linux/kernel/bpf/helpers.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 */
   4#include <linux/bpf.h>
   5#include <linux/btf.h>
   6#include <linux/bpf-cgroup.h>
   7#include <linux/rcupdate.h>
   8#include <linux/random.h>
   9#include <linux/smp.h>
  10#include <linux/topology.h>
  11#include <linux/ktime.h>
  12#include <linux/sched.h>
  13#include <linux/uidgid.h>
  14#include <linux/filter.h>
  15#include <linux/ctype.h>
  16#include <linux/jiffies.h>
  17#include <linux/pid_namespace.h>
  18#include <linux/proc_ns.h>
  19#include <linux/security.h>
  20#include <linux/btf_ids.h>
  21
  22#include "../../lib/kstrtox.h"
  23
  24/* If kernel subsystem is allowing eBPF programs to call this function,
  25 * inside its own verifier_ops->get_func_proto() callback it should return
  26 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
  27 *
  28 * Different map implementations will rely on rcu in map methods
  29 * lookup/update/delete, therefore eBPF programs must run under rcu lock
  30 * if program is allowed to access maps, so check rcu_read_lock_held in
  31 * all three functions.
  32 */
  33BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
  34{
  35        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
  36        return (unsigned long) map->ops->map_lookup_elem(map, key);
  37}
  38
  39const struct bpf_func_proto bpf_map_lookup_elem_proto = {
  40        .func           = bpf_map_lookup_elem,
  41        .gpl_only       = false,
  42        .pkt_access     = true,
  43        .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
  44        .arg1_type      = ARG_CONST_MAP_PTR,
  45        .arg2_type      = ARG_PTR_TO_MAP_KEY,
  46};
  47
  48BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
  49           void *, value, u64, flags)
  50{
  51        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
  52        return map->ops->map_update_elem(map, key, value, flags);
  53}
  54
  55const struct bpf_func_proto bpf_map_update_elem_proto = {
  56        .func           = bpf_map_update_elem,
  57        .gpl_only       = false,
  58        .pkt_access     = true,
  59        .ret_type       = RET_INTEGER,
  60        .arg1_type      = ARG_CONST_MAP_PTR,
  61        .arg2_type      = ARG_PTR_TO_MAP_KEY,
  62        .arg3_type      = ARG_PTR_TO_MAP_VALUE,
  63        .arg4_type      = ARG_ANYTHING,
  64};
  65
  66BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
  67{
  68        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
  69        return map->ops->map_delete_elem(map, key);
  70}
  71
  72const struct bpf_func_proto bpf_map_delete_elem_proto = {
  73        .func           = bpf_map_delete_elem,
  74        .gpl_only       = false,
  75        .pkt_access     = true,
  76        .ret_type       = RET_INTEGER,
  77        .arg1_type      = ARG_CONST_MAP_PTR,
  78        .arg2_type      = ARG_PTR_TO_MAP_KEY,
  79};
  80
  81BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
  82{
  83        return map->ops->map_push_elem(map, value, flags);
  84}
  85
  86const struct bpf_func_proto bpf_map_push_elem_proto = {
  87        .func           = bpf_map_push_elem,
  88        .gpl_only       = false,
  89        .pkt_access     = true,
  90        .ret_type       = RET_INTEGER,
  91        .arg1_type      = ARG_CONST_MAP_PTR,
  92        .arg2_type      = ARG_PTR_TO_MAP_VALUE,
  93        .arg3_type      = ARG_ANYTHING,
  94};
  95
  96BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
  97{
  98        return map->ops->map_pop_elem(map, value);
  99}
 100
 101const struct bpf_func_proto bpf_map_pop_elem_proto = {
 102        .func           = bpf_map_pop_elem,
 103        .gpl_only       = false,
 104        .ret_type       = RET_INTEGER,
 105        .arg1_type      = ARG_CONST_MAP_PTR,
 106        .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
 107};
 108
 109BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
 110{
 111        return map->ops->map_peek_elem(map, value);
 112}
 113
 114const struct bpf_func_proto bpf_map_peek_elem_proto = {
 115        .func           = bpf_map_peek_elem,
 116        .gpl_only       = false,
 117        .ret_type       = RET_INTEGER,
 118        .arg1_type      = ARG_CONST_MAP_PTR,
 119        .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
 120};
 121
 122const struct bpf_func_proto bpf_get_prandom_u32_proto = {
 123        .func           = bpf_user_rnd_u32,
 124        .gpl_only       = false,
 125        .ret_type       = RET_INTEGER,
 126};
 127
 128BPF_CALL_0(bpf_get_smp_processor_id)
 129{
 130        return smp_processor_id();
 131}
 132
 133const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
 134        .func           = bpf_get_smp_processor_id,
 135        .gpl_only       = false,
 136        .ret_type       = RET_INTEGER,
 137};
 138
 139BPF_CALL_0(bpf_get_numa_node_id)
 140{
 141        return numa_node_id();
 142}
 143
 144const struct bpf_func_proto bpf_get_numa_node_id_proto = {
 145        .func           = bpf_get_numa_node_id,
 146        .gpl_only       = false,
 147        .ret_type       = RET_INTEGER,
 148};
 149
 150BPF_CALL_0(bpf_ktime_get_ns)
 151{
 152        /* NMI safe access to clock monotonic */
 153        return ktime_get_mono_fast_ns();
 154}
 155
 156const struct bpf_func_proto bpf_ktime_get_ns_proto = {
 157        .func           = bpf_ktime_get_ns,
 158        .gpl_only       = false,
 159        .ret_type       = RET_INTEGER,
 160};
 161
 162BPF_CALL_0(bpf_ktime_get_boot_ns)
 163{
 164        /* NMI safe access to clock boottime */
 165        return ktime_get_boot_fast_ns();
 166}
 167
 168const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
 169        .func           = bpf_ktime_get_boot_ns,
 170        .gpl_only       = false,
 171        .ret_type       = RET_INTEGER,
 172};
 173
 174BPF_CALL_0(bpf_ktime_get_coarse_ns)
 175{
 176        return ktime_get_coarse_ns();
 177}
 178
 179const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
 180        .func           = bpf_ktime_get_coarse_ns,
 181        .gpl_only       = false,
 182        .ret_type       = RET_INTEGER,
 183};
 184
 185BPF_CALL_0(bpf_get_current_pid_tgid)
 186{
 187        struct task_struct *task = current;
 188
 189        if (unlikely(!task))
 190                return -EINVAL;
 191
 192        return (u64) task->tgid << 32 | task->pid;
