linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Symmetric key ciphers.
   4 * 
   5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   6 */
   7
   8#ifndef _CRYPTO_SKCIPHER_H
   9#define _CRYPTO_SKCIPHER_H
  10
  11#include <linux/container_of.h>
  12#include <linux/crypto.h>
  13#include <linux/slab.h>
  14#include <linux/string.h>
  15#include <linux/types.h>
  16
  17struct scatterlist;
  18
  19/**
  20 *      struct skcipher_request - Symmetric key cipher request
  21 *      @cryptlen: Number of bytes to encrypt or decrypt
  22 *      @iv: Initialisation Vector
  23 *      @src: Source SG list
  24 *      @dst: Destination SG list
  25 *      @base: Underlying async request
  26 *      @__ctx: Start of private context data
  27 */
  28struct skcipher_request {
  29        unsigned int cryptlen;
  30
  31        u8 *iv;
  32
  33        struct scatterlist *src;
  34        struct scatterlist *dst;
  35
  36        struct crypto_async_request base;
  37
  38        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  39};
  40
  41struct crypto_skcipher {
  42        unsigned int reqsize;
  43
  44        struct crypto_tfm base;
  45};
  46
  47struct crypto_sync_skcipher {
  48        struct crypto_skcipher base;
  49};
  50
  51/**
  52 * struct skcipher_alg - symmetric key cipher definition
  53 * @min_keysize: Minimum key size supported by the transformation. This is the
  54 *               smallest key length supported by this transformation algorithm.
  55 *               This must be set to one of the pre-defined values as this is
  56 *               not hardware specific. Possible values for this field can be
  57 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
  58 * @max_keysize: Maximum key size supported by the transformation. This is the
  59 *               largest key length supported by this transformation algorithm.
  60 *               This must be set to one of the pre-defined values as this is
  61 *               not hardware specific. Possible values for this field can be
  62 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
  63 * @setkey: Set key for the transformation. This function is used to either
  64 *          program a supplied key into the hardware or store the key in the
  65 *          transformation context for programming it later. Note that this
  66 *          function does modify the transformation context. This function can
  67 *          be called multiple times during the existence of the transformation
  68 *          object, so one must make sure the key is properly reprogrammed into
  69 *          the hardware. This function is also responsible for checking the key
  70 *          length for validity. In case a software fallback was put in place in
  71 *          the @cra_init call, this function might need to use the fallback if
  72 *          the algorithm doesn't support all of the key sizes.
  73 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  74 *           the supplied scatterlist containing the blocks of data. The crypto
  75 *           API consumer is responsible for aligning the entries of the
  76 *           scatterlist properly and making sure the chunks are correctly
  77 *           sized. In case a software fallback was put in place in the
  78 *           @cra_init call, this function might need to use the fallback if
  79 *           the algorithm doesn't support all of the key sizes. In case the
  80 *           key was stored in transformation context, the key might need to be
  81 *           re-programmed into the hardware in this function. This function
  82 *           shall not modify the transformation context, as this function may
  83 *           be called in parallel with the same transformation object.
  84 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
  85 *           and the conditions are exactly the same.
  86 * @init: Initialize the cryptographic transformation object. This function
  87 *        is used to initialize the cryptographic transformation object.
  88 *        This function is called only once at the instantiation time, right
  89 *        after the transformation context was allocated. In case the
  90 *        cryptographic hardware has some special requirements which need to
  91 *        be handled by software, this function shall check for the precise
  92 *        requirement of the transformation and put any software fallbacks
  93 *        in place.
  94 * @exit: Deinitialize the cryptographic transformation object. This is a
  95 *        counterpart to @init, used to remove various changes set in
  96 *        @init.
  97 * @ivsize: IV size applicable for transformation. The consumer must provide an
  98 *          IV of exactly that size to perform the encrypt or decrypt operation.
  99 * @chunksize: Equal to the block size except for stream ciphers such as
 100 *             CTR where it is set to the underlying block size.
