linux/fs/ubifs/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements VFS file and inode operations for regular files, device
  13 * nodes and symlinks as well as address space operations.
  14 *
  15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  16 * the page is dirty and is used for optimization purposes - dirty pages are
  17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  18 * the budget for this page. The @PG_checked flag is set if full budgeting is
  19 * required for the page e.g., when it corresponds to a file hole or it is
  20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  21 * it is OK to fail in this function, and the budget is released in
  22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  23 * information about how the page was budgeted, to make it possible to release
  24 * the budget properly.
  25 *
  26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  27 * implement. However, this is not true for 'ubifs_writepage()', which may be
  28 * called with @i_mutex unlocked. For example, when flusher thread is doing
  29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  33 *
  34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
  37 * set as well. However, UBIFS disables readahead.
  38 */
  39
  40#include "ubifs.h"
  41#include <linux/mount.h>
  42#include <linux/slab.h>
  43#include <linux/migrate.h>
  44
  45static int read_block(struct inode *inode, void *addr, unsigned int block,
  46                      struct ubifs_data_node *dn)
  47{
  48        struct ubifs_info *c = inode->i_sb->s_fs_info;
  49        int err, len, out_len;
  50        union ubifs_key key;
  51        unsigned int dlen;
  52
  53        data_key_init(c, &key, inode->i_ino, block);
  54        err = ubifs_tnc_lookup(c, &key, dn);
  55        if (err) {
  56                if (err == -ENOENT)
  57                        /* Not found, so it must be a hole */
  58                        memset(addr, 0, UBIFS_BLOCK_SIZE);
  59                return err;
  60        }
  61
  62        ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
  63                     ubifs_inode(inode)->creat_sqnum);
  64        len = le32_to_cpu(dn->size);
  65        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  66                goto dump;
  67
  68        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  69
  70        if (IS_ENCRYPTED(inode)) {
  71                err = ubifs_decrypt(inode, dn, &dlen, block);
  72                if (err)
  73                        goto dump;
  74        }
  75
  76        out_len = UBIFS_BLOCK_SIZE;
  77        err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
  78                               le16_to_cpu(dn->compr_type));
  79        if (err || len != out_len)
  80                goto dump;
  81
  82        /*
  83         * Data length can be less than a full block, even for blocks that are
  84         * not the last in the file (e.g., as a result of making a hole and
  85         * appending data). Ensure that the remainder is zeroed out.
  86         */
  87        if (len < UBIFS_BLOCK_SIZE)
  88                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  89
  90        return 0;
  91
  92dump:
  93        ubifs_err(c, "bad data node (block %u, inode %lu)",
  94                  block, inode->i_ino);
  95        ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
  96        return -EINVAL;
  97}
  98
  99static int do_readpage(struct page *page)
 100{
 101        void *addr;
 102        int err = 0, i;
 103        unsigned int block, beyond;
 104        struct ubifs_data_node *dn;
 105        struct inode *inode = page->mapping->host;
 106        struct ubifs_info *c = inode->i_sb->s_fs_info;
 107        loff_t i_size = i_size_read(inode);
 108
 109        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 110                inode->i_ino, page->index, i_size, page->flags);
 111        ubifs_assert(c, !PageChecked(page));
 112        ubifs_assert(c, !PagePrivate(page));
 113
 114        addr = kmap(page);
 115
 116        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 117        beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 118        if (block >= beyond) {
 119                /* Reading beyond inode */
 120                SetPageChecked(page);
 121                memset(addr, 0, PAGE_SIZE);
 122                goto out;
 123        }
 124
 125        dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 126        if (!dn) {
 127                err = -ENOMEM;
 128                goto error;
 129        }
 130
 131        i = 0;
 132        while (1) {
 133                int ret;
 134
 135                if (block >= beyond) {
 136                        /* Reading beyond inode */
 137                        err = -ENOENT;
 138                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 139                } else {
 140                        ret = read_block(inode, addr, block, dn);
 141                        if (ret) {
 142                                err = ret;
 143                                if (err != -ENOENT)
 144                                        break;
 145                        } else if (block + 1 == beyond) {
 146                                int dlen = le32_to_cpu(dn->size);
 147                                int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 148
 149                                if (ilen && ilen < dlen)
 150                                        memset(addr + ilen, 0, dlen - ilen);
 151                        }
 152                }
 153                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 154                        break;
 155                block += 1;
 156                addr += UBIFS_BLOCK_SIZE;
 157        }
 158        if (err) {
 159                struct ubifs_info *c = inode->i_sb->s_fs_info;
 160                if (err == -ENOENT) {
 161                        /* Not found, so it must be a hole */
 162                        SetPageChecked(page);
 163                        dbg_gen("hole");
 164                        goto out_free;
 165                }
 166                ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
 167                          page->index, inode->i_ino, err);
 168                goto error;
 169        }
 170
 171out_free:
 172        kfree(dn);
 173out:
 174        SetPageUptodate(page);
 175        ClearPageError(page);
 176        flush_dcache_page(page);
 177        kunmap(page);
 178        return 0;
 179
 180error:
 181        kfree(dn);
 182        ClearPageUptodate(page);
 183        SetPageError(page);
 184        flush_dcache_page(page);
 185        kunmap(page);
 186        return err;
 187}
 188
 189/**
 190 * release_new_page_budget - release budget of a new page.
 191 * @c: UBIFS file-system description object
 192 *
 193 * This is a helper function which releases budget corresponding to the budget
 194 * of one new page of data.
 195 */
 196static void release_new_page_budget(struct ubifs_info *c)
 197{
 198        struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 199
 200        ubifs_release_budget(c, &req);
 201}
 202
 203/**
 204 * release_existing_page_budget - release budget of an existing page.
 205 * @c: UBIFS file-system description object
 206 *
 207 * This is a helper function which releases budget corresponding to the budget
 208 * of changing one page of data which already exists on the flash media.
 209 */
 210static void release_existing_page_budget(struct ubifs_info *c)
 211{
 212        struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 213
 214        ubifs_release_budget(c, &req);
 215}
 216
 217static int write_begin_slow(struct address_space *mapping,
 218                            loff_t pos, unsigned len, struct page **pagep,
 219                            unsigned flags)
 220{
 221        struct inode *inode = mapping->host;
 222        struct ubifs_info *c = inode->i_sb->s_fs_info;
 223        pgoff_t index = pos >> PAGE_SHIFT;
 224        struct ubifs_budget_req req = { .new_page = 1 };
 225        int err, appending = !!(pos + len > inode->i_size);
 226        struct page *page;
 227
 228        dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 229                inode->i_ino, pos, len, inode->i_size);
 230
 231        /*
 232         * At the slow path we have to budget before locking the page, because
 233         * budgeting may force write-back, which would wait on locked pages and
 234         * deadlock if we had the page locked. At this point we do not know
 235         * anything about the page, so assume that this is a new page which is
 236         * written to a hole. This corresponds to largest budget. Later the
 237         * budget will be amended if this is not true.