 193}
 194
 195const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
 196        .func           = bpf_get_current_pid_tgid,
 197        .gpl_only       = false,
 198        .ret_type       = RET_INTEGER,
 199};
 200
 201BPF_CALL_0(bpf_get_current_uid_gid)
 202{
 203        struct task_struct *task = current;
 204        kuid_t uid;
 205        kgid_t gid;
 206
 207        if (unlikely(!task))
 208                return -EINVAL;
 209
 210        current_uid_gid(&uid, &gid);
 211        return (u64) from_kgid(&init_user_ns, gid) << 32 |
 212                     from_kuid(&init_user_ns, uid);
 213}
 214
 215const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
 216        .func           = bpf_get_current_uid_gid,
 217        .gpl_only       = false,
 218        .ret_type       = RET_INTEGER,
 219};
 220
 221BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
 222{
 223        struct task_struct *task = current;
 224
 225        if (unlikely(!task))
 226                goto err_clear;
 227
 228        /* Verifier guarantees that size > 0 */
 229        strscpy(buf, task->comm, size);
 230        return 0;
 231err_clear:
 232        memset(buf, 0, size);
 233        return -EINVAL;
 234}
 235
 236const struct bpf_func_proto bpf_get_current_comm_proto = {
 237        .func           = bpf_get_current_comm,
 238        .gpl_only       = false,
 239        .ret_type       = RET_INTEGER,
 240        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 241        .arg2_type      = ARG_CONST_SIZE,
 242};
 243
 244#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
 245
 246static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
 247{
 248        arch_spinlock_t *l = (void *)lock;
 249        union {
 250                __u32 val;
 251                arch_spinlock_t lock;
 252        } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
 253
 254        compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
 255        BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
 256        BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
 257        arch_spin_lock(l);
 258}
 259
 260static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
 261{
 262        arch_spinlock_t *l = (void *)lock;
 263
 264        arch_spin_unlock(l);
 265}
 266
 267#else
 268
 269static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
 270{
 271        atomic_t *l = (void *)lock;
 272
 273        BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
 274        do {
 275                atomic_cond_read_relaxed(l, !VAL);
 276        } while (atomic_xchg(l, 1));
 277}
 278
 279static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
 280{
 281        atomic_t *l = (void *)lock;
 282
 283        atomic_set_release(l, 0);
 284}
 285
 286#endif
 287
 288static DEFINE_PER_CPU(unsigned long, irqsave_flags);
 289
 290static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
 291{
 292        unsigned long flags;
 293
 294        local_irq_save(flags);
 295        __bpf_spin_lock(lock);
 296        __this_cpu_write(irqsave_flags, flags);
 297}
 298
 299notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
 300{
 301        __bpf_spin_lock_irqsave(lock);
 302        return 0;
 303}
 304
 305const struct bpf_func_proto bpf_spin_lock_proto = {
 306        .func           = bpf_spin_lock,
 307        .gpl_only       = false,
 308        .ret_type       = RET_VOID,
 309        .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
 310};
 311
 312static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
 313{
 314        unsigned long flags;
 315
 316        flags = __this_cpu_read(irqsave_flags);
 317        __bpf_spin_unlock(lock);
 318        local_irq_restore(flags);
 319}
 320
 321notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
 322{
 323        __bpf_spin_unlock_irqrestore(lock);
 324        return 0;
 325}
 326
 327const struct bpf_func_proto bpf_spin_unlock_proto = {
 328        .func           = bpf_spin_unlock,
 329        .gpl_only       = false,
 330        .ret_type       = RET_VOID,
 331        .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
 332};
 333
 334void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
 335                           bool lock_src)
 336{
 337        struct bpf_spin_lock *lock;
 338
 339        if (lock_src)
 340                lock = src + map->spin_lock_off;
 341        else
 342                lock = dst + map->spin_lock_off;
 343        preempt_disable();
 344        __bpf_spin_lock_irqsave(lock);
 345        copy_map_value(map, dst, src);
 346        __bpf_spin_unlock_irqrestore(lock);
 347        preempt_enable();
 348}
 349
 350BPF_CALL_0(bpf_jiffies64)
 351{
 352        return get_jiffies_64();
 353}
 354
 355const struct bpf_func_proto bpf_jiffies64_proto = {
 356        .func           = bpf_jiffies64,
 357        .gpl_only       = false,
 358        .ret_type       = RET_INTEGER,
 359};
 360
 361#ifdef CONFIG_CGROUPS
 362BPF_CALL_0(bpf_get_current_cgroup_id)
 363{
 364        struct cgroup *cgrp;
 365        u64 cgrp_id;
 366
 367        rcu_read_lock();
 368        cgrp = task_dfl_cgroup(current);
 369        cgrp_id = cgroup_id(cgrp);
 370        rcu_read_unlock();
 371
 372        return cgrp_id;
 373}
 374
 375const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
 376        .func           = bpf_get_current_cgroup_id,
 377        .gpl_only       = false,
 378        .ret_type       = RET_INTEGER,
 379};
 380
 381BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
 382{
 383        struct cgroup *cgrp;
 384        struct cgroup *ancestor;
 385        u64 cgrp_id;
 386
 387        rcu_read_lock();
 388        cgrp = task_dfl_cgroup(current);
 389        ancestor = cgroup_ancestor(cgrp, ancestor_level);
 390        cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
 391        rcu_read_unlock();
 392
 393        return cgrp_id;
 394}
 395
 396const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
 397        .func           = bpf_get_current_ancestor_cgroup_id,
 398        .gpl_only       = false,
 399        .ret_type       = RET_INTEGER,
 400        .arg1_type      = ARG_ANYTHING,
 401};
 402
 403#ifdef CONFIG_CGROUP_BPF
 404
 405BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
 406{
 407        /* flags argument is not used now,
 408         * but provides an ability to extend the API.