 101 * @walksize: Equal to the chunk size except in cases where the algorithm is
 102 *            considerably more efficient if it can operate on multiple chunks
 103 *            in parallel. Should be a multiple of chunksize.
 104 * @base: Definition of a generic crypto algorithm.
 105 *
 106 * All fields except @ivsize are mandatory and must be filled.
 107 */
 108struct skcipher_alg {
 109        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
 110                      unsigned int keylen);
 111        int (*encrypt)(struct skcipher_request *req);
 112        int (*decrypt)(struct skcipher_request *req);
 113        int (*init)(struct crypto_skcipher *tfm);
 114        void (*exit)(struct crypto_skcipher *tfm);
 115
 116        unsigned int min_keysize;
 117        unsigned int max_keysize;
 118        unsigned int ivsize;
 119        unsigned int chunksize;
 120        unsigned int walksize;
 121
 122        struct crypto_alg base;
 123};
 124
 125#define MAX_SYNC_SKCIPHER_REQSIZE      384
 126/*
 127 * This performs a type-check against the "tfm" argument to make sure
 128 * all users have the correct skcipher tfm for doing on-stack requests.
 129 */
 130#define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
 131        char __##name##_desc[sizeof(struct skcipher_request) + \
 132                             MAX_SYNC_SKCIPHER_REQSIZE + \
 133                             (!(sizeof((struct crypto_sync_skcipher *)1 == \
 134                                       (typeof(tfm))1))) \
 135                            ] CRYPTO_MINALIGN_ATTR; \
 136        struct skcipher_request *name = (void *)__##name##_desc
 137
 138/**
 139 * DOC: Symmetric Key Cipher API
 140 *
 141 * Symmetric key cipher API is used with the ciphers of type
 142 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 143 *
 144 * Asynchronous cipher operations imply that the function invocation for a
 145 * cipher request returns immediately before the completion of the operation.
 146 * The cipher request is scheduled as a separate kernel thread and therefore
 147 * load-balanced on the different CPUs via the process scheduler. To allow
 148 * the kernel crypto API to inform the caller about the completion of a cipher
 149 * request, the caller must provide a callback function. That function is
 150 * invoked with the cipher handle when the request completes.
 151 *
 152 * To support the asynchronous operation, additional information than just the
 153 * cipher handle must be supplied to the kernel crypto API. That additional
 154 * information is given by filling in the skcipher_request data structure.
 155 *
 156 * For the symmetric key cipher API, the state is maintained with the tfm
 157 * cipher handle. A single tfm can be used across multiple calls and in
 158 * parallel. For asynchronous block cipher calls, context data supplied and
 159 * only used by the caller can be referenced the request data structure in
 160 * addition to the IV used for the cipher request. The maintenance of such
 161 * state information would be important for a crypto driver implementer to
 162 * have, because when calling the callback function upon completion of the
 163 * cipher operation, that callback function may need some information about
 164 * which operation just finished if it invoked multiple in parallel. This
 165 * state information is unused by the kernel crypto API.
 166 */
 167
 168static inline struct crypto_skcipher *__crypto_skcipher_cast(
 169        struct crypto_tfm *tfm)
 170{
 171        return container_of(tfm, struct crypto_skcipher, base);
 172}
 173
 174/**
 175 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 176 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 177 *            skcipher cipher
 178 * @type: specifies the type of the cipher
 179 * @mask: specifies the mask for the cipher
 180 *
 181 * Allocate a cipher handle for an skcipher. The returned struct
 182 * crypto_skcipher is the cipher handle that is required for any subsequent
 183 * API invocation for that skcipher.
 184 *
 185 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 186 *         of an error, PTR_ERR() returns the error code.
 187 */
 188struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 189                                              u32 type, u32 mask);
 190
 191struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
 192                                              u32 type, u32 mask);
 193
 194static inline struct crypto_tfm *crypto_skcipher_tfm(
 195        struct crypto_skcipher *tfm)
 196{
 197        return &tfm->base;
 198}
 199
 200/**
 201 * crypto_free_skcipher() - zeroize and free cipher handle
 202 * @tfm: cipher handle to be freed
 203 *
 204 * If @tfm is a NULL or error pointer, this function does nothing.