 238         */
 239        if (appending)
 240                /* We are appending data, budget for inode change */
 241                req.dirtied_ino = 1;
 242
 243        err = ubifs_budget_space(c, &req);
 244        if (unlikely(err))
 245                return err;
 246
 247        page = grab_cache_page_write_begin(mapping, index, flags);
 248        if (unlikely(!page)) {
 249                ubifs_release_budget(c, &req);
 250                return -ENOMEM;
 251        }
 252
 253        if (!PageUptodate(page)) {
 254                if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
 255                        SetPageChecked(page);
 256                else {
 257                        err = do_readpage(page);
 258                        if (err) {
 259                                unlock_page(page);
 260                                put_page(page);
 261                                ubifs_release_budget(c, &req);
 262                                return err;
 263                        }
 264                }
 265
 266                SetPageUptodate(page);
 267                ClearPageError(page);
 268        }
 269
 270        if (PagePrivate(page))
 271                /*
 272                 * The page is dirty, which means it was budgeted twice:
 273                 *   o first time the budget was allocated by the task which
 274                 *     made the page dirty and set the PG_private flag;
 275                 *   o and then we budgeted for it for the second time at the
 276                 *     very beginning of this function.
 277                 *
 278                 * So what we have to do is to release the page budget we
 279                 * allocated.
 280                 */
 281                release_new_page_budget(c);
 282        else if (!PageChecked(page))
 283                /*
 284                 * We are changing a page which already exists on the media.
 285                 * This means that changing the page does not make the amount
 286                 * of indexing information larger, and this part of the budget
 287                 * which we have already acquired may be released.
 288                 */
 289                ubifs_convert_page_budget(c);
 290
 291        if (appending) {
 292                struct ubifs_inode *ui = ubifs_inode(inode);
 293
 294                /*
 295                 * 'ubifs_write_end()' is optimized from the fast-path part of
 296                 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 297                 * if data is appended.
 298                 */
 299                mutex_lock(&ui->ui_mutex);
 300                if (ui->dirty)
 301                        /*
 302                         * The inode is dirty already, so we may free the
 303                         * budget we allocated.
 304                         */
 305                        ubifs_release_dirty_inode_budget(c, ui);
 306        }
 307
 308        *pagep = page;
 309        return 0;
 310}
 311
 312/**
 313 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 314 * @c: UBIFS file-system description object
 315 * @page: page to allocate budget for
 316 * @ui: UBIFS inode object the page belongs to
 317 * @appending: non-zero if the page is appended
 318 *
 319 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 320 * for the operation. The budget is allocated differently depending on whether
 321 * this is appending, whether the page is dirty or not, and so on. This
 322 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 323 * in case of success and %-ENOSPC in case of failure.
 324 */
 325static int allocate_budget(struct ubifs_info *c, struct page *page,
 326                           struct ubifs_inode *ui, int appending)
 327{
 328        struct ubifs_budget_req req = { .fast = 1 };
 329
 330        if (PagePrivate(page)) {
 331                if (!appending)
 332                        /*
 333                         * The page is dirty and we are not appending, which
 334                         * means no budget is needed at all.
 335                         */
 336                        return 0;
 337
 338                mutex_lock(&ui->ui_mutex);
 339                if (ui->dirty)
 340                        /*
 341                         * The page is dirty and we are appending, so the inode
 342                         * has to be marked as dirty. However, it is already
 343                         * dirty, so we do not need any budget. We may return,
 344                         * but @ui->ui_mutex hast to be left locked because we
 345                         * should prevent write-back from flushing the inode
 346                         * and freeing the budget. The lock will be released in
 347                         * 'ubifs_write_end()'.
 348                         */
 349                        return 0;
 350
 351                /*
 352                 * The page is dirty, we are appending, the inode is clean, so
 353                 * we need to budget the inode change.
 354                 */
 355                req.dirtied_ino = 1;
 356        } else {
 357                if (PageChecked(page))
 358                        /*
 359                         * The page corresponds to a hole and does not
 360                         * exist on the media. So changing it makes
 361                         * make the amount of indexing information
 362                         * larger, and we have to budget for a new
 363                         * page.
 364                         */
 365                        req.new_page = 1;
 366                else
 367                        /*
 368                         * Not a hole, the change will not add any new
 369                         * indexing information, budget for page
 370                         * change.
 371                         */
 372                        req.dirtied_page = 1;
 373
 374                if (appending) {
 375                        mutex_lock(&ui->ui_mutex);
 376                        if (!ui->dirty)
 377                                /*
 378                                 * The inode is clean but we will have to mark
 379                                 * it as dirty because we are appending. This
 380                                 * needs a budget.
 381                                 */
 382                                req.dirtied_ino = 1;
 383                }
 384        }
 385
 386        return ubifs_budget_space(c, &req);
 387}
 388
 389/*
 390 * This function is called when a page of data is going to be written. Since
 391 * the page of data will not necessarily go to the flash straight away, UBIFS
 392 * has to reserve space on the media for it, which is done by means of
 393 * budgeting.
 394 *
 395 * This is the hot-path of the file-system and we are trying to optimize it as
 396 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 397 *
 398 * There many budgeting cases:
 399 *     o a new page is appended - we have to budget for a new page and for
 400 *       changing the inode; however, if the inode is already dirty, there is
 401 *       no need to budget for it;
 402 *     o an existing clean page is changed - we have budget for it; if the page
 403 *       does not exist on the media (a hole), we have to budget for a new
 404 *       page; otherwise, we may budget for changing an existing page; the
 405 *       difference between these cases is that changing an existing page does
 406 *       not introduce anything new to the FS indexing information, so it does
 407 *       not grow, and smaller budget is acquired in this case;
 408 *     o an existing dirty page is changed - no need to budget at all, because
 409 *       the page budget has been acquired by earlier, when the page has been
 410 *       marked dirty.
 411 *
 412 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 413 * space to reserve. This imposes some locking restrictions and makes it
 414 * impossible to take into account the above cases, and makes it impossible to
 415 * optimize budgeting.
 416 *
 417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 418 * there is a plenty of flash space and the budget will be acquired quickly,
 419 * without forcing write-back. The slow path does not make this assumption.
 420 */
 421static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 422                             loff_t pos, unsigned len, unsigned flags,
 423                             struct page **pagep, void **fsdata)
 424{
 425        struct inode *inode = mapping->host;
 426        struct ubifs_info *c = inode->i_sb->s_fs_info;
 427        struct ubifs_inode *ui = ubifs_inode(inode);
 428        pgoff_t index = pos >> PAGE_SHIFT;
 429        int err, appending = !!(pos + len > inode->i_size);
 430        int skipped_read = 0;
 431        struct page *page;
 432
 433        ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
 434        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 435
 436        if (unlikely(c->ro_error))
 437                return -EROFS;
 438
 439        /* Try out the fast-path part first */
 440        page = grab_cache_page_write_begin(mapping, index, flags);
 441        if (unlikely(!page))
 442                return -ENOMEM;
 443
 444        if (!PageUptodate(page)) {
 445                /* The page is not loaded from the flash */
 446                if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
 447                        /*
 448                         * We change whole page so no need to load it. But we
 449                         * do not know whether this page exists on the media or
 450                         * not, so we assume the latter because it requires
 451                         * larger budget. The assumption is that it is better
 452                         * to budget a bit more than to read the page from the
 453                         * media. Thus, we are setting the @PG_checked flag
 454                         * here.
