linux/kernel/module.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2002 Richard Henderson
   4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5 */
   6
   7#define INCLUDE_VERMAGIC
   8
   9#include <linux/export.h>
  10#include <linux/extable.h>
  11#include <linux/moduleloader.h>
  12#include <linux/module_signature.h>
  13#include <linux/trace_events.h>
  14#include <linux/init.h>
  15#include <linux/kallsyms.h>
  16#include <linux/buildid.h>
  17#include <linux/file.h>
  18#include <linux/fs.h>
  19#include <linux/sysfs.h>
  20#include <linux/kernel.h>
  21#include <linux/kernel_read_file.h>
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/elf.h>
  25#include <linux/proc_fs.h>
  26#include <linux/security.h>
  27#include <linux/seq_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/fcntl.h>
  30#include <linux/rcupdate.h>
  31#include <linux/capability.h>
  32#include <linux/cpu.h>
  33#include <linux/moduleparam.h>
  34#include <linux/errno.h>
  35#include <linux/err.h>
  36#include <linux/vermagic.h>
  37#include <linux/notifier.h>
  38#include <linux/sched.h>
  39#include <linux/device.h>
  40#include <linux/string.h>
  41#include <linux/mutex.h>
  42#include <linux/rculist.h>
  43#include <linux/uaccess.h>
  44#include <asm/cacheflush.h>
  45#include <linux/set_memory.h>
  46#include <asm/mmu_context.h>
  47#include <linux/license.h>
  48#include <asm/sections.h>
  49#include <linux/tracepoint.h>
  50#include <linux/ftrace.h>
  51#include <linux/livepatch.h>
  52#include <linux/async.h>
  53#include <linux/percpu.h>
  54#include <linux/kmemleak.h>
  55#include <linux/jump_label.h>
  56#include <linux/pfn.h>
  57#include <linux/bsearch.h>
  58#include <linux/dynamic_debug.h>
  59#include <linux/audit.h>
  60#include <uapi/linux/module.h>
  61#include "module-internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/module.h>
  65
  66#ifndef ARCH_SHF_SMALL
  67#define ARCH_SHF_SMALL 0
  68#endif
  69
  70/*
  71 * Modules' sections will be aligned on page boundaries
  72 * to ensure complete separation of code and data, but
  73 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  74 */
  75#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  76# define debug_align(X) ALIGN(X, PAGE_SIZE)
  77#else
  78# define debug_align(X) (X)
  79#endif
  80
  81/* If this is set, the section belongs in the init part of the module */
  82#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  83
  84/*
  85 * Mutex protects:
  86 * 1) List of modules (also safely readable with preempt_disable),
  87 * 2) module_use links,
  88 * 3) module_addr_min/module_addr_max.
  89 * (delete and add uses RCU list operations).
  90 */
  91static DEFINE_MUTEX(module_mutex);
  92static LIST_HEAD(modules);
  93
  94/* Work queue for freeing init sections in success case */
  95static void do_free_init(struct work_struct *w);
  96static DECLARE_WORK(init_free_wq, do_free_init);
  97static LLIST_HEAD(init_free_list);
  98
  99#ifdef CONFIG_MODULES_TREE_LOOKUP
 100
 101/*
 102 * Use a latched RB-tree for __module_address(); this allows us to use
 103 * RCU-sched lookups of the address from any context.
 104 *
 105 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 106 * __module_address() hard by doing a lot of stack unwinding; potentially from
 107 * NMI context.
 108 */
 109
 110static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 111{
 112        struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 113
 114        return (unsigned long)layout->base;
 115}
 116
 117static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 118{
 119        struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 120
 121        return (unsigned long)layout->size;
 122}
 123
 124static __always_inline bool
 125mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 126{
 127        return __mod_tree_val(a) < __mod_tree_val(b);
 128}
 129
 130static __always_inline int
 131mod_tree_comp(void *key, struct latch_tree_node *n)
 132{
 133        unsigned long val = (unsigned long)key;
 134        unsigned long start, end;
 135
 136        start = __mod_tree_val(n);
 137        if (val < start)
 138                return -1;
 139
 140        end = start + __mod_tree_size(n);
 141        if (val >= end)
 142                return 1;
 143
 144        return 0;
 145}
 146
 147static const struct latch_tree_ops mod_tree_ops = {
 148        .less = mod_tree_less,
 149        .comp = mod_tree_comp,
 150};
 151
 152static struct mod_tree_root {
 153        struct latch_tree_root root;
 154        unsigned long addr_min;
 155        unsigned long addr_max;
 156} mod_tree __cacheline_aligned = {
 157        .addr_min = -1UL,
 158};
 159
 160#define module_addr_min mod_tree.addr_min
 161#define module_addr_max mod_tree.addr_max
 162
 163static noinline void __mod_tree_insert(struct mod_tree_node *node)
 164{
 165        latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 166}
 167
 168static void __mod_tree_remove(struct mod_tree_node *node)
 169{
 170        latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 171}
 172
 173/*
 174 * These modifications: insert, remove_init and remove; are serialized by the
 175 * module_mutex.
 176 */
 177static void mod_tree_insert(struct module *mod)
 178{
 179        mod->core_layout.mtn.mod = mod;
 180        mod->init_layout.mtn.mod = mod;
 181
 182        __mod_tree_insert(&mod->core_layout.mtn);
 183        if (mod->init_layout.size)
 184                __mod_tree_insert(&mod->init_layout.mtn);
 185}
 186
 187static void mod_tree_remove_init(struct module *mod)
 188{
 189        if (mod->init_layout.size)
 190                __mod_tree_remove(&mod->init_layout.mtn);
 191}
 192
 193static void mod_tree_remove(struct module *mod)
 194{
 195        __mod_tree_remove(&mod->core_layout.mtn);
 196        mod_tree_remove_init(mod);
 197}
 198
 199static struct module *mod_find(unsigned long addr)
 200{
 201        struct latch_tree_node *ltn;
 202
 203        ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 204        if (!ltn)
 205                return NULL;
 206
 207        return container_of(ltn, struct mod_tree_node, node)->mod;
 208}
 209
 210#else /* MODULES_TREE_LOOKUP */
 211
 212static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 213
 214static void mod_tree_insert(struct module *mod) { }
 215static void mod_tree_remove_init(struct module *mod) { }
 216static void mod_tree_remove(struct module *mod) { }
 217
 218static struct module *mod_find(unsigned long addr)
 219{
 220        struct module *mod;
 221
 222        list_for_each_entry_rcu(mod, &modules, list,
 223                                lockdep_is_held(&module_mutex)) {
 224                if (within_module(addr, mod))
 225                        return mod;
 226        }
 227
 228        return NULL;
 229}
 230
 231#endif /* MODULES_TREE_LOOKUP */
 232
 233/*
 234 * Bounds of module text, for speeding up __module_address.
 235 * Protected by module_mutex.
 236 */
 237static void __mod_update_bounds(void *base, unsigned int size)
 238{
 239        unsigned long min = (unsigned long)base;
 240        unsigned long max = min + size;
 241
 242        if (min < module_addr_min)
 243                module_addr_min = min;
 244        if (max > module_addr_max)
 245                module_addr_max = max;
 246}
 247
 248static void mod_update_bounds(struct module *mod)
 249{
 250        __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 251        if (mod->init_layout.size)
 252                __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 253}
 254
 255#ifdef CONFIG_KGDB_KDB
 256struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 257#endif /* CONFIG_KGDB_KDB */
 258
 259static void module_assert_mutex_or_preempt(void)
 260{
 261#ifdef CONFIG_LOCKDEP
 262        if (unlikely(!debug_locks))
 263                return;
 264
 265        WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 266                !lockdep_is_held(&module_mutex));
 267#endif
 268}
 269
 270#ifdef CONFIG_MODULE_SIG
 271static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 272module_param(sig_enforce, bool_enable_only, 0644);
 273
 274void set_module_sig_enforced(void)
 275{
 276        sig_enforce = true;
 277}
 278#else
 279#define sig_enforce false
 280#endif
 281
 282/*
 283 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 284 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 285 */
 286bool is_module_sig_enforced(void)
 287{
 288        return sig_enforce;
 289}
 290EXPORT_SYMBOL(is_module_sig_enforced);
 291
 292/* Block module loading/unloading? */
 293int modules_disabled = 0;
 294core_param(nomodule, modules_disabled, bint, 0);
 295
 296/* Waiting for a module to finish initializing? */
 297static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 298
 299static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 300
 301int register_module_notifier(struct notifier_block *nb)
 302{
 303        return blocking_notifier_chain_register(&module_notify_list, nb);
 304}
 305EXPORT_SYMBOL(register_module_notifier);
 306
 307int unregister_module_notifier(struct notifier_block *nb)
 308{
 309        return blocking_notifier_chain_unregister(&module_notify_list, nb);
 310}
 311EXPORT_SYMBOL(unregister_module_notifier);
 312
 313/*
 314 * We require a truly strong try_module_get(): 0 means success.