 205 */
 206static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 207{
 208        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 209}
 210
 211static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
 212{
 213        crypto_free_skcipher(&tfm->base);
 214}
 215
 216/**
 217 * crypto_has_skcipher() - Search for the availability of an skcipher.
 218 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 219 *            skcipher
 220 * @type: specifies the type of the skcipher
 221 * @mask: specifies the mask for the skcipher
 222 *
 223 * Return: true when the skcipher is known to the kernel crypto API; false
 224 *         otherwise
 225 */
 226int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
 227
 228static inline const char *crypto_skcipher_driver_name(
 229        struct crypto_skcipher *tfm)
 230{
 231        return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
 232}
 233
 234static inline struct skcipher_alg *crypto_skcipher_alg(
 235        struct crypto_skcipher *tfm)
 236{
 237        return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
 238                            struct skcipher_alg, base);
 239}
 240
 241static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
 242{
 243        return alg->ivsize;
 244}
 245
 246/**
 247 * crypto_skcipher_ivsize() - obtain IV size
 248 * @tfm: cipher handle
 249 *
 250 * The size of the IV for the skcipher referenced by the cipher handle is
 251 * returned. This IV size may be zero if the cipher does not need an IV.
 252 *
 253 * Return: IV size in bytes
 254 */
 255static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 256{
 257        return crypto_skcipher_alg(tfm)->ivsize;
 258}
 259
 260static inline unsigned int crypto_sync_skcipher_ivsize(
 261        struct crypto_sync_skcipher *tfm)
 262{
 263        return crypto_skcipher_ivsize(&tfm->base);
 264}
 265
 266/**
 267 * crypto_skcipher_blocksize() - obtain block size of cipher
 268 * @tfm: cipher handle
 269 *
 270 * The block size for the skcipher referenced with the cipher handle is
 271 * returned. The caller may use that information to allocate appropriate
 272 * memory for the data returned by the encryption or decryption operation
 273 *
 274 * Return: block size of cipher
 275 */
 276static inline unsigned int crypto_skcipher_blocksize(
 277        struct crypto_skcipher *tfm)
 278{
 279        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 280}
 281
 282static inline unsigned int crypto_skcipher_alg_chunksize(
 283        struct skcipher_alg *alg)
 284{
 285        return alg->chunksize;
 286}
 287
 288/**
 289 * crypto_skcipher_chunksize() - obtain chunk size
 290 * @tfm: cipher handle
 291 *
 292 * The block size is set to one for ciphers such as CTR.  However,
 293 * you still need to provide incremental updates in multiples of
 294 * the underlying block size as the IV does not have sub-block
 295 * granularity.  This is known in this API as the chunk size.
 296 *
 297 * Return: chunk size in bytes
 298 */
 299static inline unsigned int crypto_skcipher_chunksize(
 300        struct crypto_skcipher *tfm)
 301{
 302        return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
 303}
 304
 305static inline unsigned int crypto_sync_skcipher_blocksize(
 306        struct crypto_sync_skcipher *tfm)
 307{
 308        return crypto_skcipher_blocksize(&tfm->base);
 309}
 310
 311static inline unsigned int crypto_skcipher_alignmask(
 312        struct crypto_skcipher *tfm)
 313{
 314        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 315}
 316
 317static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 318{
 319        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 320}
 321
 322static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 323                                               u32 flags)
 324{
 325        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 326}
 327
 328static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 329                                                 u32 flags)
 330{
 331        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 332}
 333
 334static inline u32 crypto_sync_skcipher_get_flags(
 335        struct crypto_sync_skcipher *tfm)
 336{
 337        return crypto_skcipher_get_flags(&tfm->base);
 338}
 339
 340static inline void crypto_sync_skcipher_set_flags(
 341        struct crypto_sync_skcipher *tfm, u32 flags)
 342{
 343        crypto_skcipher_set_flags(&tfm->base, flags);
 344}
 345
 346static inline void crypto_sync_skcipher_clear_flags(
 347        struct crypto_sync_skcipher *tfm, u32 flags)
 348{
 349        crypto_skcipher_clear_flags(&tfm->base, flags);
 350}
 351
 352/**
 353 * crypto_skcipher_setkey() - set key for cipher
 354 * @tfm: cipher handle
 355 * @key: buffer holding the key
 356 * @keylen: length of the key in bytes
 357 *
 358 * The caller provided key is set for the skcipher referenced by the cipher
 359 * handle.