 455                         */
 456                        SetPageChecked(page);
 457                        skipped_read = 1;
 458                } else {
 459                        err = do_readpage(page);
 460                        if (err) {
 461                                unlock_page(page);
 462                                put_page(page);
 463                                return err;
 464                        }
 465                }
 466
 467                SetPageUptodate(page);
 468                ClearPageError(page);
 469        }
 470
 471        err = allocate_budget(c, page, ui, appending);
 472        if (unlikely(err)) {
 473                ubifs_assert(c, err == -ENOSPC);
 474                /*
 475                 * If we skipped reading the page because we were going to
 476                 * write all of it, then it is not up to date.
 477                 */
 478                if (skipped_read) {
 479                        ClearPageChecked(page);
 480                        ClearPageUptodate(page);
 481                }
 482                /*
 483                 * Budgeting failed which means it would have to force
 484                 * write-back but didn't, because we set the @fast flag in the
 485                 * request. Write-back cannot be done now, while we have the
 486                 * page locked, because it would deadlock. Unlock and free
 487                 * everything and fall-back to slow-path.
 488                 */
 489                if (appending) {
 490                        ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 491                        mutex_unlock(&ui->ui_mutex);
 492                }
 493                unlock_page(page);
 494                put_page(page);
 495
 496                return write_begin_slow(mapping, pos, len, pagep, flags);
 497        }
 498
 499        /*
 500         * Whee, we acquired budgeting quickly - without involving
 501         * garbage-collection, committing or forcing write-back. We return
 502         * with @ui->ui_mutex locked if we are appending pages, and unlocked
 503         * otherwise. This is an optimization (slightly hacky though).
 504         */
 505        *pagep = page;
 506        return 0;
 507
 508}
 509
 510/**
 511 * cancel_budget - cancel budget.
 512 * @c: UBIFS file-system description object
 513 * @page: page to cancel budget for
 514 * @ui: UBIFS inode object the page belongs to
 515 * @appending: non-zero if the page is appended
 516 *
 517 * This is a helper function for a page write operation. It unlocks the
 518 * @ui->ui_mutex in case of appending.
 519 */
 520static void cancel_budget(struct ubifs_info *c, struct page *page,
 521                          struct ubifs_inode *ui, int appending)
 522{
 523        if (appending) {
 524                if (!ui->dirty)
 525                        ubifs_release_dirty_inode_budget(c, ui);
 526                mutex_unlock(&ui->ui_mutex);
 527        }
 528        if (!PagePrivate(page)) {
 529                if (PageChecked(page))
 530                        release_new_page_budget(c);
 531                else
 532                        release_existing_page_budget(c);
 533        }
 534}
 535
 536static int ubifs_write_end(struct file *file, struct address_space *mapping,
 537                           loff_t pos, unsigned len, unsigned copied,
 538                           struct page *page, void *fsdata)
 539{
 540        struct inode *inode = mapping->host;
 541        struct ubifs_inode *ui = ubifs_inode(inode);
 542        struct ubifs_info *c = inode->i_sb->s_fs_info;
 543        loff_t end_pos = pos + len;
 544        int appending = !!(end_pos > inode->i_size);
 545
 546        dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 547                inode->i_ino, pos, page->index, len, copied, inode->i_size);
 548
 549        if (unlikely(copied < len && len == PAGE_SIZE)) {
 550                /*
 551                 * VFS copied less data to the page that it intended and
 552                 * declared in its '->write_begin()' call via the @len
 553                 * argument. If the page was not up-to-date, and @len was
 554                 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
 555                 * not load it from the media (for optimization reasons). This
 556                 * means that part of the page contains garbage. So read the
 557                 * page now.
 558                 */
 559                dbg_gen("copied %d instead of %d, read page and repeat",
 560                        copied, len);
 561                cancel_budget(c, page, ui, appending);
 562                ClearPageChecked(page);
 563
 564                /*
 565                 * Return 0 to force VFS to repeat the whole operation, or the
 566                 * error code if 'do_readpage()' fails.
 567                 */
 568                copied = do_readpage(page);
 569                goto out;
 570        }
 571
 572        if (!PagePrivate(page)) {
 573                attach_page_private(page, (void *)1);
 574                atomic_long_inc(&c->dirty_pg_cnt);
 575                __set_page_dirty_nobuffers(page);
 576        }
 577
 578        if (appending) {
 579                i_size_write(inode, end_pos);
 580                ui->ui_size = end_pos;
 581                /*
 582                 * Note, we do not set @I_DIRTY_PAGES (which means that the
 583                 * inode has dirty pages), this has been done in
 584                 * '__set_page_dirty_nobuffers()'.
 585                 */
 586                __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 587                ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 588                mutex_unlock(&ui->ui_mutex);
 589        }
 590
 591out:
 592        unlock_page(page);
 593        put_page(page);
 594        return copied;
 595}
 596
 597/**
 598 * populate_page - copy data nodes into a page for bulk-read.
 599 * @c: UBIFS file-system description object
 600 * @page: page
 601 * @bu: bulk-read information
 602 * @n: next zbranch slot
 603 *
 604 * This function returns %0 on success and a negative error code on failure.
