit code
1732                 * knows it should clear dirty bits when it is done with the
1733                 * buffer, but also the buffer can be checkpointed only
1734                 * after the new transaction commits. */
1735
1736                set_buffer_freed(bh);
1737
1738                if (!jh->b_next_transaction) {
1739                        spin_lock(&journal->j_list_lock);
1740                        jh->b_next_transaction = transaction;
1741                        spin_unlock(&journal->j_list_lock);
1742                } else {
1743                        J_ASSERT(jh->b_next_transaction == transaction);
1744
1745                        /*
1746                         * only drop a reference if this transaction modified
1747                         * the buffer
1748                         */
1749                        if (was_modified)
1750                                drop_reserve = 1;
1751                }
1752        } else {
1753                /*
1754                 * Finally, if the buffer is not belongs to any
1755                 * transaction, we can just drop it now if it has no
1756                 * checkpoint.
1757                 */
1758                spin_lock(&journal->j_list_lock);
1759                if (!jh->b_cp_transaction) {
1760                        JBUFFER_TRACE(jh, "belongs to none transaction");
1761                        spin_unlock(&journal->j_list_lock);
1762                        goto drop;
1763                }
1764
1765                /*
1766                 * Otherwise, if the buffer has been written to disk,
1767                 * it is safe to remove the checkpoint and drop it.
1768                 */
1769                if (!buffer_dirty(bh)) {
1770                        __jbd2_journal_remove_checkpoint(jh);
1771                        spin_unlock(&journal->j_list_lock);
1772                        goto drop;
1773                }
1774
1775                /*
1776                 * The buffer is still not written to disk, we should
1777                 * attach this buffer to current transaction so that the
1778                 * buffer can be checkpointed only after the current
1779                 * transaction commits.
1780                 */
1781                clear_buffer_dirty(bh);
1782                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1783                spin_unlock(&journal->j_list_lock);
1784        }
1785drop:
1786        __brelse(bh);
1787        spin_unlock(&jh->b_state_lock);
1788        jbd2_journal_put_journal_head(jh);
1789        if (drop_reserve) {
1790                /* no need to reserve log space for this block -bzzz */
1791                handle->h_total_credits++;
1792        }
1793        return err;
1794}
1795
1796/**
1797 * jbd2_journal_stop() - complete a transaction
1798 * @handle: transaction to complete.
1799 *
1800 * All done for a particular handle.
1801 *
1802 * There is not much action needed here.  We just return any remaining
1803 * buffer credits to the transaction and remove the handle.  The only
1804 * complication is that we need to start a commit operation if the
1805 * filesystem is marked for synchronous update.
1806 *
1807 * jbd2_journal_stop itself will not usually return an error, but it may
1808 * do so in unusual circumstances.  In particular, expect it to
1809 * return -EIO if a jbd2_journal_abort has been executed since the
1810 * transaction began.
1811 */
1812int jbd2_journal_stop(handle_t *handle)
1813{
1814        transaction_t *transaction = handle->h_transaction;
1815        journal_t *journal;
1816        int err = 0, wait_for_commit = 0;
1817        tid_t tid;
1818        pid_t pid;
1819
1820        if (--handle->h_ref > 0) {
1821                jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1822                                                 handle->h_ref);
1823                if (is_handle_aborted(handle))
1824                        return -EIO;
1825                return 0;
1826        }
1827        if (!transaction) {
1828                /*
1829                 * Handle is already detached from the transaction so there is
1830                 * nothing to do other than free the handle.
1831                 */
1832                memalloc_nofs_restore(handle->saved_alloc_context);
1833                goto free_and_exit;
1834        }
1835        journal = transaction->t_journal;
1836        tid = transaction->t_tid;
1837
1838        if (is_handle_aborted(handle))
1839                err = -EIO;
1840
1841        jbd_debug(4, "Handle %p going down\n", handle);
1842        trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1843                                tid, handle->h_type, handle->h_line_no,
1844                                jiffies - handle->h_start_jiffies,
1845                                handle->h_sync, handle->h_requested_credits,
1846                                (handle->h_requested_credits -
1847                                 handle->h_total_credits));
1848
1849        /*
1850         * Implement synchronous transaction batching.  If the handle
1851         * was synchronous, don't force a commit immediately.  Let's
1852         * yield and let another thread piggyback onto this
1853         * transaction.  Keep doing that while new threads continue to
1854         * arrive.  It doesn't cost much - we're about to run a commit
1855         * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1856         * operations by 30x or more...
