linux/include/net/tls.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#ifndef _TLS_OFFLOAD_H
  35#define _TLS_OFFLOAD_H
  36
  37#include <linux/types.h>
  38#include <asm/byteorder.h>
  39#include <linux/crypto.h>
  40#include <linux/socket.h>
  41#include <linux/tcp.h>
  42#include <linux/skmsg.h>
  43#include <linux/mutex.h>
  44#include <linux/netdevice.h>
  45#include <linux/rcupdate.h>
  46
  47#include <net/net_namespace.h>
  48#include <net/tcp.h>
  49#include <net/strparser.h>
  50#include <crypto/aead.h>
  51#include <uapi/linux/tls.h>
  52
  53
  54/* Maximum data size carried in a TLS record */
  55#define TLS_MAX_PAYLOAD_SIZE            ((size_t)1 << 14)
  56
  57#define TLS_HEADER_SIZE                 5
  58#define TLS_NONCE_OFFSET                TLS_HEADER_SIZE
  59
  60#define TLS_CRYPTO_INFO_READY(info)     ((info)->cipher_type)
  61
  62#define TLS_RECORD_TYPE_DATA            0x17
  63
  64#define TLS_AAD_SPACE_SIZE              13
  65
  66#define MAX_IV_SIZE                     16
  67#define TLS_MAX_REC_SEQ_SIZE            8
  68
  69/* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
  70 *
  71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
  72 *
  73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
  74 * Hence b0 contains (3 - 1) = 2.
  75 */
  76#define TLS_AES_CCM_IV_B0_BYTE          2
  77#define TLS_SM4_CCM_IV_B0_BYTE          2
  78
  79#define __TLS_INC_STATS(net, field)                             \
  80        __SNMP_INC_STATS((net)->mib.tls_statistics, field)
  81#define TLS_INC_STATS(net, field)                               \
  82        SNMP_INC_STATS((net)->mib.tls_statistics, field)
  83#define TLS_DEC_STATS(net, field)                               \
  84        SNMP_DEC_STATS((net)->mib.tls_statistics, field)
  85
  86enum {
  87        TLS_BASE,
  88        TLS_SW,
  89        TLS_HW,
  90        TLS_HW_RECORD,
  91        TLS_NUM_CONFIG,
  92};
  93
  94/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
  95 * allocated or mapped for each TLS record. After encryption, the records are
  96 * stores in a linked list.
  97 */
  98struct tls_rec {
  99        struct list_head list;
 100        int tx_ready;
 101        int tx_flags;
 102
 103        struct sk_msg msg_plaintext;
 104        struct sk_msg msg_encrypted;
 105
 106        /* AAD | msg_plaintext.sg.data | sg_tag */
 107        struct scatterlist sg_aead_in[2];
 108        /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
 109        struct scatterlist sg_aead_out[2];
 110
 111        char content_type;
 112        struct scatterlist sg_content_type;
 113
 114        char aad_space[TLS_AAD_SPACE_SIZE];
 115        u8 iv_data[MAX_IV_SIZE];
 116        struct aead_request aead_req;
 117        u8 aead_req_ctx[];
 118};
 119
 120struct tls_msg {
 121        struct strp_msg rxm;
 122        u8 control;
 123};
 124
 125struct tx_work {
 126        struct delayed_work work;
 127        struct sock *sk;
 128};
 129
 130struct tls_sw_context_tx {
 131        struct crypto_aead *aead_send;
 132        struct crypto_wait async_wait;
 133        struct tx_work tx_work;
 134        struct tls_rec *open_rec;
 135        struct list_head tx_list;
 136        atomic_t encrypt_pending;
 137        /* protect crypto_wait with encrypt_pending */
 138        spinlock_t encrypt_compl_lock;
 139        int async_notify;
 140        u8 async_capable:1;
 141
 142#define BIT_TX_SCHEDULED        0
 143#define BIT_TX_CLOSING          1
 144        unsigned long tx_bitmask;
 145};
 146
 147struct tls_sw_context_rx {
 148        struct crypto_aead *aead_recv;
 149        struct crypto_wait async_wait;
 150        struct strparser strp;
 151        struct sk_buff_head rx_list;    /* list of decrypted 'data' records */
 152        void (*saved_data_ready)(struct sock *sk);
 153
 154        struct sk_buff *recv_pkt;
 155        u8 control;
 156        u8 async_capable:1;
 157        u8 decrypted:1;
 158        atomic_t decrypt_pending;
 159        /* protect crypto_wait with decrypt_pending*/
 160        spinlock_t decrypt_compl_lock;
 161        bool async_notify;
 162};
 163
 164struct tls_record_info {
 165        struct list_head list;
 166        u32 end_seq;
 167        int len;
 168        int num_frags;
 169        skb_frag_t frags[MAX_SKB_FRAGS];
 170};
 171
 172struct tls_offload_context_tx {
 173        struct crypto_aead *aead_send;
 174        spinlock_t lock;        /* protects records list */
 175        struct list_head records_list;
 176        struct tls_record_info *open_record;
 177        struct tls_record_info *retransmit_hint;
 178        u64 hint_record_sn;
 179        u64 unacked_record_sn;
 180
 181        struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
 182        void (*sk_destruct)(struct sock *sk);
 183        u8 driver_state[] __aligned(8);
 184        /* The TLS layer reserves room for driver specific state
 185         * Currently the belief is that there is not enough
 186         * driver specific state to justify another layer of indirection
 187         */
 188#define TLS_DRIVER_STATE_SIZE_TX        16
 189};
 190
 191#define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
 192        (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
 193
 194enum tls_context_flags {
 195        /* tls_device_down was called after the netdev went down, device state
 196         * was released, and kTLS works in software, even though rx_conf is
 197         * still TLS_HW (needed for transition).