 315 * Otherwise an error is returned due to ongoing or failed
 316 * initialization etc.
 317 */
 318static inline int strong_try_module_get(struct module *mod)
 319{
 320        BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 321        if (mod && mod->state == MODULE_STATE_COMING)
 322                return -EBUSY;
 323        if (try_module_get(mod))
 324                return 0;
 325        else
 326                return -ENOENT;
 327}
 328
 329static inline void add_taint_module(struct module *mod, unsigned flag,
 330                                    enum lockdep_ok lockdep_ok)
 331{
 332        add_taint(flag, lockdep_ok);
 333        set_bit(flag, &mod->taints);
 334}
 335
 336/*
 337 * A thread that wants to hold a reference to a module only while it
 338 * is running can call this to safely exit.
 339 */
 340void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
 341{
 342        module_put(mod);
 343        kthread_exit(code);
 344}
 345EXPORT_SYMBOL(__module_put_and_kthread_exit);
 346
 347/* Find a module section: 0 means not found. */
 348static unsigned int find_sec(const struct load_info *info, const char *name)
 349{
 350        unsigned int i;
 351
 352        for (i = 1; i < info->hdr->e_shnum; i++) {
 353                Elf_Shdr *shdr = &info->sechdrs[i];
 354                /* Alloc bit cleared means "ignore it." */
 355                if ((shdr->sh_flags & SHF_ALLOC)
 356                    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 357                        return i;
 358        }
 359        return 0;
 360}
 361
 362/* Find a module section, or NULL. */
 363static void *section_addr(const struct load_info *info, const char *name)
 364{
 365        /* Section 0 has sh_addr 0. */
 366        return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 367}
 368
 369/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 370static void *section_objs(const struct load_info *info,
 371                          const char *name,
 372                          size_t object_size,
 373                          unsigned int *num)
 374{
 375        unsigned int sec = find_sec(info, name);
 376
 377        /* Section 0 has sh_addr 0 and sh_size 0. */
 378        *num = info->sechdrs[sec].sh_size / object_size;
 379        return (void *)info->sechdrs[sec].sh_addr;
 380}
 381
 382/* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
 383static unsigned int find_any_sec(const struct load_info *info, const char *name)
 384{
 385        unsigned int i;
 386
 387        for (i = 1; i < info->hdr->e_shnum; i++) {
 388                Elf_Shdr *shdr = &info->sechdrs[i];
 389                if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
 390                        return i;
 391        }
 392        return 0;
 393}
 394
 395/*
 396 * Find a module section, or NULL. Fill in number of "objects" in section.
 397 * Ignores SHF_ALLOC flag.
 398 */
 399static __maybe_unused void *any_section_objs(const struct load_info *info,
 400                                             const char *name,
 401                                             size_t object_size,
 402                                             unsigned int *num)
 403{
 404        unsigned int sec = find_any_sec(info, name);
 405
 406        /* Section 0 has sh_addr 0 and sh_size 0. */
 407        *num = info->sechdrs[sec].sh_size / object_size;
 408        return (void *)info->sechdrs[sec].sh_addr;
 409}
 410
 411/* Provided by the linker */
 412extern const struct kernel_symbol __start___ksymtab[];
 413extern const struct kernel_symbol __stop___ksymtab[];
 414extern const struct kernel_symbol __start___ksymtab_gpl[];
 415extern const struct kernel_symbol __stop___ksymtab_gpl[];
 416extern const s32 __start___kcrctab[];
 417extern const s32 __start___kcrctab_gpl[];
 418
 419#ifndef CONFIG_MODVERSIONS
 420#define symversion(base, idx) NULL
 421#else
 422#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 423#endif
 424
 425struct symsearch {
 426        const struct kernel_symbol *start, *stop;
 427        const s32 *crcs;
 428        enum mod_license {
 429                NOT_GPL_ONLY,
 430                GPL_ONLY,
 431        } license;
 432};
 433
 434struct find_symbol_arg {
 435        /* Input */
 436        const char *name;
 437        bool gplok;
 438        bool warn;
 439
 440        /* Output */
 441        struct module *owner;
 442        const s32 *crc;
 443        const struct kernel_symbol *sym;
 444        enum mod_license license;
 445};
 446
 447static bool check_exported_symbol(const struct symsearch *syms,
 448                                  struct module *owner,
 449                                  unsigned int symnum, void *data)
 450{
 451        struct find_symbol_arg *fsa = data;
 452
 453        if (!fsa->gplok && syms->license == GPL_ONLY)
 454                return false;
 455        fsa->owner = owner;
 456        fsa->crc = symversion(syms->crcs, symnum);
 457        fsa->sym = &syms->start[symnum];
 458        fsa->license = syms->license;
 459        return true;
 460}
 461
 462static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 463{
 464#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 465        return (unsigned long)offset_to_ptr(&sym->value_offset);
 466#else
 467        return sym->value;
 468#endif
 469}
 470
 471static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 472{
 473#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 474        return offset_to_ptr(&sym->name_offset);
 475#else
 476        return sym->name;
 477#endif
 478}
 479
 480static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 481{
 482#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 483        if (!sym->namespace_offset)
 484                return NULL;
 485        return offset_to_ptr(&sym->namespace_offset);
 486#else
 487        return sym->namespace;
 488#endif
 489}
 490
 491static int cmp_name(const void *name, const void *sym)
 492{
 493        return strcmp(name, kernel_symbol_name(sym));
 494}
 495
 496static bool find_exported_symbol_in_section(const struct symsearch *syms,
 497                                            struct module *owner,
 498                                            void *data)
 499{
 500        struct find_symbol_arg *fsa = data;
 501        struct kernel_symbol *sym;
 502
 503        sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 504                        sizeof(struct kernel_symbol), cmp_name);
 505
 506        if (sym != NULL && check_exported_symbol(syms, owner,
 507                                                 sym - syms->start, data))
 508                return true;
 509
 510        return false;
 511}
 512
 513/*
 514 * Find an exported symbol and return it, along with, (optional) crc and
 515 * (optional) module which owns it.  Needs preempt disabled or module_mutex.
 516 */
 517static bool find_symbol(struct find_symbol_arg *fsa)
 518{
 519        static const struct symsearch arr[] = {
 520                { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 521                  NOT_GPL_ONLY },
 522                { __start___ksymtab_gpl, __stop___ksymtab_gpl,
 523                  __start___kcrctab_gpl,
 524                  GPL_ONLY },
 525        };
 526        struct module *mod;
 527        unsigned int i;
 528
 529        module_assert_mutex_or_preempt();
 530
 531        for (i = 0; i < ARRAY_SIZE(arr); i++)
 532                if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
 533                        return true;
 534
 535        list_for_each_entry_rcu(mod, &modules, list,
 536                                lockdep_is_held(&module_mutex)) {
 537                struct symsearch arr[] = {
 538                        { mod->syms, mod->syms + mod->num_syms, mod->crcs,
 539                          NOT_GPL_ONLY },
 540                        { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 541                          mod->gpl_crcs,
 542                          GPL_ONLY },
 543                };
 544
 545                if (mod->state == MODULE_STATE_UNFORMED)
 546                        continue;
 547
 548                for (i = 0; i < ARRAY_SIZE(arr); i++)
 549                        if (find_exported_symbol_in_section(&arr[i], mod, fsa))
 550                                return true;
 551        }
 552
 553        pr_debug("Failed to find symbol %s\n", fsa->name);
 554        return false;
 555}
 556
 557/*
 558 * Search for module by name: must hold module_mutex (or preempt disabled
 559 * for read-only access).