1857         *
1858         * We try and optimize the sleep time against what the
1859         * underlying disk can do, instead of having a static sleep
1860         * time.  This is useful for the case where our storage is so
1861         * fast that it is more optimal to go ahead and force a flush
1862         * and wait for the transaction to be committed than it is to
1863         * wait for an arbitrary amount of time for new writers to
1864         * join the transaction.  We achieve this by measuring how
1865         * long it takes to commit a transaction, and compare it with
1866         * how long this transaction has been running, and if run time
1867         * < commit time then we sleep for the delta and commit.  This
1868         * greatly helps super fast disks that would see slowdowns as
1869         * more threads started doing fsyncs.
1870         *
1871         * But don't do this if this process was the most recent one
1872         * to perform a synchronous write.  We do this to detect the
1873         * case where a single process is doing a stream of sync
1874         * writes.  No point in waiting for joiners in that case.
1875         *
1876         * Setting max_batch_time to 0 disables this completely.
1877         */
1878        pid = current->pid;
1879        if (handle->h_sync && journal->j_last_sync_writer != pid &&
1880            journal->j_max_batch_time) {
1881                u64 commit_time, trans_time;
1882
1883                journal->j_last_sync_writer = pid;
1884
1885                read_lock(&journal->j_state_lock);
1886                commit_time = journal->j_average_commit_time;
1887                read_unlock(&journal->j_state_lock);
1888
1889                trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1890                                                   transaction->t_start_time));
1891
1892                commit_time = max_t(u64, commit_time,
1893                                    1000*journal->j_min_batch_time);
1894                commit_time = min_t(u64, commit_time,
1895                                    1000*journal->j_max_batch_time);
1896
1897                if (trans_time < commit_time) {
1898                        ktime_t expires = ktime_add_ns(ktime_get(),
1899                                                       commit_time);
1900                        set_current_state(TASK_UNINTERRUPTIBLE);
1901                        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1902                }
1903        }
1904
1905        if (handle->h_sync)
1906                transaction->t_synchronous_commit = 1;
1907
1908        /*
1909         * If the handle is marked SYNC, we need to set another commit
1910         * going!  We also want to force a commit if the transaction is too
1911         * old now.
1912         */
1913        if (handle->h_sync ||
1914            time_after_eq(jiffies, transaction->t_expires)) {
1915                /* Do this even for aborted journals: an abort still
1916                 * completes the commit thread, it just doesn't write
1917                 * anything to disk. */
1918
1919                jbd_debug(2, "transaction too old, requesting commit for "
1920                                        "handle %p\n", handle);
1921                /* This is non-blocking */
1922                jbd2_log_start_commit(journal, tid);
1923
1924                /*
1925                 * Special case: JBD2_SYNC synchronous updates require us
1926                 * to wait for the commit to complete.
1927                 */
1928                if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1929                        wait_for_commit = 1;
1930        }
1931
1932        /*
1933         * Once stop_this_handle() drops t_updates, the transaction could start
1934         * committing on us and eventually disappear.  So we must not
1935         * dereference transaction pointer again after calling
1936         * stop_this_handle().
1937         */
1938        stop_this_handle(handle);
1939
1940        if (wait_for_commit)
1941                err = jbd2_log_wait_commit(journal, tid);
1942
1943free_and_exit:
1944        if (handle->h_rsv_handle)
1945                jbd2_free_handle(handle->h_rsv_handle);
1946        jbd2_free_handle(handle);
1947        return err;
1948}
1949
1950/*
1951 *
1952 * List management code snippets: various functions for manipulating the
1953 * transaction buffer lists.
1954 *
1955 */
1956
1957/*
1958 * Append a buffer to a transaction list, given the transaction's list head
1959 * pointer.
1960 *
1961 * j_list_lock is held.
1962 *
1963 * jh->b_state_lock is held.
1964 */
1965
1966static inline void
1967__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1968{
1969        if (!*list) {
1970                jh->b_tnext = jh->b_tprev = jh;
1971                *list = jh;
1972        } else {
1973                /* Insert at the tail of the list to preserve order */
1974                struct journal_head *first = *list, *last = first->b_tprev;
1975                jh->b_tprev = last;
1976                jh->b_tnext = first;
1977                last->b_tnext = first->b_tprev = jh;
1978        }
1979}
1980
1981/*
1982 * Remove a buffer from a transaction list, given the transaction's list
1983 * head pointer.
1984 *
1985 * Called with j_list_lock held, and the journal may not be locked.
1986 *
1987 * jh->b_state_lock is held.
1988 */
1989
1990static inline void
1991__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1992{
1993        if (*list == jh) {
1994                *list = jh->b_tnext;
1995                if (*list == jh)
1996                        *list = NULL;
1997        }
1998        jh->b_tprev->b_tnext = jh->b_tnext;
1999        jh->b_tnext->b_tprev = jh->b_tprev;
2000}
2001
2002/*
2003 * Remove a buffer from the appropriate transaction list.