 409         * verifier checks that its value is correct.
 410         */
 411        enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
 412        struct bpf_cgroup_storage *storage;
 413        struct bpf_cg_run_ctx *ctx;
 414        void *ptr;
 415
 416        /* get current cgroup storage from BPF run context */
 417        ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
 418        storage = ctx->prog_item->cgroup_storage[stype];
 419
 420        if (stype == BPF_CGROUP_STORAGE_SHARED)
 421                ptr = &READ_ONCE(storage->buf)->data[0];
 422        else
 423                ptr = this_cpu_ptr(storage->percpu_buf);
 424
 425        return (unsigned long)ptr;
 426}
 427
 428const struct bpf_func_proto bpf_get_local_storage_proto = {
 429        .func           = bpf_get_local_storage,
 430        .gpl_only       = false,
 431        .ret_type       = RET_PTR_TO_MAP_VALUE,
 432        .arg1_type      = ARG_CONST_MAP_PTR,
 433        .arg2_type      = ARG_ANYTHING,
 434};
 435#endif
 436
 437#define BPF_STRTOX_BASE_MASK 0x1F
 438
 439static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
 440                          unsigned long long *res, bool *is_negative)
 441{
 442        unsigned int base = flags & BPF_STRTOX_BASE_MASK;
 443        const char *cur_buf = buf;
 444        size_t cur_len = buf_len;
 445        unsigned int consumed;
 446        size_t val_len;
 447        char str[64];
 448
 449        if (!buf || !buf_len || !res || !is_negative)
 450                return -EINVAL;
 451
 452        if (base != 0 && base != 8 && base != 10 && base != 16)
 453                return -EINVAL;
 454
 455        if (flags & ~BPF_STRTOX_BASE_MASK)
 456                return -EINVAL;
 457
 458        while (cur_buf < buf + buf_len && isspace(*cur_buf))
 459                ++cur_buf;
 460
 461        *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
 462        if (*is_negative)
 463                ++cur_buf;
 464
 465        consumed = cur_buf - buf;
 466        cur_len -= consumed;
 467        if (!cur_len)
 468                return -EINVAL;
 469
 470        cur_len = min(cur_len, sizeof(str) - 1);
 471        memcpy(str, cur_buf, cur_len);
 472        str[cur_len] = '\0';
 473        cur_buf = str;
 474
 475        cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
 476        val_len = _parse_integer(cur_buf, base, res);
 477
 478        if (val_len & KSTRTOX_OVERFLOW)
 479                return -ERANGE;
 480
 481        if (val_len == 0)
 482                return -EINVAL;
 483
 484        cur_buf += val_len;
 485        consumed += cur_buf - str;
 486
 487        return consumed;
 488}
 489
 490static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
 491                         long long *res)
 492{
 493        unsigned long long _res;
 494        bool is_negative;
 495        int err;
 496
 497        err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
 498        if (err < 0)
 499                return err;
 500        if (is_negative) {
 501                if ((long long)-_res > 0)
 502                        return -ERANGE;
 503                *res = -_res;
 504        } else {
 505                if ((long long)_res < 0)
 506                        return -ERANGE;
 507                *res = _res;
 508        }
 509        return err;
 510}
 511
 512BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
 513           long *, res)
 514{
 515        long long _res;
 516        int err;
 517
 518        err = __bpf_strtoll(buf, buf_len, flags, &_res);
 519        if (err < 0)
 520                return err;
 521        if (_res != (long)_res)
 522                return -ERANGE;
 523        *res = _res;
 524        return err;
 525}
 526
 527const struct bpf_func_proto bpf_strtol_proto = {
 528        .func           = bpf_strtol,
 529        .gpl_only       = false,
 530        .ret_type       = RET_INTEGER,
 531        .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
 532        .arg2_type      = ARG_CONST_SIZE,
 533        .arg3_type      = ARG_ANYTHING,
 534        .arg4_type      = ARG_PTR_TO_LONG,
 535};
 536
 537BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
 538           unsigned long *, res)
 539{
 540        unsigned long long _res;
 541        bool is_negative;
 542        int err;
 543
 544        err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
 545        if (err < 0)
 546                return err;
 547        if (is_negative)
 548                return -EINVAL;
 549        if (_res != (unsigned long)_res)
 550                return -ERANGE;
 551        *res = _res;
 552        return err;
 553}
 554
 555const struct bpf_func_proto bpf_strtoul_proto = {
 556        .func           = bpf_strtoul,
 557        .gpl_only       = false,
 558        .ret_type       = RET_INTEGER,
 559        .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
 560        .arg2_type      = ARG_CONST_SIZE,
 561        .arg3_type      = ARG_ANYTHING,
 562        .arg4_type      = ARG_PTR_TO_LONG,
 563};
 564#endif
 565
 566BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
 567{
 568        return strncmp(s1, s2, s1_sz);
 569}
 570
 571const struct bpf_func_proto bpf_strncmp_proto = {
 572        .func           = bpf_strncmp,
 573        .gpl_only       = false,
 574        .ret_type       = RET_INTEGER,
 575        .arg1_type      = ARG_PTR_TO_MEM,
 576        .arg2_type      = ARG_CONST_SIZE,
 577        .arg3_type      = ARG_PTR_TO_CONST_STR,
 578};
 579
 580BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
 581           struct bpf_pidns_info *, nsdata, u32, size)
 582{
 583        struct task_struct *task = current;
 584        struct pid_namespace *pidns;
 585        int err = -EINVAL;
 586
 587        if (unlikely(size != sizeof(struct bpf_pidns_info)))
 588                goto clear;
 589
 590        if (unlikely((u64)(dev_t)dev != dev))
 591                goto clear;
 592
 593        if (unlikely(!task))
 594                goto clear;
 595
 596        pidns = task_active_pid_ns(task);
 597        if (unlikely(!pidns)) {
 598                err = -ENOENT;
 599                goto clear;
 600        }
 601
 602        if (!ns_match(&pidns->ns, (dev_t)dev, ino))
 603                goto clear;
 604
 605        nsdata->pid = task_pid_nr_ns(task, pidns);
 606        nsdata->tgid = task_tgid_nr_ns(task, pidns);
 607        return 0;
 608clear:
 609        memset((void *)nsdata, 0, (size_t) size);
 610        return err;
 611}
 612
 613const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
 614        .func           = bpf_get_ns_current_pid_tgid,
 615        .gpl_only       = false,
