linux/include/linux/sched/signal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_SIGNAL_H
   3#define _LINUX_SCHED_SIGNAL_H
   4
   5#include <linux/rculist.h>
   6#include <linux/signal.h>
   7#include <linux/sched.h>
   8#include <linux/sched/jobctl.h>
   9#include <linux/sched/task.h>
  10#include <linux/cred.h>
  11#include <linux/refcount.h>
  12#include <linux/posix-timers.h>
  13#include <linux/mm_types.h>
  14#include <asm/ptrace.h>
  15
  16/*
  17 * Types defining task->signal and task->sighand and APIs using them:
  18 */
  19
  20struct sighand_struct {
  21        spinlock_t              siglock;
  22        refcount_t              count;
  23        wait_queue_head_t       signalfd_wqh;
  24        struct k_sigaction      action[_NSIG];
  25};
  26
  27/*
  28 * Per-process accounting stats:
  29 */
  30struct pacct_struct {
  31        int                     ac_flag;
  32        long                    ac_exitcode;
  33        unsigned long           ac_mem;
  34        u64                     ac_utime, ac_stime;
  35        unsigned long           ac_minflt, ac_majflt;
  36};
  37
  38struct cpu_itimer {
  39        u64 expires;
  40        u64 incr;
  41};
  42
  43/*
  44 * This is the atomic variant of task_cputime, which can be used for
  45 * storing and updating task_cputime statistics without locking.
  46 */
  47struct task_cputime_atomic {
  48        atomic64_t utime;
  49        atomic64_t stime;
  50        atomic64_t sum_exec_runtime;
  51};
  52
  53#define INIT_CPUTIME_ATOMIC \
  54        (struct task_cputime_atomic) {                          \
  55                .utime = ATOMIC64_INIT(0),                      \
  56                .stime = ATOMIC64_INIT(0),                      \
  57                .sum_exec_runtime = ATOMIC64_INIT(0),           \
  58        }
  59/**
  60 * struct thread_group_cputimer - thread group interval timer counts
  61 * @cputime_atomic:     atomic thread group interval timers.
  62 *
  63 * This structure contains the version of task_cputime, above, that is
  64 * used for thread group CPU timer calculations.
  65 */
  66struct thread_group_cputimer {
  67        struct task_cputime_atomic cputime_atomic;
  68};
  69
  70struct multiprocess_signals {
  71        sigset_t signal;
  72        struct hlist_node node;
  73};
  74
  75struct core_thread {
  76        struct task_struct *task;
  77        struct core_thread *next;
  78};
  79
  80struct core_state {
  81        atomic_t nr_threads;
  82        struct core_thread dumper;
  83        struct completion startup;
  84};
  85
  86/*
  87 * NOTE! "signal_struct" does not have its own
  88 * locking, because a shared signal_struct always
  89 * implies a shared sighand_struct, so locking
  90 * sighand_struct is always a proper superset of
  91 * the locking of signal_struct.
  92 */
  93struct signal_struct {
  94        refcount_t              sigcnt;
  95        atomic_t                live;
  96        int                     nr_threads;
  97        struct list_head        thread_head;
  98
  99        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 100
 101        /* current thread group signal load-balancing target: */
 102        struct task_struct      *curr_target;
 103
 104        /* shared signal handling: */
 105        struct sigpending       shared_pending;
 106
 107        /* For collecting multiprocess signals during fork */
 108        struct hlist_head       multiprocess;
 109
 110        /* thread group exit support */
 111        int                     group_exit_code;
 112        /* notify group_exec_task when notify_count is less or equal to 0 */
 113        int                     notify_count;
 114        struct task_struct      *group_exec_task;
 115
 116        /* thread group stop support, overloads group_exit_code too */
 117        int                     group_stop_count;
 118        unsigned int            flags; /* see SIGNAL_* flags below */
 119
 120        struct core_state *core_state; /* coredumping support */
 121
 122        /*
 123         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 124         * manager, to re-parent orphan (double-forking) child processes
 125         * to this process instead of 'init'. The service manager is
 126         * able to receive SIGCHLD signals and is able to investigate
 127         * the process until it calls wait(). All children of this
 128         * process will inherit a flag if they should look for a
 129         * child_subreaper process at exit.
