linux/kernel/irq/manage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/isolation.h>
  22#include <uapi/linux/sched/types.h>
  23#include <linux/task_work.h>
  24
  25#include "internals.h"
  26
  27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
  29
  30static int __init setup_forced_irqthreads(char *arg)
  31{
  32        static_branch_enable(&force_irqthreads_key);
  33        return 0;
  34}
  35early_param("threadirqs", setup_forced_irqthreads);
  36#endif
  37
  38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  39{
  40        struct irq_data *irqd = irq_desc_get_irq_data(desc);
  41        bool inprogress;
  42
  43        do {
  44                unsigned long flags;
  45
  46                /*
  47                 * Wait until we're out of the critical section.  This might
  48                 * give the wrong answer due to the lack of memory barriers.
  49                 */
  50                while (irqd_irq_inprogress(&desc->irq_data))
  51                        cpu_relax();
  52
  53                /* Ok, that indicated we're done: double-check carefully. */
  54                raw_spin_lock_irqsave(&desc->lock, flags);
  55                inprogress = irqd_irq_inprogress(&desc->irq_data);
  56
  57                /*
  58                 * If requested and supported, check at the chip whether it
  59                 * is in flight at the hardware level, i.e. already pending
  60                 * in a CPU and waiting for service and acknowledge.
  61                 */
  62                if (!inprogress && sync_chip) {
  63                        /*
  64                         * Ignore the return code. inprogress is only updated
  65                         * when the chip supports it.
  66                         */
  67                        __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  68                                                &inprogress);
  69                }
  70                raw_spin_unlock_irqrestore(&desc->lock, flags);
  71
  72                /* Oops, that failed? */
  73        } while (inprogress);
  74}
  75
  76/**
  77 *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  78 *      @irq: interrupt number to wait for
  79 *
  80 *      This function waits for any pending hard IRQ handlers for this
  81 *      interrupt to complete before returning. If you use this
  82 *      function while holding a resource the IRQ handler may need you
  83 *      will deadlock. It does not take associated threaded handlers
  84 *      into account.
  85 *
  86 *      Do not use this for shutdown scenarios where you must be sure
  87 *      that all parts (hardirq and threaded handler) have completed.
  88 *
  89 *      Returns: false if a threaded handler is active.
  90 *
  91 *      This function may be called - with care - from IRQ context.
  92 *
  93 *      It does not check whether there is an interrupt in flight at the
  94 *      hardware level, but not serviced yet, as this might deadlock when
  95 *      called with interrupts disabled and the target CPU of the interrupt
  96 *      is the current CPU.
  97 */
  98bool synchronize_hardirq(unsigned int irq)
  99{
 100        struct irq_desc *desc = irq_to_desc(irq);
 101
 102        if (desc) {
 103                __synchronize_hardirq(desc, false);
 104                return !atomic_read(&desc->threads_active);
 105        }
 106
 107        return true;
 108}
 109EXPORT_SYMBOL(synchronize_hardirq);
 110
 111/**
 112 *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 113 *      @irq: interrupt number to wait for
 114 *
 115 *      This function waits for any pending IRQ handlers for this interrupt
 116 *      to complete before returning. If you use this function while
 117 *      holding a resource the IRQ handler may need you will deadlock.
 118 *
 119 *      Can only be called from preemptible code as it might sleep when
 120 *      an interrupt thread is associated to @irq.
 121 *
 122 *      It optionally makes sure (when the irq chip supports that method)
 123 *      that the interrupt is not pending in any CPU and waiting for
 124 *      service.
 125 */
 126void synchronize_irq(unsigned int irq)
 127{
 128        struct irq_desc *desc = irq_to_desc(irq);
 129
 130        if (desc) {
 131                __synchronize_hardirq(desc, true);
 132                /*
 133                 * We made sure that no hardirq handler is
 134                 * running. Now verify that no threaded handlers are
 135                 * active.
 136                 */
 137                wait_event(desc->wait_for_threads,
 138                           !atomic_read(&desc->threads_active));
 139        }
 140}
 141EXPORT_SYMBOL(synchronize_irq);
 142
 143#ifdef CONFIG_SMP
 144cpumask_var_t irq_default_affinity;
 145
 146static bool __irq_can_set_affinity(struct irq_desc *desc)
 147{
 148        if (!desc || !irqd_can_balance(&desc->irq_data) ||
 149            !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 150                return false;
 151        return true;
 152}
 153
 154/**
 155 *      irq_can_set_affinity - Check if the affinity of a given irq can be set
 156 *      @irq:           Interrupt to check
 157 *
 158 */
 159int irq_can_set_affinity(unsigned int irq)
 160{
 161        return __irq_can_set_affinity(irq_to_desc(irq));
 162}
 163
 164/**
 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 166 * @irq:        Interrupt to check
 167 *
 168 * Like irq_can_set_affinity() above, but additionally checks for the
 169 * AFFINITY_MANAGED flag.
 170 */
 171bool irq_can_set_affinity_usr(unsigned int irq)
 172{
 173        struct irq_desc *desc = irq_to_desc(irq);
 174
 175        return __irq_can_set_affinity(desc) &&
 176                !irqd_affinity_is_managed(&desc->irq_data);
 177}
 178
 179/**
 180 *      irq_set_thread_affinity - Notify irq threads to adjust affinity
 181 *      @desc:          irq descriptor which has affinity changed
 182 *
 183 *      We just set IRQTF_AFFINITY and delegate the affinity setting
 184 *      to the interrupt thread itself. We can not call
 185 *      set_cpus_allowed_ptr() here as we hold desc->lock and this
 186 *      code can be called from hard interrupt context.
 187 */
 188void irq_set_thread_affinity(struct irq_desc *desc)
 189{
 190        struct irqaction *action;
 191
 192        for_each_action_of_desc(desc, action)
 193                if (action->thread)
 194                        set_bit(IRQTF_AFFINITY, &action->thread_flags);
 195}
 196
 197#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 198static void irq_validate_effective_affinity(struct irq_data *data)
 199{
 200        const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 201        struct irq_chip *chip = irq_data_get_irq_chip(data);
 202
 203        if (!cpumask_empty(m))
 204                return;
 205        pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 206                     chip->name, data->irq);
 207}
 208
 209static inline void irq_init_effective_affinity(struct irq_data *data,
 210                                               const struct cpumask *mask)
 211{
 212        cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
 213}
 214#else
 215static inline void irq_validate_effective_affinity(struct irq_data *data) { }
 216static inline void irq_init_effective_affinity(struct irq_data *data,
 217                                               const struct cpumask *mask) { }
 218#endif
 219
 220int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 221                        bool force)
 222{
 223        struct irq_desc *desc = irq_data_to_desc(data);
 224        struct irq_chip *chip = irq_data_get_irq_chip(data);
 225        int ret;
 226
 227        if (!chip || !chip->irq_set_affinity)
 228                return -EINVAL;
 229
 230        /*
 231         * If this is a managed interrupt and housekeeping is enabled on
 232         * it check whether the requested affinity mask intersects with
 233         * a housekeeping CPU. If so, then remove the isolated CPUs from
 234         * the mask and just keep the housekeeping CPU(s). This prevents
 235         * the affinity setter from routing the interrupt to an isolated
 236         * CPU to avoid that I/O submitted from a housekeeping CPU causes
 237         * interrupts on an isolated one.
 238         *
 239         * If the masks do not intersect or include online CPU(s) then
 240         * keep the requested mask. The isolated target CPUs are only
 241         * receiving interrupts when the I/O operation was submitted
 242         * directly from them.
 243         *
 244         * If all housekeeping CPUs in the affinity mask are offline, the
 245         * interrupt will be migrated by the CPU hotplug code once a
 246         * housekeeping CPU which belongs to the affinity mask comes
 247         * online.
 248         */
 249        if (irqd_affinity_is_managed(data) &&
 250            housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
 251                const struct cpumask *hk_mask, *prog_mask;
 252
 253                static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
 254                static struct cpumask tmp_mask;
 255
 256                hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
 257
 258                raw_spin_lock(&tmp_mask_lock);
 259                cpumask_and(&tmp_mask, mask, hk_mask);
 260                if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
 261                        prog_mask = mask;
 262                else
 263                        prog_mask = &tmp_mask;
 264                ret = chip->irq_set_affinity(data, prog_mask, force);
 265                raw_spin_unlock(&tmp_mask_lock);
 266        } else {
 267                ret = chip->irq_set_affinity(data, mask, force);
 268        }
 269        switch (ret) {
 270        case IRQ_SET_MASK_OK:
 271        case IRQ_SET_MASK_OK_DONE:
 272                cpumask_copy(desc->irq_common_data.affinity, mask);
 273                fallthrough;
 274        case IRQ_SET_MASK_OK_NOCOPY:
 275                irq_validate_effective_affinity(data);
 276                irq_set_thread_affinity(desc);
 277                ret = 0;
 278        }
 279
 280        return ret;
 281}
 282
 283#ifdef CONFIG_GENERIC_PENDING_IRQ
 284static inline int irq_set_affinity_pending(struct irq_data *data,
 285                                           const struct cpumask *dest)
 286{
 287        struct irq_desc *desc = irq_data_to_desc(data);
 288
 289        irqd_set_move_pending(data);
 290        irq_copy_pending(desc, dest);
 291        return 0;
 292}
 293#else
 294static inline int irq_set_affinity_pending(struct irq_data *data,
 295                                           const struct cpumask *dest)
 296{
 297        return -EBUSY;
 298}
 299#endif
 300
 301static int irq_try_set_affinity(struct irq_data *data,
 302                                const struct cpumask *dest, bool force)
 303{
 304        int ret = irq_do_set_affinity(data, dest, force);
 305
 306        /*
 307         * In case that the underlying vector management is busy and the
 308         * architecture supports the generic pending mechanism then utilize
 309         * this to avoid returning an error to user space.
 310         */
 311        if (ret == -EBUSY && !force)
 312                ret = irq_set_affinity_pending(data, dest);
 313        return ret;
 314}
 315
 316static bool irq_set_affinity_deactivated(struct irq_data *data,
 317                                         const struct cpumask *mask, bool force)
 318{
 319        struct irq_desc *desc = irq_data_to_desc(data);
 320
 321        /*
 322         * Handle irq chips which can handle affinity only in activated
 323         * state correctly
 324         *
 325         * If the interrupt is not yet activated, just store the affinity
 326         * mask and do not call the chip driver at all. On activation the
 327         * driver has to make sure anyway that the interrupt is in a
 328         * usable state so startup works.
 329         */
 330        if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
 331            irqd_is_activated(data) || !irqd_affinity_on_activate(data))
 332                return false;
 333
 334        cpumask_copy(desc->irq_common_data.affinity, mask);
 335        irq_init_effective_affinity(data, mask);
 336        irqd_set(data, IRQD_AFFINITY_SET);
 337        return true;
 338}
 339
 340int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 341                            bool force)
 342{
 343        struct irq_chip *chip = irq_data_get_irq_chip(data);
 344        struct irq_desc *desc = irq_data_to_desc(data);
 345        int ret = 0;
 346
 347        if (!chip || !chip->irq_set_affinity)
 348                return -EINVAL;
 349
 350        if (irq_set_affinity_deactivated(data, mask, force))
 351                return 0;
 352
 353        if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 354                ret = irq_try_set_affinity(data, mask, force);
 355        } else {
 356                irqd_set_move_pending(data);
 357                irq_copy_pending(desc, mask);
 358        }
 359
 360        if (desc->affinity_notify) {
 361                kref_get(&desc->affinity_notify->kref);
 362                if (!schedule_work(&desc->affinity_notify->work)) {
 363                        /* Work was already scheduled, drop our extra ref */
 364                        kref_put(&desc->affinity_notify->kref,
 365                                 desc->affinity_notify->release);
 366                }
 367        }
 368        irqd_set(data, IRQD_AFFINITY_SET);
 369
 370        return ret;
 371}
 372
 373/**
 374 * irq_update_affinity_desc - Update affinity management for an interrupt
 375 * @irq:        The interrupt number to update
 376 * @affinity:   Pointer to the affinity descriptor
 377 *
 378 * This interface can be used to configure the affinity management of
 379 * interrupts which have been allocated already.