 560 */
 561static struct module *find_module_all(const char *name, size_t len,
 562                                      bool even_unformed)
 563{
 564        struct module *mod;
 565
 566        module_assert_mutex_or_preempt();
 567
 568        list_for_each_entry_rcu(mod, &modules, list,
 569                                lockdep_is_held(&module_mutex)) {
 570                if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 571                        continue;
 572                if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 573                        return mod;
 574        }
 575        return NULL;
 576}
 577
 578struct module *find_module(const char *name)
 579{
 580        return find_module_all(name, strlen(name), false);
 581}
 582
 583#ifdef CONFIG_SMP
 584
 585static inline void __percpu *mod_percpu(struct module *mod)
 586{
 587        return mod->percpu;
 588}
 589
 590static int percpu_modalloc(struct module *mod, struct load_info *info)
 591{
 592        Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 593        unsigned long align = pcpusec->sh_addralign;
 594
 595        if (!pcpusec->sh_size)
 596                return 0;
 597
 598        if (align > PAGE_SIZE) {
 599                pr_warn("%s: per-cpu alignment %li > %li\n",
 600                        mod->name, align, PAGE_SIZE);
 601                align = PAGE_SIZE;
 602        }
 603
 604        mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 605        if (!mod->percpu) {
 606                pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 607                        mod->name, (unsigned long)pcpusec->sh_size);
 608                return -ENOMEM;
 609        }
 610        mod->percpu_size = pcpusec->sh_size;
 611        return 0;
 612}
 613
 614static void percpu_modfree(struct module *mod)
 615{
 616        free_percpu(mod->percpu);
 617}
 618
 619static unsigned int find_pcpusec(struct load_info *info)
 620{
 621        return find_sec(info, ".data..percpu");
 622}
 623
 624static void percpu_modcopy(struct module *mod,
 625                           const void *from, unsigned long size)
 626{
 627        int cpu;
 628
 629        for_each_possible_cpu(cpu)
 630                memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 631}
 632
 633bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 634{
 635        struct module *mod;
 636        unsigned int cpu;
 637
 638        preempt_disable();
 639
 640        list_for_each_entry_rcu(mod, &modules, list) {
 641                if (mod->state == MODULE_STATE_UNFORMED)
 642                        continue;
 643                if (!mod->percpu_size)
 644                        continue;
 645                for_each_possible_cpu(cpu) {
 646                        void *start = per_cpu_ptr(mod->percpu, cpu);
 647                        void *va = (void *)addr;
 648
 649                        if (va >= start && va < start + mod->percpu_size) {
 650                                if (can_addr) {
 651                                        *can_addr = (unsigned long) (va - start);
 652                                        *can_addr += (unsigned long)
 653                                                per_cpu_ptr(mod->percpu,
 654                                                            get_boot_cpu_id());
 655                                }
 656                                preempt_enable();
 657                                return true;
 658                        }
 659                }
 660        }
 661
 662        preempt_enable();
 663        return false;
 664}
 665
 666/**
 667 * is_module_percpu_address() - test whether address is from module static percpu
 668 * @addr: address to test
 669 *
 670 * Test whether @addr belongs to module static percpu area.
 671 *
 672 * Return: %true if @addr is from module static percpu area
 673 */
 674bool is_module_percpu_address(unsigned long addr)
 675{
 676        return __is_module_percpu_address(addr, NULL);
 677}
 678
 679#else /* ... !CONFIG_SMP */
 680
 681static inline void __percpu *mod_percpu(struct module *mod)
 682{
 683        return NULL;
 684}
 685static int percpu_modalloc(struct module *mod, struct load_info *info)
 686{
 687        /* UP modules shouldn't have this section: ENOMEM isn't quite right */
 688        if (info->sechdrs[info->index.pcpu].sh_size != 0)
 689                return -ENOMEM;
 690        return 0;
 691}
 692static inline void percpu_modfree(struct module *mod)
 693{
 694}
 695static unsigned int find_pcpusec(struct load_info *info)
 696{
 697        return 0;
 698}
 699static inline void percpu_modcopy(struct module *mod,
 700                                  const void *from, unsigned long size)
 701{
 702        /* pcpusec should be 0, and size of that section should be 0. */
 703        BUG_ON(size != 0);
 704}
 705bool is_module_percpu_address(unsigned long addr)
 706{
 707        return false;
 708}
 709
 710bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 711{
 712        return false;
 713}
 714
 715#endif /* CONFIG_SMP */
 716
 717#define MODINFO_ATTR(field)     \
 718static void setup_modinfo_##field(struct module *mod, const char *s)  \
 719{                                                                     \
 720        mod->field = kstrdup(s, GFP_KERNEL);                          \
 721}                                                                     \
 722static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 723                        struct module_kobject *mk, char *buffer)      \
 724{                                                                     \
 725        return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 726}                                                                     \
 727static int modinfo_##field##_exists(struct module *mod)               \
 728{                                                                     \
 729        return mod->field != NULL;                                    \
 730}                                                                     \
 731static void free_modinfo_##field(struct module *mod)                  \
 732{                                                                     \
 733        kfree(mod->field);                                            \
 734        mod->field = NULL;                                            \
 735}                                                                     \
 736static struct module_attribute modinfo_##field = {                    \
 737        .attr = { .name = __stringify(field), .mode = 0444 },         \
 738        .show = show_modinfo_##field,                                 \
 739        .setup = setup_modinfo_##field,                               \
 740        .test = modinfo_##field##_exists,                             \
 741        .free = free_modinfo_##field,                                 \
 742};
 743
 744MODINFO_ATTR(version);
 745MODINFO_ATTR(srcversion);
 746
 747static char last_unloaded_module[MODULE_NAME_LEN+1];
 748
 749#ifdef CONFIG_MODULE_UNLOAD
 750
 751EXPORT_TRACEPOINT_SYMBOL(module_get);
 752
 753/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 754#define MODULE_REF_BASE 1
 755
 756/* Init the unload section of the module. */
 757static int module_unload_init(struct module *mod)
 758{
 759        /*
 760         * Initialize reference counter to MODULE_REF_BASE.
 761         * refcnt == 0 means module is going.
 762         */
 763        atomic_set(&mod->refcnt, MODULE_REF_BASE);
 764
 765        INIT_LIST_HEAD(&mod->source_list);
 766        INIT_LIST_HEAD(&mod->target_list);
 767
 768        /* Hold reference count during initialization. */
 769        atomic_inc(&mod->refcnt);
 770
 771        return 0;
 772}
 773
 774/* Does a already use b? */
 775static int already_uses(struct module *a, struct module *b)
 776{
 777        struct module_use *use;
 778
 779        list_for_each_entry(use, &b->source_list, source_list) {
 780                if (use->source == a) {
 781                        pr_debug("%s uses %s!\n", a->name, b->name);
 782                        return 1;
 783                }
 784        }
 785        pr_debug("%s does not use %s!\n", a->name, b->name);
 786        return 0;
 787}
 788
 789/*
 790 * Module a uses b
 791 *  - we add 'a' as a "source", 'b' as a "target" of module use
 792 *  - the module_use is added to the list of 'b' sources (so
 793 *    'b' can walk the list to see who sourced them), and of 'a'
 794 *    targets (so 'a' can see what modules it targets).
 795 */
 796static int add_module_usage(struct module *a, struct module *b)
 797{
 798        struct module_use *use;
 799
 800        pr_debug("Allocating new usage for %s.\n", a->name);
 801        use = kmalloc(sizeof(*use), GFP_ATOMIC);
 802        if (!use)
 803                return -ENOMEM;
 804
 805        use->source = a;
 806        use->target = b;
 807        list_add(&use->source_list, &b->source_list);
 808        list_add(&use->target_list, &a->target_list);
 809        return 0;
 810}
 811
 812/* Module a uses b: caller needs module_mutex() */
 813static int ref_module(struct module *a, struct module *b)
 814{
 815        int err;
 816
 817        if (b == NULL || already_uses(a, b))
 818                return 0;
 819
 820        /* If module isn't available, we fail. */
 821        err = strong_try_module_get(b);
 822        if (err)
 823                return err;
 824
 825        err = add_module_usage(a, b);
 826        if (err) {
 827                module_put(b);
 828                return err;
 829        }
 830        return 0;
 831}
 832
 833/* Clear the unload stuff of the module. */
 834static void module_unload_free(struct module *mod)
 835{
 836        struct module_use *use, *tmp;
 837
 838        mutex_lock(&module_mutex);
 839        list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 840                struct module *i = use->target;
 841                pr_debug("%s unusing %s\n", mod->name, i->name);
 842                module_put(i);
 843                list_del(&use->source_list);
 844                list_del(&use->target_list);
 845                kfree(use);
 846        }
 847        mutex_unlock(&module_mutex);
 848}
 849
 850#ifdef CONFIG_MODULE_FORCE_UNLOAD
 851static inline int try_force_unload(unsigned int flags)
 852{
 853        int ret = (flags & O_TRUNC);
 854        if (ret)
 855                add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 856        return ret;
 857}
 858#else
 859static inline int try_force_unload(unsigned int flags)
 860{
 861        return 0;
 862}
 863#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 864
 865/* Try to release refcount of module, 0 means success. */
 866static int try_release_module_ref(struct module *mod)
 867{
 868        int ret;
 869
 870        /* Try to decrement refcnt which we set at loading */
