linux/include/linux/slab.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   4 *
   5 * (C) SGI 2006, Christoph Lameter
   6 *      Cleaned up and restructured to ease the addition of alternative
   7 *      implementations of SLAB allocators.
   8 * (C) Linux Foundation 2008-2013
   9 *      Unified interface for all slab allocators
  10 */
  11
  12#ifndef _LINUX_SLAB_H
  13#define _LINUX_SLAB_H
  14
  15#include <linux/gfp.h>
  16#include <linux/overflow.h>
  17#include <linux/types.h>
  18#include <linux/workqueue.h>
  19#include <linux/percpu-refcount.h>
  20
  21
  22/*
  23 * Flags to pass to kmem_cache_create().
  24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
  25 */
  26/* DEBUG: Perform (expensive) checks on alloc/free */
  27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
  28/* DEBUG: Red zone objs in a cache */
  29#define SLAB_RED_ZONE           ((slab_flags_t __force)0x00000400U)
  30/* DEBUG: Poison objects */
  31#define SLAB_POISON             ((slab_flags_t __force)0x00000800U)
  32/* Align objs on cache lines */
  33#define SLAB_HWCACHE_ALIGN      ((slab_flags_t __force)0x00002000U)
  34/* Use GFP_DMA memory */
  35#define SLAB_CACHE_DMA          ((slab_flags_t __force)0x00004000U)
  36/* Use GFP_DMA32 memory */
  37#define SLAB_CACHE_DMA32        ((slab_flags_t __force)0x00008000U)
  38/* DEBUG: Store the last owner for bug hunting */
  39#define SLAB_STORE_USER         ((slab_flags_t __force)0x00010000U)
  40/* Panic if kmem_cache_create() fails */
  41#define SLAB_PANIC              ((slab_flags_t __force)0x00040000U)
  42/*
  43 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
  44 *
  45 * This delays freeing the SLAB page by a grace period, it does _NOT_
  46 * delay object freeing. This means that if you do kmem_cache_free()
  47 * that memory location is free to be reused at any time. Thus it may
  48 * be possible to see another object there in the same RCU grace period.
  49 *
  50 * This feature only ensures the memory location backing the object
  51 * stays valid, the trick to using this is relying on an independent
  52 * object validation pass. Something like:
  53 *
  54 *  rcu_read_lock()
  55 * again:
  56 *  obj = lockless_lookup(key);
  57 *  if (obj) {
  58 *    if (!try_get_ref(obj)) // might fail for free objects
  59 *      goto again;
  60 *
  61 *    if (obj->key != key) { // not the object we expected
  62 *      put_ref(obj);
  63 *      goto again;
  64 *    }
  65 *  }
  66 *  rcu_read_unlock();
  67 *
  68 * This is useful if we need to approach a kernel structure obliquely,
  69 * from its address obtained without the usual locking. We can lock
  70 * the structure to stabilize it and check it's still at the given address,
  71 * only if we can be sure that the memory has not been meanwhile reused
  72 * for some other kind of object (which our subsystem's lock might corrupt).
  73 *
  74 * rcu_read_lock before reading the address, then rcu_read_unlock after
  75 * taking the spinlock within the structure expected at that address.
  76 *
  77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
  78 */
  79/* Defer freeing slabs to RCU */
  80#define SLAB_TYPESAFE_BY_RCU    ((slab_flags_t __force)0x00080000U)
  81/* Spread some memory over cpuset */
  82#define SLAB_MEM_SPREAD         ((slab_flags_t __force)0x00100000U)
  83/* Trace allocations and frees */
  84#define SLAB_TRACE              ((slab_flags_t __force)0x00200000U)
  85
  86/* Flag to prevent checks on free */
  87#ifdef CONFIG_DEBUG_OBJECTS
  88# define SLAB_DEBUG_OBJECTS     ((slab_flags_t __force)0x00400000U)
  89#else
  90# define SLAB_DEBUG_OBJECTS     0
  91#endif
  92
  93/* Avoid kmemleak tracing */
  94#define SLAB_NOLEAKTRACE        ((slab_flags_t __force)0x00800000U)
  95
  96/* Fault injection mark */
  97#ifdef CONFIG_FAILSLAB
  98# define SLAB_FAILSLAB          ((slab_flags_t __force)0x02000000U)
  99#else
 100# define SLAB_FAILSLAB          0
 101#endif
 102/* Account to memcg */
 103#ifdef CONFIG_MEMCG_KMEM
 104# define SLAB_ACCOUNT           ((slab_flags_t __force)0x04000000U)
 105#else
 106# define SLAB_ACCOUNT           0
 107#endif
 108
 109#ifdef CONFIG_KASAN
 110#define SLAB_KASAN              ((slab_flags_t __force)0x08000000U)
 111#else
 112#define SLAB_KASAN              0
 113#endif
 114
 115/* The following flags affect the page allocator grouping pages by mobility */
 116/* Objects are reclaimable */
 117#define SLAB_RECLAIM_ACCOUNT    ((slab_flags_t __force)0x00020000U)
 118#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
 119
 120/*
 121 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 122 *
 123 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 124 *
 125 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 126 * Both make kfree a no-op.