 380 *
 381 * There are certain limitations on when it may be used - attempts to use it
 382 * for when the kernel is configured for generic IRQ reservation mode (in
 383 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
 384 * managed/non-managed interrupt accounting. In addition, attempts to use it on
 385 * an interrupt which is already started or which has already been configured
 386 * as managed will also fail, as these mean invalid init state or double init.
 387 */
 388int irq_update_affinity_desc(unsigned int irq,
 389                             struct irq_affinity_desc *affinity)
 390{
 391        struct irq_desc *desc;
 392        unsigned long flags;
 393        bool activated;
 394        int ret = 0;
 395
 396        /*
 397         * Supporting this with the reservation scheme used by x86 needs
 398         * some more thought. Fail it for now.
 399         */
 400        if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
 401                return -EOPNOTSUPP;
 402
 403        desc = irq_get_desc_buslock(irq, &flags, 0);
 404        if (!desc)
 405                return -EINVAL;
 406
 407        /* Requires the interrupt to be shut down */
 408        if (irqd_is_started(&desc->irq_data)) {
 409                ret = -EBUSY;
 410                goto out_unlock;
 411        }
 412
 413        /* Interrupts which are already managed cannot be modified */
 414        if (irqd_affinity_is_managed(&desc->irq_data)) {
 415                ret = -EBUSY;
 416                goto out_unlock;
 417        }
 418
 419        /*
 420         * Deactivate the interrupt. That's required to undo
 421         * anything an earlier activation has established.
 422         */
 423        activated = irqd_is_activated(&desc->irq_data);
 424        if (activated)
 425                irq_domain_deactivate_irq(&desc->irq_data);
 426
 427        if (affinity->is_managed) {
 428                irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
 429                irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
 430        }
 431
 432        cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
 433
 434        /* Restore the activation state */
 435        if (activated)
 436                irq_domain_activate_irq(&desc->irq_data, false);
 437
 438out_unlock:
 439        irq_put_desc_busunlock(desc, flags);
 440        return ret;
 441}
 442
 443static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
 444                              bool force)
 445{
 446        struct irq_desc *desc = irq_to_desc(irq);
 447        unsigned long flags;
 448        int ret;
 449
 450        if (!desc)
 451                return -EINVAL;
 452
 453        raw_spin_lock_irqsave(&desc->lock, flags);
 454        ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 455        raw_spin_unlock_irqrestore(&desc->lock, flags);
 456        return ret;
 457}
 458
 459/**
 460 * irq_set_affinity - Set the irq affinity of a given irq
 461 * @irq:        Interrupt to set affinity
 462 * @cpumask:    cpumask
 463 *
 464 * Fails if cpumask does not contain an online CPU
 465 */
 466int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
 467{
 468        return __irq_set_affinity(irq, cpumask, false);
 469}
 470EXPORT_SYMBOL_GPL(irq_set_affinity);
 471
 472/**
 473 * irq_force_affinity - Force the irq affinity of a given irq
 474 * @irq:        Interrupt to set affinity
 475 * @cpumask:    cpumask
 476 *
 477 * Same as irq_set_affinity, but without checking the mask against
 478 * online cpus.
 479 *
 480 * Solely for low level cpu hotplug code, where we need to make per
 481 * cpu interrupts affine before the cpu becomes online.
 482 */
 483int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
 484{
 485        return __irq_set_affinity(irq, cpumask, true);
 486}
 487EXPORT_SYMBOL_GPL(irq_force_affinity);
 488
 489int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
 490                              bool setaffinity)
 491{
 492        unsigned long flags;
 493        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 494
 495        if (!desc)
 496                return -EINVAL;
 497        desc->affinity_hint = m;
 498        irq_put_desc_unlock(desc, flags);
 499        if (m && setaffinity)
 500                __irq_set_affinity(irq, m, false);
 501        return 0;
 502}
 503EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
 504
 505static void irq_affinity_notify(struct work_struct *work)
 506{
 507        struct irq_affinity_notify *notify =
 508                container_of(work, struct irq_affinity_notify, work);
 509        struct irq_desc *desc = irq_to_desc(notify->irq);
 510        cpumask_var_t cpumask;
 511        unsigned long flags;
 512
 513        if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 514                goto out;
 515
 516        raw_spin_lock_irqsave(&desc->lock, flags);
 517        if (irq_move_pending(&desc->irq_data))
 518                irq_get_pending(cpumask, desc);
 519        else
 520                cpumask_copy(cpumask, desc->irq_common_data.affinity);
 521        raw_spin_unlock_irqrestore(&desc->lock, flags);
 522
 523        notify->notify(notify, cpumask);
 524
 525        free_cpumask_var(cpumask);
 526out:
 527        kref_put(&notify->kref, notify->release);
 528}
 529
 530/**
 531 *      irq_set_affinity_notifier - control notification of IRQ affinity changes
 532 *      @irq:           Interrupt for which to enable/disable notification
 533 *      @notify:        Context for notification, or %NULL to disable
 534 *                      notification.  Function pointers must be initialised;
 535 *                      the other fields will be initialised by this function.
 536 *
 537 *      Must be called in process context.  Notification may only be enabled
 538 *      after the IRQ is allocated and must be disabled before the IRQ is
 539 *      freed using free_irq().
 540 */
 541int
 542irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 543{
 544        struct irq_desc *desc = irq_to_desc(irq);
 545        struct irq_affinity_notify *old_notify;
 546        unsigned long flags;
 547
 548        /* The release function is promised process context */
 549        might_sleep();
 550
 551        if (!desc || desc->istate & IRQS_NMI)
 552                return -EINVAL;
 553
 554        /* Complete initialisation of *notify */
 555        if (notify) {
 556                notify->irq = irq;
 557                kref_init(&notify->kref);
 558                INIT_WORK(&notify->work, irq_affinity_notify);
 559        }
 560
 561        raw_spin_lock_irqsave(&desc->lock, flags);
 562        old_notify = desc->affinity_notify;
 563        desc->affinity_notify = notify;
 564        raw_spin_unlock_irqrestore(&desc->lock, flags);
 565
 566        if (old_notify) {
 567                if (cancel_work_sync(&old_notify->work)) {
 568                        /* Pending work had a ref, put that one too */
 569                        kref_put(&old_notify->kref, old_notify->release);
 570                }
 571                kref_put(&old_notify->kref, old_notify->release);
 572        }
 573
 574        return 0;
 575}
 576EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 577
 578#ifndef CONFIG_AUTO_IRQ_AFFINITY
 579/*
 580 * Generic version of the affinity autoselector.
 581 */
 582int irq_setup_affinity(struct irq_desc *desc)
 583{
 584        struct cpumask *set = irq_default_affinity;
 585        int ret, node = irq_desc_get_node(desc);
 586        static DEFINE_RAW_SPINLOCK(mask_lock);
 587        static struct cpumask mask;
 588
 589        /* Excludes PER_CPU and NO_BALANCE interrupts */
 590        if (!__irq_can_set_affinity(desc))
 591                return 0;
 592
 593        raw_spin_lock(&mask_lock);
 594        /*
 595         * Preserve the managed affinity setting and a userspace affinity
 596         * setup, but make sure that one of the targets is online.
 597         */
 598        if (irqd_affinity_is_managed(&desc->irq_data) ||
 599            irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 600                if (cpumask_intersects(desc->irq_common_data.affinity,
 601                                       cpu_online_mask))
 602                        set = desc->irq_common_data.affinity;
 603                else
 604                        irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 605        }
 606
 607        cpumask_and(&mask, cpu_online_mask, set);
 608        if (cpumask_empty(&mask))
 609                cpumask_copy(&mask, cpu_online_mask);
 610
 611        if (node != NUMA_NO_NODE) {
 612                const struct cpumask *nodemask = cpumask_of_node(node);
 613
 614                /* make sure at least one of the cpus in nodemask is online */
 615                if (cpumask_intersects(&mask, nodemask))
 616                        cpumask_and(&mask, &mask, nodemask);
 617        }
 618        ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 619        raw_spin_unlock(&mask_lock);
 620        return ret;
 621}
 622#else
 623/* Wrapper for ALPHA specific affinity selector magic */
 624int irq_setup_affinity(struct irq_desc *desc)
 625{
 626        return irq_select_affinity(irq_desc_get_irq(desc));
 627}
 628#endif /* CONFIG_AUTO_IRQ_AFFINITY */
 629#endif /* CONFIG_SMP */
 630
 631
 632/**
 633 *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 634 *      @irq: interrupt number to set affinity
 635 *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 636 *                  specific data for percpu_devid interrupts
 637 *
 638 *      This function uses the vCPU specific data to set the vCPU
 639 *      affinity for an irq. The vCPU specific data is passed from
 640 *      outside, such as KVM. One example code path is as below:
 641 *      KVM -> IOMMU -> irq_set_vcpu_affinity().
 642 */
 643int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 644{
 645        unsigned long flags;
 646        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 647        struct irq_data *data;
 648        struct irq_chip *chip;
 649        int ret = -ENOSYS;
 650
 651        if (!desc)
 652                return -EINVAL;
 653
 654        data = irq_desc_get_irq_data(desc);
 655        do {
 656                chip = irq_data_get_irq_chip(data);
 657                if (chip && chip->irq_set_vcpu_affinity)
 658                        break;
 659#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 660                data = data->parent_data;
 661#else
 662                data = NULL;
 663#endif
 664        } while (data);
 665
 666        if (data)
 667                ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 668        irq_put_desc_unlock(desc, flags);
 669
 670        return ret;
 671}
 672EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 673
 674void __disable_irq(struct irq_desc *desc)
 675{
 676        if (!desc->depth++)
 677                irq_disable(desc);
 678}
 679
 680static int __disable_irq_nosync(unsigned int irq)
 681{
 682        unsigned long flags;
 683        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 684
 685        if (!desc)
 686                return -EINVAL;
 687        __disable_irq(desc);
 688        irq_put_desc_busunlock(desc, flags);
 689        return 0;
 690}
 691
 692/**
 693 *      disable_irq_nosync - disable an irq without waiting
 694 *      @irq: Interrupt to disable
 695 *
 696 *      Disable the selected interrupt line.  Disables and Enables are
 697 *      nested.
 698 *      Unlike disable_irq(), this function does not ensure existing
 699 *      instances of the IRQ handler have completed before returning.
 700 *
 701 *      This function may be called from IRQ context.
 702 */
 703void disable_irq_nosync(unsigned int irq)
 704{
 705        __disable_irq_nosync(irq);
 706}
 707EXPORT_SYMBOL(disable_irq_nosync);
 708
 709/**
 710 *      disable_irq - disable an irq and wait for completion
 711 *      @irq: Interrupt to disable
 712 *
 713 *      Disable the selected interrupt line.  Enables and Disables are
 714 *      nested.
 715 *      This function waits for any pending IRQ handlers for this interrupt
 716 *      to complete before returning. If you use this function while
 717 *      holding a resource the IRQ handler may need you will deadlock.
 718 *
 719 *      This function may be called - with care - from IRQ context.