2004 *
2005 * Note that this function can *change* the value of
2006 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2007 * t_reserved_list.  If the caller is holding onto a copy of one of these
2008 * pointers, it could go bad.  Generally the caller needs to re-read the
2009 * pointer from the transaction_t.
2010 *
2011 * Called under j_list_lock.
2012 */
2013static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2014{
2015        struct journal_head **list = NULL;
2016        transaction_t *transaction;
2017        struct buffer_head *bh = jh2bh(jh);
2018
2019        lockdep_assert_held(&jh->b_state_lock);
2020        transaction = jh->b_transaction;
2021        if (transaction)
2022                assert_spin_locked(&transaction->t_journal->j_list_lock);
2023
2024        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2025        if (jh->b_jlist != BJ_None)
2026                J_ASSERT_JH(jh, transaction != NULL);
2027
2028        switch (jh->b_jlist) {
2029        case BJ_None:
2030                return;
2031        case BJ_Metadata:
2032                transaction->t_nr_buffers--;
2033                J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2034                list = &transaction->t_buffers;
2035                break;
2036        case BJ_Forget:
2037                list = &transaction->t_forget;
2038                break;
2039        case BJ_Shadow:
2040                list = &transaction->t_shadow_list;
2041                break;
2042        case BJ_Reserved:
2043                list = &transaction->t_reserved_list;
2044                break;
2045        }
2046
2047        __blist_del_buffer(list, jh);
2048        jh->b_jlist = BJ_None;
2049        if (transaction && is_journal_aborted(transaction->t_journal))
2050                clear_buffer_jbddirty(bh);
2051        else if (test_clear_buffer_jbddirty(bh))
2052                mark_buffer_dirty(bh);  /* Expose it to the VM */
2053}
2054
2055/*
2056 * Remove buffer from all transactions. The caller is responsible for dropping
2057 * the jh reference that belonged to the transaction.
2058 *
2059 * Called with bh_state lock and j_list_lock
2060 */
2061static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2062{
2063        J_ASSERT_JH(jh, jh->b_transaction != NULL);
2064        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2065
2066        __jbd2_journal_temp_unlink_buffer(jh);
2067        jh->b_transaction = NULL;
2068}
2069
2070void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2071{
2072        struct buffer_head *bh = jh2bh(jh);
2073
2074        /* Get reference so that buffer cannot be freed before we unlock it */
2075        get_bh(bh);
2076        spin_lock(&jh->b_state_lock);
2077        spin_lock(&journal->j_list_lock);
2078        __jbd2_journal_unfile_buffer(jh);
2079        spin_unlock(&journal->j_list_lock);
2080        spin_unlock(&jh->b_state_lock);
2081        jbd2_journal_put_journal_head(jh);
2082        __brelse(bh);
2083}
2084
2085/*
2086 * Called from jbd2_journal_try_to_free_buffers().
2087 *
2088 * Called under jh->b_state_lock
2089 */
2090static void
2091__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2092{
2093        struct journal_head *jh;
2094
2095        jh = bh2jh(bh);
2096
2097        if (buffer_locked(bh) || buffer_dirty(bh))
2098                goto out;
2099
2100        if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2101                goto out;
2102
2103        spin_lock(&journal->j_list_lock);
2104        if (jh->b_cp_transaction != NULL) {
2105                /* written-back checkpointed metadata buffer */
2106                JBUFFER_TRACE(jh, "remove from checkpoint list");
2107                __jbd2_journal_remove_checkpoint(jh);
2108        }
2109        spin_unlock(&journal->j_list_lock);
2110out:
2111        return;
2112}
2113
2114/**
2115 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2116 * @journal: journal for operation
2117 * @page: to try and free
2118 *
2119 * For all the buffers on this page,
2120 * if they are fully written out ordered data, move them onto BUF_CLEAN
2121 * so try_to_free_buffers() can reap them.
2122 *
2123 * This function returns non-zero if we wish try_to_free_buffers()
2124 * to be called. We do this if the page is releasable by try_to_free_buffers().
2125 * We also do it if the page has locked or dirty buffers and the caller wants
2126 * us to perform sync or async writeout.
2127 *
2128 * This complicates JBD locking somewhat.  We aren't protected by the
2129 * BKL here.  We wish to remove the buffer from its committing or
2130 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2131 *
2132 * This may *change* the value of transaction_t->t_datalist, so anyone
2133 * who looks at t_datalist needs to lock against this function.
2134 *
2135 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2136 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2137 * will come out of the lock with the buffer dirty, which makes it
2138 * ineligible for release here.