 130         */
 131        unsigned int            is_child_subreaper:1;
 132        unsigned int            has_child_subreaper:1;
 133
 134#ifdef CONFIG_POSIX_TIMERS
 135
 136        /* POSIX.1b Interval Timers */
 137        int                     posix_timer_id;
 138        struct list_head        posix_timers;
 139
 140        /* ITIMER_REAL timer for the process */
 141        struct hrtimer real_timer;
 142        ktime_t it_real_incr;
 143
 144        /*
 145         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 146         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 147         * values are defined to 0 and 1 respectively
 148         */
 149        struct cpu_itimer it[2];
 150
 151        /*
 152         * Thread group totals for process CPU timers.
 153         * See thread_group_cputimer(), et al, for details.
 154         */
 155        struct thread_group_cputimer cputimer;
 156
 157#endif
 158        /* Empty if CONFIG_POSIX_TIMERS=n */
 159        struct posix_cputimers posix_cputimers;
 160
 161        /* PID/PID hash table linkage. */
 162        struct pid *pids[PIDTYPE_MAX];
 163
 164#ifdef CONFIG_NO_HZ_FULL
 165        atomic_t tick_dep_mask;
 166#endif
 167
 168        struct pid *tty_old_pgrp;
 169
 170        /* boolean value for session group leader */
 171        int leader;
 172
 173        struct tty_struct *tty; /* NULL if no tty */
 174
 175#ifdef CONFIG_SCHED_AUTOGROUP
 176        struct autogroup *autogroup;
 177#endif
 178        /*
 179         * Cumulative resource counters for dead threads in the group,
 180         * and for reaped dead child processes forked by this group.
 181         * Live threads maintain their own counters and add to these
 182         * in __exit_signal, except for the group leader.
 183         */
 184        seqlock_t stats_lock;
 185        u64 utime, stime, cutime, cstime;
 186        u64 gtime;
 187        u64 cgtime;
 188        struct prev_cputime prev_cputime;
 189        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 190        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 191        unsigned long inblock, oublock, cinblock, coublock;
 192        unsigned long maxrss, cmaxrss;
 193        struct task_io_accounting ioac;
 194
 195        /*
 196         * Cumulative ns of schedule CPU time fo dead threads in the
 197         * group, not including a zombie group leader, (This only differs
 198         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 199         * other than jiffies.)
 200         */
 201        unsigned long long sum_sched_runtime;
 202
 203        /*
 204         * We don't bother to synchronize most readers of this at all,
 205         * because there is no reader checking a limit that actually needs
 206         * to get both rlim_cur and rlim_max atomically, and either one
 207         * alone is a single word that can safely be read normally.
 208         * getrlimit/setrlimit use task_lock(current->group_leader) to
 209         * protect this instead of the siglock, because they really
 210         * have no need to disable irqs.
 211         */
 212        struct rlimit rlim[RLIM_NLIMITS];
 213
 214#ifdef CONFIG_BSD_PROCESS_ACCT
 215        struct pacct_struct pacct;      /* per-process accounting information */
 216#endif
 217#ifdef CONFIG_TASKSTATS
 218        struct taskstats *stats;
 219#endif
 220#ifdef CONFIG_AUDIT
 221        unsigned audit_tty;
 222        struct tty_audit_buf *tty_audit_buf;
 223#endif
 224
 225        /*
 226         * Thread is the potential origin of an oom condition; kill first on
 227         * oom
 228         */
 229        bool oom_flag_origin;
 230        short oom_score_adj;            /* OOM kill score adjustment */
 231        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 232                                         * Only settable by CAP_SYS_RESOURCE. */
 233        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 234                                         * killed by the oom killer */
 235
 236        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 237                                         * credential calculations
 238                                         * (notably. ptrace)
 239                                         * Deprecated do not use in new code.