 198         */
 199        TLS_RX_DEV_DEGRADED = 0,
 200        /* Unlike RX where resync is driven entirely by the core in TX only
 201         * the driver knows when things went out of sync, so we need the flag
 202         * to be atomic.
 203         */
 204        TLS_TX_SYNC_SCHED = 1,
 205        /* tls_dev_del was called for the RX side, device state was released,
 206         * but tls_ctx->netdev might still be kept, because TX-side driver
 207         * resources might not be released yet. Used to prevent the second
 208         * tls_dev_del call in tls_device_down if it happens simultaneously.
 209         */
 210        TLS_RX_DEV_CLOSED = 2,
 211};
 212
 213struct cipher_context {
 214        char *iv;
 215        char *rec_seq;
 216};
 217
 218union tls_crypto_context {
 219        struct tls_crypto_info info;
 220        union {
 221                struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
 222                struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
 223                struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
 224                struct tls12_crypto_info_sm4_gcm sm4_gcm;
 225                struct tls12_crypto_info_sm4_ccm sm4_ccm;
 226        };
 227};
 228
 229struct tls_prot_info {
 230        u16 version;
 231        u16 cipher_type;
 232        u16 prepend_size;
 233        u16 tag_size;
 234        u16 overhead_size;
 235        u16 iv_size;
 236        u16 salt_size;
 237        u16 rec_seq_size;
 238        u16 aad_size;
 239        u16 tail_size;
 240};
 241
 242struct tls_context {
 243        /* read-only cache line */
 244        struct tls_prot_info prot_info;
 245
 246        u8 tx_conf:3;
 247        u8 rx_conf:3;
 248
 249        int (*push_pending_record)(struct sock *sk, int flags);
 250        void (*sk_write_space)(struct sock *sk);
 251
 252        void *priv_ctx_tx;
 253        void *priv_ctx_rx;
 254
 255        struct net_device *netdev;
 256
 257        /* rw cache line */
 258        struct cipher_context tx;
 259        struct cipher_context rx;
 260
 261        struct scatterlist *partially_sent_record;
 262        u16 partially_sent_offset;
 263
 264        bool in_tcp_sendpages;
 265        bool pending_open_record_frags;
 266
 267        struct mutex tx_lock; /* protects partially_sent_* fields and
 268                               * per-type TX fields
 269                               */
 270        unsigned long flags;
 271
 272        /* cache cold stuff */
 273        struct proto *sk_proto;
 274        struct sock *sk;
 275
 276        void (*sk_destruct)(struct sock *sk);
 277
 278        union tls_crypto_context crypto_send;
 279        union tls_crypto_context crypto_recv;
 280
 281        struct list_head list;
 282        refcount_t refcount;
 283        struct rcu_head rcu;
 284};
 285
 286enum tls_offload_ctx_dir {
 287        TLS_OFFLOAD_CTX_DIR_RX,
 288        TLS_OFFLOAD_CTX_DIR_TX,
 289};
 290
 291struct tlsdev_ops {
 292        int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
 293                           enum tls_offload_ctx_dir direction,
 294                           struct tls_crypto_info *crypto_info,
 295                           u32 start_offload_tcp_sn);
 296        void (*tls_dev_del)(struct net_device *netdev,
 297                            struct tls_context *ctx,
 298                            enum tls_offload_ctx_dir direction);
 299        int (*tls_dev_resync)(struct net_device *netdev,
 300                              struct sock *sk, u32 seq, u8 *rcd_sn,
 301                              enum tls_offload_ctx_dir direction);
 302};
 303
 304enum tls_offload_sync_type {
 305        TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
 306        TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
 307        TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
 308};
 309
 310#define TLS_DEVICE_RESYNC_NH_START_IVAL         2
 311#define TLS_DEVICE_RESYNC_NH_MAX_IVAL           128
 312
 313#define TLS_DEVICE_RESYNC_ASYNC_LOGMAX          13
 314struct tls_offload_resync_async {
 315        atomic64_t req;
 316        u16 loglen;
 317        u16 rcd_delta;
 318        u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
 319};
 320
 321struct tls_offload_context_rx {
 322        /* sw must be the first member of tls_offload_context_rx */
 323        struct tls_sw_context_rx sw;
 324        enum tls_offload_sync_type resync_type;
 325        /* this member is set regardless of resync_type, to avoid branches */
 326        u8 resync_nh_reset:1;