2139 *
2140 * Who else is affected by this?  hmm...  Really the only contender
2141 * is do_get_write_access() - it could be looking at the buffer while
2142 * journal_try_to_free_buffer() is changing its state.  But that
2143 * cannot happen because we never reallocate freed data as metadata
2144 * while the data is part of a transaction.  Yes?
2145 *
2146 * Return 0 on failure, 1 on success
2147 */
2148int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2149{
2150        struct buffer_head *head;
2151        struct buffer_head *bh;
2152        int ret = 0;
2153
2154        J_ASSERT(PageLocked(page));
2155
2156        head = page_buffers(page);
2157        bh = head;
2158        do {
2159                struct journal_head *jh;
2160
2161                /*
2162                 * We take our own ref against the journal_head here to avoid
2163                 * having to add tons of locking around each instance of
2164                 * jbd2_journal_put_journal_head().
2165                 */
2166                jh = jbd2_journal_grab_journal_head(bh);
2167                if (!jh)
2168                        continue;
2169
2170                spin_lock(&jh->b_state_lock);
2171                __journal_try_to_free_buffer(journal, bh);
2172                spin_unlock(&jh->b_state_lock);
2173                jbd2_journal_put_journal_head(jh);
2174                if (buffer_jbd(bh))
2175                        goto busy;
2176        } while ((bh = bh->b_this_page) != head);
2177
2178        ret = try_to_free_buffers(page);
2179busy:
2180        return ret;
2181}
2182
2183/*
2184 * This buffer is no longer needed.  If it is on an older transaction's
2185 * checkpoint list we need to record it on this transaction's forget list
2186 * to pin this buffer (and hence its checkpointing transaction) down until
2187 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2188 * release it.
2189 * Returns non-zero if JBD no longer has an interest in the buffer.
2190 *
2191 * Called under j_list_lock.
2192 *
2193 * Called under jh->b_state_lock.
2194 */
2195static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2196{
2197        int may_free = 1;
2198        struct buffer_head *bh = jh2bh(jh);
2199
2200        if (jh->b_cp_transaction) {
2201                JBUFFER_TRACE(jh, "on running+cp transaction");
2202                __jbd2_journal_temp_unlink_buffer(jh);
2203                /*
2204                 * We don't want to write the buffer anymore, clear the
2205                 * bit so that we don't confuse checks in
2206                 * __journal_file_buffer
2207                 */
2208                clear_buffer_dirty(bh);
2209                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2210                may_free = 0;
2211        } else {
2212                JBUFFER_TRACE(jh, "on running transaction");
2213                __jbd2_journal_unfile_buffer(jh);
2214                jbd2_journal_put_journal_head(jh);
2215        }
2216        return may_free;
2217}
2218
2219/*
2220 * jbd2_journal_invalidate_folio
2221 *
2222 * This code is tricky.  It has a number of cases to deal with.
2223 *
2224 * There are two invariants which this code relies on:
2225 *
2226 * i_size must be updated on disk before we start calling invalidate_folio
2227 * on the data.
2228 *
2229 *  This is done in ext3 by defining an ext3_setattr method which
2230 *  updates i_size before truncate gets going.  By maintaining this
2231 *  invariant, we can be sure that it is safe to throw away any buffers
2232 *  attached to the current transaction: once the transaction commits,
2233 *  we know that the data will not be needed.
2234 *
2235 *  Note however that we can *not* throw away data belonging to the
2236 *  previous, committing transaction!
2237 *
2238 * Any disk blocks which *are* part of the previous, committing
2239 * transaction (and which therefore cannot be discarded immediately) are
2240 * not going to be reused in the new running transaction
2241 *
2242 *  The bitmap committed_data images guarantee this: any block which is
2243 *  allocated in one transaction and removed in the next will be marked
2244 *  as in-use in the committed_data bitmap, so cannot be reused until
2245 *  the next transaction to delete the block commits.  This means that
2246 *  leaving committing buffers dirty is quite safe: the disk blocks
2247 *  cannot be reallocated to a different file and so buffer aliasing is
2248 *  not possible.
2249 *
2250 *
2251 * The above applies mainly to ordered data mode.  In writeback mode we
2252 * don't make guarantees about the order in which data hits disk --- in
2253 * particular we don't guarantee that new dirty data is flushed before
2254 * transaction commit --- so it is always safe just to discard data
2255 * immediately in that mode.  --sct
2256 */
2257
2258/*
2259 * The journal_unmap_buffer helper function returns zero if the buffer
2260 * concerned remains pinned as an anonymous buffer belonging to an older
2261 * transaction.
2262 *
2263 * We're outside-transaction here.  Either or both of j_running_transaction
2264 * and j_committing_transaction may be NULL.