 871        ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 872        BUG_ON(ret < 0);
 873        if (ret)
 874                /* Someone can put this right now, recover with checking */
 875                ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 876
 877        return ret;
 878}
 879
 880static int try_stop_module(struct module *mod, int flags, int *forced)
 881{
 882        /* If it's not unused, quit unless we're forcing. */
 883        if (try_release_module_ref(mod) != 0) {
 884                *forced = try_force_unload(flags);
 885                if (!(*forced))
 886                        return -EWOULDBLOCK;
 887        }
 888
 889        /* Mark it as dying. */
 890        mod->state = MODULE_STATE_GOING;
 891
 892        return 0;
 893}
 894
 895/**
 896 * module_refcount() - return the refcount or -1 if unloading
 897 * @mod:        the module we're checking
 898 *
 899 * Return:
 900 *      -1 if the module is in the process of unloading
 901 *      otherwise the number of references in the kernel to the module
 902 */
 903int module_refcount(struct module *mod)
 904{
 905        return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 906}
 907EXPORT_SYMBOL(module_refcount);
 908
 909/* This exists whether we can unload or not */
 910static void free_module(struct module *mod);
 911
 912SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 913                unsigned int, flags)
 914{
 915        struct module *mod;
 916        char name[MODULE_NAME_LEN];
 917        int ret, forced = 0;
 918
 919        if (!capable(CAP_SYS_MODULE) || modules_disabled)
 920                return -EPERM;
 921
 922        if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 923                return -EFAULT;
 924        name[MODULE_NAME_LEN-1] = '\0';
 925
 926        audit_log_kern_module(name);
 927
 928        if (mutex_lock_interruptible(&module_mutex) != 0)
 929                return -EINTR;
 930
 931        mod = find_module(name);
 932        if (!mod) {
 933                ret = -ENOENT;
 934                goto out;
 935        }
 936
 937        if (!list_empty(&mod->source_list)) {
 938                /* Other modules depend on us: get rid of them first. */
 939                ret = -EWOULDBLOCK;
 940                goto out;
 941        }
 942
 943        /* Doing init or already dying? */
 944        if (mod->state != MODULE_STATE_LIVE) {
 945                /* FIXME: if (force), slam module count damn the torpedoes */
 946                pr_debug("%s already dying\n", mod->name);
 947                ret = -EBUSY;
 948                goto out;
 949        }
 950
 951        /* If it has an init func, it must have an exit func to unload */
 952        if (mod->init && !mod->exit) {
 953                forced = try_force_unload(flags);
 954                if (!forced) {
 955                        /* This module can't be removed */
 956                        ret = -EBUSY;
 957                        goto out;
 958                }
 959        }
 960
 961        ret = try_stop_module(mod, flags, &forced);
 962        if (ret != 0)
 963                goto out;
 964
 965        mutex_unlock(&module_mutex);
 966        /* Final destruction now no one is using it. */
 967        if (mod->exit != NULL)
 968                mod->exit();
 969        blocking_notifier_call_chain(&module_notify_list,
 970                                     MODULE_STATE_GOING, mod);
 971        klp_module_going(mod);
 972        ftrace_release_mod(mod);
 973
 974        async_synchronize_full();
 975
 976        /* Store the name of the last unloaded module for diagnostic purposes */
 977        strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 978
 979        free_module(mod);
 980        /* someone could wait for the module in add_unformed_module() */
 981        wake_up_all(&module_wq);
 982        return 0;
 983out:
 984        mutex_unlock(&module_mutex);
 985        return ret;
 986}
 987
 988static inline void print_unload_info(struct seq_file *m, struct module *mod)
 989{
 990        struct module_use *use;
 991        int printed_something = 0;
 992
 993        seq_printf(m, " %i ", module_refcount(mod));
 994
 995        /*
 996         * Always include a trailing , so userspace can differentiate
 997         * between this and the old multi-field proc format.
 998         */
 999        list_for_each_entry(use, &mod->source_list, source_list) {
1000                printed_something = 1;
1001                seq_printf(m, "%s,", use->source->name);
1002        }
1003
1004        if (mod->init != NULL && mod->exit == NULL) {
1005                printed_something = 1;
1006                seq_puts(m, "[permanent],");
1007        }
1008
1009        if (!printed_something)
1010                seq_puts(m, "-");
1011}
1012
1013void __symbol_put(const char *symbol)
1014{
1015        struct find_symbol_arg fsa = {
1016                .name   = symbol,
1017                .gplok  = true,
1018        };
1019
1020        preempt_disable();
1021        BUG_ON(!find_symbol(&fsa));
1022        module_put(fsa.owner);
1023        preempt_enable();
1024}
1025EXPORT_SYMBOL(__symbol_put);
1026
1027/* Note this assumes addr is a function, which it currently always is. */
1028void symbol_put_addr(void *addr)
1029{
1030        struct module *modaddr;
1031        unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1032
1033        if (core_kernel_text(a))
1034                return;
1035
1036        /*
1037         * Even though we hold a reference on the module; we still need to
1038         * disable preemption in order to safely traverse the data structure.
1039         */
1040        preempt_disable();
1041        modaddr = __module_text_address(a);
1042        BUG_ON(!modaddr);
1043        module_put(modaddr);
1044        preempt_enable();
1045}
1046EXPORT_SYMBOL_GPL(symbol_put_addr);
1047
1048static ssize_t show_refcnt(struct module_attribute *mattr,
1049                           struct module_kobject *mk, char *buffer)
1050{
1051        return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1052}
1053
1054static struct module_attribute modinfo_refcnt =
1055        __ATTR(refcnt, 0444, show_refcnt, NULL);
1056
1057void __module_get(struct module *module)
1058{
1059        if (module) {
1060                preempt_disable();
1061                atomic_inc(&module->refcnt);
1062                trace_module_get(module, _RET_IP_);
1063                preempt_enable();
1064        }
1065}
1066EXPORT_SYMBOL(__module_get);
1067
1068bool try_module_get(struct module *module)
1069{
1070        bool ret = true;
1071
1072        if (module) {
1073                preempt_disable();
1074                /* Note: here, we can fail to get a reference */
1075                if (likely(module_is_live(module) &&
1076                           atomic_inc_not_zero(&module->refcnt) != 0))
1077                        trace_module_get(module, _RET_IP_);
1078                else
1079                        ret = false;
1080
1081                preempt_enable();
1082        }
1083        return ret;
1084}
1085EXPORT_SYMBOL(try_module_get);
1086
1087void module_put(struct module *module)
1088{
1089        int ret;
1090
1091        if (module) {
1092                preempt_disable();
1093                ret = atomic_dec_if_positive(&module->refcnt);
1094                WARN_ON(ret < 0);       /* Failed to put refcount */
1095                trace_module_put(module, _RET_IP_);
1096                preempt_enable();
1097        }
1098}
1099EXPORT_SYMBOL(module_put);
1100
1101#else /* !CONFIG_MODULE_UNLOAD */
1102static inline void print_unload_info(struct seq_file *m, struct module *mod)
1103{
1104        /* We don't know the usage count, or what modules are using. */
1105        seq_puts(m, " - -");
1106}
1107
1108static inline void module_unload_free(struct module *mod)
1109{
1110}
1111
1112static int ref_module(struct module *a, struct module *b)
1113{
1114        return strong_try_module_get(b);
1115}
1116
1117static inline int module_unload_init(struct module *mod)
1118{
1119        return 0;
1120}
1121#endif /* CONFIG_MODULE_UNLOAD */
1122
1123static size_t module_flags_taint(struct module *mod, char *buf)
1124{
1125        size_t l = 0;
1126        int i;
1127
1128        for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1129                if (taint_flags[i].module && test_bit(i, &mod->taints))
1130                        buf[l++] = taint_flags[i].c_true;
1131        }
1132
1133        return l;
1134}
1135
1136static ssize_t show_initstate(struct module_attribute *mattr,
1137                              struct module_kobject *mk, char *buffer)
1138{
1139        const char *state = "unknown";
1140
1141        switch (mk->mod->state) {
1142        case MODULE_STATE_LIVE:
1143                state = "live";
1144                break;
1145        case MODULE_STATE_COMING:
1146                state = "coming";
1147                break;
1148        case MODULE_STATE_GOING:
1149                state = "going";
1150                break;
1151        default:
1152                BUG();
1153        }
1154        return sprintf(buffer, "%s\n", state);
1155}
1156
1157static struct module_attribute modinfo_initstate =
1158        __ATTR(initstate, 0444, show_initstate, NULL);
1159
1160static ssize_t store_uevent(struct module_attribute *mattr,
1161                            struct module_kobject *mk,
1162                            const char *buffer, size_t count)
1163{
1164        int rc;
1165
1166        rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1167        return rc ? rc : count;
1168}
1169
1170struct module_attribute module_uevent =
1171        __ATTR(uevent, 0200, NULL, store_uevent);
1172
1173static ssize_t show_coresize(struct module_attribute *mattr,
1174                             struct module_kobject *mk, char *buffer)
1175{
1176        return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1177}
1178
1179static struct module_attribute modinfo_coresize =
1180        __ATTR(coresize, 0444, show_coresize, NULL);
1181
1182static ssize_t show_initsize(struct module_attribute *mattr,
1183                             struct module_kobject *mk, char *buffer)
1184{
1185        return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1186}
1187
1188static struct module_attribute modinfo_initsize =
1189        __ATTR(initsize, 0444, show_initsize, NULL);
1190
1191static ssize_t show_taint(struct module_attribute *mattr,
1192                          struct module_kobject *mk, char *buffer)
1193{
1194        size_t l;
1195
1196        l = module_flags_taint(mk->mod, buffer);
1197        buffer[l++] = '\n';
1198        return l;
1199}
1200
1201static struct module_attribute modinfo_taint =
1202        __ATTR(taint, 0444, show_taint, NULL);
1203
1204static struct module_attribute *modinfo_attrs[] = {
1205        &module_uevent,