 127 */
 128#define ZERO_SIZE_PTR ((void *)16)
 129
 130#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
 131                                (unsigned long)ZERO_SIZE_PTR)
 132
 133#include <linux/kasan.h>
 134
 135struct list_lru;
 136struct mem_cgroup;
 137/*
 138 * struct kmem_cache related prototypes
 139 */
 140void __init kmem_cache_init(void);
 141bool slab_is_available(void);
 142
 143struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
 144                        unsigned int align, slab_flags_t flags,
 145                        void (*ctor)(void *));
 146struct kmem_cache *kmem_cache_create_usercopy(const char *name,
 147                        unsigned int size, unsigned int align,
 148                        slab_flags_t flags,
 149                        unsigned int useroffset, unsigned int usersize,
 150                        void (*ctor)(void *));
 151void kmem_cache_destroy(struct kmem_cache *s);
 152int kmem_cache_shrink(struct kmem_cache *s);
 153
 154/*
 155 * Please use this macro to create slab caches. Simply specify the
 156 * name of the structure and maybe some flags that are listed above.
 157 *
 158 * The alignment of the struct determines object alignment. If you
 159 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 160 * then the objects will be properly aligned in SMP configurations.
 161 */
 162#define KMEM_CACHE(__struct, __flags)                                   \
 163                kmem_cache_create(#__struct, sizeof(struct __struct),   \
 164                        __alignof__(struct __struct), (__flags), NULL)
 165
 166/*
 167 * To whitelist a single field for copying to/from usercopy, use this
 168 * macro instead for KMEM_CACHE() above.
 169 */
 170#define KMEM_CACHE_USERCOPY(__struct, __flags, __field)                 \
 171                kmem_cache_create_usercopy(#__struct,                   \
 172                        sizeof(struct __struct),                        \
 173                        __alignof__(struct __struct), (__flags),        \
 174                        offsetof(struct __struct, __field),             \
 175                        sizeof_field(struct __struct, __field), NULL)
 176
 177/*
 178 * Common kmalloc functions provided by all allocators
 179 */
 180void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2);
 181void kfree(const void *objp);
 182void kfree_sensitive(const void *objp);
 183size_t __ksize(const void *objp);
 184size_t ksize(const void *objp);
 185#ifdef CONFIG_PRINTK
 186bool kmem_valid_obj(void *object);
 187void kmem_dump_obj(void *object);
 188#endif
 189
 190/*
 191 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 192 * alignment larger than the alignment of a 64-bit integer.
 193 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 194 */
 195#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 196#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 197#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 198#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
 199#else
 200#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 201#endif
 202
 203/*
 204 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 205 * Intended for arches that get misalignment faults even for 64 bit integer
 206 * aligned buffers.
 207 */
 208#ifndef ARCH_SLAB_MINALIGN
 209#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 210#endif
 211
 212/*
 213 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 214 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 215 * aligned pointers.
 216 */
 217#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
 218#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
 219#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
 220
 221/*
 222 * Kmalloc array related definitions
 223 */
 224
 225#ifdef CONFIG_SLAB
 226/*
 227 * The largest kmalloc size supported by the SLAB allocators is
 228 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 229 * less than 32 MB.
 230 *
 231 * WARNING: Its not easy to increase this value since the allocators have
 232 * to do various tricks to work around compiler limitations in order to
 233 * ensure proper constant folding.