 240                                         * Use exec_update_lock instead.
 241                                         */
 242        struct rw_semaphore exec_update_lock;   /* Held while task_struct is
 243                                                 * being updated during exec,
 244                                                 * and may have inconsistent
 245                                                 * permissions.
 246                                                 */
 247} __randomize_layout;
 248
 249/*
 250 * Bits in flags field of signal_struct.
 251 */
 252#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 253#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 254#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 255/*
 256 * Pending notifications to parent.
 257 */
 258#define SIGNAL_CLD_STOPPED      0x00000010
 259#define SIGNAL_CLD_CONTINUED    0x00000020
 260#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 261
 262#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 263
 264#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 265                          SIGNAL_STOP_CONTINUED)
 266
 267static inline void signal_set_stop_flags(struct signal_struct *sig,
 268                                         unsigned int flags)
 269{
 270        WARN_ON(sig->flags & SIGNAL_GROUP_EXIT);
 271        sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 272}
 273
 274extern void flush_signals(struct task_struct *);
 275extern void ignore_signals(struct task_struct *);
 276extern void flush_signal_handlers(struct task_struct *, int force_default);
 277extern int dequeue_signal(struct task_struct *task, sigset_t *mask,
 278                          kernel_siginfo_t *info, enum pid_type *type);
 279
 280static inline int kernel_dequeue_signal(void)
 281{
 282        struct task_struct *task = current;
 283        kernel_siginfo_t __info;
 284        enum pid_type __type;
 285        int ret;
 286
 287        spin_lock_irq(&task->sighand->siglock);
 288        ret = dequeue_signal(task, &task->blocked, &__info, &__type);
 289        spin_unlock_irq(&task->sighand->siglock);
 290
 291        return ret;
 292}
 293
 294static inline void kernel_signal_stop(void)
 295{
 296        spin_lock_irq(&current->sighand->siglock);
 297        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 298                set_special_state(TASK_STOPPED);
 299        spin_unlock_irq(&current->sighand->siglock);
 300
 301        schedule();
 302}
 303#ifdef __ia64__
 304# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
 305#else
 306# define ___ARCH_SI_IA64(_a1, _a2, _a3)
 307#endif
 308
 309int force_sig_fault_to_task(int sig, int code, void __user *addr
 310        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 311        , struct task_struct *t);
 312int force_sig_fault(int sig, int code, void __user *addr
 313        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
 314int send_sig_fault(int sig, int code, void __user *addr
 315        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 316        , struct task_struct *t);
 317
 318int force_sig_mceerr(int code, void __user *, short);
 319int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
 320
 321int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
 322int force_sig_pkuerr(void __user *addr, u32 pkey);
 323int force_sig_perf(void __user *addr, u32 type, u64 sig_data);
 324
 325int force_sig_ptrace_errno_trap(int errno, void __user *addr);
 326int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
 327int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
 328                        struct task_struct *t);
 329int force_sig_seccomp(int syscall, int reason, bool force_coredump);
 330
 331extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
 332extern void force_sigsegv(int sig);
 333extern int force_sig_info(struct kernel_siginfo *);
 334extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
 335extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
 336extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
 337                                const struct cred *);
 338extern int kill_pgrp(struct pid *pid, int sig, int priv);
 339extern int kill_pid(struct pid *pid, int sig, int priv);
 340extern __must_check bool do_notify_parent(struct task_struct *, int);
 341extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 342extern void force_sig(int);
 343extern void force_fatal_sig(int);
 344extern void force_exit_sig(int);
 345extern int send_sig(int, struct task_struct *, int);
 346extern int zap_other_threads(struct task_struct *p);
 347extern struct sigqueue *sigqueue_alloc(void);
 348extern void sigqueue_free(struct sigqueue *);
 349extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
 350extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 351
 352static inline void clear_notify_signal(void)
 353{
 354        clear_thread_flag(TIF_NOTIFY_SIGNAL);
 355        smp_mb__after_atomic();
 356}
 357
 358/*
 359 * Called to break out of interruptible wait loops, and enter the
 360 * exit_to_user_mode_loop().