1206        &modinfo_version,
1207        &modinfo_srcversion,
1208        &modinfo_initstate,
1209        &modinfo_coresize,
1210        &modinfo_initsize,
1211        &modinfo_taint,
1212#ifdef CONFIG_MODULE_UNLOAD
1213        &modinfo_refcnt,
1214#endif
1215        NULL,
1216};
1217
1218static const char vermagic[] = VERMAGIC_STRING;
1219
1220static int try_to_force_load(struct module *mod, const char *reason)
1221{
1222#ifdef CONFIG_MODULE_FORCE_LOAD
1223        if (!test_taint(TAINT_FORCED_MODULE))
1224                pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1225        add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1226        return 0;
1227#else
1228        return -ENOEXEC;
1229#endif
1230}
1231
1232#ifdef CONFIG_MODVERSIONS
1233
1234static u32 resolve_rel_crc(const s32 *crc)
1235{
1236        return *(u32 *)((void *)crc + *crc);
1237}
1238
1239static int check_version(const struct load_info *info,
1240                         const char *symname,
1241                         struct module *mod,
1242                         const s32 *crc)
1243{
1244        Elf_Shdr *sechdrs = info->sechdrs;
1245        unsigned int versindex = info->index.vers;
1246        unsigned int i, num_versions;
1247        struct modversion_info *versions;
1248
1249        /* Exporting module didn't supply crcs?  OK, we're already tainted. */
1250        if (!crc)
1251                return 1;
1252
1253        /* No versions at all?  modprobe --force does this. */
1254        if (versindex == 0)
1255                return try_to_force_load(mod, symname) == 0;
1256
1257        versions = (void *) sechdrs[versindex].sh_addr;
1258        num_versions = sechdrs[versindex].sh_size
1259                / sizeof(struct modversion_info);
1260
1261        for (i = 0; i < num_versions; i++) {
1262                u32 crcval;
1263
1264                if (strcmp(versions[i].name, symname) != 0)
1265                        continue;
1266
1267                if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1268                        crcval = resolve_rel_crc(crc);
1269                else
1270                        crcval = *crc;
1271                if (versions[i].crc == crcval)
1272                        return 1;
1273                pr_debug("Found checksum %X vs module %lX\n",
1274                         crcval, versions[i].crc);
1275                goto bad_version;
1276        }
1277
1278        /* Broken toolchain. Warn once, then let it go.. */
1279        pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1280        return 1;
1281
1282bad_version:
1283        pr_warn("%s: disagrees about version of symbol %s\n",
1284               info->name, symname);
1285        return 0;
1286}
1287
1288static inline int check_modstruct_version(const struct load_info *info,
1289                                          struct module *mod)
1290{
1291        struct find_symbol_arg fsa = {
1292                .name   = "module_layout",
1293                .gplok  = true,
1294        };
1295
1296        /*
1297         * Since this should be found in kernel (which can't be removed), no
1298         * locking is necessary -- use preempt_disable() to placate lockdep.
1299         */
1300        preempt_disable();
1301        if (!find_symbol(&fsa)) {
1302                preempt_enable();
1303                BUG();
1304        }
1305        preempt_enable();
1306        return check_version(info, "module_layout", mod, fsa.crc);
1307}
1308
1309/* First part is kernel version, which we ignore if module has crcs. */
1310static inline int same_magic(const char *amagic, const char *bmagic,
1311                             bool has_crcs)
1312{
1313        if (has_crcs) {
1314                amagic += strcspn(amagic, " ");
1315                bmagic += strcspn(bmagic, " ");
1316        }
1317        return strcmp(amagic, bmagic) == 0;
1318}
1319#else
1320static inline int check_version(const struct load_info *info,
1321                                const char *symname,
1322                                struct module *mod,
1323                                const s32 *crc)
1324{
1325        return 1;
1326}
1327
1328static inline int check_modstruct_version(const struct load_info *info,
1329                                          struct module *mod)
1330{
1331        return 1;
1332}
1333
1334static inline int same_magic(const char *amagic, const char *bmagic,
1335                             bool has_crcs)
1336{
1337        return strcmp(amagic, bmagic) == 0;
1338}
1339#endif /* CONFIG_MODVERSIONS */
1340
1341static char *get_modinfo(const struct load_info *info, const char *tag);
1342static char *get_next_modinfo(const struct load_info *info, const char *tag,
1343                              char *prev);
1344
1345static int verify_namespace_is_imported(const struct load_info *info,
1346                                        const struct kernel_symbol *sym,
1347                                        struct module *mod)
1348{
1349        const char *namespace;
1350        char *imported_namespace;
1351
1352        namespace = kernel_symbol_namespace(sym);
1353        if (namespace && namespace[0]) {
1354                imported_namespace = get_modinfo(info, "import_ns");
1355                while (imported_namespace) {
1356                        if (strcmp(namespace, imported_namespace) == 0)
1357                                return 0;
1358                        imported_namespace = get_next_modinfo(
1359                                info, "import_ns", imported_namespace);
1360                }
1361#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1362                pr_warn(
1363#else
1364                pr_err(
1365#endif
1366                        "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1367                        mod->name, kernel_symbol_name(sym), namespace);
1368#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1369                return -EINVAL;
1370#endif
1371        }
1372        return 0;
1373}
1374
1375static bool inherit_taint(struct module *mod, struct module *owner)
1376{
1377        if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1378                return true;
1379
1380        if (mod->using_gplonly_symbols) {
1381                pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1382                        mod->name, owner->name);
1383                return false;
1384        }
1385
1386        if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1387                pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1388                        mod->name, owner->name);
1389                set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1390        }
1391        return true;
1392}
1393
1394/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1395static const struct kernel_symbol *resolve_symbol(struct module *mod,
1396                                                  const struct load_info *info,
1397                                                  const char *name,
1398                                                  char ownername[])
1399{
1400        struct find_symbol_arg fsa = {
1401                .name   = name,
1402                .gplok  = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1403                .warn   = true,
1404        };
1405        int err;
1406
1407        /*
1408         * The module_mutex should not be a heavily contended lock;
1409         * if we get the occasional sleep here, we'll go an extra iteration
1410         * in the wait_event_interruptible(), which is harmless.
1411         */
1412        sched_annotate_sleep();
1413        mutex_lock(&module_mutex);
1414        if (!find_symbol(&fsa))
1415                goto unlock;
1416
1417        if (fsa.license == GPL_ONLY)
1418                mod->using_gplonly_symbols = true;
1419
1420        if (!inherit_taint(mod, fsa.owner)) {
1421                fsa.sym = NULL;
1422                goto getname;
1423        }
1424
1425        if (!check_version(info, name, mod, fsa.crc)) {
1426                fsa.sym = ERR_PTR(-EINVAL);
1427                goto getname;
1428        }
1429
1430        err = verify_namespace_is_imported(info, fsa.sym, mod);
1431        if (err) {
1432                fsa.sym = ERR_PTR(err);
1433                goto getname;
1434        }
1435
1436        err = ref_module(mod, fsa.owner);
1437        if (err) {
1438                fsa.sym = ERR_PTR(err);
1439                goto getname;
1440        }
1441
1442getname:
1443        /* We must make copy under the lock if we failed to get ref. */
1444        strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1445unlock:
1446        mutex_unlock(&module_mutex);
1447        return fsa.sym;
1448}
1449
1450static const struct kernel_symbol *
1451resolve_symbol_wait(struct module *mod,
1452                    const struct load_info *info,
1453                    const char *name)
1454{
1455        const struct kernel_symbol *ksym;
1456        char owner[MODULE_NAME_LEN];
1457
1458        if (wait_event_interruptible_timeout(module_wq,
1459                        !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1460                        || PTR_ERR(ksym) != -EBUSY,
1461                                             30 * HZ) <= 0) {
1462                pr_warn("%s: gave up waiting for init of module %s.\n",
1463                        mod->name, owner);
1464        }
1465        return ksym;
1466}
1467
1468#ifdef CONFIG_KALLSYMS
1469static inline bool sect_empty(const Elf_Shdr *sect)
1470{
1471        return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1472}
1473#endif
1474
1475/*
1476 * /sys/module/foo/sections stuff
1477 * J. Corbet <corbet@lwn.net>
1478 */
1479#ifdef CONFIG_SYSFS
1480
1481#ifdef CONFIG_KALLSYMS
1482struct module_sect_attr {
1483        struct bin_attribute battr;
1484        unsigned long address;
1485};
1486
1487struct module_sect_attrs {
1488        struct attribute_group grp;
1489        unsigned int nsections;
1490        struct module_sect_attr attrs[];
1491};
1492
1493#define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1494static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1495                                struct bin_attribute *battr,
1496                                char *buf, loff_t pos, size_t count)
1497{
1498        struct module_sect_attr *sattr =
1499                container_of(battr, struct module_sect_attr, battr);
1500        char bounce[MODULE_SECT_READ_SIZE + 1];
1501        size_t wrote;
1502
1503        if (pos != 0)
1504                return -EINVAL;
1505
1506        /*
1507         * Since we're a binary read handler, we must account for the
1508         * trailing NUL byte that sprintf will write: if "buf" is
1509         * too small to hold the NUL, or the NUL is exactly the last
1510         * byte, the read will look like it got truncated by one byte.