 234 */
 235#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 236                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
 237#define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
 238#ifndef KMALLOC_SHIFT_LOW
 239#define KMALLOC_SHIFT_LOW       5
 240#endif
 241#endif
 242
 243#ifdef CONFIG_SLUB
 244/*
 245 * SLUB directly allocates requests fitting in to an order-1 page
 246 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
 247 */
 248#define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
 249#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
 250#ifndef KMALLOC_SHIFT_LOW
 251#define KMALLOC_SHIFT_LOW       3
 252#endif
 253#endif
 254
 255#ifdef CONFIG_SLOB
 256/*
 257 * SLOB passes all requests larger than one page to the page allocator.
 258 * No kmalloc array is necessary since objects of different sizes can
 259 * be allocated from the same page.
 260 */
 261#define KMALLOC_SHIFT_HIGH      PAGE_SHIFT
 262#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
 263#ifndef KMALLOC_SHIFT_LOW
 264#define KMALLOC_SHIFT_LOW       3
 265#endif
 266#endif
 267
 268/* Maximum allocatable size */
 269#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
 270/* Maximum size for which we actually use a slab cache */
 271#define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
 272/* Maximum order allocatable via the slab allocator */
 273#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 274
 275/*
 276 * Kmalloc subsystem.
 277 */
 278#ifndef KMALLOC_MIN_SIZE
 279#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 280#endif
 281
 282/*
 283 * This restriction comes from byte sized index implementation.
 284 * Page size is normally 2^12 bytes and, in this case, if we want to use
 285 * byte sized index which can represent 2^8 entries, the size of the object
 286 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 287 * If minimum size of kmalloc is less than 16, we use it as minimum object
 288 * size and give up to use byte sized index.
 289 */
 290#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
 291                               (KMALLOC_MIN_SIZE) : 16)
 292
 293/*
 294 * Whenever changing this, take care of that kmalloc_type() and
 295 * create_kmalloc_caches() still work as intended.
 296 *
 297 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
 298 * is for accounted but unreclaimable and non-dma objects. All the other
 299 * kmem caches can have both accounted and unaccounted objects.
 300 */
 301enum kmalloc_cache_type {
 302        KMALLOC_NORMAL = 0,
 303#ifndef CONFIG_ZONE_DMA
 304        KMALLOC_DMA = KMALLOC_NORMAL,
 305#endif
 306#ifndef CONFIG_MEMCG_KMEM
 307        KMALLOC_CGROUP = KMALLOC_NORMAL,
 308#else
 309        KMALLOC_CGROUP,
 310#endif
 311        KMALLOC_RECLAIM,
 312#ifdef CONFIG_ZONE_DMA
 313        KMALLOC_DMA,
 314#endif
 315        NR_KMALLOC_TYPES
 316};
 317
 318#ifndef CONFIG_SLOB
 319extern struct kmem_cache *
 320kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
 321
 322/*
 323 * Define gfp bits that should not be set for KMALLOC_NORMAL.
 324 */
 325#define KMALLOC_NOT_NORMAL_BITS                                 \
 326        (__GFP_RECLAIMABLE |                                    \
 327        (IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |       \
 328        (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
 329
 330static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
 331{
 332        /*
 333         * The most common case is KMALLOC_NORMAL, so test for it
 334         * with a single branch for all the relevant flags.
 335         */
 336        if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
 337                return KMALLOC_NORMAL;
 338
 339        /*
 340         * At least one of the flags has to be set. Their priorities in
 341         * decreasing order are:
 342         *  1) __GFP_DMA
 343         *  2) __GFP_RECLAIMABLE
 344         *  3) __GFP_ACCOUNT
 345         */
 346        if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
 347                return KMALLOC_DMA;
 348        if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
 349                return KMALLOC_RECLAIM;
 350        else
 351                return KMALLOC_CGROUP;
 352}
 353
 354/*
 355 * Figure out which kmalloc slab an allocation of a certain size
 356 * belongs to.