 605 */
 606static int populate_page(struct ubifs_info *c, struct page *page,
 607                         struct bu_info *bu, int *n)
 608{
 609        int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 610        struct inode *inode = page->mapping->host;
 611        loff_t i_size = i_size_read(inode);
 612        unsigned int page_block;
 613        void *addr, *zaddr;
 614        pgoff_t end_index;
 615
 616        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 617                inode->i_ino, page->index, i_size, page->flags);
 618
 619        addr = zaddr = kmap(page);
 620
 621        end_index = (i_size - 1) >> PAGE_SHIFT;
 622        if (!i_size || page->index > end_index) {
 623                hole = 1;
 624                memset(addr, 0, PAGE_SIZE);
 625                goto out_hole;
 626        }
 627
 628        page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 629        while (1) {
 630                int err, len, out_len, dlen;
 631
 632                if (nn >= bu->cnt) {
 633                        hole = 1;
 634                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 635                } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 636                        struct ubifs_data_node *dn;
 637
 638                        dn = bu->buf + (bu->zbranch[nn].offs - offs);
 639
 640                        ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
 641                                     ubifs_inode(inode)->creat_sqnum);
 642
 643                        len = le32_to_cpu(dn->size);
 644                        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 645                                goto out_err;
 646
 647                        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 648                        out_len = UBIFS_BLOCK_SIZE;
 649
 650                        if (IS_ENCRYPTED(inode)) {
 651                                err = ubifs_decrypt(inode, dn, &dlen, page_block);
 652                                if (err)
 653                                        goto out_err;
 654                        }
 655
 656                        err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
 657                                               le16_to_cpu(dn->compr_type));
 658                        if (err || len != out_len)
 659                                goto out_err;
 660
 661                        if (len < UBIFS_BLOCK_SIZE)
 662                                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 663
 664                        nn += 1;
 665                        read = (i << UBIFS_BLOCK_SHIFT) + len;
 666                } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 667                        nn += 1;
 668                        continue;
 669                } else {
 670                        hole = 1;
 671                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 672                }
 673                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 674                        break;
 675                addr += UBIFS_BLOCK_SIZE;
 676                page_block += 1;
 677        }
 678
 679        if (end_index == page->index) {
 680                int len = i_size & (PAGE_SIZE - 1);
 681
 682                if (len && len < read)
 683                        memset(zaddr + len, 0, read - len);
 684        }
 685
 686out_hole:
 687        if (hole) {
 688                SetPageChecked(page);
 689                dbg_gen("hole");
 690        }
 691
 692        SetPageUptodate(page);
 693        ClearPageError(page);
 694        flush_dcache_page(page);
 695        kunmap(page);
 696        *n = nn;
 697        return 0;
 698
 699out_err:
 700        ClearPageUptodate(page);
 701        SetPageError(page);
 702        flush_dcache_page(page);
 703        kunmap(page);
 704        ubifs_err(c, "bad data node (block %u, inode %lu)",
 705                  page_block, inode->i_ino);
 706        return -EINVAL;
 707}
 708
 709/**
 710 * ubifs_do_bulk_read - do bulk-read.
 711 * @c: UBIFS file-system description object
 712 * @bu: bulk-read information
 713 * @page1: first page to read
 714 *
 715 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 716 */
 717static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 718                              struct page *page1)
 719{
 720        pgoff_t offset = page1->index, end_index;
 721        struct address_space *mapping = page1->mapping;
 722        struct inode *inode = mapping->host;
 723        struct ubifs_inode *ui = ubifs_inode(inode);
 724        int err, page_idx, page_cnt, ret = 0, n = 0;
 725        int allocate = bu->buf ? 0 : 1;
 726        loff_t isize;
 727        gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
 728
 729        err = ubifs_tnc_get_bu_keys(c, bu);
 730        if (err)
 731                goto out_warn;
 732
 733        if (bu->eof) {
 734                /* Turn off bulk-read at the end of the file */
 735                ui->read_in_a_row = 1;
 736                ui->bulk_read = 0;
 737        }
 738
 739        page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 740        if (!page_cnt) {
 741                /*
 742                 * This happens when there are multiple blocks per page and the
 743                 * blocks for the first page we are looking for, are not
 744                 * together. If all the pages were like this, bulk-read would
 745                 * reduce performance, so we turn it off for a while.
 746                 */
 747                goto out_bu_off;
 748        }
 749
 750        if (bu->cnt) {
 751                if (allocate) {
 752                        /*
 753                         * Allocate bulk-read buffer depending on how many data
 754                         * nodes we are going to read.
 755                         */
 756                        bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 757                                      bu->zbranch[bu->cnt - 1].len -
 758                                      bu->zbranch[0].offs;
 759                        ubifs_assert(c, bu->buf_len > 0);
 760                        ubifs_assert(c, bu->buf_len <= c->leb_size);
 761                        bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 762                        if (!bu->buf)
 763                                goto out_bu_off;
 764                }
 765
 766                err = ubifs_tnc_bulk_read(c, bu);
 767                if (err)
 768                        goto out_warn;
 769        }
 770
 771        err = populate_page(c, page1, bu, &n);
 772        if (err)
 773                goto out_warn;
 774
 775        unlock_page(page1);
 776        ret = 1;
 777
 778        isize = i_size_read(inode);
 779        if (isize == 0)
 780                goto out_free;
 781        end_index = ((isize - 1) >> PAGE_SHIFT);
 782
 783        for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 784                pgoff_t page_offset = offset + page_idx;
 785                struct page *page;
 786
 787                if (page_offset > end_index)
 788                        break;
 789                page = pagecache_get_page(mapping, page_offset,
 790                                 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
 791                                 ra_gfp_mask);
 792                if (!page)
 793                        break;
 794                if (!PageUptodate(page))
 795                        err = populate_page(c, page, bu, &n);
 796                unlock_page(page);
 797                put_page(page);
 798                if (err)
 799                        break;
 800        }
 801
 802        ui->last_page_read = offset + page_idx - 1;
 803
 804out_free:
 805        if (allocate)
 806                kfree(bu->buf);
 807        return ret;
 808
 809out_warn:
 810        ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
 811        goto out_free;
 812
 813out_bu_off:
 814        ui->read_in_a_row = ui->bulk_read = 0;
 815        goto out_free;
 816}
 817
 818/**
 819 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 820 * @page: page from which to start bulk-read.
 821 *
 822 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 823 * bulk-read facility is designed to take advantage of that, by reading in one
 824 * go consecutive data nodes that are also located consecutively in the same
 825 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 826 */
 827static int ubifs_bulk_read(struct page *page)
 828{
 829        struct inode *inode = page->mapping->host;
 830        struct ubifs_info *c = inode->i_sb->s_fs_info;
 831        struct ubifs_inode *ui = ubifs_inode(inode);
 832        pgoff_t index = page->index, last_page_read = ui->last_page_read;
 833        struct bu_info *bu;
 834        int err = 0, allocated = 0;
 835
 836        ui->last_page_read = index;
 837        if (!c->bulk_read)
 838                return 0;
 839
 840        /*
 841         * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 842         * so don't bother if we cannot lock the mutex.
 843         */
 844        if (!mutex_trylock(&ui->ui_mutex))
 845                return 0;
 846
 847        if (index != last_page_read + 1) {
 848                /* Turn off bulk-read if we stop reading sequentially */
 849                ui->read_in_a_row = 1;
 850                if (ui->bulk_read)
 851                        ui->bulk_read = 0;
 852                goto out_unlock;
 853        }
 854
 855        if (!ui->bulk_read) {
 856                ui->read_in_a_row += 1;
 857                if (ui->read_in_a_row < 3)
 858                        goto out_unlock;
 859                /* Three reads in a row, so switch on bulk-read */
 860                ui->bulk_read = 1;
 861        }
 862
 863        /*
 864         * If possible, try to use pre-allocated bulk-read information, which
 865         * is protected by @c->bu_mutex.