1511         * Since there is no way to ask sprintf nicely to not write
1512         * the NUL, we have to use a bounce buffer.
1513         */
1514        wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1515                         kallsyms_show_value(file->f_cred)
1516                                ? (void *)sattr->address : NULL);
1517        count = min(count, wrote);
1518        memcpy(buf, bounce, count);
1519
1520        return count;
1521}
1522
1523static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1524{
1525        unsigned int section;
1526
1527        for (section = 0; section < sect_attrs->nsections; section++)
1528                kfree(sect_attrs->attrs[section].battr.attr.name);
1529        kfree(sect_attrs);
1530}
1531
1532static void add_sect_attrs(struct module *mod, const struct load_info *info)
1533{
1534        unsigned int nloaded = 0, i, size[2];
1535        struct module_sect_attrs *sect_attrs;
1536        struct module_sect_attr *sattr;
1537        struct bin_attribute **gattr;
1538
1539        /* Count loaded sections and allocate structures */
1540        for (i = 0; i < info->hdr->e_shnum; i++)
1541                if (!sect_empty(&info->sechdrs[i]))
1542                        nloaded++;
1543        size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1544                        sizeof(sect_attrs->grp.bin_attrs[0]));
1545        size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1546        sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1547        if (sect_attrs == NULL)
1548                return;
1549
1550        /* Setup section attributes. */
1551        sect_attrs->grp.name = "sections";
1552        sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1553
1554        sect_attrs->nsections = 0;
1555        sattr = &sect_attrs->attrs[0];
1556        gattr = &sect_attrs->grp.bin_attrs[0];
1557        for (i = 0; i < info->hdr->e_shnum; i++) {
1558                Elf_Shdr *sec = &info->sechdrs[i];
1559                if (sect_empty(sec))
1560                        continue;
1561                sysfs_bin_attr_init(&sattr->battr);
1562                sattr->address = sec->sh_addr;
1563                sattr->battr.attr.name =
1564                        kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1565                if (sattr->battr.attr.name == NULL)
1566                        goto out;
1567                sect_attrs->nsections++;
1568                sattr->battr.read = module_sect_read;
1569                sattr->battr.size = MODULE_SECT_READ_SIZE;
1570                sattr->battr.attr.mode = 0400;
1571                *(gattr++) = &(sattr++)->battr;
1572        }
1573        *gattr = NULL;
1574
1575        if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1576                goto out;
1577
1578        mod->sect_attrs = sect_attrs;
1579        return;
1580  out:
1581        free_sect_attrs(sect_attrs);
1582}
1583
1584static void remove_sect_attrs(struct module *mod)
1585{
1586        if (mod->sect_attrs) {
1587                sysfs_remove_group(&mod->mkobj.kobj,
1588                                   &mod->sect_attrs->grp);
1589                /*
1590                 * We are positive that no one is using any sect attrs
1591                 * at this point.  Deallocate immediately.
1592                 */
1593                free_sect_attrs(mod->sect_attrs);
1594                mod->sect_attrs = NULL;
1595        }
1596}
1597
1598/*
1599 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1600 */
1601
1602struct module_notes_attrs {
1603        struct kobject *dir;
1604        unsigned int notes;
1605        struct bin_attribute attrs[];
1606};
1607
1608static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1609                                 struct bin_attribute *bin_attr,
1610                                 char *buf, loff_t pos, size_t count)
1611{
1612        /*
1613         * The caller checked the pos and count against our size.
1614         */
1615        memcpy(buf, bin_attr->private + pos, count);
1616        return count;
1617}
1618
1619static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1620                             unsigned int i)
1621{
1622        if (notes_attrs->dir) {
1623                while (i-- > 0)
1624                        sysfs_remove_bin_file(notes_attrs->dir,
1625                                              &notes_attrs->attrs[i]);
1626                kobject_put(notes_attrs->dir);
1627        }
1628        kfree(notes_attrs);
1629}
1630
1631static void add_notes_attrs(struct module *mod, const struct load_info *info)
1632{
1633        unsigned int notes, loaded, i;
1634        struct module_notes_attrs *notes_attrs;
1635        struct bin_attribute *nattr;
1636
1637        /* failed to create section attributes, so can't create notes */
1638        if (!mod->sect_attrs)
1639                return;
1640
1641        /* Count notes sections and allocate structures.  */
1642        notes = 0;
1643        for (i = 0; i < info->hdr->e_shnum; i++)
1644                if (!sect_empty(&info->sechdrs[i]) &&
1645                    (info->sechdrs[i].sh_type == SHT_NOTE))
1646                        ++notes;
1647
1648        if (notes == 0)
1649                return;
1650
1651        notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1652                              GFP_KERNEL);
1653        if (notes_attrs == NULL)
1654                return;
1655
1656        notes_attrs->notes = notes;
1657        nattr = &notes_attrs->attrs[0];
1658        for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1659                if (sect_empty(&info->sechdrs[i]))
1660                        continue;
1661                if (info->sechdrs[i].sh_type == SHT_NOTE) {
1662                        sysfs_bin_attr_init(nattr);
1663                        nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1664                        nattr->attr.mode = S_IRUGO;
1665                        nattr->size = info->sechdrs[i].sh_size;
1666                        nattr->private = (void *) info->sechdrs[i].sh_addr;
1667                        nattr->read = module_notes_read;
1668                        ++nattr;
1669                }
1670                ++loaded;
1671        }
1672
1673        notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1674        if (!notes_attrs->dir)
1675                goto out;
1676
1677        for (i = 0; i < notes; ++i)
1678                if (sysfs_create_bin_file(notes_attrs->dir,
1679                                          &notes_attrs->attrs[i]))
1680                        goto out;
1681
1682        mod->notes_attrs = notes_attrs;
1683        return;
1684
1685  out:
1686        free_notes_attrs(notes_attrs, i);
1687}
1688
1689static void remove_notes_attrs(struct module *mod)
1690{
1691        if (mod->notes_attrs)
1692                free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1693}
1694
1695#else
1696
1697static inline void add_sect_attrs(struct module *mod,
1698                                  const struct load_info *info)
1699{
1700}
1701
1702static inline void remove_sect_attrs(struct module *mod)
1703{
1704}
1705
1706static inline void add_notes_attrs(struct module *mod,
1707                                   const struct load_info *info)
1708{
1709}
1710
1711static inline void remove_notes_attrs(struct module *mod)
1712{
1713}
1714#endif /* CONFIG_KALLSYMS */
1715
1716static void del_usage_links(struct module *mod)
1717{
1718#ifdef CONFIG_MODULE_UNLOAD
1719        struct module_use *use;
1720
1721        mutex_lock(&module_mutex);
1722        list_for_each_entry(use, &mod->target_list, target_list)
1723                sysfs_remove_link(use->target->holders_dir, mod->name);
1724        mutex_unlock(&module_mutex);
1725#endif
1726}
1727
1728static int add_usage_links(struct module *mod)
1729{
1730        int ret = 0;
1731#ifdef CONFIG_MODULE_UNLOAD
1732        struct module_use *use;
1733
1734        mutex_lock(&module_mutex);
1735        list_for_each_entry(use, &mod->target_list, target_list) {
1736                ret = sysfs_create_link(use->target->holders_dir,
1737                                        &mod->mkobj.kobj, mod->name);
1738                if (ret)
1739                        break;
1740        }
1741        mutex_unlock(&module_mutex);
1742        if (ret)
1743                del_usage_links(mod);
1744#endif
1745        return ret;
1746}
1747
1748static void module_remove_modinfo_attrs(struct module *mod, int end);
1749
1750static int module_add_modinfo_attrs(struct module *mod)
1751{
1752        struct module_attribute *attr;
1753        struct module_attribute *temp_attr;
1754        int error = 0;
1755        int i;
1756
1757        mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1758                                        (ARRAY_SIZE(modinfo_attrs) + 1)),
1759                                        GFP_KERNEL);
1760        if (!mod->modinfo_attrs)
1761                return -ENOMEM;
1762
1763        temp_attr = mod->modinfo_attrs;
1764        for (i = 0; (attr = modinfo_attrs[i]); i++) {
1765                if (!attr->test || attr->test(mod)) {
1766                        memcpy(temp_attr, attr, sizeof(*temp_attr));
1767                        sysfs_attr_init(&temp_attr->attr);
1768                        error = sysfs_create_file(&mod->mkobj.kobj,
1769                                        &temp_attr->attr);
1770                        if (error)
1771                                goto error_out;
1772                        ++temp_attr;
1773                }
1774        }
1775
1776        return 0;
1777
1778error_out:
1779        if (i > 0)
1780                module_remove_modinfo_attrs(mod, --i);
1781        else
1782                kfree(mod->modinfo_attrs);
1783        return error;
1784}
1785
1786static void module_remove_modinfo_attrs(struct module *mod, int end)