 616        .ret_type       = RET_INTEGER,
 617        .arg1_type      = ARG_ANYTHING,
 618        .arg2_type      = ARG_ANYTHING,
 619        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
 620        .arg4_type      = ARG_CONST_SIZE,
 621};
 622
 623static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
 624        .func           = bpf_get_raw_cpu_id,
 625        .gpl_only       = false,
 626        .ret_type       = RET_INTEGER,
 627};
 628
 629BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
 630           u64, flags, void *, data, u64, size)
 631{
 632        if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 633                return -EINVAL;
 634
 635        return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
 636}
 637
 638const struct bpf_func_proto bpf_event_output_data_proto =  {
 639        .func           = bpf_event_output_data,
 640        .gpl_only       = true,
 641        .ret_type       = RET_INTEGER,
 642        .arg1_type      = ARG_PTR_TO_CTX,
 643        .arg2_type      = ARG_CONST_MAP_PTR,
 644        .arg3_type      = ARG_ANYTHING,
 645        .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
 646        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 647};
 648
 649BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
 650           const void __user *, user_ptr)
 651{
 652        int ret = copy_from_user(dst, user_ptr, size);
 653
 654        if (unlikely(ret)) {
 655                memset(dst, 0, size);
 656                ret = -EFAULT;
 657        }
 658
 659        return ret;
 660}
 661
 662const struct bpf_func_proto bpf_copy_from_user_proto = {
 663        .func           = bpf_copy_from_user,
 664        .gpl_only       = false,
 665        .ret_type       = RET_INTEGER,
 666        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 667        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 668        .arg3_type      = ARG_ANYTHING,
 669};
 670
 671BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
 672           const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
 673{
 674        int ret;
 675
 676        /* flags is not used yet */
 677        if (unlikely(flags))
 678                return -EINVAL;
 679
 680        if (unlikely(!size))
 681                return 0;
 682
 683        ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
 684        if (ret == size)
 685                return 0;
 686
 687        memset(dst, 0, size);
 688        /* Return -EFAULT for partial read */
 689        return ret < 0 ? ret : -EFAULT;
 690}
 691
 692const struct bpf_func_proto bpf_copy_from_user_task_proto = {
 693        .func           = bpf_copy_from_user_task,
 694        .gpl_only       = true,
 695        .ret_type       = RET_INTEGER,
 696        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 697        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 698        .arg3_type      = ARG_ANYTHING,
 699        .arg4_type      = ARG_PTR_TO_BTF_ID,
 700        .arg4_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
 701        .arg5_type      = ARG_ANYTHING
 702};
 703
 704BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
 705{
 706        if (cpu >= nr_cpu_ids)
 707                return (unsigned long)NULL;
 708
 709        return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
 710}
 711
 712const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
 713        .func           = bpf_per_cpu_ptr,
 714        .gpl_only       = false,
 715        .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
 716        .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
 717        .arg2_type      = ARG_ANYTHING,
 718};
 719
 720BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
 721{
 722        return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
 723}
 724
 725const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
 726        .func           = bpf_this_cpu_ptr,
 727        .gpl_only       = false,
 728        .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
 729        .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
 730};
 731
 732static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
 733                size_t bufsz)
 734{
 735        void __user *user_ptr = (__force void __user *)unsafe_ptr;
 736
 737        buf[0] = 0;
 738
 739        switch (fmt_ptype) {
 740        case 's':
 741#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 742                if ((unsigned long)unsafe_ptr < TASK_SIZE)
 743                        return strncpy_from_user_nofault(buf, user_ptr, bufsz);
 744                fallthrough;
 745#endif
 746        case 'k':
 747                return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
 748        case 'u':
 749                return strncpy_from_user_nofault(buf, user_ptr, bufsz);
 750        }
 751
 752        return -EINVAL;
 753}
 754
 755/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
 756 * arguments representation.
 757 */
 758#define MAX_BPRINTF_BUF_LEN     512
 759
 760/* Support executing three nested bprintf helper calls on a given CPU */
 761#define MAX_BPRINTF_NEST_LEVEL  3
 762struct bpf_bprintf_buffers {
 763        char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
 764};
 765static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
 766static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
 767
 768static int try_get_fmt_tmp_buf(char **tmp_buf)
 769{
 770        struct bpf_bprintf_buffers *bufs;
 771        int nest_level;
 772
 773        preempt_disable();
 774        nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
 775        if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
 776                this_cpu_dec(bpf_bprintf_nest_level);
 777                preempt_enable();
 778                return -EBUSY;
 779        }
 780        bufs = this_cpu_ptr(&bpf_bprintf_bufs);
 781        *tmp_buf = bufs->tmp_bufs[nest_level - 1];
 782
 783        return 0;
 784}
 785
 786void bpf_bprintf_cleanup(void)
 787{
 788        if (this_cpu_read(bpf_bprintf_nest_level)) {
 789                this_cpu_dec(bpf_bprintf_nest_level);
 790                preempt_enable();
 791        }
 792}
 793
 794/*
 795 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
 796 *
 797 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
 798 *
 799 * This can be used in two ways:
 800 * - Format string verification only: when bin_args is NULL
 801 * - Arguments preparation: in addition to the above verification, it writes in
 802 *   bin_args a binary representation of arguments usable by bstr_printf where
 803 *   pointers from BPF have been sanitized.