 720 */
 721void disable_irq(unsigned int irq)
 722{
 723        if (!__disable_irq_nosync(irq))
 724                synchronize_irq(irq);
 725}
 726EXPORT_SYMBOL(disable_irq);
 727
 728/**
 729 *      disable_hardirq - disables an irq and waits for hardirq completion
 730 *      @irq: Interrupt to disable
 731 *
 732 *      Disable the selected interrupt line.  Enables and Disables are
 733 *      nested.
 734 *      This function waits for any pending hard IRQ handlers for this
 735 *      interrupt to complete before returning. If you use this function while
 736 *      holding a resource the hard IRQ handler may need you will deadlock.
 737 *
 738 *      When used to optimistically disable an interrupt from atomic context
 739 *      the return value must be checked.
 740 *
 741 *      Returns: false if a threaded handler is active.
 742 *
 743 *      This function may be called - with care - from IRQ context.
 744 */
 745bool disable_hardirq(unsigned int irq)
 746{
 747        if (!__disable_irq_nosync(irq))
 748                return synchronize_hardirq(irq);
 749
 750        return false;
 751}
 752EXPORT_SYMBOL_GPL(disable_hardirq);
 753
 754/**
 755 *      disable_nmi_nosync - disable an nmi without waiting
 756 *      @irq: Interrupt to disable
 757 *
 758 *      Disable the selected interrupt line. Disables and enables are
 759 *      nested.
 760 *      The interrupt to disable must have been requested through request_nmi.
 761 *      Unlike disable_nmi(), this function does not ensure existing
 762 *      instances of the IRQ handler have completed before returning.
 763 */
 764void disable_nmi_nosync(unsigned int irq)
 765{
 766        disable_irq_nosync(irq);
 767}
 768
 769void __enable_irq(struct irq_desc *desc)
 770{
 771        switch (desc->depth) {
 772        case 0:
 773 err_out:
 774                WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 775                     irq_desc_get_irq(desc));
 776                break;
 777        case 1: {
 778                if (desc->istate & IRQS_SUSPENDED)
 779                        goto err_out;
 780                /* Prevent probing on this irq: */
 781                irq_settings_set_noprobe(desc);
 782                /*
 783                 * Call irq_startup() not irq_enable() here because the
 784                 * interrupt might be marked NOAUTOEN. So irq_startup()
 785                 * needs to be invoked when it gets enabled the first
 786                 * time. If it was already started up, then irq_startup()
 787                 * will invoke irq_enable() under the hood.
 788                 */
 789                irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 790                break;
 791        }
 792        default:
 793                desc->depth--;
 794        }
 795}
 796
 797/**
 798 *      enable_irq - enable handling of an irq
 799 *      @irq: Interrupt to enable
 800 *
 801 *      Undoes the effect of one call to disable_irq().  If this
 802 *      matches the last disable, processing of interrupts on this
 803 *      IRQ line is re-enabled.
 804 *
 805 *      This function may be called from IRQ context only when
 806 *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 807 */
 808void enable_irq(unsigned int irq)
 809{
 810        unsigned long flags;
 811        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 812
 813        if (!desc)
 814                return;
 815        if (WARN(!desc->irq_data.chip,
 816                 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 817                goto out;
 818
 819        __enable_irq(desc);
 820out:
 821        irq_put_desc_busunlock(desc, flags);
 822}
 823EXPORT_SYMBOL(enable_irq);
 824
 825/**
 826 *      enable_nmi - enable handling of an nmi
 827 *      @irq: Interrupt to enable
 828 *
 829 *      The interrupt to enable must have been requested through request_nmi.
 830 *      Undoes the effect of one call to disable_nmi(). If this
 831 *      matches the last disable, processing of interrupts on this
 832 *      IRQ line is re-enabled.
 833 */
 834void enable_nmi(unsigned int irq)
 835{
 836        enable_irq(irq);
 837}
 838
 839static int set_irq_wake_real(unsigned int irq, unsigned int on)
 840{
 841        struct irq_desc *desc = irq_to_desc(irq);
 842        int ret = -ENXIO;
 843
 844        if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 845                return 0;
 846
 847        if (desc->irq_data.chip->irq_set_wake)
 848                ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 849
 850        return ret;
 851}
 852
 853/**
 854 *      irq_set_irq_wake - control irq power management wakeup
 855 *      @irq:   interrupt to control
 856 *      @on:    enable/disable power management wakeup
 857 *
 858 *      Enable/disable power management wakeup mode, which is
 859 *      disabled by default.  Enables and disables must match,
 860 *      just as they match for non-wakeup mode support.
 861 *
 862 *      Wakeup mode lets this IRQ wake the system from sleep
 863 *      states like "suspend to RAM".
 864 *
 865 *      Note: irq enable/disable state is completely orthogonal
 866 *      to the enable/disable state of irq wake. An irq can be
 867 *      disabled with disable_irq() and still wake the system as
 868 *      long as the irq has wake enabled. If this does not hold,
 869 *      then the underlying irq chip and the related driver need
 870 *      to be investigated.
 871 */
 872int irq_set_irq_wake(unsigned int irq, unsigned int on)
 873{
 874        unsigned long flags;
 875        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 876        int ret = 0;
 877
 878        if (!desc)
 879                return -EINVAL;
 880
 881        /* Don't use NMIs as wake up interrupts please */
 882        if (desc->istate & IRQS_NMI) {
 883                ret = -EINVAL;
 884                goto out_unlock;
 885        }
 886
 887        /* wakeup-capable irqs can be shared between drivers that
 888         * don't need to have the same sleep mode behaviors.
 889         */
 890        if (on) {
 891                if (desc->wake_depth++ == 0) {
 892                        ret = set_irq_wake_real(irq, on);
 893                        if (ret)
 894                                desc->wake_depth = 0;
 895                        else
 896                                irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 897                }
 898        } else {
 899                if (desc->wake_depth == 0) {
 900                        WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 901                } else if (--desc->wake_depth == 0) {
 902                        ret = set_irq_wake_real(irq, on);
 903                        if (ret)
 904                                desc->wake_depth = 1;
 905                        else
 906                                irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 907                }
 908        }
 909
 910out_unlock:
 911        irq_put_desc_busunlock(desc, flags);
 912        return ret;
 913}
 914EXPORT_SYMBOL(irq_set_irq_wake);
 915
 916/*
 917 * Internal function that tells the architecture code whether a
 918 * particular irq has been exclusively allocated or is available
 919 * for driver use.
 920 */
 921int can_request_irq(unsigned int irq, unsigned long irqflags)
 922{
 923        unsigned long flags;
 924        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 925        int canrequest = 0;
 926
 927        if (!desc)
 928                return 0;
 929
 930        if (irq_settings_can_request(desc)) {
 931                if (!desc->action ||
 932                    irqflags & desc->action->flags & IRQF_SHARED)
 933                        canrequest = 1;
 934        }
 935        irq_put_desc_unlock(desc, flags);
 936        return canrequest;
 937}
 938
 939int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 940{
 941        struct irq_chip *chip = desc->irq_data.chip;
 942        int ret, unmask = 0;
 943
 944        if (!chip || !chip->irq_set_type) {
 945                /*
 946                 * IRQF_TRIGGER_* but the PIC does not support multiple
 947                 * flow-types?
 948                 */
 949                pr_debug("No set_type function for IRQ %d (%s)\n",
 950                         irq_desc_get_irq(desc),
 951                         chip ? (chip->name ? : "unknown") : "unknown");
 952                return 0;
 953        }
 954
 955        if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 956                if (!irqd_irq_masked(&desc->irq_data))
 957                        mask_irq(desc);
 958                if (!irqd_irq_disabled(&desc->irq_data))
 959                        unmask = 1;
 960        }
 961
 962        /* Mask all flags except trigger mode */
 963        flags &= IRQ_TYPE_SENSE_MASK;
 964        ret = chip->irq_set_type(&desc->irq_data, flags);
 965
 966        switch (ret) {
 967        case IRQ_SET_MASK_OK:
 968        case IRQ_SET_MASK_OK_DONE:
 969                irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 970                irqd_set(&desc->irq_data, flags);
 971                fallthrough;
 972
 973        case IRQ_SET_MASK_OK_NOCOPY:
 974                flags = irqd_get_trigger_type(&desc->irq_data);
 975                irq_settings_set_trigger_mask(desc, flags);
 976                irqd_clear(&desc->irq_data, IRQD_LEVEL);
 977                irq_settings_clr_level(desc);
 978                if (flags & IRQ_TYPE_LEVEL_MASK) {
 979                        irq_settings_set_level(desc);
 980                        irqd_set(&desc->irq_data, IRQD_LEVEL);
 981                }
 982
 983                ret = 0;
 984                break;
 985        default:
 986                pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 987                       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 988        }
 989        if (unmask)
 990                unmask_irq(desc);
 991        return ret;
 992}
 993
 994#ifdef CONFIG_HARDIRQS_SW_RESEND
 995int irq_set_parent(int irq, int parent_irq)
 996{
 997        unsigned long flags;
 998        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 999
1000        if (!desc)
1001                return -EINVAL;
1002
1003        desc->parent_irq = parent_irq;
1004
1005        irq_put_desc_unlock(desc, flags);
1006        return 0;
1007}
1008EXPORT_SYMBOL_GPL(irq_set_parent);
1009#endif
1010
1011/*
1012 * Default primary interrupt handler for threaded interrupts. Is
1013 * assigned as primary handler when request_threaded_irq is called
1014 * with handler == NULL. Useful for oneshot interrupts.
1015 */
1016static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1017{
1018        return IRQ_WAKE_THREAD;
1019}
1020
1021/*
1022 * Primary handler for nested threaded interrupts. Should never be
1023 * called.
1024 */
1025static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1026{
1027        WARN(1, "Primary handler called for nested irq %d\n", irq);
1028        return IRQ_NONE;
1029}
1030
1031static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1032{
1033        WARN(1, "Secondary action handler called for irq %d\n", irq);
1034        return IRQ_NONE;
1035}
1036
1037static int irq_wait_for_interrupt(struct irqaction *action)
1038{
1039        for (;;) {
1040                set_current_state(TASK_INTERRUPTIBLE);
1041
1042                if (kthread_should_stop()) {
1043                        /* may need to run one last time */
1044                        if (test_and_clear_bit(IRQTF_RUNTHREAD,
1045                                               &action->thread_flags)) {
1046                                __set_current_state(TASK_RUNNING);
1047                                return 0;
1048                        }
1049                        __set_current_state(TASK_RUNNING);
1050                        return -1;
1051                }
1052
1053                if (test_and_clear_bit(IRQTF_RUNTHREAD,
1054                                       &action->thread_flags)) {
1055                        __set_current_state(TASK_RUNNING);
1056                        return 0;
1057                }
1058                schedule();
1059        }
1060}
1061
1062/*
1063 * Oneshot interrupts keep the irq line masked until the threaded
1064 * handler finished. unmask if the interrupt has not been disabled and
1065 * is marked MASKED.
1066 */
1067static void irq_finalize_oneshot(struct irq_desc *desc,
1068                                 struct irqaction *action)
1069{
1070        if (!(desc->istate & IRQS_ONESHOT) ||
1071            action->handler == irq_forced_secondary_handler)
1072                return;
1073again:
1074        chip_bus_lock(desc);
1075        raw_spin_lock_irq(&desc->lock);
1076
1077        /*
1078         * Implausible though it may be we need to protect us against
1079         * the following scenario:
1080         *
1081         * The thread is faster done than the hard interrupt handler
1082         * on the other CPU. If we unmask the irq line then the
1083         * interrupt can come in again and masks the line, leaves due
1084         * to IRQS_INPROGRESS and the irq line is masked forever.