2265 */
2266static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2267                                int partial_page)
2268{
2269        transaction_t *transaction;
2270        struct journal_head *jh;
2271        int may_free = 1;
2272
2273        BUFFER_TRACE(bh, "entry");
2274
2275        /*
2276         * It is safe to proceed here without the j_list_lock because the
2277         * buffers cannot be stolen by try_to_free_buffers as long as we are
2278         * holding the page lock. --sct
2279         */
2280
2281        jh = jbd2_journal_grab_journal_head(bh);
2282        if (!jh)
2283                goto zap_buffer_unlocked;
2284
2285        /* OK, we have data buffer in journaled mode */
2286        write_lock(&journal->j_state_lock);
2287        spin_lock(&jh->b_state_lock);
2288        spin_lock(&journal->j_list_lock);
2289
2290        /*
2291         * We cannot remove the buffer from checkpoint lists until the
2292         * transaction adding inode to orphan list (let's call it T)
2293         * is committed.  Otherwise if the transaction changing the
2294         * buffer would be cleaned from the journal before T is
2295         * committed, a crash will cause that the correct contents of
2296         * the buffer will be lost.  On the other hand we have to
2297         * clear the buffer dirty bit at latest at the moment when the
2298         * transaction marking the buffer as freed in the filesystem
2299         * structures is committed because from that moment on the
2300         * block can be reallocated and used by a different page.
2301         * Since the block hasn't been freed yet but the inode has
2302         * already been added to orphan list, it is safe for us to add
2303         * the buffer to BJ_Forget list of the newest transaction.
2304         *
2305         * Also we have to clear buffer_mapped flag of a truncated buffer
2306         * because the buffer_head may be attached to the page straddling
2307         * i_size (can happen only when blocksize < pagesize) and thus the
2308         * buffer_head can be reused when the file is extended again. So we end
2309         * up keeping around invalidated buffers attached to transactions'
2310         * BJ_Forget list just to stop checkpointing code from cleaning up
2311         * the transaction this buffer was modified in.
2312         */
2313        transaction = jh->b_transaction;
2314        if (transaction == NULL) {
2315                /* First case: not on any transaction.  If it
2316                 * has no checkpoint link, then we can zap it:
2317                 * it's a writeback-mode buffer so we don't care
2318                 * if it hits disk safely. */
2319                if (!jh->b_cp_transaction) {
2320                        JBUFFER_TRACE(jh, "not on any transaction: zap");
2321                        goto zap_buffer;
2322                }
2323
2324                if (!buffer_dirty(bh)) {
2325                        /* bdflush has written it.  We can drop it now */
2326                        __jbd2_journal_remove_checkpoint(jh);
2327                        goto zap_buffer;
2328                }
2329
2330                /* OK, it must be in the journal but still not
2331                 * written fully to disk: it's metadata or
2332                 * journaled data... */
2333
2334                if (journal->j_running_transaction) {
2335                        /* ... and once the current transaction has
2336                         * committed, the buffer won't be needed any
2337                         * longer. */
2338                        JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2339                        may_free = __dispose_buffer(jh,
2340                                        journal->j_running_transaction);
2341                        goto zap_buffer;
2342                } else {
2343                        /* There is no currently-running transaction. So the
2344                         * orphan record which we wrote for this file must have
2345                         * passed into commit.  We must attach this buffer to
2346                         * the committing transaction, if it exists. */
2347                        if (journal->j_committing_transaction) {
2348                                JBUFFER_TRACE(jh, "give to committing trans");
2349                                may_free = __dispose_buffer(jh,
2350                                        journal->j_committing_transaction);
2351                                goto zap_buffer;
2352                        } else {
2353                                /* The orphan record's transaction has
2354                                 * committed.  We can cleanse this buffer */
2355                                clear_buffer_jbddirty(bh);
2356                                __jbd2_journal_remove_checkpoint(jh);
2357                                goto zap_buffer;
2358                        }
2359                }
2360        } else if (transaction == journal->j_committing_transaction) {
2361                JBUFFER_TRACE(jh, "on committing transaction");
2362                /*
2363                 * The buffer is committing, we simply cannot touch
2364                 * it. If the page is straddling i_size we have to wait
2365                 * for commit and try again.
2366                 */
2367                if (partial_page) {
2368                        spin_unlock(&journal->j_list_lock);
2369                        spin_unlock(&jh->b_state_lock);
2370                        write_unlock(&journal->j_state_lock);
2371                        jbd2_journal_put_journal_head(jh);
2372                        return -EBUSY;
2373                }
2374                /*
2375                 * OK, buffer won't be reachable after truncate. We just clear
2376                 * b_modified to not confuse transaction credit accounting, and
2377                 * set j_next_transaction to the running transaction (if there
2378                 * is one) and mark buffer as freed so that commit code knows
2379                 * it should clear dirty bits when it is done with the buffer.