 360 *
 361 * Note, the key length determines the cipher type. Many block ciphers implement
 362 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 363 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 364 * is performed.
 365 *
 366 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 367 */
 368int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 369                           const u8 *key, unsigned int keylen);
 370
 371static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
 372                                         const u8 *key, unsigned int keylen)
 373{
 374        return crypto_skcipher_setkey(&tfm->base, key, keylen);
 375}
 376
 377static inline unsigned int crypto_skcipher_min_keysize(
 378        struct crypto_skcipher *tfm)
 379{
 380        return crypto_skcipher_alg(tfm)->min_keysize;
 381}
 382
 383static inline unsigned int crypto_skcipher_max_keysize(
 384        struct crypto_skcipher *tfm)
 385{
 386        return crypto_skcipher_alg(tfm)->max_keysize;
 387}
 388
 389/**
 390 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 391 * @req: skcipher_request out of which the cipher handle is to be obtained
 392 *
 393 * Return the crypto_skcipher handle when furnishing an skcipher_request
 394 * data structure.
 395 *
 396 * Return: crypto_skcipher handle
 397 */
 398static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 399        struct skcipher_request *req)
 400{
 401        return __crypto_skcipher_cast(req->base.tfm);
 402}
 403
 404static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
 405        struct skcipher_request *req)
 406{
 407        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 408
 409        return container_of(tfm, struct crypto_sync_skcipher, base);
 410}
 411
 412/**
 413 * crypto_skcipher_encrypt() - encrypt plaintext
 414 * @req: reference to the skcipher_request handle that holds all information
 415 *       needed to perform the cipher operation
 416 *
 417 * Encrypt plaintext data using the skcipher_request handle. That data
 418 * structure and how it is filled with data is discussed with the
 419 * skcipher_request_* functions.
 420 *
 421 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 422 */
 423int crypto_skcipher_encrypt(struct skcipher_request *req);
 424
 425/**
 426 * crypto_skcipher_decrypt() - decrypt ciphertext
 427 * @req: reference to the skcipher_request handle that holds all information
 428 *       needed to perform the cipher operation
 429 *
 430 * Decrypt ciphertext data using the skcipher_request handle. That data
 431 * structure and how it is filled with data is discussed with the
 432 * skcipher_request_* functions.
 433 *
 434 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 435 */
 436int crypto_skcipher_decrypt(struct skcipher_request *req);
 437
 438/**
 439 * DOC: Symmetric Key Cipher Request Handle
 440 *
 441 * The skcipher_request data structure contains all pointers to data
 442 * required for the symmetric key cipher operation. This includes the cipher
 443 * handle (which can be used by multiple skcipher_request instances), pointer
 444 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 445 * as a handle to the skcipher_request_* API calls in a similar way as
 446 * skcipher handle to the crypto_skcipher_* API calls.
 447 */
 448
 449/**
 450 * crypto_skcipher_reqsize() - obtain size of the request data structure
 451 * @tfm: cipher handle
 452 *
 453 * Return: number of bytes
 454 */
 455static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 456{
 457        return tfm->reqsize;
 458}
 459
 460/**
 461 * skcipher_request_set_tfm() - update cipher handle reference in request
 462 * @req: request handle to be modified
 463 * @tfm: cipher handle that shall be added to the request handle
 464 *
 465 * Allow the caller to replace the existing skcipher handle in the request
 466 * data structure with a different one.