1085         *
1086         * This also serializes the state of shared oneshot handlers
1087         * versus "desc->threads_oneshot |= action->thread_mask;" in
1088         * irq_wake_thread(). See the comment there which explains the
1089         * serialization.
1090         */
1091        if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1092                raw_spin_unlock_irq(&desc->lock);
1093                chip_bus_sync_unlock(desc);
1094                cpu_relax();
1095                goto again;
1096        }
1097
1098        /*
1099         * Now check again, whether the thread should run. Otherwise
1100         * we would clear the threads_oneshot bit of this thread which
1101         * was just set.
1102         */
1103        if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1104                goto out_unlock;
1105
1106        desc->threads_oneshot &= ~action->thread_mask;
1107
1108        if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1109            irqd_irq_masked(&desc->irq_data))
1110                unmask_threaded_irq(desc);
1111
1112out_unlock:
1113        raw_spin_unlock_irq(&desc->lock);
1114        chip_bus_sync_unlock(desc);
1115}
1116
1117#ifdef CONFIG_SMP
1118/*
1119 * Check whether we need to change the affinity of the interrupt thread.
1120 */
1121static void
1122irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1123{
1124        cpumask_var_t mask;
1125        bool valid = true;
1126
1127        if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1128                return;
1129
1130        /*
1131         * In case we are out of memory we set IRQTF_AFFINITY again and
1132         * try again next time
1133         */
1134        if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1135                set_bit(IRQTF_AFFINITY, &action->thread_flags);
1136                return;
1137        }
1138
1139        raw_spin_lock_irq(&desc->lock);
1140        /*
1141         * This code is triggered unconditionally. Check the affinity
1142         * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1143         */
1144        if (cpumask_available(desc->irq_common_data.affinity)) {
1145                const struct cpumask *m;
1146
1147                m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1148                cpumask_copy(mask, m);
1149        } else {
1150                valid = false;
1151        }
1152        raw_spin_unlock_irq(&desc->lock);
1153
1154        if (valid)
1155                set_cpus_allowed_ptr(current, mask);
1156        free_cpumask_var(mask);
1157}
1158#else
1159static inline void
1160irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1161#endif
1162
1163/*
1164 * Interrupts which are not explicitly requested as threaded
1165 * interrupts rely on the implicit bh/preempt disable of the hard irq
1166 * context. So we need to disable bh here to avoid deadlocks and other
1167 * side effects.
1168 */
1169static irqreturn_t
1170irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1171{
1172        irqreturn_t ret;
1173
1174        local_bh_disable();
1175        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1176                local_irq_disable();
1177        ret = action->thread_fn(action->irq, action->dev_id);
1178        if (ret == IRQ_HANDLED)
1179                atomic_inc(&desc->threads_handled);
1180
1181        irq_finalize_oneshot(desc, action);
1182        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1183                local_irq_enable();
1184        local_bh_enable();
1185        return ret;
1186}
1187
1188/*
1189 * Interrupts explicitly requested as threaded interrupts want to be
1190 * preemptible - many of them need to sleep and wait for slow busses to
1191 * complete.
1192 */
1193static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1194                struct irqaction *action)
1195{
1196        irqreturn_t ret;
1197
1198        ret = action->thread_fn(action->irq, action->dev_id);
1199        if (ret == IRQ_HANDLED)
1200                atomic_inc(&desc->threads_handled);
1201
1202        irq_finalize_oneshot(desc, action);
1203        return ret;
1204}
1205
1206static void wake_threads_waitq(struct irq_desc *desc)
1207{
1208        if (atomic_dec_and_test(&desc->threads_active))
1209                wake_up(&desc->wait_for_threads);
1210}
1211
1212static void irq_thread_dtor(struct callback_head *unused)
1213{
1214        struct task_struct *tsk = current;
1215        struct irq_desc *desc;
1216        struct irqaction *action;
1217
1218        if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1219                return;
1220
1221        action = kthread_data(tsk);
1222
1223        pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1224               tsk->comm, tsk->pid, action->irq);
1225
1226
1227        desc = irq_to_desc(action->irq);
1228        /*
1229         * If IRQTF_RUNTHREAD is set, we need to decrement
1230         * desc->threads_active and wake possible waiters.
1231         */
1232        if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1233                wake_threads_waitq(desc);
1234
1235        /* Prevent a stale desc->threads_oneshot */
1236        irq_finalize_oneshot(desc, action);
1237}
1238
1239static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1240{
1241        struct irqaction *secondary = action->secondary;
1242
1243        if (WARN_ON_ONCE(!secondary))
1244                return;
1245
1246        raw_spin_lock_irq(&desc->lock);
1247        __irq_wake_thread(desc, secondary);
1248        raw_spin_unlock_irq(&desc->lock);
1249}
1250
1251/*
1252 * Internal function to notify that a interrupt thread is ready.
1253 */
1254static void irq_thread_set_ready(struct irq_desc *desc,
1255                                 struct irqaction *action)
1256{
1257        set_bit(IRQTF_READY, &action->thread_flags);
1258        wake_up(&desc->wait_for_threads);
1259}
1260
1261/*
1262 * Internal function to wake up a interrupt thread and wait until it is
1263 * ready.
1264 */
1265static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1266                                                  struct irqaction *action)
1267{
1268        if (!action || !action->thread)
1269                return;
1270
1271        wake_up_process(action->thread);
1272        wait_event(desc->wait_for_threads,
1273                   test_bit(IRQTF_READY, &action->thread_flags));
1274}
1275
1276/*
1277 * Interrupt handler thread
1278 */
1279static int irq_thread(void *data)
1280{
1281        struct callback_head on_exit_work;
1282        struct irqaction *action = data;
1283        struct irq_desc *desc = irq_to_desc(action->irq);
1284        irqreturn_t (*handler_fn)(struct irq_desc *desc,
1285                        struct irqaction *action);
1286
1287        irq_thread_set_ready(desc, action);
1288
1289        sched_set_fifo(current);
1290
1291        if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1292                                           &action->thread_flags))
1293                handler_fn = irq_forced_thread_fn;
1294        else
1295                handler_fn = irq_thread_fn;
1296
1297        init_task_work(&on_exit_work, irq_thread_dtor);
1298        task_work_add(current, &on_exit_work, TWA_NONE);
1299
1300        irq_thread_check_affinity(desc, action);
1301
1302        while (!irq_wait_for_interrupt(action)) {
1303                irqreturn_t action_ret;
1304
1305                irq_thread_check_affinity(desc, action);
1306
1307                action_ret = handler_fn(desc, action);
1308                if (action_ret == IRQ_WAKE_THREAD)
1309                        irq_wake_secondary(desc, action);
1310
1311                wake_threads_waitq(desc);
1312        }
1313
1314        /*
1315         * This is the regular exit path. __free_irq() is stopping the
1316         * thread via kthread_stop() after calling
1317         * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1318         * oneshot mask bit can be set.
1319         */
1320        task_work_cancel(current, irq_thread_dtor);
1321        return 0;
1322}
1323
1324/**
1325 *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1326 *      @irq:           Interrupt line
1327 *      @dev_id:        Device identity for which the thread should be woken
1328 *
1329 */
1330void irq_wake_thread(unsigned int irq, void *dev_id)
1331{
1332        struct irq_desc *desc = irq_to_desc(irq);
1333        struct irqaction *action;
1334        unsigned long flags;
1335
1336        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1337                return;
1338
1339        raw_spin_lock_irqsave(&desc->lock, flags);
1340        for_each_action_of_desc(desc, action) {
1341                if (action->dev_id == dev_id) {
1342                        if (action->thread)
1343                                __irq_wake_thread(desc, action);
1344                        break;
1345                }
1346        }
1347        raw_spin_unlock_irqrestore(&desc->lock, flags);
1348}
1349EXPORT_SYMBOL_GPL(irq_wake_thread);
1350
1351static int irq_setup_forced_threading(struct irqaction *new)
1352{
1353        if (!force_irqthreads())
1354                return 0;
1355        if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1356                return 0;
1357
1358        /*
1359         * No further action required for interrupts which are requested as
1360         * threaded interrupts already
1361         */
1362        if (new->handler == irq_default_primary_handler)
1363                return 0;
1364
1365        new->flags |= IRQF_ONESHOT;
1366
1367        /*
1368         * Handle the case where we have a real primary handler and a
1369         * thread handler. We force thread them as well by creating a
1370         * secondary action.
1371         */
1372        if (new->handler && new->thread_fn) {
1373                /* Allocate the secondary action */
1374                new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1375                if (!new->secondary)
1376                        return -ENOMEM;
1377                new->secondary->handler = irq_forced_secondary_handler;
1378                new->secondary->thread_fn = new->thread_fn;
1379                new->secondary->dev_id = new->dev_id;
1380                new->secondary->irq = new->irq;
1381                new->secondary->name = new->name;
1382        }
1383        /* Deal with the primary handler */
1384        set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1385        new->thread_fn = new->handler;
1386        new->handler = irq_default_primary_handler;
1387        return 0;
1388}
1389
1390static int irq_request_resources(struct irq_desc *desc)
1391{
1392        struct irq_data *d = &desc->irq_data;
1393        struct irq_chip *c = d->chip;
1394
1395        return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1396}
1397
1398static void irq_release_resources(struct irq_desc *desc)
1399{
1400        struct irq_data *d = &desc->irq_data;
1401        struct irq_chip *c = d->chip;
1402
1403        if (c->irq_release_resources)
1404                c->irq_release_resources(d);
1405}
1406
1407static bool irq_supports_nmi(struct irq_desc *desc)
1408{
1409        struct irq_data *d = irq_desc_get_irq_data(desc);
1410
1411#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1412        /* Only IRQs directly managed by the root irqchip can be set as NMI */
1413        if (d->parent_data)
1414                return false;
1415#endif
1416        /* Don't support NMIs for chips behind a slow bus */
1417        if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1418                return false;
1419
1420        return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1421}
1422
1423static int irq_nmi_setup(struct irq_desc *desc)
1424{
1425        struct irq_data *d = irq_desc_get_irq_data(desc);
1426        struct irq_chip *c = d->chip;
1427
1428        return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1429}
1430
1431static void irq_nmi_teardown(struct irq_desc *desc)
1432{
1433        struct irq_data *d = irq_desc_get_irq_data(desc);
1434        struct irq_chip *c = d->chip;
1435
1436        if (c->irq_nmi_teardown)
1437                c->irq_nmi_teardown(d);
1438}
1439
1440static int
1441setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1442{
1443        struct task_struct *t;
1444
1445        if (!secondary) {
1446                t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1447                                   new->name);
1448        } else {
1449                t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1450                                   new->name);
1451        }
1452
1453        if (IS_ERR(t))
1454                return PTR_ERR(t);
1455
1456        /*
1457         * We keep the reference to the task struct even if
1458         * the thread dies to avoid that the interrupt code
1459         * references an already freed task_struct.
1460         */
1461        new->thread = get_task_struct(t);
1462        /*
1463         * Tell the thread to set its affinity. This is
1464         * important for shared interrupt handlers as we do
1465         * not invoke setup_affinity() for the secondary
1466         * handlers as everything is already set up. Even for
1467         * interrupts marked with IRQF_NO_BALANCE this is
1468         * correct as we want the thread to move to the cpu(s)
1469         * on which the requesting code placed the interrupt.
1470         */
1471        set_bit(IRQTF_AFFINITY, &new->thread_flags);
1472        return 0;
1473}
1474
1475/*
1476 * Internal function to register an irqaction - typically used to
1477 * allocate special interrupts that are part of the architecture.