 361 */
 362static inline void set_notify_signal(struct task_struct *task)
 363{
 364        if (!test_and_set_tsk_thread_flag(task, TIF_NOTIFY_SIGNAL) &&
 365            !wake_up_state(task, TASK_INTERRUPTIBLE))
 366                kick_process(task);
 367}
 368
 369static inline int restart_syscall(void)
 370{
 371        set_tsk_thread_flag(current, TIF_SIGPENDING);
 372        return -ERESTARTNOINTR;
 373}
 374
 375static inline int task_sigpending(struct task_struct *p)
 376{
 377        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 378}
 379
 380static inline int signal_pending(struct task_struct *p)
 381{
 382        /*
 383         * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
 384         * behavior in terms of ensuring that we break out of wait loops
 385         * so that notify signal callbacks can be processed.
 386         */
 387        if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
 388                return 1;
 389        return task_sigpending(p);
 390}
 391
 392static inline int __fatal_signal_pending(struct task_struct *p)
 393{
 394        return unlikely(sigismember(&p->pending.signal, SIGKILL));
 395}
 396
 397static inline int fatal_signal_pending(struct task_struct *p)
 398{
 399        return task_sigpending(p) && __fatal_signal_pending(p);
 400}
 401
 402static inline int signal_pending_state(unsigned int state, struct task_struct *p)
 403{
 404        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 405                return 0;
 406        if (!signal_pending(p))
 407                return 0;
 408
 409        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 410}
 411
 412/*
 413 * This should only be used in fault handlers to decide whether we
 414 * should stop the current fault routine to handle the signals
 415 * instead, especially with the case where we've got interrupted with
 416 * a VM_FAULT_RETRY.
 417 */
 418static inline bool fault_signal_pending(vm_fault_t fault_flags,
 419                                        struct pt_regs *regs)
 420{
 421        return unlikely((fault_flags & VM_FAULT_RETRY) &&
 422                        (fatal_signal_pending(current) ||
 423                         (user_mode(regs) && signal_pending(current))));
 424}
 425
 426/*
 427 * Reevaluate whether the task has signals pending delivery.
 428 * Wake the task if so.
 429 * This is required every time the blocked sigset_t changes.
 430 * callers must hold sighand->siglock.
 431 */
 432extern void recalc_sigpending_and_wake(struct task_struct *t);
 433extern void recalc_sigpending(void);
 434extern void calculate_sigpending(void);
 435
 436extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 437
 438static inline void signal_wake_up(struct task_struct *t, bool resume)
 439{
 440        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 441}
 442static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 443{
 444        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 445}
 446
 447void task_join_group_stop(struct task_struct *task);
 448
 449#ifdef TIF_RESTORE_SIGMASK
 450/*
 451 * Legacy restore_sigmask accessors.  These are inefficient on
 452 * SMP architectures because they require atomic operations.