 804 *
 805 * In argument preparation mode, if 0 is returned, safe temporary buffers are
 806 * allocated and bpf_bprintf_cleanup should be called to free them after use.
 807 */
 808int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
 809                        u32 **bin_args, u32 num_args)
 810{
 811        char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
 812        size_t sizeof_cur_arg, sizeof_cur_ip;
 813        int err, i, num_spec = 0;
 814        u64 cur_arg;
 815        char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
 816
 817        fmt_end = strnchr(fmt, fmt_size, 0);
 818        if (!fmt_end)
 819                return -EINVAL;
 820        fmt_size = fmt_end - fmt;
 821
 822        if (bin_args) {
 823                if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
 824                        return -EBUSY;
 825
 826                tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
 827                *bin_args = (u32 *)tmp_buf;
 828        }
 829
 830        for (i = 0; i < fmt_size; i++) {
 831                if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
 832                        err = -EINVAL;
 833                        goto out;
 834                }
 835
 836                if (fmt[i] != '%')
 837                        continue;
 838
 839                if (fmt[i + 1] == '%') {
 840                        i++;
 841                        continue;
 842                }
 843
 844                if (num_spec >= num_args) {
 845                        err = -EINVAL;
 846                        goto out;
 847                }
 848
 849                /* The string is zero-terminated so if fmt[i] != 0, we can
 850                 * always access fmt[i + 1], in the worst case it will be a 0
 851                 */
 852                i++;
 853
 854                /* skip optional "[0 +-][num]" width formatting field */
 855                while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
 856                       fmt[i] == ' ')
 857                        i++;
 858                if (fmt[i] >= '1' && fmt[i] <= '9') {
 859                        i++;
 860                        while (fmt[i] >= '0' && fmt[i] <= '9')
 861                                i++;
 862                }
 863
 864                if (fmt[i] == 'p') {
 865                        sizeof_cur_arg = sizeof(long);
 866
 867                        if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
 868                            fmt[i + 2] == 's') {
 869                                fmt_ptype = fmt[i + 1];
 870                                i += 2;
 871                                goto fmt_str;
 872                        }
 873
 874                        if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
 875                            ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
 876                            fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
 877                            fmt[i + 1] == 'S') {
 878                                /* just kernel pointers */
 879                                if (tmp_buf)
 880                                        cur_arg = raw_args[num_spec];
 881                                i++;
 882                                goto nocopy_fmt;
 883                        }
 884
 885                        if (fmt[i + 1] == 'B') {
 886                                if (tmp_buf)  {
 887                                        err = snprintf(tmp_buf,
 888                                                       (tmp_buf_end - tmp_buf),
 889                                                       "%pB",
 890                                                       (void *)(long)raw_args[num_spec]);
 891                                        tmp_buf += (err + 1);
 892                                }
 893
 894                                i++;
 895                                num_spec++;
 896                                continue;
 897                        }
 898
 899                        /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
 900                        if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
 901                            (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
 902                                err = -EINVAL;
 903                                goto out;
 904                        }
 905
 906                        i += 2;
 907                        if (!tmp_buf)
 908                                goto nocopy_fmt;
 909
 910                        sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
 911                        if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
 912                                err = -ENOSPC;
 913                                goto out;
 914                        }
 915
 916                        unsafe_ptr = (char *)(long)raw_args[num_spec];
 917                        err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
 918                                                       sizeof_cur_ip);
 919                        if (err < 0)
 920                                memset(cur_ip, 0, sizeof_cur_ip);
 921
 922                        /* hack: bstr_printf expects IP addresses to be
 923                         * pre-formatted as strings, ironically, the easiest way
 924                         * to do that is to call snprintf.
 925                         */
 926                        ip_spec[2] = fmt[i - 1];
 927                        ip_spec[3] = fmt[i];
 928                        err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
 929                                       ip_spec, &cur_ip);
 930
 931                        tmp_buf += err + 1;
 932                        num_spec++;
 933
 934                        continue;
 935                } else if (fmt[i] == 's') {
 936                        fmt_ptype = fmt[i];
 937fmt_str:
 938                        if (fmt[i + 1] != 0 &&
 939                            !isspace(fmt[i + 1]) &&
 940                            !ispunct(fmt[i + 1])) {
 941                                err = -EINVAL;
 942                                goto out;
 943                        }
 944
 945                        if (!tmp_buf)
 946                                goto nocopy_fmt;
 947
 948                        if (tmp_buf_end == tmp_buf) {
 949                                err = -ENOSPC;
 950                                goto out;
 951                        }
 952
 953                        unsafe_ptr = (char *)(long)raw_args[num_spec];
 954                        err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
 955                                                    fmt_ptype,
 956                                                    tmp_buf_end - tmp_buf);
 957                        if (err < 0) {
 958                                tmp_buf[0] = '\0';
 959                                err = 1;
 960                        }
 961
 962                        tmp_buf += err;
 963                        num_spec++;
 964
 965                        continue;
 966                } else if (fmt[i] == 'c') {
 967                        if (!tmp_buf)
 968                                goto nocopy_fmt;
 969
 970                        if (tmp_buf_end == tmp_buf) {
 971                                err = -ENOSPC;
 972                                goto out;
 973                        }
 974
 975                        *tmp_buf = raw_args[num_spec];
 976                        tmp_buf++;
 977                        num_spec++;
 978
 979                        continue;
 980                }
 981
 982                sizeof_cur_arg = sizeof(int);
 983
 984                if (fmt[i] == 'l') {
 985                        sizeof_cur_arg = sizeof(long);
 986                        i++;
 987                }
 988                if (fmt[i] == 'l') {
 989                        sizeof_cur_arg = sizeof(long long);
 990                        i++;
 991                }
 992
 993                if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
 994                    fmt[i] != 'x' && fmt[i] != 'X') {
 995                        err = -EINVAL;
 996                        goto out;
 997                }
 998
 999                if (tmp_buf)
1000                        cur_arg = raw_args[num_spec];
1001nocopy_fmt:
1002                if (tmp_buf) {
1003                        tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1004                        if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1005                                err = -ENOSPC;
1006                                goto out;
1007                        }
1008
1009                        if (sizeof_cur_arg == 8) {
1010                                *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1011                                *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1012                        } else {
1013                                *(u32 *)tmp_buf = (u32)(long)cur_arg;
1014                        }
1015                        tmp_buf += sizeof_cur_arg;
1016                }
1017                num_spec++;
1018        }
1019
1020        err = 0;
1021out:
1022        if (err)
1023                bpf_bprintf_cleanup();
1024        return err;
1025}
1026
1027BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1028           const void *, data, u32, data_len)
1029{
1030        int err, num_args;
1031        u32 *bin_args;
1032
1033        if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1034            (data_len && !data))
1035                return -EINVAL;
1036        num_args = data_len / 8;
1037
1038        /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1039         * can safely give an unbounded size.