 866         */
 867        if (mutex_trylock(&c->bu_mutex))
 868                bu = &c->bu;
 869        else {
 870                bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 871                if (!bu)
 872                        goto out_unlock;
 873
 874                bu->buf = NULL;
 875                allocated = 1;
 876        }
 877
 878        bu->buf_len = c->max_bu_buf_len;
 879        data_key_init(c, &bu->key, inode->i_ino,
 880                      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 881        err = ubifs_do_bulk_read(c, bu, page);
 882
 883        if (!allocated)
 884                mutex_unlock(&c->bu_mutex);
 885        else
 886                kfree(bu);
 887
 888out_unlock:
 889        mutex_unlock(&ui->ui_mutex);
 890        return err;
 891}
 892
 893static int ubifs_readpage(struct file *file, struct page *page)
 894{
 895        if (ubifs_bulk_read(page))
 896                return 0;
 897        do_readpage(page);
 898        unlock_page(page);
 899        return 0;
 900}
 901
 902static int do_writepage(struct page *page, int len)
 903{
 904        int err = 0, i, blen;
 905        unsigned int block;
 906        void *addr;
 907        union ubifs_key key;
 908        struct inode *inode = page->mapping->host;
 909        struct ubifs_info *c = inode->i_sb->s_fs_info;
 910
 911#ifdef UBIFS_DEBUG
 912        struct ubifs_inode *ui = ubifs_inode(inode);
 913        spin_lock(&ui->ui_lock);
 914        ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
 915        spin_unlock(&ui->ui_lock);
 916#endif
 917
 918        /* Update radix tree tags */
 919        set_page_writeback(page);
 920
 921        addr = kmap(page);
 922        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 923        i = 0;
 924        while (len) {
 925                blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 926                data_key_init(c, &key, inode->i_ino, block);
 927                err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 928                if (err)
 929                        break;
 930                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 931                        break;
 932                block += 1;
 933                addr += blen;
 934                len -= blen;
 935        }
 936        if (err) {
 937                SetPageError(page);
 938                ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
 939                          page->index, inode->i_ino, err);
 940                ubifs_ro_mode(c, err);
 941        }
 942
 943        ubifs_assert(c, PagePrivate(page));
 944        if (PageChecked(page))
 945                release_new_page_budget(c);
 946        else
 947                release_existing_page_budget(c);
 948
 949        atomic_long_dec(&c->dirty_pg_cnt);
 950        detach_page_private(page);
 951        ClearPageChecked(page);
 952
 953        kunmap(page);
 954        unlock_page(page);
 955        end_page_writeback(page);
 956        return err;
 957}
 958
 959/*
 960 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 961 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 962 * situation when a we have an inode with size 0, then a megabyte of data is
 963 * appended to the inode, then write-back starts and flushes some amount of the
 964 * dirty pages, the journal becomes full, commit happens and finishes, and then
 965 * an unclean reboot happens. When the file system is mounted next time, the
 966 * inode size would still be 0, but there would be many pages which are beyond
 967 * the inode size, they would be indexed and consume flash space. Because the
 968 * journal has been committed, the replay would not be able to detect this
 969 * situation and correct the inode size. This means UBIFS would have to scan
 970 * whole index and correct all inode sizes, which is long an unacceptable.
 971 *
 972 * To prevent situations like this, UBIFS writes pages back only if they are
 973 * within the last synchronized inode size, i.e. the size which has been
 974 * written to the flash media last time. Otherwise, UBIFS forces inode
 975 * write-back, thus making sure the on-flash inode contains current inode size,
 976 * and then keeps writing pages back.
 977 *
 978 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 979 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 980 * @i_mutex, which means other VFS operations may be run on this inode at the
 981 * same time. And the problematic one is truncation to smaller size, from where
 982 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 983 * then drops the truncated pages. And while dropping the pages, it takes the
 984 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 985 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 986 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 987 *
 988 * XXX(truncate): with the new truncate sequence this is not true anymore,
 989 * and the calls to truncate_setsize can be move around freely.  They should
 990 * be moved to the very end of the truncate sequence.
 991 *
 992 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 993 * inode size. How do we do this if @inode->i_size may became smaller while we
 994 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 995 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 996 * internally and updates it under @ui_mutex.
 997 *
 998 * Q: why we do not worry that if we race with truncation, we may end up with a
 999 * situation when the inode is truncated while we are in the middle of
1000 * 'do_writepage()', so we do write beyond inode size?
1001 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1002 * on the page lock and it would not write the truncated inode node to the
1003 * journal before we have finished.
1004 */
1005static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1006{
1007        struct inode *inode = page->mapping->host;
1008        struct ubifs_info *c = inode->i_sb->s_fs_info;
1009        struct ubifs_inode *ui = ubifs_inode(inode);
1010        loff_t i_size =  i_size_read(inode), synced_i_size;
1011        pgoff_t end_index = i_size >> PAGE_SHIFT;
1012        int err, len = i_size & (PAGE_SIZE - 1);
1013        void *kaddr;
1014
1015        dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1016                inode->i_ino, page->index, page->flags);
1017        ubifs_assert(c, PagePrivate(page));
1018
1019        /* Is the page fully outside @i_size? (truncate in progress) */
1020        if (page->index > end_index || (page->index == end_index && !len)) {
1021                err = 0;
1022                goto out_unlock;
1023        }
1024
1025        spin_lock(&ui->ui_lock);
1026        synced_i_size = ui->synced_i_size;
1027        spin_unlock(&ui->ui_lock);
1028
1029        /* Is the page fully inside @i_size? */
1030        if (page->index < end_index) {
1031                if (page->index >= synced_i_size >> PAGE_SHIFT) {
1032                        err = inode->i_sb->s_op->write_inode(inode, NULL);
1033                        if (err)
1034                                goto out_unlock;
1035                        /*
1036                         * The inode has been written, but the write-buffer has
1037                         * not been synchronized, so in case of an unclean
1038                         * reboot we may end up with some pages beyond inode
1039                         * size, but they would be in the journal (because
1040                         * commit flushes write buffers) and recovery would deal
1041                         * with this.
1042                         */
1043                }
1044                return do_writepage(page, PAGE_SIZE);
1045        }
1046
1047        /*
1048         * The page straddles @i_size. It must be zeroed out on each and every
1049         * writepage invocation because it may be mmapped. "A file is mapped
1050         * in multiples of the page size. For a file that is not a multiple of
1051         * the page size, the remaining memory is zeroed when mapped, and
1052         * writes to that region are not written out to the file."
1053         */
1054        kaddr = kmap_atomic(page);
1055        memset(kaddr + len, 0, PAGE_SIZE - len);
1056        flush_dcache_page(page);
1057        kunmap_atomic(kaddr);
1058
1059        if (i_size > synced_i_size) {
1060                err = inode->i_sb->s_op->write_inode(inode, NULL);
1061                if (err)
1062                        goto out_unlock;
1063        }
1064
1065        return do_writepage(page, len);
1066
1067out_unlock:
1068        unlock_page(page);
1069        return err;
1070}
1071
1072/**
1073 * do_attr_changes - change inode attributes.