1478 *
1479 * Locking rules:
1480 *
1481 * desc->request_mutex  Provides serialization against a concurrent free_irq()
1482 *   chip_bus_lock      Provides serialization for slow bus operations
1483 *     desc->lock       Provides serialization against hard interrupts
1484 *
1485 * chip_bus_lock and desc->lock are sufficient for all other management and
1486 * interrupt related functions. desc->request_mutex solely serializes
1487 * request/free_irq().
1488 */
1489static int
1490__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1491{
1492        struct irqaction *old, **old_ptr;
1493        unsigned long flags, thread_mask = 0;
1494        int ret, nested, shared = 0;
1495
1496        if (!desc)
1497                return -EINVAL;
1498
1499        if (desc->irq_data.chip == &no_irq_chip)
1500                return -ENOSYS;
1501        if (!try_module_get(desc->owner))
1502                return -ENODEV;
1503
1504        new->irq = irq;
1505
1506        /*
1507         * If the trigger type is not specified by the caller,
1508         * then use the default for this interrupt.
1509         */
1510        if (!(new->flags & IRQF_TRIGGER_MASK))
1511                new->flags |= irqd_get_trigger_type(&desc->irq_data);
1512
1513        /*
1514         * Check whether the interrupt nests into another interrupt
1515         * thread.
1516         */
1517        nested = irq_settings_is_nested_thread(desc);
1518        if (nested) {
1519                if (!new->thread_fn) {
1520                        ret = -EINVAL;
1521                        goto out_mput;
1522                }
1523                /*
1524                 * Replace the primary handler which was provided from
1525                 * the driver for non nested interrupt handling by the
1526                 * dummy function which warns when called.
1527                 */
1528                new->handler = irq_nested_primary_handler;
1529        } else {
1530                if (irq_settings_can_thread(desc)) {
1531                        ret = irq_setup_forced_threading(new);
1532                        if (ret)
1533                                goto out_mput;
1534                }
1535        }
1536
1537        /*
1538         * Create a handler thread when a thread function is supplied
1539         * and the interrupt does not nest into another interrupt
1540         * thread.
1541         */
1542        if (new->thread_fn && !nested) {
1543                ret = setup_irq_thread(new, irq, false);
1544                if (ret)
1545                        goto out_mput;
1546                if (new->secondary) {
1547                        ret = setup_irq_thread(new->secondary, irq, true);
1548                        if (ret)
1549                                goto out_thread;
1550                }
1551        }
1552
1553        /*
1554         * Drivers are often written to work w/o knowledge about the
1555         * underlying irq chip implementation, so a request for a
1556         * threaded irq without a primary hard irq context handler
1557         * requires the ONESHOT flag to be set. Some irq chips like
1558         * MSI based interrupts are per se one shot safe. Check the
1559         * chip flags, so we can avoid the unmask dance at the end of
1560         * the threaded handler for those.
1561         */
1562        if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1563                new->flags &= ~IRQF_ONESHOT;
1564
1565        /*
1566         * Protects against a concurrent __free_irq() call which might wait
1567         * for synchronize_hardirq() to complete without holding the optional
1568         * chip bus lock and desc->lock. Also protects against handing out
1569         * a recycled oneshot thread_mask bit while it's still in use by
1570         * its previous owner.
1571         */
1572        mutex_lock(&desc->request_mutex);
1573
1574        /*
1575         * Acquire bus lock as the irq_request_resources() callback below
1576         * might rely on the serialization or the magic power management
1577         * functions which are abusing the irq_bus_lock() callback,
1578         */
1579        chip_bus_lock(desc);
1580
1581        /* First installed action requests resources. */
1582        if (!desc->action) {
1583                ret = irq_request_resources(desc);
1584                if (ret) {
1585                        pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1586                               new->name, irq, desc->irq_data.chip->name);
1587                        goto out_bus_unlock;
1588                }
1589        }
1590
1591        /*
1592         * The following block of code has to be executed atomically
1593         * protected against a concurrent interrupt and any of the other
1594         * management calls which are not serialized via
1595         * desc->request_mutex or the optional bus lock.
1596         */
1597        raw_spin_lock_irqsave(&desc->lock, flags);
1598        old_ptr = &desc->action;
1599        old = *old_ptr;
1600        if (old) {
1601                /*
1602                 * Can't share interrupts unless both agree to and are
1603                 * the same type (level, edge, polarity). So both flag
1604                 * fields must have IRQF_SHARED set and the bits which
1605                 * set the trigger type must match. Also all must
1606                 * agree on ONESHOT.
1607                 * Interrupt lines used for NMIs cannot be shared.
1608                 */
1609                unsigned int oldtype;
1610
1611                if (desc->istate & IRQS_NMI) {
1612                        pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1613                                new->name, irq, desc->irq_data.chip->name);
1614                        ret = -EINVAL;
1615                        goto out_unlock;
1616                }
1617
1618                /*
1619                 * If nobody did set the configuration before, inherit
1620                 * the one provided by the requester.
1621                 */
1622                if (irqd_trigger_type_was_set(&desc->irq_data)) {
1623                        oldtype = irqd_get_trigger_type(&desc->irq_data);
1624                } else {
1625                        oldtype = new->flags & IRQF_TRIGGER_MASK;
1626                        irqd_set_trigger_type(&desc->irq_data, oldtype);
1627                }
1628
1629                if (!((old->flags & new->flags) & IRQF_SHARED) ||
1630                    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1631                    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1632                        goto mismatch;
1633
1634                /* All handlers must agree on per-cpuness */
1635                if ((old->flags & IRQF_PERCPU) !=
1636                    (new->flags & IRQF_PERCPU))
1637                        goto mismatch;
1638
1639                /* add new interrupt at end of irq queue */
1640                do {
1641                        /*
1642                         * Or all existing action->thread_mask bits,
1643                         * so we can find the next zero bit for this
1644                         * new action.
1645                         */
1646                        thread_mask |= old->thread_mask;
1647                        old_ptr = &old->next;
1648                        old = *old_ptr;
1649                } while (old);
1650                shared = 1;
1651        }
1652
1653        /*
1654         * Setup the thread mask for this irqaction for ONESHOT. For
1655         * !ONESHOT irqs the thread mask is 0 so we can avoid a
1656         * conditional in irq_wake_thread().
1657         */
1658        if (new->flags & IRQF_ONESHOT) {
1659                /*
1660                 * Unlikely to have 32 resp 64 irqs sharing one line,
1661                 * but who knows.
1662                 */
1663                if (thread_mask == ~0UL) {
1664                        ret = -EBUSY;
1665                        goto out_unlock;
1666                }
1667                /*
1668                 * The thread_mask for the action is or'ed to
1669                 * desc->thread_active to indicate that the
1670                 * IRQF_ONESHOT thread handler has been woken, but not
1671                 * yet finished. The bit is cleared when a thread
1672                 * completes. When all threads of a shared interrupt
1673                 * line have completed desc->threads_active becomes
1674                 * zero and the interrupt line is unmasked. See
1675                 * handle.c:irq_wake_thread() for further information.
1676                 *
1677                 * If no thread is woken by primary (hard irq context)
1678                 * interrupt handlers, then desc->threads_active is
1679                 * also checked for zero to unmask the irq line in the
1680                 * affected hard irq flow handlers
1681                 * (handle_[fasteoi|level]_irq).
1682                 *
1683                 * The new action gets the first zero bit of
1684                 * thread_mask assigned. See the loop above which or's
1685                 * all existing action->thread_mask bits.
1686                 */
1687                new->thread_mask = 1UL << ffz(thread_mask);
1688
1689        } else if (new->handler == irq_default_primary_handler &&
1690                   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1691                /*
1692                 * The interrupt was requested with handler = NULL, so
1693                 * we use the default primary handler for it. But it
1694                 * does not have the oneshot flag set. In combination
1695                 * with level interrupts this is deadly, because the
1696                 * default primary handler just wakes the thread, then
1697                 * the irq lines is reenabled, but the device still
1698                 * has the level irq asserted. Rinse and repeat....
1699                 *
1700                 * While this works for edge type interrupts, we play
1701                 * it safe and reject unconditionally because we can't
1702                 * say for sure which type this interrupt really
1703                 * has. The type flags are unreliable as the
1704                 * underlying chip implementation can override them.
1705                 */
1706                pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1707                       new->name, irq);
1708                ret = -EINVAL;
1709                goto out_unlock;
1710        }
1711
1712        if (!shared) {
1713                /* Setup the type (level, edge polarity) if configured: */
1714                if (new->flags & IRQF_TRIGGER_MASK) {
1715                        ret = __irq_set_trigger(desc,
1716                                                new->flags & IRQF_TRIGGER_MASK);
1717
1718                        if (ret)
1719                                goto out_unlock;
1720                }
1721
1722                /*
1723                 * Activate the interrupt. That activation must happen
1724                 * independently of IRQ_NOAUTOEN. request_irq() can fail
1725                 * and the callers are supposed to handle
1726                 * that. enable_irq() of an interrupt requested with
1727                 * IRQ_NOAUTOEN is not supposed to fail. The activation
1728                 * keeps it in shutdown mode, it merily associates
1729                 * resources if necessary and if that's not possible it
1730                 * fails. Interrupts which are in managed shutdown mode
1731                 * will simply ignore that activation request.
1732                 */
1733                ret = irq_activate(desc);
1734                if (ret)
1735                        goto out_unlock;
1736
1737                desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1738                                  IRQS_ONESHOT | IRQS_WAITING);
1739                irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1740
1741                if (new->flags & IRQF_PERCPU) {
1742                        irqd_set(&desc->irq_data, IRQD_PER_CPU);
1743                        irq_settings_set_per_cpu(desc);
1744                        if (new->flags & IRQF_NO_DEBUG)
1745                                irq_settings_set_no_debug(desc);
1746                }
1747
1748                if (noirqdebug)
1749                        irq_settings_set_no_debug(desc);
1750
1751                if (new->flags & IRQF_ONESHOT)
1752                        desc->istate |= IRQS_ONESHOT;
1753
1754                /* Exclude IRQ from balancing if requested */
1755                if (new->flags & IRQF_NOBALANCING) {
1756                        irq_settings_set_no_balancing(desc);
1757                        irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1758                }
1759
1760                if (!(new->flags & IRQF_NO_AUTOEN) &&
1761                    irq_settings_can_autoenable(desc)) {
1762                        irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1763                } else {
1764                        /*
1765                         * Shared interrupts do not go well with disabling
1766                         * auto enable. The sharing interrupt might request
1767                         * it while it's still disabled and then wait for
1768                         * interrupts forever.
1769                         */
1770                        WARN_ON_ONCE(new->flags & IRQF_SHARED);
1771                        /* Undo nested disables: */
1772                        desc->depth = 1;
1773                }
1774
1775        } else if (new->flags & IRQF_TRIGGER_MASK) {
1776                unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1777                unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1778
1779                if (nmsk != omsk)
1780                        /* hope the handler works with current  trigger mode */
1781                        pr_warn("irq %d uses trigger mode %u; requested %u\n",
1782                                irq, omsk, nmsk);
1783        }
1784
1785        *old_ptr = new;
1786
1787        irq_pm_install_action(desc, new);
1788
1789        /* Reset broken irq detection when installing new handler */
1790        desc->irq_count = 0;
1791        desc->irqs_unhandled = 0;
1792
1793        /*
1794         * Check whether we disabled the irq via the spurious handler
1795         * before. Reenable it and give it another chance.