1040         */
1041        err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1042        if (err < 0)
1043                return err;
1044
1045        err = bstr_printf(str, str_size, fmt, bin_args);
1046
1047        bpf_bprintf_cleanup();
1048
1049        return err + 1;
1050}
1051
1052const struct bpf_func_proto bpf_snprintf_proto = {
1053        .func           = bpf_snprintf,
1054        .gpl_only       = true,
1055        .ret_type       = RET_INTEGER,
1056        .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1057        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1058        .arg3_type      = ARG_PTR_TO_CONST_STR,
1059        .arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1060        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1061};
1062
1063/* BPF map elements can contain 'struct bpf_timer'.
1064 * Such map owns all of its BPF timers.
1065 * 'struct bpf_timer' is allocated as part of map element allocation
1066 * and it's zero initialized.
1067 * That space is used to keep 'struct bpf_timer_kern'.
1068 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1069 * remembers 'struct bpf_map *' pointer it's part of.
1070 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1071 * bpf_timer_start() arms the timer.
1072 * If user space reference to a map goes to zero at this point
1073 * ops->map_release_uref callback is responsible for cancelling the timers,
1074 * freeing their memory, and decrementing prog's refcnts.
1075 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1076 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1077 * freeing the timers when inner map is replaced or deleted by user space.
1078 */
1079struct bpf_hrtimer {
1080        struct hrtimer timer;
1081        struct bpf_map *map;
1082        struct bpf_prog *prog;
1083        void __rcu *callback_fn;
1084        void *value;
1085};
1086
1087/* the actual struct hidden inside uapi struct bpf_timer */
1088struct bpf_timer_kern {
1089        struct bpf_hrtimer *timer;
1090        /* bpf_spin_lock is used here instead of spinlock_t to make
1091         * sure that it always fits into space reserved by struct bpf_timer
1092         * regardless of LOCKDEP and spinlock debug flags.
1093         */
1094        struct bpf_spin_lock lock;
1095} __attribute__((aligned(8)));
1096
1097static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1098
1099static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1100{
1101        struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1102        struct bpf_map *map = t->map;
1103        void *value = t->value;
1104        bpf_callback_t callback_fn;
1105        void *key;
1106        u32 idx;
1107
1108        BTF_TYPE_EMIT(struct bpf_timer);
1109        callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1110        if (!callback_fn)
1111                goto out;
1112
1113        /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1114         * cannot be preempted by another bpf_timer_cb() on the same cpu.
1115         * Remember the timer this callback is servicing to prevent
1116         * deadlock if callback_fn() calls bpf_timer_cancel() or
1117         * bpf_map_delete_elem() on the same timer.
1118         */
1119        this_cpu_write(hrtimer_running, t);
1120        if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1121                struct bpf_array *array = container_of(map, struct bpf_array, map);
1122
1123                /* compute the key */
1124                idx = ((char *)value - array->value) / array->elem_size;
1125                key = &idx;
1126        } else { /* hash or lru */
1127                key = value - round_up(map->key_size, 8);
1128        }
1129
1130        callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1131        /* The verifier checked that return value is zero. */
1132
1133        this_cpu_write(hrtimer_running, NULL);
1134out:
1135        return HRTIMER_NORESTART;
1136}
1137
1138BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1139           u64, flags)
1140{
1141        clockid_t clockid = flags & (MAX_CLOCKS - 1);
1142        struct bpf_hrtimer *t;
1143        int ret = 0;
1144
1145        BUILD_BUG_ON(MAX_CLOCKS != 16);
1146        BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1147        BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1148
1149        if (in_nmi())
1150                return -EOPNOTSUPP;
1151
1152        if (flags >= MAX_CLOCKS ||
1153            /* similar to timerfd except _ALARM variants are not supported */
1154            (clockid != CLOCK_MONOTONIC &&
1155             clockid != CLOCK_REALTIME &&
1156             clockid != CLOCK_BOOTTIME))
1157                return -EINVAL;
1158        __bpf_spin_lock_irqsave(&timer->lock);
1159        t = timer->timer;
1160        if (t) {
1161                ret = -EBUSY;
1162                goto out;
1163        }
1164        if (!atomic64_read(&map->usercnt)) {
1165                /* maps with timers must be either held by user space
1166                 * or pinned in bpffs.