2380                 */
2381                set_buffer_freed(bh);
2382                if (journal->j_running_transaction && buffer_jbddirty(bh))
2383                        jh->b_next_transaction = journal->j_running_transaction;
2384                jh->b_modified = 0;
2385                spin_unlock(&journal->j_list_lock);
2386                spin_unlock(&jh->b_state_lock);
2387                write_unlock(&journal->j_state_lock);
2388                jbd2_journal_put_journal_head(jh);
2389                return 0;
2390        } else {
2391                /* Good, the buffer belongs to the running transaction.
2392                 * We are writing our own transaction's data, not any
2393                 * previous one's, so it is safe to throw it away
2394                 * (remember that we expect the filesystem to have set
2395                 * i_size already for this truncate so recovery will not
2396                 * expose the disk blocks we are discarding here.) */
2397                J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2398                JBUFFER_TRACE(jh, "on running transaction");
2399                may_free = __dispose_buffer(jh, transaction);
2400        }
2401
2402zap_buffer:
2403        /*
2404         * This is tricky. Although the buffer is truncated, it may be reused
2405         * if blocksize < pagesize and it is attached to the page straddling
2406         * EOF. Since the buffer might have been added to BJ_Forget list of the
2407         * running transaction, journal_get_write_access() won't clear
2408         * b_modified and credit accounting gets confused. So clear b_modified
2409         * here.
2410         */
2411        jh->b_modified = 0;
2412        spin_unlock(&journal->j_list_lock);
2413        spin_unlock(&jh->b_state_lock);
2414        write_unlock(&journal->j_state_lock);
2415        jbd2_journal_put_journal_head(jh);
2416zap_buffer_unlocked:
2417        clear_buffer_dirty(bh);
2418        J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2419        clear_buffer_mapped(bh);
2420        clear_buffer_req(bh);
2421        clear_buffer_new(bh);
2422        clear_buffer_delay(bh);
2423        clear_buffer_unwritten(bh);
2424        bh->b_bdev = NULL;
2425        return may_free;
2426}
2427
2428/**
2429 * jbd2_journal_invalidate_folio()
2430 * @journal: journal to use for flush...
2431 * @folio:    folio to flush
2432 * @offset:  start of the range to invalidate
2433 * @length:  length of the range to invalidate
2434 *
2435 * Reap page buffers containing data after in the specified range in page.
2436 * Can return -EBUSY if buffers are part of the committing transaction and
2437 * the page is straddling i_size. Caller then has to wait for current commit
2438 * and try again.
2439 */
2440int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2441                                size_t offset, size_t length)
2442{
2443        struct buffer_head *head, *bh, *next;
2444        unsigned int stop = offset + length;
2445        unsigned int curr_off = 0;
2446        int partial_page = (offset || length < folio_size(folio));
2447        int may_free = 1;
2448        int ret = 0;
2449
2450        if (!folio_test_locked(folio))
2451                BUG();
2452        head = folio_buffers(folio);
2453        if (!head)
2454                return 0;
2455
2456        BUG_ON(stop > folio_size(folio) || stop < length);
2457
2458        /* We will potentially be playing with lists other than just the
2459         * data lists (especially for journaled data mode), so be
2460         * cautious in our locking. */
2461
2462        bh = head;
2463        do {
2464                unsigned int next_off = curr_off + bh->b_size;
2465                next = bh->b_this_page;
2466
2467                if (next_off > stop)
2468                        return 0;
2469
2470                if (offset <= curr_off) {
2471                        /* This block is wholly outside the truncation point */
2472                        lock_buffer(bh);
2473                        ret = journal_unmap_buffer(journal, bh, partial_page);
2474                        unlock_buffer(bh);
2475                        if (ret < 0)
2476                                return ret;
2477                        may_free &= ret;
2478                }
2479                curr_off = next_off;
2480                bh = next;
2481
2482        } while (bh != head);
2483
2484        if (!partial_page) {
2485                if (may_free && try_to_free_buffers(&folio->page))
2486                        J_ASSERT(!folio_buffers(folio));
2487        }
2488        return 0;
2489}
2490
2491/*
2492 * File a buffer on the given transaction list.