 357 * 0 = zero alloc
 358 * 1 =  65 .. 96 bytes
 359 * 2 = 129 .. 192 bytes
 360 * n = 2^(n-1)+1 .. 2^n
 361 *
 362 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
 363 * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
 364 * Callers where !size_is_constant should only be test modules, where runtime
 365 * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
 366 */
 367static __always_inline unsigned int __kmalloc_index(size_t size,
 368                                                    bool size_is_constant)
 369{
 370        if (!size)
 371                return 0;
 372
 373        if (size <= KMALLOC_MIN_SIZE)
 374                return KMALLOC_SHIFT_LOW;
 375
 376        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 377                return 1;
 378        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 379                return 2;
 380        if (size <=          8) return 3;
 381        if (size <=         16) return 4;
 382        if (size <=         32) return 5;
 383        if (size <=         64) return 6;
 384        if (size <=        128) return 7;
 385        if (size <=        256) return 8;
 386        if (size <=        512) return 9;
 387        if (size <=       1024) return 10;
 388        if (size <=   2 * 1024) return 11;
 389        if (size <=   4 * 1024) return 12;
 390        if (size <=   8 * 1024) return 13;
 391        if (size <=  16 * 1024) return 14;
 392        if (size <=  32 * 1024) return 15;
 393        if (size <=  64 * 1024) return 16;
 394        if (size <= 128 * 1024) return 17;
 395        if (size <= 256 * 1024) return 18;
 396        if (size <= 512 * 1024) return 19;
 397        if (size <= 1024 * 1024) return 20;
 398        if (size <=  2 * 1024 * 1024) return 21;
 399        if (size <=  4 * 1024 * 1024) return 22;
 400        if (size <=  8 * 1024 * 1024) return 23;
 401        if (size <=  16 * 1024 * 1024) return 24;
 402        if (size <=  32 * 1024 * 1024) return 25;
 403
 404        if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
 405                BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
 406        else
 407                BUG();
 408
 409        /* Will never be reached. Needed because the compiler may complain */
 410        return -1;
 411}
 412#define kmalloc_index(s) __kmalloc_index(s, true)
 413#endif /* !CONFIG_SLOB */
 414
 415void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
 416void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
 417void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
 418                           gfp_t gfpflags) __assume_slab_alignment __malloc;
 419void kmem_cache_free(struct kmem_cache *s, void *objp);
 420
 421/*
 422 * Bulk allocation and freeing operations. These are accelerated in an
 423 * allocator specific way to avoid taking locks repeatedly or building
 424 * metadata structures unnecessarily.
 425 *
 426 * Note that interrupts must be enabled when calling these functions.
 427 */
 428void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
 429int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
 430
 431/*
 432 * Caller must not use kfree_bulk() on memory not originally allocated
 433 * by kmalloc(), because the SLOB allocator cannot handle this.
 434 */
 435static __always_inline void kfree_bulk(size_t size, void **p)
 436{
 437        kmem_cache_free_bulk(NULL, size, p);
 438}
 439
 440#ifdef CONFIG_NUMA
 441void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
 442                                                         __alloc_size(1);
 443void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
 444                                                                         __malloc;
 445#else
 446static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node)
 447{
 448        return __kmalloc(size, flags);
 449}
 450
 451static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
 452{
 453        return kmem_cache_alloc(s, flags);
 454}
 455#endif
 456
 457#ifdef CONFIG_TRACING
 458extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
 459                                   __assume_slab_alignment __alloc_size(3);
 460
 461#ifdef CONFIG_NUMA
 462extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
 463                                         int node, size_t size) __assume_slab_alignment
 464                                                                __alloc_size(4);
 465#else
 466static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
 467                                                 gfp_t gfpflags, int node, size_t size)
 468{
 469        return kmem_cache_alloc_trace(s, gfpflags, size);
 470}
 471#endif /* CONFIG_NUMA */
 472
 473#else /* CONFIG_TRACING */
 474static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s,
 475                                                                    gfp_t flags, size_t size)
 476{
 477        void *ret = kmem_cache_alloc(s, flags);
 478
 479        ret = kasan_kmalloc(s, ret, size, flags);
 480        return ret;
 481}
 482
 483static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
 484                                                         int node, size_t size)
 485{
 486        void *ret = kmem_cache_alloc_node(s, gfpflags, node);
 487
 488        ret = kasan_kmalloc(s, ret, size, gfpflags);
 489        return ret;
 490}
 491#endif /* CONFIG_TRACING */
 492
 493extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment
 494                                                                         __alloc_size(1);
 495
 496#ifdef CONFIG_TRACING
 497extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 498                                __assume_page_alignment __alloc_size(1);
 499#else
 500static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags,
 501                                                                 unsigned int order)
 502{
 503        return kmalloc_order(size, flags, order);
 504}
 505#endif
 506
 507static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags)
 508{
 509        unsigned int order = get_order(size);
 510        return kmalloc_order_trace(size, flags, order);
 511}
 512
 513/**
 514 * kmalloc - allocate memory
 515 * @size: how many bytes of memory are required.