1074 * @inode: inode to change attributes for
1075 * @attr: describes attributes to change
1076 */
1077static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1078{
1079        if (attr->ia_valid & ATTR_UID)
1080                inode->i_uid = attr->ia_uid;
1081        if (attr->ia_valid & ATTR_GID)
1082                inode->i_gid = attr->ia_gid;
1083        if (attr->ia_valid & ATTR_ATIME)
1084                inode->i_atime = attr->ia_atime;
1085        if (attr->ia_valid & ATTR_MTIME)
1086                inode->i_mtime = attr->ia_mtime;
1087        if (attr->ia_valid & ATTR_CTIME)
1088                inode->i_ctime = attr->ia_ctime;
1089        if (attr->ia_valid & ATTR_MODE) {
1090                umode_t mode = attr->ia_mode;
1091
1092                if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1093                        mode &= ~S_ISGID;
1094                inode->i_mode = mode;
1095        }
1096}
1097
1098/**
1099 * do_truncation - truncate an inode.
1100 * @c: UBIFS file-system description object
1101 * @inode: inode to truncate
1102 * @attr: inode attribute changes description
1103 *
1104 * This function implements VFS '->setattr()' call when the inode is truncated
1105 * to a smaller size. Returns zero in case of success and a negative error code
1106 * in case of failure.
1107 */
1108static int do_truncation(struct ubifs_info *c, struct inode *inode,
1109                         const struct iattr *attr)
1110{
1111        int err;
1112        struct ubifs_budget_req req;
1113        loff_t old_size = inode->i_size, new_size = attr->ia_size;
1114        int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1115        struct ubifs_inode *ui = ubifs_inode(inode);
1116
1117        dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1118        memset(&req, 0, sizeof(struct ubifs_budget_req));
1119
1120        /*
1121         * If this is truncation to a smaller size, and we do not truncate on a
1122         * block boundary, budget for changing one data block, because the last
1123         * block will be re-written.
1124         */
1125        if (new_size & (UBIFS_BLOCK_SIZE - 1))
1126                req.dirtied_page = 1;
1127
1128        req.dirtied_ino = 1;
1129        /* A funny way to budget for truncation node */
1130        req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1131        err = ubifs_budget_space(c, &req);
1132        if (err) {
1133                /*
1134                 * Treat truncations to zero as deletion and always allow them,
1135                 * just like we do for '->unlink()'.
1136                 */
1137                if (new_size || err != -ENOSPC)
1138                        return err;
1139                budgeted = 0;
1140        }
1141
1142        truncate_setsize(inode, new_size);
1143
1144        if (offset) {
1145                pgoff_t index = new_size >> PAGE_SHIFT;
1146                struct page *page;
1147
1148                page = find_lock_page(inode->i_mapping, index);
1149                if (page) {
1150                        if (PageDirty(page)) {
1151                                /*
1152                                 * 'ubifs_jnl_truncate()' will try to truncate
1153                                 * the last data node, but it contains
1154                                 * out-of-date data because the page is dirty.
1155                                 * Write the page now, so that
1156                                 * 'ubifs_jnl_truncate()' will see an already
1157                                 * truncated (and up to date) data node.
1158                                 */
1159                                ubifs_assert(c, PagePrivate(page));
1160
1161                                clear_page_dirty_for_io(page);
1162                                if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1163                                        offset = new_size &
1164                                                 (PAGE_SIZE - 1);
1165                                err = do_writepage(page, offset);
1166                                put_page(page);
1167                                if (err)
1168                                        goto out_budg;
1169                                /*
1170                                 * We could now tell 'ubifs_jnl_truncate()' not
1171                                 * to read the last block.
1172                                 */
1173                        } else {
1174                                /*
1175                                 * We could 'kmap()' the page and pass the data
1176                                 * to 'ubifs_jnl_truncate()' to save it from
1177                                 * having to read it.
1178                                 */
1179                                unlock_page(page);
1180                                put_page(page);
1181                        }
1182                }
1183        }
1184
1185        mutex_lock(&ui->ui_mutex);
1186        ui->ui_size = inode->i_size;
1187        /* Truncation changes inode [mc]time */
1188        inode->i_mtime = inode->i_ctime = current_time(inode);
1189        /* Other attributes may be changed at the same time as well */
1190        do_attr_changes(inode, attr);
1191        err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1192        mutex_unlock(&ui->ui_mutex);
1193
1194out_budg:
1195        if (budgeted)
1196                ubifs_release_budget(c, &req);
1197        else {
1198                c->bi.nospace = c->bi.nospace_rp = 0;
1199                smp_wmb();
1200        }
1201        return err;
1202}
1203
1204/**
1205 * do_setattr - change inode attributes.
1206 * @c: UBIFS file-system description object
1207 * @inode: inode to change attributes for
1208 * @attr: inode attribute changes description
1209 *
1210 * This function implements VFS '->setattr()' call for all cases except
1211 * truncations to smaller size. Returns zero in case of success and a negative
1212 * error code in case of failure.
1213 */
1214static int do_setattr(struct ubifs_info *c, struct inode *inode,
1215                      const struct iattr *attr)
1216{
1217        int err, release;
1218        loff_t new_size = attr->ia_size;
1219        struct ubifs_inode *ui = ubifs_inode(inode);
1220        struct ubifs_budget_req req = { .dirtied_ino = 1,
1221                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1222
1223        err = ubifs_budget_space(c, &req);
1224        if (err)
1225                return err;
1226
1227        if (attr->ia_valid & ATTR_SIZE) {
1228                dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1229                truncate_setsize(inode, new_size);
1230        }
1231
1232        mutex_lock(&ui->ui_mutex);
1233        if (attr->ia_valid & ATTR_SIZE) {
1234                /* Truncation changes inode [mc]time */
1235                inode->i_mtime = inode->i_ctime = current_time(inode);
1236                /* 'truncate_setsize()' changed @i_size, update @ui_size */
1237                ui->ui_size = inode->i_size;
1238        }
1239
1240        do_attr_changes(inode, attr);
1241
1242        release = ui->dirty;
1243        if (attr->ia_valid & ATTR_SIZE)
1244                /*
1245                 * Inode length changed, so we have to make sure
1246                 * @I_DIRTY_DATASYNC is set.