1796         */
1797        if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1798                desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1799                __enable_irq(desc);
1800        }
1801
1802        raw_spin_unlock_irqrestore(&desc->lock, flags);
1803        chip_bus_sync_unlock(desc);
1804        mutex_unlock(&desc->request_mutex);
1805
1806        irq_setup_timings(desc, new);
1807
1808        wake_up_and_wait_for_irq_thread_ready(desc, new);
1809        wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1810
1811        register_irq_proc(irq, desc);
1812        new->dir = NULL;
1813        register_handler_proc(irq, new);
1814        return 0;
1815
1816mismatch:
1817        if (!(new->flags & IRQF_PROBE_SHARED)) {
1818                pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1819                       irq, new->flags, new->name, old->flags, old->name);
1820#ifdef CONFIG_DEBUG_SHIRQ
1821                dump_stack();
1822#endif
1823        }
1824        ret = -EBUSY;
1825
1826out_unlock:
1827        raw_spin_unlock_irqrestore(&desc->lock, flags);
1828
1829        if (!desc->action)
1830                irq_release_resources(desc);
1831out_bus_unlock:
1832        chip_bus_sync_unlock(desc);
1833        mutex_unlock(&desc->request_mutex);
1834
1835out_thread:
1836        if (new->thread) {
1837                struct task_struct *t = new->thread;
1838
1839                new->thread = NULL;
1840                kthread_stop(t);
1841                put_task_struct(t);
1842        }
1843        if (new->secondary && new->secondary->thread) {
1844                struct task_struct *t = new->secondary->thread;
1845
1846                new->secondary->thread = NULL;
1847                kthread_stop(t);
1848                put_task_struct(t);
1849        }
1850out_mput:
1851        module_put(desc->owner);
1852        return ret;
1853}
1854
1855/*
1856 * Internal function to unregister an irqaction - used to free
1857 * regular and special interrupts that are part of the architecture.
1858 */
1859static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1860{
1861        unsigned irq = desc->irq_data.irq;
1862        struct irqaction *action, **action_ptr;
1863        unsigned long flags;
1864
1865        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1866
1867        mutex_lock(&desc->request_mutex);
1868        chip_bus_lock(desc);
1869        raw_spin_lock_irqsave(&desc->lock, flags);
1870
1871        /*
1872         * There can be multiple actions per IRQ descriptor, find the right
1873         * one based on the dev_id:
1874         */
1875        action_ptr = &desc->action;
1876        for (;;) {
1877                action = *action_ptr;
1878
1879                if (!action) {
1880                        WARN(1, "Trying to free already-free IRQ %d\n", irq);
1881                        raw_spin_unlock_irqrestore(&desc->lock, flags);
1882                        chip_bus_sync_unlock(desc);
1883                        mutex_unlock(&desc->request_mutex);
1884                        return NULL;
1885                }
1886
1887                if (action->dev_id == dev_id)
1888                        break;
1889                action_ptr = &action->next;
1890        }
1891
1892        /* Found it - now remove it from the list of entries: */
1893        *action_ptr = action->next;
1894
1895        irq_pm_remove_action(desc, action);
1896
1897        /* If this was the last handler, shut down the IRQ line: */
1898        if (!desc->action) {
1899                irq_settings_clr_disable_unlazy(desc);
1900                /* Only shutdown. Deactivate after synchronize_hardirq() */
1901                irq_shutdown(desc);
1902        }
1903
1904#ifdef CONFIG_SMP
1905        /* make sure affinity_hint is cleaned up */
1906        if (WARN_ON_ONCE(desc->affinity_hint))
1907                desc->affinity_hint = NULL;
1908#endif
1909
1910        raw_spin_unlock_irqrestore(&desc->lock, flags);
1911        /*
1912         * Drop bus_lock here so the changes which were done in the chip
1913         * callbacks above are synced out to the irq chips which hang
1914         * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1915         *
1916         * Aside of that the bus_lock can also be taken from the threaded
1917         * handler in irq_finalize_oneshot() which results in a deadlock
1918         * because kthread_stop() would wait forever for the thread to
1919         * complete, which is blocked on the bus lock.
1920         *
1921         * The still held desc->request_mutex() protects against a
1922         * concurrent request_irq() of this irq so the release of resources
1923         * and timing data is properly serialized.
1924         */
1925        chip_bus_sync_unlock(desc);
1926
1927        unregister_handler_proc(irq, action);
1928
1929        /*
1930         * Make sure it's not being used on another CPU and if the chip
1931         * supports it also make sure that there is no (not yet serviced)
1932         * interrupt in flight at the hardware level.
1933         */
1934        __synchronize_hardirq(desc, true);
1935
1936#ifdef CONFIG_DEBUG_SHIRQ
1937        /*
1938         * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1939         * event to happen even now it's being freed, so let's make sure that
1940         * is so by doing an extra call to the handler ....
1941         *
1942         * ( We do this after actually deregistering it, to make sure that a
1943         *   'real' IRQ doesn't run in parallel with our fake. )
1944         */
1945        if (action->flags & IRQF_SHARED) {
1946                local_irq_save(flags);
1947                action->handler(irq, dev_id);
1948                local_irq_restore(flags);
1949        }
1950#endif
1951
1952        /*
1953         * The action has already been removed above, but the thread writes
1954         * its oneshot mask bit when it completes. Though request_mutex is
1955         * held across this which prevents __setup_irq() from handing out
1956         * the same bit to a newly requested action.
1957         */
1958        if (action->thread) {
1959                kthread_stop(action->thread);
1960                put_task_struct(action->thread);
1961                if (action->secondary && action->secondary->thread) {
1962                        kthread_stop(action->secondary->thread);
1963                        put_task_struct(action->secondary->thread);
1964                }
1965        }
1966
1967        /* Last action releases resources */
1968        if (!desc->action) {
1969                /*
1970                 * Reacquire bus lock as irq_release_resources() might
1971                 * require it to deallocate resources over the slow bus.
1972                 */
1973                chip_bus_lock(desc);
1974                /*
1975                 * There is no interrupt on the fly anymore. Deactivate it
1976                 * completely.
1977                 */
1978                raw_spin_lock_irqsave(&desc->lock, flags);
1979                irq_domain_deactivate_irq(&desc->irq_data);
1980                raw_spin_unlock_irqrestore(&desc->lock, flags);
1981
1982                irq_release_resources(desc);
1983                chip_bus_sync_unlock(desc);
1984                irq_remove_timings(desc);
1985        }
1986
1987        mutex_unlock(&desc->request_mutex);
1988
1989        irq_chip_pm_put(&desc->irq_data);
1990        module_put(desc->owner);
1991        kfree(action->secondary);
1992        return action;
1993}
1994
1995/**
1996 *      free_irq - free an interrupt allocated with request_irq
1997 *      @irq: Interrupt line to free
1998 *      @dev_id: Device identity to free
1999 *
2000 *      Remove an interrupt handler. The handler is removed and if the
2001 *      interrupt line is no longer in use by any driver it is disabled.
2002 *      On a shared IRQ the caller must ensure the interrupt is disabled
2003 *      on the card it drives before calling this function. The function
2004 *      does not return until any executing interrupts for this IRQ
2005 *      have completed.
2006 *
2007 *      This function must not be called from interrupt context.
2008 *
2009 *      Returns the devname argument passed to request_irq.
2010 */
2011const void *free_irq(unsigned int irq, void *dev_id)
2012{
2013        struct irq_desc *desc = irq_to_desc(irq);
2014        struct irqaction *action;
2015        const char *devname;
2016
2017        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2018                return NULL;
2019
2020#ifdef CONFIG_SMP
2021        if (WARN_ON(desc->affinity_notify))
2022                desc->affinity_notify = NULL;
2023#endif
2024
2025        action = __free_irq(desc, dev_id);
2026
2027        if (!action)
2028                return NULL;
2029
2030        devname = action->name;
2031        kfree(action);
2032        return devname;
2033}
2034EXPORT_SYMBOL(free_irq);
2035
2036/* This function must be called with desc->lock held */
2037static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2038{
2039        const char *devname = NULL;
2040
2041        desc->istate &= ~IRQS_NMI;
2042
2043        if (!WARN_ON(desc->action == NULL)) {
2044                irq_pm_remove_action(desc, desc->action);
2045                devname = desc->action->name;
2046                unregister_handler_proc(irq, desc->action);
2047
2048                kfree(desc->action);
2049                desc->action = NULL;
2050        }
2051
2052        irq_settings_clr_disable_unlazy(desc);
2053        irq_shutdown_and_deactivate(desc);
2054
2055        irq_release_resources(desc);
2056
2057        irq_chip_pm_put(&desc->irq_data);
2058        module_put(desc->owner);
2059
2060        return devname;
2061}
2062
2063const void *free_nmi(unsigned int irq, void *dev_id)
2064{
2065        struct irq_desc *desc = irq_to_desc(irq);
2066        unsigned long flags;
2067        const void *devname;
2068
2069        if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2070                return NULL;
2071
2072        if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2073                return NULL;
2074
2075        /* NMI still enabled */
2076        if (WARN_ON(desc->depth == 0))
2077                disable_nmi_nosync(irq);
2078
2079        raw_spin_lock_irqsave(&desc->lock, flags);
2080
2081        irq_nmi_teardown(desc);
2082        devname = __cleanup_nmi(irq, desc);
2083
2084        raw_spin_unlock_irqrestore(&desc->lock, flags);
2085
2086        return devname;
2087}
2088
2089/**
2090 *      request_threaded_irq - allocate an interrupt line
2091 *      @irq: Interrupt line to allocate
2092 *      @handler: Function to be called when the IRQ occurs.
2093 *                Primary handler for threaded interrupts.
2094 *                If handler is NULL and thread_fn != NULL
2095 *                the default primary handler is installed.
2096 *      @thread_fn: Function called from the irq handler thread
2097 *                  If NULL, no irq thread is created
2098 *      @irqflags: Interrupt type flags
2099 *      @devname: An ascii name for the claiming device
2100 *      @dev_id: A cookie passed back to the handler function
2101 *
2102 *      This call allocates interrupt resources and enables the
2103 *      interrupt line and IRQ handling. From the point this
2104 *      call is made your handler function may be invoked. Since
2105 *      your handler function must clear any interrupt the board
2106 *      raises, you must take care both to initialise your hardware
2107 *      and to set up the interrupt handler in the right order.
2108 *
2109 *      If you want to set up a threaded irq handler for your device
2110 *      then you need to supply @handler and @thread_fn. @handler is
2111 *      still called in hard interrupt context and has to check
2112 *      whether the interrupt originates from the device. If yes it
2113 *      needs to disable the interrupt on the device and return
2114 *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2115 *      @thread_fn. This split handler design is necessary to support
2116 *      shared interrupts.
2117 *
2118 *      Dev_id must be globally unique. Normally the address of the
2119 *      device data structure is used as the cookie. Since the handler
2120 *      receives this value it makes sense to use it.
2121 *
2122 *      If your interrupt is shared you must pass a non NULL dev_id
2123 *      as this is required when freeing the interrupt.
2124 *
2125 *      Flags:
2126 *
2127 *      IRQF_SHARED             Interrupt is shared
2128 *      IRQF_TRIGGER_*          Specify active edge(s) or level
2129 *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2130 */
2131int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2132                         irq_handler_t thread_fn, unsigned long irqflags,
2133                         const char *devname, void *dev_id)
2134{
2135        struct irqaction *action;
2136        struct irq_desc *desc;
2137        int retval;
2138
2139        if (irq == IRQ_NOTCONNECTED)
2140                return -ENOTCONN;
2141
2142        /*
2143         * Sanity-check: shared interrupts must pass in a real dev-ID,
2144         * otherwise we'll have trouble later trying to figure out
2145         * which interrupt is which (messes up the interrupt freeing
2146         * logic etc).
2147         *
2148         * Also shared interrupts do not go well with disabling auto enable.
2149         * The sharing interrupt might request it while it's still disabled
2150         * and then wait for interrupts forever.
2151         *
2152         * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2153         * it cannot be set along with IRQF_NO_SUSPEND.