 453 */
 454
 455/**
 456 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 457 *
 458 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 459 * will run before returning to user mode, to process the flag.  For
 460 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 461 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 462 * arch code will notice on return to user mode, in case those bits
 463 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 464 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 465 */
 466static inline void set_restore_sigmask(void)
 467{
 468        set_thread_flag(TIF_RESTORE_SIGMASK);
 469}
 470
 471static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 472{
 473        clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 474}
 475
 476static inline void clear_restore_sigmask(void)
 477{
 478        clear_thread_flag(TIF_RESTORE_SIGMASK);
 479}
 480static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 481{
 482        return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 483}
 484static inline bool test_restore_sigmask(void)
 485{
 486        return test_thread_flag(TIF_RESTORE_SIGMASK);
 487}
 488static inline bool test_and_clear_restore_sigmask(void)
 489{
 490        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 491}
 492
 493#else   /* TIF_RESTORE_SIGMASK */
 494
 495/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 496static inline void set_restore_sigmask(void)
 497{
 498        current->restore_sigmask = true;
 499}
 500static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 501{
 502        task->restore_sigmask = false;
 503}
 504static inline void clear_restore_sigmask(void)
 505{
 506        current->restore_sigmask = false;
 507}
 508static inline bool test_restore_sigmask(void)
 509{
 510        return current->restore_sigmask;
 511}
 512static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 513{
 514        return task->restore_sigmask;
 515}
 516static inline bool test_and_clear_restore_sigmask(void)
 517{
 518        if (!current->restore_sigmask)
 519                return false;
 520        current->restore_sigmask = false;
 521        return true;
 522}
 523#endif
 524
 525static inline void restore_saved_sigmask(void)
 526{
 527        if (test_and_clear_restore_sigmask())
 528                __set_current_blocked(&current->saved_sigmask);
 529}
 530
 531extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
 532
 533static inline void restore_saved_sigmask_unless(bool interrupted)
 534{
 535        if (interrupted)
 536                WARN_ON(!signal_pending(current));
 537        else
 538                restore_saved_sigmask();
 539}
 540
 541static inline sigset_t *sigmask_to_save(void)
 542{
 543        sigset_t *res = &current->blocked;
 544        if (unlikely(test_restore_sigmask()))
 545                res = &current->saved_sigmask;
 546        return res;
 547}
 548
 549static inline int kill_cad_pid(int sig, int priv)
 550{
 551        return kill_pid(cad_pid, sig, priv);
 552}
 553
 554/* These can be the second arg to send_sig_info/send_group_sig_info.  */
 555#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
 556#define SEND_SIG_PRIV   ((struct kernel_siginfo *) 1)
 557
 558static inline int __on_sig_stack(unsigned long sp)
 559{
 560#ifdef CONFIG_STACK_GROWSUP
 561        return sp >= current->sas_ss_sp &&
 562                sp - current->sas_ss_sp < current->sas_ss_size;
 563#else
 564        return sp > current->sas_ss_sp &&
 565                sp - current->sas_ss_sp <= current->sas_ss_size;
 566#endif
 567}
 568
 569/*
 570 * True if we are on the alternate signal stack.
 571 */
 572static inline int on_sig_stack(unsigned long sp)
 573{
 574        /*
 575         * If the signal stack is SS_AUTODISARM then, by construction, we
 576         * can't be on the signal stack unless user code deliberately set
 577         * SS_AUTODISARM when we were already on it.
 578         *
 579         * This improves reliability: if user state gets corrupted such that
 580         * the stack pointer points very close to the end of the signal stack,
 581         * then this check will enable the signal to be handled anyway.
 582         */
 583        if (current->sas_ss_flags & SS_AUTODISARM)
 584                return 0;
 585
 586        return __on_sig_stack(sp);
 587}
 588
 589static inline int sas_ss_flags(unsigned long sp)
 590{
 591        if (!current->sas_ss_size)
 592                return SS_DISABLE;
 593
 594        return on_sig_stack(sp) ? SS_ONSTACK : 0;
 595}
 596
 597static inline void sas_ss_reset(struct task_struct *p)
 598{
 599        p->sas_ss_sp = 0;
 600        p->sas_ss_size = 0;
 601        p->sas_ss_flags = SS_DISABLE;
 602}
 603
 604static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 605{
 606        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 607#ifdef CONFIG_STACK_GROWSUP
 608                return current->sas_ss_sp;
 609#else
 610                return current->sas_ss_sp + current->sas_ss_size;
 611#endif
 612        return sp;
 613}
 614
 615extern void __cleanup_sighand(struct sighand_struct *);
 616extern void flush_itimer_signals(void);
 617
 618#define tasklist_empty() \
 619        list_empty(&init_task.tasks)
 620
 621#define next_task(p) \
 622        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 623
 624#define for_each_process(p) \
 625        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 626
 627extern bool current_is_single_threaded(void);
 628
 629/*
 630 * Careful: do_each_thread/while_each_thread is a double loop so
 631 *          'break' will not work as expected - use goto instead.