1247                 */
1248                 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1249        else
1250                mark_inode_dirty_sync(inode);
1251        mutex_unlock(&ui->ui_mutex);
1252
1253        if (release)
1254                ubifs_release_budget(c, &req);
1255        if (IS_SYNC(inode))
1256                err = inode->i_sb->s_op->write_inode(inode, NULL);
1257        return err;
1258}
1259
1260int ubifs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1261                  struct iattr *attr)
1262{
1263        int err;
1264        struct inode *inode = d_inode(dentry);
1265        struct ubifs_info *c = inode->i_sb->s_fs_info;
1266
1267        dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1268                inode->i_ino, inode->i_mode, attr->ia_valid);
1269        err = setattr_prepare(&init_user_ns, dentry, attr);
1270        if (err)
1271                return err;
1272
1273        err = dbg_check_synced_i_size(c, inode);
1274        if (err)
1275                return err;
1276
1277        err = fscrypt_prepare_setattr(dentry, attr);
1278        if (err)
1279                return err;
1280
1281        if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1282                /* Truncation to a smaller size */
1283                err = do_truncation(c, inode, attr);
1284        else
1285                err = do_setattr(c, inode, attr);
1286
1287        return err;
1288}
1289
1290static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1291                                 size_t length)
1292{
1293        struct inode *inode = folio->mapping->host;
1294        struct ubifs_info *c = inode->i_sb->s_fs_info;
1295
1296        ubifs_assert(c, folio_test_private(folio));
1297        if (offset || length < folio_size(folio))
1298                /* Partial folio remains dirty */
1299                return;
1300
1301        if (folio_test_checked(folio))
1302                release_new_page_budget(c);
1303        else
1304                release_existing_page_budget(c);
1305
1306        atomic_long_dec(&c->dirty_pg_cnt);
1307        folio_detach_private(folio);
1308        folio_clear_checked(folio);
1309}
1310
1311int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1312{
1313        struct inode *inode = file->f_mapping->host;
1314        struct ubifs_info *c = inode->i_sb->s_fs_info;
1315        int err;
1316
1317        dbg_gen("syncing inode %lu", inode->i_ino);
1318
1319        if (c->ro_mount)
1320                /*
1321                 * For some really strange reasons VFS does not filter out
1322                 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1323                 */
1324                return 0;
1325
1326        err = file_write_and_wait_range(file, start, end);
1327        if (err)
1328                return err;
1329        inode_lock(inode);
1330
1331        /* Synchronize the inode unless this is a 'datasync()' call. */
1332        if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1333                err = inode->i_sb->s_op->write_inode(inode, NULL);
1334                if (err)
1335                        goto out;
1336        }
1337
1338        /*
1339         * Nodes related to this inode may still sit in a write-buffer. Flush
1340         * them.
1341         */
1342        err = ubifs_sync_wbufs_by_inode(c, inode);
1343out:
1344        inode_unlock(inode);
1345        return err;
1346}
1347
1348/**
1349 * mctime_update_needed - check if mtime or ctime update is needed.
1350 * @inode: the inode to do the check for
1351 * @now: current time
1352 *
1353 * This helper function checks if the inode mtime/ctime should be updated or
1354 * not. If current values of the time-stamps are within the UBIFS inode time
1355 * granularity, they are not updated. This is an optimization.
1356 */
1357static inline int mctime_update_needed(const struct inode *inode,
1358                                       const struct timespec64 *now)
1359{
1360        if (!timespec64_equal(&inode->i_mtime, now) ||
1361            !timespec64_equal(&inode->i_ctime, now))
1362                return 1;
1363        return 0;
1364}
1365
1366/**
1367 * ubifs_update_time - update time of inode.
1368 * @inode: inode to update
1369 *
1370 * This function updates time of the inode.
1371 */
1372int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1373                             int flags)
1374{
1375        struct ubifs_inode *ui = ubifs_inode(inode);
1376        struct ubifs_info *c = inode->i_sb->s_fs_info;
1377        struct ubifs_budget_req req = { .dirtied_ino = 1,
1378                        .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1379        int err, release;
1380
1381        if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1382                return generic_update_time(inode, time, flags);
1383
1384        err = ubifs_budget_space(c, &req);
1385        if (err)
1386                return err;
1387
1388        mutex_lock(&ui->ui_mutex);
1389        if (flags & S_ATIME)
1390                inode->i_atime = *time;
1391        if (flags & S_CTIME)
1392                inode->i_ctime = *time;
1393        if (flags & S_MTIME)
1394                inode->i_mtime = *time;
1395
1396        release = ui->dirty;
1397        __mark_inode_dirty(inode, I_DIRTY_SYNC);
1398        mutex_unlock(&ui->ui_mutex);
1399        if (release)
1400                ubifs_release_budget(c, &req);
1401        return 0;
1402}
1403
1404/**
1405 * update_mctime - update mtime and ctime of an inode.
1406 * @inode: inode to update
1407 *
1408 * This function updates mtime and ctime of the inode if it is not equivalent to
1409 * current time. Returns zero in case of success and a negative error code in
1410 * case of failure.
1411 */
1412static int update_mctime(struct inode *inode)
1413{
1414        struct timespec64 now = current_time(inode);
1415        struct ubifs_inode *ui = ubifs_inode(inode);
1416        struct ubifs_info *c = inode->i_sb->s_fs_info;
1417
1418        if (mctime_update_needed(inode, &now)) {
1419                int err, release;
1420                struct ubifs_budget_req req = { .dirtied_ino = 1,
1421                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1422
1423                err = ubifs_budget_space(c, &req);
1424                if (err)
1425                        return err;
1426
1427                mutex_lock(&ui->ui_mutex);
1428                inode->i_mtime = inode->i_ctime = current_time(inode);
1429                release = ui->dirty;
1430                mark_inode_dirty_sync(inode);
1431                mutex_unlock(&ui->ui_mutex);
1432                if (release)
1433                        ubifs_release_budget(c, &req);
1434        }
1435
1436        return 0;
1437}
1438
1439static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1440{
1441        int err = update_mctime(file_inode(iocb->ki_filp));
1442        if (err)
1443                return err;
1444
1445        return generic_file_write_iter(iocb, from);
1446}
1447
1448static bool ubifs_dirty_folio(struct address_space *mapping,
1449                struct folio *folio)
1450{
1451        bool ret;
1452        struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1453
1454        ret = filemap_dirty_folio(mapping, folio);
1455        /*
1456         * An attempt to dirty a page without budgeting for it - should not
1457         * happen.
1458         */
1459        ubifs_assert(c, ret == false);
1460        return ret;
1461}
1462
1463#ifdef CONFIG_MIGRATION
1464static int ubifs_migrate_page(struct address_space *mapping,
1465                struct page *newpage, struct page *page, enum migrate_mode mode)
1466{
1467        int rc;
1468
1469        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
1470        if (rc != MIGRATEPAGE_SUCCESS)
1471                return rc;
1472
1473        if (PagePrivate(page)) {
1474                detach_page_private(page);
1475                attach_page_private(newpage, (void *)1);
1476        }
1477
1478        if (mode != MIGRATE_SYNC_NO_COPY)
1479                migrate_page_copy(newpage, page);
1480        else
1481                migrate_page_states(newpage, page);
1482        return MIGRATEPAGE_SUCCESS;
1483}
1484#endif
1485
1486static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1487{
1488        struct inode *inode = page->mapping->host;
1489        struct ubifs_info *c = inode->i_sb->s_fs_info;
1490
1491        /*
1492         * An attempt to release a dirty page without budgeting for it - should
1493         * not happen.