2493 */
2494void __jbd2_journal_file_buffer(struct journal_head *jh,
2495                        transaction_t *transaction, int jlist)
2496{
2497        struct journal_head **list = NULL;
2498        int was_dirty = 0;
2499        struct buffer_head *bh = jh2bh(jh);
2500
2501        lockdep_assert_held(&jh->b_state_lock);
2502        assert_spin_locked(&transaction->t_journal->j_list_lock);
2503
2504        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2505        J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2506                                jh->b_transaction == NULL);
2507
2508        if (jh->b_transaction && jh->b_jlist == jlist)
2509                return;
2510
2511        if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2512            jlist == BJ_Shadow || jlist == BJ_Forget) {
2513                /*
2514                 * For metadata buffers, we track dirty bit in buffer_jbddirty
2515                 * instead of buffer_dirty. We should not see a dirty bit set
2516                 * here because we clear it in do_get_write_access but e.g.
2517                 * tune2fs can modify the sb and set the dirty bit at any time
2518                 * so we try to gracefully handle that.
2519                 */
2520                if (buffer_dirty(bh))
2521                        warn_dirty_buffer(bh);
2522                if (test_clear_buffer_dirty(bh) ||
2523                    test_clear_buffer_jbddirty(bh))
2524                        was_dirty = 1;
2525        }
2526
2527        if (jh->b_transaction)
2528                __jbd2_journal_temp_unlink_buffer(jh);
2529        else
2530                jbd2_journal_grab_journal_head(bh);
2531        jh->b_transaction = transaction;
2532
2533        switch (jlist) {
2534        case BJ_None:
2535                J_ASSERT_JH(jh, !jh->b_committed_data);
2536                J_ASSERT_JH(jh, !jh->b_frozen_data);
2537                return;
2538        case BJ_Metadata:
2539                transaction->t_nr_buffers++;
2540                list = &transaction->t_buffers;
2541                break;
2542        case BJ_Forget:
2543                list = &transaction->t_forget;
2544                break;
2545        case BJ_Shadow:
2546                list = &transaction->t_shadow_list;
2547                break;
2548        case BJ_Reserved:
2549                list = &transaction->t_reserved_list;
2550                break;
2551        }
2552
2553        __blist_add_buffer(list, jh);
2554        jh->b_jlist = jlist;
2555
2556        if (was_dirty)
2557                set_buffer_jbddirty(bh);
2558}
2559
2560void jbd2_journal_file_buffer(struct journal_head *jh,
2561                                transaction_t *transaction, int jlist)
2562{
2563        spin_lock(&jh->b_state_lock);
2564        spin_lock(&transaction->t_journal->j_list_lock);
2565        __jbd2_journal_file_buffer(jh, transaction, jlist);
2566        spin_unlock(&transaction->t_journal->j_list_lock);
2567        spin_unlock(&jh->b_state_lock);
2568}
2569
2570/*
2571 * Remove a buffer from its current buffer list in preparation for
2572 * dropping it from its current transaction entirely.  If the buffer has
2573 * already started to be used by a subsequent transaction, refile the
2574 * buffer on that transaction's metadata list.
2575 *
2576 * Called under j_list_lock
2577 * Called under jh->b_state_lock
2578 *
2579 * When this function returns true, there's no next transaction to refile to
2580 * and the caller has to drop jh reference through
2581 * jbd2_journal_put_journal_head().
2582 */
2583bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2584{
2585        int was_dirty, jlist;
2586        struct buffer_head *bh = jh2bh(jh);
2587
2588        lockdep_assert_held(&jh->b_state_lock);
2589        if (jh->b_transaction)
2590                assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2591
2592        /* If the buffer is now unused, just drop it. */
2593        if (jh->b_next_transaction == NULL) {
2594                __jbd2_journal_unfile_buffer(jh);
2595                return true;
2596        }
2597
2598        /*
2599         * It has been modified by a later transaction: add it to the new
2600         * transaction's metadata list.
2601         */
2602
2603        was_dirty = test_clear_buffer_jbddirty(bh);
2604        __jbd2_journal_temp_unlink_buffer(jh);
2605
2606        /*
2607         * b_transaction must be set, otherwise the new b_transaction won't
2608         * be holding jh reference
2609         */
2610        J_ASSERT_JH(jh, jh->b_transaction != NULL);
2611
2612        /*
2613         * We set b_transaction here because b_next_transaction will inherit
2614         * our jh reference and thus __jbd2_journal_file_buffer() must not
2615         * take a new one.
2616         */
2617        WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2618        WRITE_ONCE(jh->b_next_transaction, NULL);
2619        if (buffer_freed(bh))
2620                jlist = BJ_Forget;
2621        else if (jh->b_modified)
2622                jlist = BJ_Metadata;
2623        else
2624                jlist = BJ_Reserved;
2625        __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2626        J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2627
2628        if (was_dirty)
2629                set_buffer_jbddirty(bh);
2630        return false;
2631}
2632
2633/*
2634 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2635 * bh reference so that we can safely unlock bh.
2636 *
2637 * The jh and bh may be freed by this call.