2154         */
2155        if (((irqflags & IRQF_SHARED) && !dev_id) ||
2156            ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2157            (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2158            ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2159                return -EINVAL;
2160
2161        desc = irq_to_desc(irq);
2162        if (!desc)
2163                return -EINVAL;
2164
2165        if (!irq_settings_can_request(desc) ||
2166            WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2167                return -EINVAL;
2168
2169        if (!handler) {
2170                if (!thread_fn)
2171                        return -EINVAL;
2172                handler = irq_default_primary_handler;
2173        }
2174
2175        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2176        if (!action)
2177                return -ENOMEM;
2178
2179        action->handler = handler;
2180        action->thread_fn = thread_fn;
2181        action->flags = irqflags;
2182        action->name = devname;
2183        action->dev_id = dev_id;
2184
2185        retval = irq_chip_pm_get(&desc->irq_data);
2186        if (retval < 0) {
2187                kfree(action);
2188                return retval;
2189        }
2190
2191        retval = __setup_irq(irq, desc, action);
2192
2193        if (retval) {
2194                irq_chip_pm_put(&desc->irq_data);
2195                kfree(action->secondary);
2196                kfree(action);
2197        }
2198
2199#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2200        if (!retval && (irqflags & IRQF_SHARED)) {
2201                /*
2202                 * It's a shared IRQ -- the driver ought to be prepared for it
2203                 * to happen immediately, so let's make sure....
2204                 * We disable the irq to make sure that a 'real' IRQ doesn't
2205                 * run in parallel with our fake.
2206                 */
2207                unsigned long flags;
2208
2209                disable_irq(irq);
2210                local_irq_save(flags);
2211
2212                handler(irq, dev_id);
2213
2214                local_irq_restore(flags);
2215                enable_irq(irq);
2216        }
2217#endif
2218        return retval;
2219}
2220EXPORT_SYMBOL(request_threaded_irq);
2221
2222/**
2223 *      request_any_context_irq - allocate an interrupt line
2224 *      @irq: Interrupt line to allocate
2225 *      @handler: Function to be called when the IRQ occurs.
2226 *                Threaded handler for threaded interrupts.
2227 *      @flags: Interrupt type flags
2228 *      @name: An ascii name for the claiming device
2229 *      @dev_id: A cookie passed back to the handler function
2230 *
2231 *      This call allocates interrupt resources and enables the
2232 *      interrupt line and IRQ handling. It selects either a
2233 *      hardirq or threaded handling method depending on the
2234 *      context.
2235 *
2236 *      On failure, it returns a negative value. On success,
2237 *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2238 */
2239int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2240                            unsigned long flags, const char *name, void *dev_id)
2241{
2242        struct irq_desc *desc;
2243        int ret;
2244
2245        if (irq == IRQ_NOTCONNECTED)
2246                return -ENOTCONN;
2247
2248        desc = irq_to_desc(irq);
2249        if (!desc)
2250                return -EINVAL;
2251
2252        if (irq_settings_is_nested_thread(desc)) {
2253                ret = request_threaded_irq(irq, NULL, handler,
2254                                           flags, name, dev_id);
2255                return !ret ? IRQC_IS_NESTED : ret;
2256        }
2257
2258        ret = request_irq(irq, handler, flags, name, dev_id);
2259        return !ret ? IRQC_IS_HARDIRQ : ret;
2260}
2261EXPORT_SYMBOL_GPL(request_any_context_irq);
2262
2263/**
2264 *      request_nmi - allocate an interrupt line for NMI delivery
2265 *      @irq: Interrupt line to allocate
2266 *      @handler: Function to be called when the IRQ occurs.
2267 *                Threaded handler for threaded interrupts.
2268 *      @irqflags: Interrupt type flags
2269 *      @name: An ascii name for the claiming device
2270 *      @dev_id: A cookie passed back to the handler function
2271 *
2272 *      This call allocates interrupt resources and enables the
2273 *      interrupt line and IRQ handling. It sets up the IRQ line
2274 *      to be handled as an NMI.
2275 *
2276 *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2277 *      cannot be threaded.
2278 *
2279 *      Interrupt lines requested for NMI delivering must produce per cpu
2280 *      interrupts and have auto enabling setting disabled.
2281 *
2282 *      Dev_id must be globally unique. Normally the address of the
2283 *      device data structure is used as the cookie. Since the handler
2284 *      receives this value it makes sense to use it.
2285 *
2286 *      If the interrupt line cannot be used to deliver NMIs, function
2287 *      will fail and return a negative value.
2288 */
2289int request_nmi(unsigned int irq, irq_handler_t handler,
2290                unsigned long irqflags, const char *name, void *dev_id)
2291{
2292        struct irqaction *action;
2293        struct irq_desc *desc;
2294        unsigned long flags;
2295        int retval;
2296
2297        if (irq == IRQ_NOTCONNECTED)
2298                return -ENOTCONN;
2299
2300        /* NMI cannot be shared, used for Polling */
2301        if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2302                return -EINVAL;
2303
2304        if (!(irqflags & IRQF_PERCPU))
2305                return -EINVAL;
2306
2307        if (!handler)
2308                return -EINVAL;
2309
2310        desc = irq_to_desc(irq);
2311
2312        if (!desc || (irq_settings_can_autoenable(desc) &&
2313            !(irqflags & IRQF_NO_AUTOEN)) ||
2314            !irq_settings_can_request(desc) ||
2315            WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2316            !irq_supports_nmi(desc))
2317                return -EINVAL;
2318
2319        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2320        if (!action)
2321                return -ENOMEM;
2322
2323        action->handler = handler;
2324        action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2325        action->name = name;
2326        action->dev_id = dev_id;
2327
2328        retval = irq_chip_pm_get(&desc->irq_data);
2329        if (retval < 0)
2330                goto err_out;
2331
2332        retval = __setup_irq(irq, desc, action);
2333        if (retval)
2334                goto err_irq_setup;
2335
2336        raw_spin_lock_irqsave(&desc->lock, flags);
2337
2338        /* Setup NMI state */
2339        desc->istate |= IRQS_NMI;
2340        retval = irq_nmi_setup(desc);
2341        if (retval) {
2342                __cleanup_nmi(irq, desc);
2343                raw_spin_unlock_irqrestore(&desc->lock, flags);
2344                return -EINVAL;
2345        }
2346
2347        raw_spin_unlock_irqrestore(&desc->lock, flags);
2348
2349        return 0;
2350
2351err_irq_setup:
2352        irq_chip_pm_put(&desc->irq_data);
2353err_out:
2354        kfree(action);
2355
2356        return retval;
2357}
2358
2359void enable_percpu_irq(unsigned int irq, unsigned int type)
2360{
2361        unsigned int cpu = smp_processor_id();
2362        unsigned long flags;
2363        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2364
2365        if (!desc)
2366                return;
2367
2368        /*
2369         * If the trigger type is not specified by the caller, then
2370         * use the default for this interrupt.
2371         */
2372        type &= IRQ_TYPE_SENSE_MASK;
2373        if (type == IRQ_TYPE_NONE)
2374                type = irqd_get_trigger_type(&desc->irq_data);
2375
2376        if (type != IRQ_TYPE_NONE) {
2377                int ret;
2378
2379                ret = __irq_set_trigger(desc, type);
2380
2381                if (ret) {
2382                        WARN(1, "failed to set type for IRQ%d\n", irq);
2383                        goto out;
2384                }
2385        }
2386
2387        irq_percpu_enable(desc, cpu);
2388out:
2389        irq_put_desc_unlock(desc, flags);
2390}
2391EXPORT_SYMBOL_GPL(enable_percpu_irq);
2392
2393void enable_percpu_nmi(unsigned int irq, unsigned int type)
2394{
2395        enable_percpu_irq(irq, type);
2396}
2397
2398/**
2399 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2400 * @irq:        Linux irq number to check for
2401 *
2402 * Must be called from a non migratable context. Returns the enable
2403 * state of a per cpu interrupt on the current cpu.
2404 */
2405bool irq_percpu_is_enabled(unsigned int irq)
2406{
2407        unsigned int cpu = smp_processor_id();
2408        struct irq_desc *desc;
2409        unsigned long flags;
2410        bool is_enabled;
2411
2412        desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2413        if (!desc)
2414                return false;
2415
2416        is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2417        irq_put_desc_unlock(desc, flags);
2418
2419        return is_enabled;
2420}
2421EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2422
2423void disable_percpu_irq(unsigned int irq)
2424{
2425        unsigned int cpu = smp_processor_id();
2426        unsigned long flags;
2427        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2428
2429        if (!desc)
2430                return;
2431
2432        irq_percpu_disable(desc, cpu);
2433        irq_put_desc_unlock(desc, flags);
2434}
2435EXPORT_SYMBOL_GPL(disable_percpu_irq);
2436
2437void disable_percpu_nmi(unsigned int irq)
2438{
2439        disable_percpu_irq(irq);
2440}
2441
2442/*
2443 * Internal function to unregister a percpu irqaction.
2444 */
2445static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2446{
2447        struct irq_desc *desc = irq_to_desc(irq);
2448        struct irqaction *action;
2449        unsigned long flags;
2450
2451        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2452
2453        if (!desc)
2454                return NULL;
2455
2456        raw_spin_lock_irqsave(&desc->lock, flags);
2457
2458        action = desc->action;
2459        if (!action || action->percpu_dev_id != dev_id) {
2460                WARN(1, "Trying to free already-free IRQ %d\n", irq);
2461                goto bad;
2462        }
2463
2464        if (!cpumask_empty(desc->percpu_enabled)) {
2465                WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2466                     irq, cpumask_first(desc->percpu_enabled));
2467                goto bad;
2468        }
2469
2470        /* Found it - now remove it from the list of entries: */
2471        desc->action = NULL;
2472
2473        desc->istate &= ~IRQS_NMI;
2474
2475        raw_spin_unlock_irqrestore(&desc->lock, flags);
2476
2477        unregister_handler_proc(irq, action);
2478
2479        irq_chip_pm_put(&desc->irq_data);
2480        module_put(desc->owner);
2481        return action;
2482
2483bad:
2484        raw_spin_unlock_irqrestore(&desc->lock, flags);
2485        return NULL;
2486}
2487
2488/**
2489 *      remove_percpu_irq - free a per-cpu interrupt
2490 *      @irq: Interrupt line to free
2491 *      @act: irqaction for the interrupt
2492 *
2493 * Used to remove interrupts statically setup by the early boot process.
2494 */
2495void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2496{
2497        struct irq_desc *desc = irq_to_desc(irq);
2498
2499        if (desc && irq_settings_is_per_cpu_devid(desc))
2500            __free_percpu_irq(irq, act->percpu_dev_id);
2501}
2502
2503/**
2504 *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2505 *      @irq: Interrupt line to free
2506 *      @dev_id: Device identity to free
2507 *
2508 *      Remove a percpu interrupt handler. The handler is removed, but
2509 *      the interrupt line is not disabled. This must be done on each
2510 *      CPU before calling this function. The function does not return
2511 *      until any executing interrupts for this IRQ have completed.
2512 *
2513 *      This function must not be called from interrupt context.
2514 */
2515void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2516{
2517        struct irq_desc *desc = irq_to_desc(irq);
2518
2519        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2520                return;
2521
2522        chip_bus_lock(desc);
2523        kfree(__free_percpu_irq(irq, dev_id));
2524        chip_bus_sync_unlock(desc);
2525}
2526EXPORT_SYMBOL_GPL(free_percpu_irq);
2527
2528void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2529{
2530        struct irq_desc *desc = irq_to_desc(irq);
2531
2532        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2533                return;
2534
2535        if (WARN_ON(!(desc->istate & IRQS_NMI)))
2536                return;
2537
2538        kfree(__free_percpu_irq(irq, dev_id));
2539}
2540
2541/**
2542 *      setup_percpu_irq - setup a per-cpu interrupt
2543 *      @irq: Interrupt line to setup
2544 *      @act: irqaction for the interrupt
2545 *
2546 * Used to statically setup per-cpu interrupts in the early boot process.