1494         */
1495        if (PageWriteback(page))
1496                return 0;
1497        ubifs_assert(c, PagePrivate(page));
1498        ubifs_assert(c, 0);
1499        detach_page_private(page);
1500        ClearPageChecked(page);
1501        return 1;
1502}
1503
1504/*
1505 * mmap()d file has taken write protection fault and is being made writable.
1506 * UBIFS must ensure page is budgeted for.
1507 */
1508static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1509{
1510        struct page *page = vmf->page;
1511        struct inode *inode = file_inode(vmf->vma->vm_file);
1512        struct ubifs_info *c = inode->i_sb->s_fs_info;
1513        struct timespec64 now = current_time(inode);
1514        struct ubifs_budget_req req = { .new_page = 1 };
1515        int err, update_time;
1516
1517        dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1518                i_size_read(inode));
1519        ubifs_assert(c, !c->ro_media && !c->ro_mount);
1520
1521        if (unlikely(c->ro_error))
1522                return VM_FAULT_SIGBUS; /* -EROFS */
1523
1524        /*
1525         * We have not locked @page so far so we may budget for changing the
1526         * page. Note, we cannot do this after we locked the page, because
1527         * budgeting may cause write-back which would cause deadlock.
1528         *
1529         * At the moment we do not know whether the page is dirty or not, so we
1530         * assume that it is not and budget for a new page. We could look at
1531         * the @PG_private flag and figure this out, but we may race with write
1532         * back and the page state may change by the time we lock it, so this
1533         * would need additional care. We do not bother with this at the
1534         * moment, although it might be good idea to do. Instead, we allocate
1535         * budget for a new page and amend it later on if the page was in fact
1536         * dirty.
1537         *
1538         * The budgeting-related logic of this function is similar to what we
1539         * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1540         * for more comments.
1541         */
1542        update_time = mctime_update_needed(inode, &now);
1543        if (update_time)
1544                /*
1545                 * We have to change inode time stamp which requires extra
1546                 * budgeting.
1547                 */
1548                req.dirtied_ino = 1;
1549
1550        err = ubifs_budget_space(c, &req);
1551        if (unlikely(err)) {
1552                if (err == -ENOSPC)
1553                        ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1554                                   inode->i_ino);
1555                return VM_FAULT_SIGBUS;
1556        }
1557
1558        lock_page(page);
1559        if (unlikely(page->mapping != inode->i_mapping ||
1560                     page_offset(page) > i_size_read(inode))) {
1561                /* Page got truncated out from underneath us */
1562                goto sigbus;
1563        }
1564
1565        if (PagePrivate(page))
1566                release_new_page_budget(c);
1567        else {
1568                if (!PageChecked(page))
1569                        ubifs_convert_page_budget(c);
1570                attach_page_private(page, (void *)1);
1571                atomic_long_inc(&c->dirty_pg_cnt);
1572                __set_page_dirty_nobuffers(page);
1573        }
1574
1575        if (update_time) {
1576                int release;
1577                struct ubifs_inode *ui = ubifs_inode(inode);
1578
1579                mutex_lock(&ui->ui_mutex);
1580                inode->i_mtime = inode->i_ctime = current_time(inode);
1581                release = ui->dirty;
1582                mark_inode_dirty_sync(inode);
1583                mutex_unlock(&ui->ui_mutex);
1584                if (release)
1585                        ubifs_release_dirty_inode_budget(c, ui);
1586        }
1587
1588        wait_for_stable_page(page);
1589        return VM_FAULT_LOCKED;
1590
1591sigbus:
1592        unlock_page(page);
1593        ubifs_release_budget(c, &req);
1594        return VM_FAULT_SIGBUS;
1595}
1596
1597static const struct vm_operations_struct ubifs_file_vm_ops = {
1598        .fault        = filemap_fault,
1599        .map_pages = filemap_map_pages,
1600        .page_mkwrite = ubifs_vm_page_mkwrite,
1601};
1602
1603static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1604{
1605        int err;
1606
1607        err = generic_file_mmap(file, vma);
1608        if (err)
1609                return err;
1610        vma->vm_ops = &ubifs_file_vm_ops;
1611
1612        if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1613                file_accessed(file);
1614
1615        return 0;
1616}
1617
1618static const char *ubifs_get_link(struct dentry *dentry,
1619                                            struct inode *inode,
1620                                            struct delayed_call *done)
1621{
1622        struct ubifs_inode *ui = ubifs_inode(inode);
1623
1624        if (!IS_ENCRYPTED(inode))
1625                return ui->data;
1626
1627        if (!dentry)
1628                return ERR_PTR(-ECHILD);
1629
1630        return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1631}
1632
1633static int ubifs_symlink_getattr(struct user_namespace *mnt_userns,
1634                                 const struct path *path, struct kstat *stat,
1635                                 u32 request_mask, unsigned int query_flags)
1636{
1637        ubifs_getattr(mnt_userns, path, stat, request_mask, query_flags);
1638
1639        if (IS_ENCRYPTED(d_inode(path->dentry)))
1640                return fscrypt_symlink_getattr(path, stat);
1641        return 0;
1642}
1643
1644const struct address_space_operations ubifs_file_address_operations = {
1645        .readpage       = ubifs_readpage,
1646        .writepage      = ubifs_writepage,
1647        .write_begin    = ubifs_write_begin,
1648        .write_end      = ubifs_write_end,
1649        .invalidate_folio = ubifs_invalidate_folio,
1650        .dirty_folio    = ubifs_dirty_folio,
1651#ifdef CONFIG_MIGRATION
1652        .migratepage    = ubifs_migrate_page,
1653#endif
1654        .releasepage    = ubifs_releasepage,
1655};
1656
1657const struct inode_operations ubifs_file_inode_operations = {
1658        .setattr     = ubifs_setattr,
1659        .getattr     = ubifs_getattr,
1660        .listxattr   = ubifs_listxattr,
1661        .update_time = ubifs_update_time,
1662        .fileattr_get = ubifs_fileattr_get,
1663        .fileattr_set = ubifs_fileattr_set,
1664};
1665
1666const struct inode_operations ubifs_symlink_inode_operations = {
1667        .get_link    = ubifs_get_link,
1668        .setattr     = ubifs_setattr,
1669        .getattr     = ubifs_symlink_getattr,
1670        .listxattr   = ubifs_listxattr,
1671        .update_time = ubifs_update_time,
1672};
1673
1674const struct file_operations ubifs_file_operations = {
1675        .llseek         = generic_file_llseek,
1676        .read_iter      = generic_file_read_iter,
1677        .write_iter     = ubifs_write_iter,
1678        .mmap           = ubifs_file_mmap,
1679        .fsync          = ubifs_fsync,
1680        .unlocked_ioctl = ubifs_ioctl,
1681        .splice_read    = generic_file_splice_read,
1682        .splice_write   = iter_file_splice_write,
1683        .open           = fscrypt_file_open,
1684#ifdef CONFIG_COMPAT
1685        .compat_ioctl   = ubifs_compat_ioctl,
1686#endif
1687};
1688