 632 */
 633#define do_each_thread(g, t) \
 634        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 635
 636#define while_each_thread(g, t) \
 637        while ((t = next_thread(t)) != g)
 638
 639#define __for_each_thread(signal, t)    \
 640        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 641
 642#define for_each_thread(p, t)           \
 643        __for_each_thread((p)->signal, t)
 644
 645/* Careful: this is a double loop, 'break' won't work as expected. */
 646#define for_each_process_thread(p, t)   \
 647        for_each_process(p) for_each_thread(p, t)
 648
 649typedef int (*proc_visitor)(struct task_struct *p, void *data);
 650void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 651
 652static inline
 653struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 654{
 655        struct pid *pid;
 656        if (type == PIDTYPE_PID)
 657                pid = task_pid(task);
 658        else
 659                pid = task->signal->pids[type];
 660        return pid;
 661}
 662
 663static inline struct pid *task_tgid(struct task_struct *task)
 664{
 665        return task->signal->pids[PIDTYPE_TGID];
 666}
 667
 668/*
 669 * Without tasklist or RCU lock it is not safe to dereference
 670 * the result of task_pgrp/task_session even if task == current,
 671 * we can race with another thread doing sys_setsid/sys_setpgid.
 672 */
 673static inline struct pid *task_pgrp(struct task_struct *task)
 674{
 675        return task->signal->pids[PIDTYPE_PGID];
 676}
 677
 678static inline struct pid *task_session(struct task_struct *task)
 679{
 680        return task->signal->pids[PIDTYPE_SID];
 681}
 682
 683static inline int get_nr_threads(struct task_struct *task)
 684{
 685        return task->signal->nr_threads;
 686}
 687
 688static inline bool thread_group_leader(struct task_struct *p)
 689{
 690        return p->exit_signal >= 0;
 691}
 692
 693static inline
 694bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 695{
 696        return p1->signal == p2->signal;
 697}
 698
 699static inline struct task_struct *next_thread(const struct task_struct *p)
 700{
 701        return list_entry_rcu(p->thread_group.next,
 702                              struct task_struct, thread_group);
 703}
 704
 705static inline int thread_group_empty(struct task_struct *p)
 706{
 707        return list_empty(&p->thread_group);
 708}
 709
 710#define delay_group_leader(p) \
 711                (thread_group_leader(p) && !thread_group_empty(p))
 712
 713extern bool thread_group_exited(struct pid *pid);
 714
 715extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
 716                                                        unsigned long *flags);
 717
 718static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
 719                                                       unsigned long *flags)
 720{
 721        struct sighand_struct *ret;
 722
 723        ret = __lock_task_sighand(task, flags);
 724        (void)__cond_lock(&task->sighand->siglock, ret);
 725        return ret;
 726}
 727
 728static inline void unlock_task_sighand(struct task_struct *task,
 729                                                unsigned long *flags)
 730{
 731        spin_unlock_irqrestore(&task->sighand->siglock, *flags);
 732}
 733
 734#ifdef CONFIG_LOCKDEP
 735extern void lockdep_assert_task_sighand_held(struct task_struct *task);
 736#else
 737static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
 738#endif
 739
 740static inline unsigned long task_rlimit(const struct task_struct *task,
 741                unsigned int limit)
 742{
 743        return READ_ONCE(task->signal->rlim[limit].rlim_cur);
 744}
 745
 746static inline unsigned long task_rlimit_max(const struct task_struct *task,
 747                unsigned int limit)
 748{
 749        return READ_ONCE(task->signal->rlim[limit].rlim_max);
 750}
 751
 752static inline unsigned long rlimit(unsigned int limit)
 753{
 754        return task_rlimit(current, limit);
 755}
 756
 757static inline unsigned long rlimit_max(unsigned int limit)
 758{
 759        return task_rlimit_max(current, limit);
 760}
 761
 762#endif /* _LINUX_SCHED_SIGNAL_H */
 763