1787{
1788        struct module_attribute *attr;
1789        int i;
1790
1791        for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1792                if (end >= 0 && i > end)
1793                        break;
1794                /* pick a field to test for end of list */
1795                if (!attr->attr.name)
1796                        break;
1797                sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1798                if (attr->free)
1799                        attr->free(mod);
1800        }
1801        kfree(mod->modinfo_attrs);
1802}
1803
1804static void mod_kobject_put(struct module *mod)
1805{
1806        DECLARE_COMPLETION_ONSTACK(c);
1807        mod->mkobj.kobj_completion = &c;
1808        kobject_put(&mod->mkobj.kobj);
1809        wait_for_completion(&c);
1810}
1811
1812static int mod_sysfs_init(struct module *mod)
1813{
1814        int err;
1815        struct kobject *kobj;
1816
1817        if (!module_sysfs_initialized) {
1818                pr_err("%s: module sysfs not initialized\n", mod->name);
1819                err = -EINVAL;
1820                goto out;
1821        }
1822
1823        kobj = kset_find_obj(module_kset, mod->name);
1824        if (kobj) {
1825                pr_err("%s: module is already loaded\n", mod->name);
1826                kobject_put(kobj);
1827                err = -EINVAL;
1828                goto out;
1829        }
1830
1831        mod->mkobj.mod = mod;
1832
1833        memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1834        mod->mkobj.kobj.kset = module_kset;
1835        err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1836                                   "%s", mod->name);
1837        if (err)
1838                mod_kobject_put(mod);
1839
1840out:
1841        return err;
1842}
1843
1844static int mod_sysfs_setup(struct module *mod,
1845                           const struct load_info *info,
1846                           struct kernel_param *kparam,
1847                           unsigned int num_params)
1848{
1849        int err;
1850
1851        err = mod_sysfs_init(mod);
1852        if (err)
1853                goto out;
1854
1855        mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1856        if (!mod->holders_dir) {
1857                err = -ENOMEM;
1858                goto out_unreg;
1859        }
1860
1861        err = module_param_sysfs_setup(mod, kparam, num_params);
1862        if (err)
1863                goto out_unreg_holders;
1864
1865        err = module_add_modinfo_attrs(mod);
1866        if (err)
1867                goto out_unreg_param;
1868
1869        err = add_usage_links(mod);
1870        if (err)
1871                goto out_unreg_modinfo_attrs;
1872
1873        add_sect_attrs(mod, info);
1874        add_notes_attrs(mod, info);
1875
1876        return 0;
1877
1878out_unreg_modinfo_attrs:
1879        module_remove_modinfo_attrs(mod, -1);
1880out_unreg_param:
1881        module_param_sysfs_remove(mod);
1882out_unreg_holders:
1883        kobject_put(mod->holders_dir);
1884out_unreg:
1885        mod_kobject_put(mod);
1886out:
1887        return err;
1888}
1889
1890static void mod_sysfs_fini(struct module *mod)
1891{
1892        remove_notes_attrs(mod);
1893        remove_sect_attrs(mod);
1894        mod_kobject_put(mod);
1895}
1896
1897static void init_param_lock(struct module *mod)
1898{
1899        mutex_init(&mod->param_lock);
1900}
1901#else /* !CONFIG_SYSFS */
1902
1903static int mod_sysfs_setup(struct module *mod,
1904                           const struct load_info *info,
1905                           struct kernel_param *kparam,
1906                           unsigned int num_params)
1907{
1908        return 0;
1909}
1910
1911static void mod_sysfs_fini(struct module *mod)
1912{
1913}
1914
1915static void module_remove_modinfo_attrs(struct module *mod, int end)
1916{
1917}
1918
1919static void del_usage_links(struct module *mod)
1920{
1921}
1922
1923static void init_param_lock(struct module *mod)
1924{
1925}
1926#endif /* CONFIG_SYSFS */
1927
1928static void mod_sysfs_teardown(struct module *mod)
1929{
1930        del_usage_links(mod);
1931        module_remove_modinfo_attrs(mod, -1);
1932        module_param_sysfs_remove(mod);
1933        kobject_put(mod->mkobj.drivers_dir);
1934        kobject_put(mod->holders_dir);
1935        mod_sysfs_fini(mod);
1936}
1937
1938/*
1939 * LKM RO/NX protection: protect module's text/ro-data
1940 * from modification and any data from execution.
1941 *
1942 * General layout of module is:
1943 *          [text] [read-only-data] [ro-after-init] [writable data]
1944 * text_size -----^                ^               ^               ^
1945 * ro_size ------------------------|               |               |
1946 * ro_after_init_size -----------------------------|               |
1947 * size -----------------------------------------------------------|
1948 *
1949 * These values are always page-aligned (as is base)
1950 */
1951
1952/*
1953 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1954 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1955 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1956 * whether we are strict.
1957 */
1958#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1959static void frob_text(const struct module_layout *layout,
1960                      int (*set_memory)(unsigned long start, int num_pages))
1961{
1962        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1963        BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1964        set_memory((unsigned long)layout->base,
1965                   layout->text_size >> PAGE_SHIFT);
1966}
1967
1968static void module_enable_x(const struct module *mod)
1969{
1970        frob_text(&mod->core_layout, set_memory_x);
1971        frob_text(&mod->init_layout, set_memory_x);
1972}
1973#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1974static void module_enable_x(const struct module *mod) { }
1975#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1976
1977#ifdef CONFIG_STRICT_MODULE_RWX
1978static void frob_rodata(const struct module_layout *layout,
1979                        int (*set_memory)(unsigned long start, int num_pages))
1980{
1981        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1982        BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1983        BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1984        set_memory((unsigned long)layout->base + layout->text_size,
1985                   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1986}
1987
1988static void frob_ro_after_init(const struct module_layout *layout,
1989                                int (*set_memory)(unsigned long start, int num_pages))
1990{
1991        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1992        BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1993        BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1994        set_memory((unsigned long)layout->base + layout->ro_size,
1995                   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1996}
1997
1998static void frob_writable_data(const struct module_layout *layout,
1999                               int (*set_memory)(unsigned long start, int num_pages))
2000{
2001        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2002        BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2003        BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2004        set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2005                   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2006}
2007
2008static void module_enable_ro(const struct module *mod, bool after_init)
2009{
2010        if (!rodata_enabled)
2011                return;
2012
2013        set_vm_flush_reset_perms(mod->core_layout.base);
2014        set_vm_flush_reset_perms(mod->init_layout.base);
2015        frob_text(&mod->core_layout, set_memory_ro);
2016
2017        frob_rodata(&mod->core_layout, set_memory_ro);
2018        frob_text(&mod->init_layout, set_memory_ro);
2019        frob_rodata(&mod->init_layout, set_memory_ro);
2020
2021        if (after_init)
2022                frob_ro_after_init(&mod->core_layout, set_memory_ro);
2023}
2024
2025static void module_enable_nx(const struct module *mod)
2026{
2027        frob_rodata(&mod->core_layout, set_memory_nx);
2028        frob_ro_after_init(&mod->core_layout, set_memory_nx);
2029        frob_writable_data(&mod->core_layout, set_memory_nx);
2030        frob_rodata(&mod->init_layout, set_memory_nx);
2031        frob_writable_data(&mod->init_layout, set_memory_nx);
2032}
2033
2034static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2035                                       char *secstrings, struct module *mod)
2036{
2037        const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2038        int i;
2039
2040        for (i = 0; i < hdr->e_shnum; i++) {
2041                if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2042                        pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2043                                mod->name, secstrings + sechdrs[i].sh_name, i);
2044                        return -ENOEXEC;
2045                }
2046        }
2047
2048        return 0;
2049}
2050
2051#else /* !CONFIG_STRICT_MODULE_RWX */
2052static void module_enable_nx(const struct module *mod) { }
2053static void module_enable_ro(const struct module *mod, bool after_init) {}
2054static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2055                                       char *secstrings, struct module *mod)
2056{
2057        return 0;
2058}
2059#endif /*  CONFIG_STRICT_MODULE_RWX */
2060
2061#ifdef CONFIG_LIVEPATCH
2062/*
2063 * Persist Elf information about a module. Copy the Elf header,
2064 * section header table, section string table, and symtab section
2065 * index from info to mod->klp_info.