1167                 */
1168                ret = -EPERM;
1169                goto out;
1170        }
1171        /* allocate hrtimer via map_kmalloc to use memcg accounting */
1172        t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1173        if (!t) {
1174                ret = -ENOMEM;
1175                goto out;
1176        }
1177        t->value = (void *)timer - map->timer_off;
1178        t->map = map;
1179        t->prog = NULL;
1180        rcu_assign_pointer(t->callback_fn, NULL);
1181        hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1182        t->timer.function = bpf_timer_cb;
1183        timer->timer = t;
1184out:
1185        __bpf_spin_unlock_irqrestore(&timer->lock);
1186        return ret;
1187}
1188
1189static const struct bpf_func_proto bpf_timer_init_proto = {
1190        .func           = bpf_timer_init,
1191        .gpl_only       = true,
1192        .ret_type       = RET_INTEGER,
1193        .arg1_type      = ARG_PTR_TO_TIMER,
1194        .arg2_type      = ARG_CONST_MAP_PTR,
1195        .arg3_type      = ARG_ANYTHING,
1196};
1197
1198BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1199           struct bpf_prog_aux *, aux)
1200{
1201        struct bpf_prog *prev, *prog = aux->prog;
1202        struct bpf_hrtimer *t;
1203        int ret = 0;
1204
1205        if (in_nmi())
1206                return -EOPNOTSUPP;
1207        __bpf_spin_lock_irqsave(&timer->lock);
1208        t = timer->timer;
1209        if (!t) {
1210                ret = -EINVAL;
1211                goto out;
1212        }
1213        if (!atomic64_read(&t->map->usercnt)) {
1214                /* maps with timers must be either held by user space
1215                 * or pinned in bpffs. Otherwise timer might still be
1216                 * running even when bpf prog is detached and user space
1217                 * is gone, since map_release_uref won't ever be called.
1218                 */
1219                ret = -EPERM;
1220                goto out;
1221        }
1222        prev = t->prog;
1223        if (prev != prog) {
1224                /* Bump prog refcnt once. Every bpf_timer_set_callback()
1225                 * can pick different callback_fn-s within the same prog.
1226                 */
1227                prog = bpf_prog_inc_not_zero(prog);
1228                if (IS_ERR(prog)) {
1229                        ret = PTR_ERR(prog);
1230                        goto out;
1231                }
1232                if (prev)
1233                        /* Drop prev prog refcnt when swapping with new prog */
1234                        bpf_prog_put(prev);
1235                t->prog = prog;
1236        }
1237        rcu_assign_pointer(t->callback_fn, callback_fn);
1238out:
1239        __bpf_spin_unlock_irqrestore(&timer->lock);
1240        return ret;
1241}
1242
1243static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1244        .func           = bpf_timer_set_callback,
1245        .gpl_only       = true,
1246        .ret_type       = RET_INTEGER,
1247        .arg1_type      = ARG_PTR_TO_TIMER,
1248        .arg2_type      = ARG_PTR_TO_FUNC,
1249};
1250
1251BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1252{
1253        struct bpf_hrtimer *t;
1254        int ret = 0;
1255
1256        if (in_nmi())
1257                return -EOPNOTSUPP;
1258        if (flags)
1259                return -EINVAL;
1260        __bpf_spin_lock_irqsave(&timer->lock);
1261        t = timer->timer;
1262        if (!t || !t->prog) {
1263                ret = -EINVAL;
1264                goto out;
1265        }
1266        hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1267out:
1268        __bpf_spin_unlock_irqrestore(&timer->lock);
1269        return ret;
1270}
1271
1272static const struct bpf_func_proto bpf_timer_start_proto = {
1273        .func           = bpf_timer_start,
1274        .gpl_only       = true,
1275        .ret_type       = RET_INTEGER,
1276        .arg1_type      = ARG_PTR_TO_TIMER,
1277        .arg2_type      = ARG_ANYTHING,
1278        .arg3_type      = ARG_ANYTHING,
1279};
1280
1281static void drop_prog_refcnt(struct bpf_hrtimer *t)
1282{
1283        struct bpf_prog *prog = t->prog;
1284
1285        if (prog) {
1286                bpf_prog_put(prog);
1287                t->prog = NULL;
1288                rcu_assign_pointer(t->callback_fn, NULL);
1289        }
1290}
1291
1292BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1293{
1294        struct bpf_hrtimer *t;
1295        int ret = 0;
1296
1297        if (in_nmi())
1298                return -EOPNOTSUPP;
1299        __bpf_spin_lock_irqsave(&timer->lock);
1300        t = timer->timer;
1301        if (!t) {
1302                ret = -EINVAL;
1303                goto out;
1304        }
1305        if (this_cpu_read(hrtimer_running) == t) {
1306                /* If bpf callback_fn is trying to bpf_timer_cancel()
1307                 * its own timer the hrtimer_cancel() will deadlock
1308                 * since it waits for callback_fn to finish
1309                 */
1310                ret = -EDEADLK;
1311                goto out;
1312        }
1313        drop_prog_refcnt(t);
1314out:
1315        __bpf_spin_unlock_irqrestore(&timer->lock);
1316        /* Cancel the timer and wait for associated callback to finish
1317         * if it was running.
1318         */
1319        ret = ret ?: hrtimer_cancel(&t->timer);
1320        return ret;
1321}
1322
1323static const struct bpf_func_proto bpf_timer_cancel_proto = {
1324        .func           = bpf_timer_cancel,
1325        .gpl_only       = true,
1326        .ret_type       = RET_INTEGER,
1327        .arg1_type      = ARG_PTR_TO_TIMER,
1328};
1329
1330/* This function is called by map_delete/update_elem for individual element and
1331 * by ops->map_release_uref when the user space reference to a map reaches zero.
1332 */
1333void bpf_timer_cancel_and_free(void *val)
1334{
1335        struct bpf_timer_kern *timer = val;
1336        struct bpf_hrtimer *t;
1337
1338        /* Performance optimization: read timer->timer without lock first. */
1339        if (!READ_ONCE(timer->timer))
1340                return;
1341
1342        __bpf_spin_lock_irqsave(&timer->lock);
1343        /* re-read it under lock */
1344        t = timer->timer;
1345        if (!t)
1346                goto out;
1347        drop_prog_refcnt(t);
1348        /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1349         * this timer, since it won't be initialized.