2547 */
2548int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2549{
2550        struct irq_desc *desc = irq_to_desc(irq);
2551        int retval;
2552
2553        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2554                return -EINVAL;
2555
2556        retval = irq_chip_pm_get(&desc->irq_data);
2557        if (retval < 0)
2558                return retval;
2559
2560        retval = __setup_irq(irq, desc, act);
2561
2562        if (retval)
2563                irq_chip_pm_put(&desc->irq_data);
2564
2565        return retval;
2566}
2567
2568/**
2569 *      __request_percpu_irq - allocate a percpu interrupt line
2570 *      @irq: Interrupt line to allocate
2571 *      @handler: Function to be called when the IRQ occurs.
2572 *      @flags: Interrupt type flags (IRQF_TIMER only)
2573 *      @devname: An ascii name for the claiming device
2574 *      @dev_id: A percpu cookie passed back to the handler function
2575 *
2576 *      This call allocates interrupt resources and enables the
2577 *      interrupt on the local CPU. If the interrupt is supposed to be
2578 *      enabled on other CPUs, it has to be done on each CPU using
2579 *      enable_percpu_irq().
2580 *
2581 *      Dev_id must be globally unique. It is a per-cpu variable, and
2582 *      the handler gets called with the interrupted CPU's instance of
2583 *      that variable.
2584 */
2585int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2586                         unsigned long flags, const char *devname,
2587                         void __percpu *dev_id)
2588{
2589        struct irqaction *action;
2590        struct irq_desc *desc;
2591        int retval;
2592
2593        if (!dev_id)
2594                return -EINVAL;
2595
2596        desc = irq_to_desc(irq);
2597        if (!desc || !irq_settings_can_request(desc) ||
2598            !irq_settings_is_per_cpu_devid(desc))
2599                return -EINVAL;
2600
2601        if (flags && flags != IRQF_TIMER)
2602                return -EINVAL;
2603
2604        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2605        if (!action)
2606                return -ENOMEM;
2607
2608        action->handler = handler;
2609        action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2610        action->name = devname;
2611        action->percpu_dev_id = dev_id;
2612
2613        retval = irq_chip_pm_get(&desc->irq_data);
2614        if (retval < 0) {
2615                kfree(action);
2616                return retval;
2617        }
2618
2619        retval = __setup_irq(irq, desc, action);
2620
2621        if (retval) {
2622                irq_chip_pm_put(&desc->irq_data);
2623                kfree(action);
2624        }
2625
2626        return retval;
2627}
2628EXPORT_SYMBOL_GPL(__request_percpu_irq);
2629
2630/**
2631 *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2632 *      @irq: Interrupt line to allocate
2633 *      @handler: Function to be called when the IRQ occurs.
2634 *      @name: An ascii name for the claiming device
2635 *      @dev_id: A percpu cookie passed back to the handler function
2636 *
2637 *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2638 *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2639 *      being enabled on the same CPU by using enable_percpu_nmi().
2640 *
2641 *      Dev_id must be globally unique. It is a per-cpu variable, and
2642 *      the handler gets called with the interrupted CPU's instance of
2643 *      that variable.
2644 *
2645 *      Interrupt lines requested for NMI delivering should have auto enabling
2646 *      setting disabled.
2647 *
2648 *      If the interrupt line cannot be used to deliver NMIs, function
2649 *      will fail returning a negative value.
2650 */
2651int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2652                       const char *name, void __percpu *dev_id)
2653{
2654        struct irqaction *action;
2655        struct irq_desc *desc;
2656        unsigned long flags;
2657        int retval;
2658
2659        if (!handler)
2660                return -EINVAL;
2661
2662        desc = irq_to_desc(irq);
2663
2664        if (!desc || !irq_settings_can_request(desc) ||
2665            !irq_settings_is_per_cpu_devid(desc) ||
2666            irq_settings_can_autoenable(desc) ||
2667            !irq_supports_nmi(desc))
2668                return -EINVAL;
2669
2670        /* The line cannot already be NMI */
2671        if (desc->istate & IRQS_NMI)
2672                return -EINVAL;
2673
2674        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2675        if (!action)
2676                return -ENOMEM;
2677
2678        action->handler = handler;
2679        action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2680                | IRQF_NOBALANCING;
2681        action->name = name;
2682        action->percpu_dev_id = dev_id;
2683
2684        retval = irq_chip_pm_get(&desc->irq_data);
2685        if (retval < 0)
2686                goto err_out;
2687
2688        retval = __setup_irq(irq, desc, action);
2689        if (retval)
2690                goto err_irq_setup;
2691
2692        raw_spin_lock_irqsave(&desc->lock, flags);
2693        desc->istate |= IRQS_NMI;
2694        raw_spin_unlock_irqrestore(&desc->lock, flags);
2695
2696        return 0;
2697
2698err_irq_setup:
2699        irq_chip_pm_put(&desc->irq_data);
2700err_out:
2701        kfree(action);
2702
2703        return retval;
2704}
2705
2706/**
2707 *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2708 *      @irq: Interrupt line to prepare for NMI delivery
2709 *
2710 *      This call prepares an interrupt line to deliver NMI on the current CPU,
2711 *      before that interrupt line gets enabled with enable_percpu_nmi().
2712 *
2713 *      As a CPU local operation, this should be called from non-preemptible
2714 *      context.
2715 *
2716 *      If the interrupt line cannot be used to deliver NMIs, function
2717 *      will fail returning a negative value.
2718 */
2719int prepare_percpu_nmi(unsigned int irq)
2720{
2721        unsigned long flags;
2722        struct irq_desc *desc;
2723        int ret = 0;
2724
2725        WARN_ON(preemptible());
2726
2727        desc = irq_get_desc_lock(irq, &flags,
2728                                 IRQ_GET_DESC_CHECK_PERCPU);
2729        if (!desc)
2730                return -EINVAL;
2731
2732        if (WARN(!(desc->istate & IRQS_NMI),
2733                 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2734                 irq)) {
2735                ret = -EINVAL;
2736                goto out;
2737        }
2738
2739        ret = irq_nmi_setup(desc);
2740        if (ret) {
2741                pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2742                goto out;
2743        }
2744
2745out:
2746        irq_put_desc_unlock(desc, flags);
2747        return ret;
2748}
2749
2750/**
2751 *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2752 *      @irq: Interrupt line from which CPU local NMI configuration should be
2753 *            removed
2754 *
2755 *      This call undoes the setup done by prepare_percpu_nmi().
2756 *
2757 *      IRQ line should not be enabled for the current CPU.
2758 *
2759 *      As a CPU local operation, this should be called from non-preemptible
2760 *      context.
2761 */
2762void teardown_percpu_nmi(unsigned int irq)
2763{
2764        unsigned long flags;
2765        struct irq_desc *desc;
2766
2767        WARN_ON(preemptible());
2768
2769        desc = irq_get_desc_lock(irq, &flags,
2770                                 IRQ_GET_DESC_CHECK_PERCPU);
2771        if (!desc)
2772                return;
2773
2774        if (WARN_ON(!(desc->istate & IRQS_NMI)))
2775                goto out;
2776
2777        irq_nmi_teardown(desc);
2778out:
2779        irq_put_desc_unlock(desc, flags);
2780}
2781
2782int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2783                            bool *state)
2784{
2785        struct irq_chip *chip;
2786        int err = -EINVAL;
2787
2788        do {
2789                chip = irq_data_get_irq_chip(data);
2790                if (WARN_ON_ONCE(!chip))
2791                        return -ENODEV;
2792                if (chip->irq_get_irqchip_state)
2793                        break;
2794#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2795                data = data->parent_data;
2796#else
2797                data = NULL;
2798#endif
2799        } while (data);
2800
2801        if (data)
2802                err = chip->irq_get_irqchip_state(data, which, state);
2803        return err;
2804}
2805
2806/**
2807 *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2808 *      @irq: Interrupt line that is forwarded to a VM
2809 *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2810 *      @state: a pointer to a boolean where the state is to be stored
2811 *
2812 *      This call snapshots the internal irqchip state of an
2813 *      interrupt, returning into @state the bit corresponding to
2814 *      stage @which
2815 *
2816 *      This function should be called with preemption disabled if the
2817 *      interrupt controller has per-cpu registers.
2818 */
2819int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2820                          bool *state)
2821{
2822        struct irq_desc *desc;
2823        struct irq_data *data;
2824        unsigned long flags;
2825        int err = -EINVAL;
2826
2827        desc = irq_get_desc_buslock(irq, &flags, 0);
2828        if (!desc)
2829                return err;
2830
2831        data = irq_desc_get_irq_data(desc);
2832
2833        err = __irq_get_irqchip_state(data, which, state);
2834
2835        irq_put_desc_busunlock(desc, flags);
2836        return err;
2837}
2838EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2839
2840/**
2841 *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2842 *      @irq: Interrupt line that is forwarded to a VM
2843 *      @which: State to be restored (one of IRQCHIP_STATE_*)
2844 *      @val: Value corresponding to @which
2845 *
2846 *      This call sets the internal irqchip state of an interrupt,
2847 *      depending on the value of @which.
2848 *
2849 *      This function should be called with migration disabled if the
2850 *      interrupt controller has per-cpu registers.
2851 */
2852int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2853                          bool val)
2854{
2855        struct irq_desc *desc;
2856        struct irq_data *data;
2857        struct irq_chip *chip;
2858        unsigned long flags;
2859        int err = -EINVAL;
2860
2861        desc = irq_get_desc_buslock(irq, &flags, 0);
2862        if (!desc)
2863                return err;
2864
2865        data = irq_desc_get_irq_data(desc);
2866
2867        do {
2868                chip = irq_data_get_irq_chip(data);
2869                if (WARN_ON_ONCE(!chip)) {
2870                        err = -ENODEV;
2871                        goto out_unlock;
2872                }
2873                if (chip->irq_set_irqchip_state)
2874                        break;
2875#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2876                data = data->parent_data;
2877#else
2878                data = NULL;
2879#endif
2880        } while (data);
2881
2882        if (data)
2883                err = chip->irq_set_irqchip_state(data, which, val);
2884
2885out_unlock:
2886        irq_put_desc_busunlock(desc, flags);
2887        return err;
2888}
2889EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2890
2891/**
2892 * irq_has_action - Check whether an interrupt is requested
2893 * @irq:        The linux irq number
2894 *
2895 * Returns: A snapshot of the current state
2896 */
2897bool irq_has_action(unsigned int irq)
2898{
2899        bool res;
2900
2901        rcu_read_lock();
2902        res = irq_desc_has_action(irq_to_desc(irq));
2903        rcu_read_unlock();
2904        return res;
2905}
2906EXPORT_SYMBOL_GPL(irq_has_action);
2907
2908/**
2909 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2910 * @irq:        The linux irq number
2911 * @bitmask:    The bitmask to evaluate
2912 *
2913 * Returns: True if one of the bits in @bitmask is set
2914 */
2915bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2916{
2917        struct irq_desc *desc;
2918        bool res = false;
2919
2920        rcu_read_lock();
2921        desc = irq_to_desc(irq);
2922        if (desc)
2923                res = !!(desc->status_use_accessors & bitmask);
2924        rcu_read_unlock();
2925        return res;
2926}
2927EXPORT_SYMBOL_GPL(irq_check_status_bit);
2928