 467 */
 468static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 469                                            struct crypto_skcipher *tfm)
 470{
 471        req->base.tfm = crypto_skcipher_tfm(tfm);
 472}
 473
 474static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
 475                                            struct crypto_sync_skcipher *tfm)
 476{
 477        skcipher_request_set_tfm(req, &tfm->base);
 478}
 479
 480static inline struct skcipher_request *skcipher_request_cast(
 481        struct crypto_async_request *req)
 482{
 483        return container_of(req, struct skcipher_request, base);
 484}
 485
 486/**
 487 * skcipher_request_alloc() - allocate request data structure
 488 * @tfm: cipher handle to be registered with the request
 489 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 490 *
 491 * Allocate the request data structure that must be used with the skcipher
 492 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 493 * handle is registered in the request data structure.
 494 *
 495 * Return: allocated request handle in case of success, or NULL if out of memory
 496 */
 497static inline struct skcipher_request *skcipher_request_alloc(
 498        struct crypto_skcipher *tfm, gfp_t gfp)
 499{
 500        struct skcipher_request *req;
 501
 502        req = kmalloc(sizeof(struct skcipher_request) +
 503                      crypto_skcipher_reqsize(tfm), gfp);
 504
 505        if (likely(req))
 506                skcipher_request_set_tfm(req, tfm);
 507
 508        return req;
 509}
 510
 511/**
 512 * skcipher_request_free() - zeroize and free request data structure
 513 * @req: request data structure cipher handle to be freed
 514 */
 515static inline void skcipher_request_free(struct skcipher_request *req)
 516{
 517        kfree_sensitive(req);
 518}
 519
 520static inline void skcipher_request_zero(struct skcipher_request *req)
 521{
 522        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 523
 524        memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
 525}
 526
 527/**
 528 * skcipher_request_set_callback() - set asynchronous callback function
 529 * @req: request handle
 530 * @flags: specify zero or an ORing of the flags
 531 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 532 *         increase the wait queue beyond the initial maximum size;
 533 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 534 * @compl: callback function pointer to be registered with the request handle
 535 * @data: The data pointer refers to memory that is not used by the kernel
 536 *        crypto API, but provided to the callback function for it to use. Here,
 537 *        the caller can provide a reference to memory the callback function can
 538 *        operate on. As the callback function is invoked asynchronously to the
 539 *        related functionality, it may need to access data structures of the
 540 *        related functionality which can be referenced using this pointer. The
 541 *        callback function can access the memory via the "data" field in the
 542 *        crypto_async_request data structure provided to the callback function.
 543 *
 544 * This function allows setting the callback function that is triggered once the
 545 * cipher operation completes.
 546 *
 547 * The callback function is registered with the skcipher_request handle and
 548 * must comply with the following template::
 549 *
 550 *      void callback_function(struct crypto_async_request *req, int error)
 551 */
 552static inline void skcipher_request_set_callback(struct skcipher_request *req,
 553                                                 u32 flags,
 554                                                 crypto_completion_t compl,
 555                                                 void *data)
 556{
 557        req->base.complete = compl;
 558        req->base.data = data;
 559        req->base.flags = flags;
 560}
 561
 562/**
 563 * skcipher_request_set_crypt() - set data buffers
 564 * @req: request handle
 565 * @src: source scatter / gather list
 566 * @dst: destination scatter / gather list
 567 * @cryptlen: number of bytes to process from @src
 568 * @iv: IV for the cipher operation which must comply with the IV size defined
 569 *      by crypto_skcipher_ivsize
 570 *
 571 * This function allows setting of the source data and destination data
 572 * scatter / gather lists.
 573 *
 574 * For encryption, the source is treated as the plaintext and the
 575 * destination is the ciphertext. For a decryption operation, the use is
 576 * reversed - the source is the ciphertext and the destination is the plaintext.
 577 */
 578static inline void skcipher_request_set_crypt(
 579        struct skcipher_request *req,
 580        struct scatterlist *src, struct scatterlist *dst,
 581        unsigned int cryptlen, void *iv)
 582{
 583        req->src = src;
 584        req->dst = dst;
 585        req->cryptlen = cryptlen;
 586        req->iv = iv;
 587}
 588
 589#endif  /* _CRYPTO_SKCIPHER_H */
 590
 591