2638 */
2639void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2640{
2641        bool drop;
2642
2643        spin_lock(&jh->b_state_lock);
2644        spin_lock(&journal->j_list_lock);
2645        drop = __jbd2_journal_refile_buffer(jh);
2646        spin_unlock(&jh->b_state_lock);
2647        spin_unlock(&journal->j_list_lock);
2648        if (drop)
2649                jbd2_journal_put_journal_head(jh);
2650}
2651
2652/*
2653 * File inode in the inode list of the handle's transaction
2654 */
2655static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2656                unsigned long flags, loff_t start_byte, loff_t end_byte)
2657{
2658        transaction_t *transaction = handle->h_transaction;
2659        journal_t *journal;
2660
2661        if (is_handle_aborted(handle))
2662                return -EROFS;
2663        journal = transaction->t_journal;
2664
2665        jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2666                        transaction->t_tid);
2667
2668        spin_lock(&journal->j_list_lock);
2669        jinode->i_flags |= flags;
2670
2671        if (jinode->i_dirty_end) {
2672                jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2673                jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2674        } else {
2675                jinode->i_dirty_start = start_byte;
2676                jinode->i_dirty_end = end_byte;
2677        }
2678
2679        /* Is inode already attached where we need it? */
2680        if (jinode->i_transaction == transaction ||
2681            jinode->i_next_transaction == transaction)
2682                goto done;
2683
2684        /*
2685         * We only ever set this variable to 1 so the test is safe. Since
2686         * t_need_data_flush is likely to be set, we do the test to save some
2687         * cacheline bouncing
2688         */
2689        if (!transaction->t_need_data_flush)
2690                transaction->t_need_data_flush = 1;
2691        /* On some different transaction's list - should be
2692         * the committing one */
2693        if (jinode->i_transaction) {
2694                J_ASSERT(jinode->i_next_transaction == NULL);
2695                J_ASSERT(jinode->i_transaction ==
2696                                        journal->j_committing_transaction);
2697                jinode->i_next_transaction = transaction;
2698                goto done;
2699        }
2700        /* Not on any transaction list... */
2701        J_ASSERT(!jinode->i_next_transaction);
2702        jinode->i_transaction = transaction;
2703        list_add(&jinode->i_list, &transaction->t_inode_list);
2704done:
2705        spin_unlock(&journal->j_list_lock);
2706
2707        return 0;
2708}
2709
2710int jbd2_journal_inode_ranged_write(handle_t *handle,
2711                struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2712{
2713        return jbd2_journal_file_inode(handle, jinode,
2714                        JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2715                        start_byte + length - 1);
2716}
2717
2718int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2719                loff_t start_byte, loff_t length)
2720{
2721        return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2722                        start_byte, start_byte + length - 1);
2723}
2724
2725/*
2726 * File truncate and transaction commit interact with each other in a
2727 * non-trivial way.  If a transaction writing data block A is
2728 * committing, we cannot discard the data by truncate until we have
2729 * written them.  Otherwise if we crashed after the transaction with
2730 * write has committed but before the transaction with truncate has
2731 * committed, we could see stale data in block A.  This function is a
2732 * helper to solve this problem.  It starts writeout of the truncated
2733 * part in case it is in the committing transaction.
2734 *
2735 * Filesystem code must call this function when inode is journaled in
2736 * ordered mode before truncation happens and after the inode has been
2737 * placed on orphan list with the new inode size. The second condition
2738 * avoids the race that someone writes new data and we start
2739 * committing the transaction after this function has been called but
2740 * before a transaction for truncate is started (and furthermore it
2741 * allows us to optimize the case where the addition to orphan list
2742 * happens in the same transaction as write --- we don't have to write
2743 * any data in such case).
2744 */
2745int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2746                                        struct jbd2_inode *jinode,
2747                                        loff_t new_size)
2748{
2749        transaction_t *inode_trans, *commit_trans;
2750        int ret = 0;
2751
2752        /* This is a quick check to avoid locking if not necessary */
2753        if (!jinode->i_transaction)
2754                goto out;
2755        /* Locks are here just to force reading of recent values, it is
2756         * enough that the transaction was not committing before we started
2757         * a transaction adding the inode to orphan list */
2758        read_lock(&journal->j_state_lock);
2759        commit_trans = journal->j_committing_transaction;
2760        read_unlock(&journal->j_state_lock);
2761        spin_lock(&journal->j_list_lock);
2762        inode_trans = jinode->i_transaction;
2763        spin_unlock(&journal->j_list_lock);
2764        if (inode_trans == commit_trans) {
2765                ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2766                        new_size, LLONG_MAX);
2767                if (ret)
2768                        jbd2_journal_abort(journal, ret);
2769        }
2770out:
2771        return ret;
2772}
2773