 516 * @flags: the type of memory to allocate.
 517 *
 518 * kmalloc is the normal method of allocating memory
 519 * for objects smaller than page size in the kernel.
 520 *
 521 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
 522 * bytes. For @size of power of two bytes, the alignment is also guaranteed
 523 * to be at least to the size.
 524 *
 525 * The @flags argument may be one of the GFP flags defined at
 526 * include/linux/gfp.h and described at
 527 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
 528 *
 529 * The recommended usage of the @flags is described at
 530 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
 531 *
 532 * Below is a brief outline of the most useful GFP flags
 533 *
 534 * %GFP_KERNEL
 535 *      Allocate normal kernel ram. May sleep.
 536 *
 537 * %GFP_NOWAIT
 538 *      Allocation will not sleep.
 539 *
 540 * %GFP_ATOMIC
 541 *      Allocation will not sleep.  May use emergency pools.
 542 *
 543 * %GFP_HIGHUSER
 544 *      Allocate memory from high memory on behalf of user.
 545 *
 546 * Also it is possible to set different flags by OR'ing
 547 * in one or more of the following additional @flags:
 548 *
 549 * %__GFP_HIGH
 550 *      This allocation has high priority and may use emergency pools.
 551 *
 552 * %__GFP_NOFAIL
 553 *      Indicate that this allocation is in no way allowed to fail
 554 *      (think twice before using).
 555 *
 556 * %__GFP_NORETRY
 557 *      If memory is not immediately available,
 558 *      then give up at once.
 559 *
 560 * %__GFP_NOWARN
 561 *      If allocation fails, don't issue any warnings.
 562 *
 563 * %__GFP_RETRY_MAYFAIL
 564 *      Try really hard to succeed the allocation but fail
 565 *      eventually.
 566 */
 567static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
 568{
 569        if (__builtin_constant_p(size)) {
 570#ifndef CONFIG_SLOB
 571                unsigned int index;
 572#endif
 573                if (size > KMALLOC_MAX_CACHE_SIZE)
 574                        return kmalloc_large(size, flags);
 575#ifndef CONFIG_SLOB
 576                index = kmalloc_index(size);
 577
 578                if (!index)
 579                        return ZERO_SIZE_PTR;
 580
 581                return kmem_cache_alloc_trace(
 582                                kmalloc_caches[kmalloc_type(flags)][index],
 583                                flags, size);
 584#endif
 585        }
 586        return __kmalloc(size, flags);
 587}
 588
 589static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
 590{
 591#ifndef CONFIG_SLOB
 592        if (__builtin_constant_p(size) &&
 593                size <= KMALLOC_MAX_CACHE_SIZE) {
 594                unsigned int i = kmalloc_index(size);
 595
 596                if (!i)
 597                        return ZERO_SIZE_PTR;
 598
 599                return kmem_cache_alloc_node_trace(
 600                                kmalloc_caches[kmalloc_type(flags)][i],
 601                                                flags, node, size);
 602        }
 603#endif
 604        return __kmalloc_node(size, flags, node);
 605}
 606
 607/**
 608 * kmalloc_array - allocate memory for an array.
 609 * @n: number of elements.
 610 * @size: element size.
 611 * @flags: the type of memory to allocate (see kmalloc).
 612 */
 613static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
 614{
 615        size_t bytes;
 616
 617        if (unlikely(check_mul_overflow(n, size, &bytes)))
 618                return NULL;
 619        if (__builtin_constant_p(n) && __builtin_constant_p(size))
 620                return kmalloc(bytes, flags);
 621        return __kmalloc(bytes, flags);
 622}
 623
 624/**
 625 * krealloc_array - reallocate memory for an array.