1350         */
1351        timer->timer = NULL;
1352out:
1353        __bpf_spin_unlock_irqrestore(&timer->lock);
1354        if (!t)
1355                return;
1356        /* Cancel the timer and wait for callback to complete if it was running.
1357         * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1358         * right after for both preallocated and non-preallocated maps.
1359         * The timer->timer = NULL was already done and no code path can
1360         * see address 't' anymore.
1361         *
1362         * Check that bpf_map_delete/update_elem() wasn't called from timer
1363         * callback_fn. In such case don't call hrtimer_cancel() (since it will
1364         * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1365         * return -1). Though callback_fn is still running on this cpu it's
1366         * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1367         * from 't'. The bpf subprog callback_fn won't be able to access 't',
1368         * since timer->timer = NULL was already done. The timer will be
1369         * effectively cancelled because bpf_timer_cb() will return
1370         * HRTIMER_NORESTART.
1371         */
1372        if (this_cpu_read(hrtimer_running) != t)
1373                hrtimer_cancel(&t->timer);
1374        kfree(t);
1375}
1376
1377const struct bpf_func_proto bpf_get_current_task_proto __weak;
1378const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1379const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1380const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1381const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1382const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1383const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1384
1385const struct bpf_func_proto *
1386bpf_base_func_proto(enum bpf_func_id func_id)
1387{
1388        switch (func_id) {
1389        case BPF_FUNC_map_lookup_elem:
1390                return &bpf_map_lookup_elem_proto;
1391        case BPF_FUNC_map_update_elem:
1392                return &bpf_map_update_elem_proto;
1393        case BPF_FUNC_map_delete_elem:
1394                return &bpf_map_delete_elem_proto;
1395        case BPF_FUNC_map_push_elem:
1396                return &bpf_map_push_elem_proto;
1397        case BPF_FUNC_map_pop_elem:
1398                return &bpf_map_pop_elem_proto;
1399        case BPF_FUNC_map_peek_elem:
1400                return &bpf_map_peek_elem_proto;
1401        case BPF_FUNC_get_prandom_u32:
1402                return &bpf_get_prandom_u32_proto;
1403        case BPF_FUNC_get_smp_processor_id:
1404                return &bpf_get_raw_smp_processor_id_proto;
1405        case BPF_FUNC_get_numa_node_id:
1406                return &bpf_get_numa_node_id_proto;
1407        case BPF_FUNC_tail_call:
1408                return &bpf_tail_call_proto;
1409        case BPF_FUNC_ktime_get_ns:
1410                return &bpf_ktime_get_ns_proto;
1411        case BPF_FUNC_ktime_get_boot_ns:
1412                return &bpf_ktime_get_boot_ns_proto;
1413        case BPF_FUNC_ringbuf_output:
1414                return &bpf_ringbuf_output_proto;
1415        case BPF_FUNC_ringbuf_reserve:
1416                return &bpf_ringbuf_reserve_proto;
1417        case BPF_FUNC_ringbuf_submit:
1418                return &bpf_ringbuf_submit_proto;
1419        case BPF_FUNC_ringbuf_discard:
1420                return &bpf_ringbuf_discard_proto;
1421        case BPF_FUNC_ringbuf_query:
1422                return &bpf_ringbuf_query_proto;
1423        case BPF_FUNC_for_each_map_elem:
1424                return &bpf_for_each_map_elem_proto;
1425        case BPF_FUNC_loop:
1426                return &bpf_loop_proto;
1427        case BPF_FUNC_strncmp:
1428                return &bpf_strncmp_proto;
1429        default:
1430                break;
1431        }
1432
1433        if (!bpf_capable())
1434                return NULL;
1435
1436        switch (func_id) {
1437        case BPF_FUNC_spin_lock:
1438                return &bpf_spin_lock_proto;
1439        case BPF_FUNC_spin_unlock:
1440                return &bpf_spin_unlock_proto;
1441        case BPF_FUNC_jiffies64:
1442                return &bpf_jiffies64_proto;
1443        case BPF_FUNC_per_cpu_ptr:
1444                return &bpf_per_cpu_ptr_proto;
1445        case BPF_FUNC_this_cpu_ptr:
1446                return &bpf_this_cpu_ptr_proto;
1447        case BPF_FUNC_timer_init:
1448                return &bpf_timer_init_proto;
1449        case BPF_FUNC_timer_set_callback:
1450                return &bpf_timer_set_callback_proto;
1451        case BPF_FUNC_timer_start:
1452                return &bpf_timer_start_proto;
1453        case BPF_FUNC_timer_cancel:
1454                return &bpf_timer_cancel_proto;
1455        default:
1456                break;
1457        }
1458
1459        if (!perfmon_capable())
1460                return NULL;
1461
1462        switch (func_id) {
1463        case BPF_FUNC_trace_printk:
1464                return bpf_get_trace_printk_proto();
1465        case BPF_FUNC_get_current_task:
1466                return &bpf_get_current_task_proto;
1467        case BPF_FUNC_get_current_task_btf:
1468                return &bpf_get_current_task_btf_proto;
1469        case BPF_FUNC_probe_read_user:
1470                return &bpf_probe_read_user_proto;
1471        case BPF_FUNC_probe_read_kernel:
1472                return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1473                       NULL : &bpf_probe_read_kernel_proto;
1474        case BPF_FUNC_probe_read_user_str:
1475                return &bpf_probe_read_user_str_proto;
1476        case BPF_FUNC_probe_read_kernel_str:
1477                return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1478                       NULL : &bpf_probe_read_kernel_str_proto;
1479        case BPF_FUNC_snprintf_btf:
1480                return &bpf_snprintf_btf_proto;
1481        case BPF_FUNC_snprintf:
1482                return &bpf_snprintf_proto;
1483        case BPF_FUNC_task_pt_regs:
1484                return &bpf_task_pt_regs_proto;
1485        case BPF_FUNC_trace_vprintk:
1486                return bpf_get_trace_vprintk_proto();
1487        default:
1488                return NULL;
1489        }
1490}
1491