 327        /* CORE_NEXT_HINT-only member, but use the hole here */
 328        u8 resync_nh_do_now:1;
 329        union {
 330                /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
 331                struct {
 332                        atomic64_t resync_req;
 333                };
 334                /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
 335                struct {
 336                        u32 decrypted_failed;
 337                        u32 decrypted_tgt;
 338                } resync_nh;
 339                /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
 340                struct {
 341                        struct tls_offload_resync_async *resync_async;
 342                };
 343        };
 344        u8 driver_state[] __aligned(8);
 345        /* The TLS layer reserves room for driver specific state
 346         * Currently the belief is that there is not enough
 347         * driver specific state to justify another layer of indirection
 348         */
 349#define TLS_DRIVER_STATE_SIZE_RX        8
 350};
 351
 352#define TLS_OFFLOAD_CONTEXT_SIZE_RX                                     \
 353        (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
 354
 355struct tls_context *tls_ctx_create(struct sock *sk);
 356void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
 357void update_sk_prot(struct sock *sk, struct tls_context *ctx);
 358
 359int wait_on_pending_writer(struct sock *sk, long *timeo);
 360int tls_sk_query(struct sock *sk, int optname, char __user *optval,
 361                int __user *optlen);
 362int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
 363                  unsigned int optlen);
 364void tls_err_abort(struct sock *sk, int err);
 365
 366int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
 367void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
 368void tls_sw_strparser_done(struct tls_context *tls_ctx);
 369int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 370int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
 371                           int offset, size_t size, int flags);
 372int tls_sw_sendpage(struct sock *sk, struct page *page,
 373                    int offset, size_t size, int flags);
 374void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
 375void tls_sw_release_resources_tx(struct sock *sk);
 376void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
 377void tls_sw_free_resources_rx(struct sock *sk);
 378void tls_sw_release_resources_rx(struct sock *sk);
 379void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
 380int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 381                   int nonblock, int flags, int *addr_len);
 382bool tls_sw_sock_is_readable(struct sock *sk);
 383ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
 384                           struct pipe_inode_info *pipe,
 385                           size_t len, unsigned int flags);
 386
 387int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 388int tls_device_sendpage(struct sock *sk, struct page *page,
 389                        int offset, size_t size, int flags);
 390int tls_tx_records(struct sock *sk, int flags);
 391
 392struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 393                                       u32 seq, u64 *p_record_sn);
 394
 395static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
 396{
 397        return rec->len == 0;
 398}
 399
 400static inline u32 tls_record_start_seq(struct tls_record_info *rec)
 401{
 402        return rec->end_seq - rec->len;
 403}
 404
 405int tls_push_sg(struct sock *sk, struct tls_context *ctx,
 406                struct scatterlist *sg, u16 first_offset,
 407                int flags);
 408int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 409                            int flags);
 410void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
 411
 412static inline struct tls_msg *tls_msg(struct sk_buff *skb)
 413{
 414        return (struct tls_msg *)strp_msg(skb);
 415}
 416
 417static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
 418{
 419        return !!ctx->partially_sent_record;
 420}
 421
 422static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
 423{
 424        return tls_ctx->pending_open_record_frags;
 425}
 426
 427static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
 428{
 429        struct tls_rec *rec;
 430
 431        rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
 432        if (!rec)
 433                return false;
 434