 626 * @p: pointer to the memory chunk to reallocate
 627 * @new_n: new number of elements to alloc
 628 * @new_size: new size of a single member of the array
 629 * @flags: the type of memory to allocate (see kmalloc)
 630 */
 631static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p,
 632                                                                    size_t new_n,
 633                                                                    size_t new_size,
 634                                                                    gfp_t flags)
 635{
 636        size_t bytes;
 637
 638        if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
 639                return NULL;
 640
 641        return krealloc(p, bytes, flags);
 642}
 643
 644/**
 645 * kcalloc - allocate memory for an array. The memory is set to zero.
 646 * @n: number of elements.
 647 * @size: element size.
 648 * @flags: the type of memory to allocate (see kmalloc).
 649 */
 650static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
 651{
 652        return kmalloc_array(n, size, flags | __GFP_ZERO);
 653}
 654
 655/*
 656 * kmalloc_track_caller is a special version of kmalloc that records the
 657 * calling function of the routine calling it for slab leak tracking instead
 658 * of just the calling function (confusing, eh?).
 659 * It's useful when the call to kmalloc comes from a widely-used standard
 660 * allocator where we care about the real place the memory allocation
 661 * request comes from.
 662 */
 663extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller);
 664#define kmalloc_track_caller(size, flags) \
 665        __kmalloc_track_caller(size, flags, _RET_IP_)
 666
 667static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
 668                                                          int node)
 669{
 670        size_t bytes;
 671
 672        if (unlikely(check_mul_overflow(n, size, &bytes)))
 673                return NULL;
 674        if (__builtin_constant_p(n) && __builtin_constant_p(size))
 675                return kmalloc_node(bytes, flags, node);
 676        return __kmalloc_node(bytes, flags, node);
 677}
 678
 679static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
 680{
 681        return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
 682}
 683
 684
 685#ifdef CONFIG_NUMA
 686extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
 687                                         unsigned long caller) __alloc_size(1);
 688#define kmalloc_node_track_caller(size, flags, node) \
 689        __kmalloc_node_track_caller(size, flags, node, \
 690                        _RET_IP_)
 691
 692#else /* CONFIG_NUMA */
 693
 694#define kmalloc_node_track_caller(size, flags, node) \
 695        kmalloc_track_caller(size, flags)
 696
 697#endif /* CONFIG_NUMA */
 698
 699/*
 700 * Shortcuts
 701 */
 702static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 703{
 704        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 705}
 706
 707/**
 708 * kzalloc - allocate memory. The memory is set to zero.
 709 * @size: how many bytes of memory are required.
 710 * @flags: the type of memory to allocate (see kmalloc).
 711 */
 712static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
 713{
 714        return kmalloc(size, flags | __GFP_ZERO);
 715}
 716
 717/**
 718 * kzalloc_node - allocate zeroed memory from a particular memory node.
 719 * @size: how many bytes of memory are required.
 720 * @flags: the type of memory to allocate (see kmalloc).
 721 * @node: memory node from which to allocate
 722 */
 723static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
 724{
 725        return kmalloc_node(size, flags | __GFP_ZERO, node);
 726}
 727
 728extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
 729static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
 730{
 731        return kvmalloc_node(size, flags, NUMA_NO_NODE);
 732}
 733static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
 734{
 735        return kvmalloc_node(size, flags | __GFP_ZERO, node);
 736}
 737static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
 738{
 739        return kvmalloc(size, flags | __GFP_ZERO);
 740}
 741
 742static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 743{
 744        size_t bytes;
 745
 746        if (unlikely(check_mul_overflow(n, size, &bytes)))
 747                return NULL;
 748
 749        return kvmalloc(bytes, flags);
 750}
 751
 752static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
 753{
 754        return kvmalloc_array(n, size, flags | __GFP_ZERO);
 755}
 756
 757extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
 758                      __alloc_size(3);
 759extern void kvfree(const void *addr);
 760extern void kvfree_sensitive(const void *addr, size_t len);
 761
 762unsigned int kmem_cache_size(struct kmem_cache *s);
 763void __init kmem_cache_init_late(void);
 764
 765#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
 766int slab_prepare_cpu(unsigned int cpu);
 767int slab_dead_cpu(unsigned int cpu);
 768#else
 769#define slab_prepare_cpu        NULL
 770#define slab_dead_cpu           NULL
 771#endif
 772
 773#endif  /* _LINUX_SLAB_H */
 774