 435        return READ_ONCE(rec->tx_ready);
 436}
 437
 438static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
 439{
 440        u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
 441
 442        switch (config) {
 443        case TLS_BASE:
 444                return TLS_CONF_BASE;
 445        case TLS_SW:
 446                return TLS_CONF_SW;
 447        case TLS_HW:
 448                return TLS_CONF_HW;
 449        case TLS_HW_RECORD:
 450                return TLS_CONF_HW_RECORD;
 451        }
 452        return 0;
 453}
 454
 455struct sk_buff *
 456tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
 457                      struct sk_buff *skb);
 458struct sk_buff *
 459tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
 460                         struct sk_buff *skb);
 461
 462static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
 463{
 464#ifdef CONFIG_SOCK_VALIDATE_XMIT
 465        return sk_fullsock(sk) &&
 466               (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
 467               &tls_validate_xmit_skb);
 468#else
 469        return false;
 470#endif
 471}
 472
 473static inline bool tls_bigint_increment(unsigned char *seq, int len)
 474{
 475        int i;
 476
 477        for (i = len - 1; i >= 0; i--) {
 478                ++seq[i];
 479                if (seq[i] != 0)
 480                        break;
 481        }
 482
 483        return (i == -1);
 484}
 485
 486static inline void tls_bigint_subtract(unsigned char *seq, int  n)
 487{
 488        u64 rcd_sn;
 489        __be64 *p;
 490
 491        BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
 492
 493        p = (__be64 *)seq;
 494        rcd_sn = be64_to_cpu(*p);
 495        *p = cpu_to_be64(rcd_sn - n);
 496}
 497
 498static inline struct tls_context *tls_get_ctx(const struct sock *sk)
 499{
 500        struct inet_connection_sock *icsk = inet_csk(sk);
 501
 502        /* Use RCU on icsk_ulp_data only for sock diag code,
 503         * TLS data path doesn't need rcu_dereference().
 504         */
 505        return (__force void *)icsk->icsk_ulp_data;
 506}
 507
 508static inline void tls_advance_record_sn(struct sock *sk,
 509                                         struct tls_prot_info *prot,
 510                                         struct cipher_context *ctx)
 511{
 512        if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
 513                tls_err_abort(sk, -EBADMSG);
 514
 515        if (prot->version != TLS_1_3_VERSION &&
 516            prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
 517                tls_bigint_increment(ctx->iv + prot->salt_size,
 518                                     prot->iv_size);
 519}
 520
 521static inline void tls_fill_prepend(struct tls_context *ctx,
 522                             char *buf,
 523                             size_t plaintext_len,
 524                             unsigned char record_type)
 525{
 526        struct tls_prot_info *prot = &ctx->prot_info;
 527        size_t pkt_len, iv_size = prot->iv_size;
 528
 529        pkt_len = plaintext_len + prot->tag_size;
 530        if (prot->version != TLS_1_3_VERSION &&
 531            prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
 532                pkt_len += iv_size;
 533
 534                memcpy(buf + TLS_NONCE_OFFSET,
 535                       ctx->tx.iv + prot->salt_size, iv_size);
 536        }
 537
 538        /* we cover nonce explicit here as well, so buf should be of
 539         * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
 540         */
 541        buf[0] = prot->version == TLS_1_3_VERSION ?
 542                   TLS_RECORD_TYPE_DATA : record_type;
 543        /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
 544        buf[1] = TLS_1_2_VERSION_MINOR;
 545        buf[2] = TLS_1_2_VERSION_MAJOR;
 546        /* we can use IV for nonce explicit according to spec */
 547        buf[3] = pkt_len >> 8;
 548        buf[4] = pkt_len & 0xFF;
 549}
 550
 551static inline void tls_make_aad(char *buf,
 552                                size_t size,
 553                                char *record_sequence,
 554                                unsigned char record_type,
 555                                struct tls_prot_info *prot)
 556{
 557        if (prot->version != TLS_1_3_VERSION) {
 558                memcpy(buf, record_sequence, prot->rec_seq_size);
 559                buf += 8;
 560        } else {
 561                size += prot->tag_size;
 562        }
 563
 564        buf[0] = prot->version == TLS_1_3_VERSION ?
 565                  TLS_RECORD_TYPE_DATA : record_type;
 566        buf[1] = TLS_1_2_VERSION_MAJOR;
 567        buf[2] = TLS_1_2_VERSION_MINOR;
 568        buf[3] = size >> 8;
 569        buf[4] = size & 0xFF;
 570}
 571
 572static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
 573{
 574        int i;
 575
 576        if (prot->version == TLS_1_3_VERSION ||
 577            prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
 578                for (i = 0; i < 8; i++)
 579                        iv[i + 4] ^= seq[i];
 580        }
 581}
 582
 583
 584static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
 585                const struct tls_context *tls_ctx)
 586{
 587        return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
 588}
 589
 590static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
 591                const struct tls_context *tls_ctx)
 592{
 593        return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
 594}
 595
 596static inline struct tls_offload_context_tx *
 597tls_offload_ctx_tx(const struct tls_context *tls_ctx)
 598{
 599        return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
 600}
 601
 602static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
 603{
 604        struct tls_context *ctx = tls_get_ctx(sk);
 605
 606        if (!ctx)
 607                return false;
 608        return !!tls_sw_ctx_tx(ctx);
 609}
 610
 611static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
 612{
 613        struct tls_context *ctx = tls_get_ctx(sk);
 614
 615        if (!ctx)
 616                return false;
 617        return !!tls_sw_ctx_rx(ctx);
 618}
 619
 620void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
 621void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
 622
 623static inline struct tls_offload_context_rx *
 624tls_offload_ctx_rx(const struct tls_context *tls_ctx)
 625{
 626        return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
 627}
 628
 629static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
 630                                     enum tls_offload_ctx_dir direction)
 631{
 632        if (direction == TLS_OFFLOAD_CTX_DIR_TX)
 633                return tls_offload_ctx_tx(tls_ctx)->driver_state;
 634        else
 635                return tls_offload_ctx_rx(tls_ctx)->driver_state;
 636}
 637
 638static inline void *
 639tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
 640{
 641        return __tls_driver_ctx(tls_get_ctx(sk), direction);
 642}
 643
 644#define RESYNC_REQ BIT(0)
 645#define RESYNC_REQ_ASYNC BIT(1)
 646/* The TLS context is valid until sk_destruct is called */
 647static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
 648{
 649        struct tls_context *tls_ctx = tls_get_ctx(sk);
 650        struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 651
 652        atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
 653}
 654
 655/* Log all TLS record header TCP sequences in [seq, seq+len] */
 656static inline void
 657tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
 658{
 659        struct tls_context *tls_ctx = tls_get_ctx(sk);
 660        struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 661
 662        atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
 663                     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
 664        rx_ctx->resync_async->loglen = 0;
 665        rx_ctx->resync_async->rcd_delta = 0;
 666}
 667
 668static inline void
 669tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
 670{
 671        struct tls_context *tls_ctx = tls_get_ctx(sk);
 672        struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 673
 674        atomic64_set(&rx_ctx->resync_async->req,
 675                     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
 676}
 677
 678static inline void
 679tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
 680{
 681        struct tls_context *tls_ctx = tls_get_ctx(sk);
 682
 683        tls_offload_ctx_rx(tls_ctx)->resync_type = type;
 684}
 685
 686/* Driver's seq tracking has to be disabled until resync succeeded */
 687static inline bool tls_offload_tx_resync_pending(struct sock *sk)
 688{
 689        struct tls_context *tls_ctx = tls_get_ctx(sk);
 690        bool ret;
 691
 692        ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 693        smp_mb__after_atomic();
 694        return ret;
 695}
 696
 697int __net_init tls_proc_init(struct net *net);
 698void __net_exit tls_proc_fini(struct net *net);
 699
 700int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
 701                      unsigned char *record_type);
 702int decrypt_skb(struct sock *sk, struct sk_buff *skb,
 703                struct scatterlist *sgout);
 704struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
 705
 706int tls_sw_fallback_init(struct sock *sk,
 707                         struct tls_offload_context_tx *offload_ctx,
 708                         struct tls_crypto_info *crypto_info);
 709
 710#ifdef CONFIG_TLS_DEVICE
 711void tls_device_init(void);
 712void tls_device_cleanup(void);
 713void tls_device_sk_destruct(struct sock *sk);
 714int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
 715void tls_device_free_resources_tx(struct sock *sk);
 716int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
 717void tls_device_offload_cleanup_rx(struct sock *sk);
 718void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
 719void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
 720int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
 721                         struct sk_buff *skb, struct strp_msg *rxm);
 722
 723static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
 724{
 725        if (!sk_fullsock(sk) ||
 726            smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
 727                return false;
 728        return tls_get_ctx(sk)->rx_conf == TLS_HW;
 729}
 730#else
 731static inline void tls_device_init(void) {}
 732static inline void tls_device_cleanup(void) {}
 733
 734static inline int
 735tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
 736{
 737        return -EOPNOTSUPP;
 738}
 739
 740static inline void tls_device_free_resources_tx(struct sock *sk) {}
 741
 742static inline int
 743tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
 744{
 745        return -EOPNOTSUPP;
 746}
 747
 748static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
 749static inline void
 750tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
 751
 752static inline int
 753tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
 754                     struct sk_buff *skb, struct strp_msg *rxm)
 755{
 756        return 0;
 757}
 758#endif
 759#endif /* _TLS_OFFLOAD_H */
 760