2066 */
2067static int copy_module_elf(struct module *mod, struct load_info *info)
2068{
2069        unsigned int size, symndx;
2070        int ret;
2071
2072        size = sizeof(*mod->klp_info);
2073        mod->klp_info = kmalloc(size, GFP_KERNEL);
2074        if (mod->klp_info == NULL)
2075                return -ENOMEM;
2076
2077        /* Elf header */
2078        size = sizeof(mod->klp_info->hdr);
2079        memcpy(&mod->klp_info->hdr, info->hdr, size);
2080
2081        /* Elf section header table */
2082        size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2083        mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2084        if (mod->klp_info->sechdrs == NULL) {
2085                ret = -ENOMEM;
2086                goto free_info;
2087        }
2088
2089        /* Elf section name string table */
2090        size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2091        mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2092        if (mod->klp_info->secstrings == NULL) {
2093                ret = -ENOMEM;
2094                goto free_sechdrs;
2095        }
2096
2097        /* Elf symbol section index */
2098        symndx = info->index.sym;
2099        mod->klp_info->symndx = symndx;
2100
2101        /*
2102         * For livepatch modules, core_kallsyms.symtab is a complete
2103         * copy of the original symbol table. Adjust sh_addr to point
2104         * to core_kallsyms.symtab since the copy of the symtab in module
2105         * init memory is freed at the end of do_init_module().
2106         */
2107        mod->klp_info->sechdrs[symndx].sh_addr = \
2108                (unsigned long) mod->core_kallsyms.symtab;
2109
2110        return 0;
2111
2112free_sechdrs:
2113        kfree(mod->klp_info->sechdrs);
2114free_info:
2115        kfree(mod->klp_info);
2116        return ret;
2117}
2118
2119static void free_module_elf(struct module *mod)
2120{
2121        kfree(mod->klp_info->sechdrs);
2122        kfree(mod->klp_info->secstrings);
2123        kfree(mod->klp_info);
2124}
2125#else /* !CONFIG_LIVEPATCH */
2126static int copy_module_elf(struct module *mod, struct load_info *info)
2127{
2128        return 0;
2129}
2130
2131static void free_module_elf(struct module *mod)
2132{
2133}
2134#endif /* CONFIG_LIVEPATCH */
2135
2136void __weak module_memfree(void *module_region)
2137{
2138        /*
2139         * This memory may be RO, and freeing RO memory in an interrupt is not
2140         * supported by vmalloc.
2141         */
2142        WARN_ON(in_interrupt());
2143        vfree(module_region);
2144}
2145
2146void __weak module_arch_cleanup(struct module *mod)
2147{
2148}
2149
2150void __weak module_arch_freeing_init(struct module *mod)
2151{
2152}
2153
2154static void cfi_cleanup(struct module *mod);
2155
2156/* Free a module, remove from lists, etc. */
2157static void free_module(struct module *mod)
2158{
2159        trace_module_free(mod);
2160
2161        mod_sysfs_teardown(mod);
2162
2163        /*
2164         * We leave it in list to prevent duplicate loads, but make sure
2165         * that noone uses it while it's being deconstructed.
2166         */
2167        mutex_lock(&module_mutex);
2168        mod->state = MODULE_STATE_UNFORMED;
2169        mutex_unlock(&module_mutex);
2170
2171        /* Remove dynamic debug info */
2172        ddebug_remove_module(mod->name);
2173
2174        /* Arch-specific cleanup. */
2175        module_arch_cleanup(mod);
2176
2177        /* Module unload stuff */
2178        module_unload_free(mod);
2179
2180        /* Free any allocated parameters. */
2181        destroy_params(mod->kp, mod->num_kp);
2182
2183        if (is_livepatch_module(mod))
2184                free_module_elf(mod);
2185
2186        /* Now we can delete it from the lists */
2187        mutex_lock(&module_mutex);
2188        /* Unlink carefully: kallsyms could be walking list. */
2189        list_del_rcu(&mod->list);
2190        mod_tree_remove(mod);
2191        /* Remove this module from bug list, this uses list_del_rcu */
2192        module_bug_cleanup(mod);
2193        /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2194        synchronize_rcu();
2195        mutex_unlock(&module_mutex);
2196
2197        /* Clean up CFI for the module. */
2198        cfi_cleanup(mod);
2199
2200        /* This may be empty, but that's OK */
2201        module_arch_freeing_init(mod);
2202        module_memfree(mod->init_layout.base);
2203        kfree(mod->args);
2204        percpu_modfree(mod);
2205
2206        /* Free lock-classes; relies on the preceding sync_rcu(). */
2207        lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2208
2209        /* Finally, free the core (containing the module structure) */
2210        module_memfree(mod->core_layout.base);
2211}
2212
2213void *__symbol_get(const char *symbol)
2214{
2215        struct find_symbol_arg fsa = {
2216                .name   = symbol,
2217                .gplok  = true,
2218                .warn   = true,
2219        };
2220
2221        preempt_disable();
2222        if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2223                preempt_enable();
2224                return NULL;
2225        }
2226        preempt_enable();
2227        return (void *)kernel_symbol_value(fsa.sym);
2228}
2229EXPORT_SYMBOL_GPL(__symbol_get);
2230
2231/*
2232 * Ensure that an exported symbol [global namespace] does not already exist
2233 * in the kernel or in some other module's exported symbol table.
2234 *
2235 * You must hold the module_mutex.
2236 */
2237static int verify_exported_symbols(struct module *mod)
2238{
2239        unsigned int i;
2240        const struct kernel_symbol *s;
2241        struct {
2242                const struct kernel_symbol *sym;
2243                unsigned int num;
2244        } arr[] = {
2245                { mod->syms, mod->num_syms },
2246                { mod->gpl_syms, mod->num_gpl_syms },
2247        };
2248
2249        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2250                for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2251                        struct find_symbol_arg fsa = {
2252                                .name   = kernel_symbol_name(s),
2253                                .gplok  = true,
2254                        };
2255                        if (find_symbol(&fsa)) {
2256                                pr_err("%s: exports duplicate symbol %s"
2257                                       " (owned by %s)\n",
2258                                       mod->name, kernel_symbol_name(s),
2259                                       module_name(fsa.owner));
2260                                return -ENOEXEC;
2261                        }
2262                }
2263        }
2264        return 0;
2265}
2266
2267static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2268{
2269        /*
2270         * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2271         * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2272         * i386 has a similar problem but may not deserve a fix.
2273         *
2274         * If we ever have to ignore many symbols, consider refactoring the code to
2275         * only warn if referenced by a relocation.
2276         */
2277        if (emachine == EM_386 || emachine == EM_X86_64)
2278                return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2279        return false;
2280}
2281
2282/* Change all symbols so that st_value encodes the pointer directly. */
2283static int simplify_symbols(struct module *mod, const struct load_info *info)
2284{
2285        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2286        Elf_Sym *sym = (void *)symsec->sh_addr;
2287        unsigned long secbase;
2288        unsigned int i;
2289        int ret = 0;
2290        const struct kernel_symbol *ksym;
2291
2292        for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2293                const char *name = info->strtab + sym[i].st_name;
2294
2295                switch (sym[i].st_shndx) {
2296                case SHN_COMMON:
2297                        /* Ignore common symbols */
2298                        if (!strncmp(name, "__gnu_lto", 9))
2299                                break;
2300
2301                        /*
2302                         * We compiled with -fno-common.  These are not
2303                         * supposed to happen.
2304                         */
2305                        pr_debug("Common symbol: %s\n", name);
2306                        pr_warn("%s: please compile with -fno-common\n",
2307                               mod->name);
2308                        ret = -ENOEXEC;
2309                        break;
2310
2311                case SHN_ABS:
2312                        /* Don't need to do anything */
2313                        pr_debug("Absolute symbol: 0x%08lx\n",
2314                               (long)sym[i].st_value);
2315                        break;
2316
2317                case SHN_LIVEPATCH:
2318                        /* Livepatch symbols are resolved by livepatch */
2319                        break;
2320
2321                case SHN_UNDEF:
2322                        ksym = resolve_symbol_wait(mod, info, name);
2323                        /* Ok if resolved.  */
2324                        if (ksym && !IS_ERR(ksym)) {
2325                                sym[i].st_value = kernel_symbol_value(ksym);
2326                                break;
2327                        }
2328
2329                        /* Ok if weak or ignored.  */
2330                        if (!ksym &&
2331                            (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2332                             ignore_undef_symbol(info->hdr->e_machine, name)))
2333                                break;
2334
2335                        ret = PTR_ERR(ksym) ?: -ENOENT;
2336                        pr_warn("%s: Unknown symbol %s (err %d)\n",
2337                                mod->name, name, ret);
2338                        break;
2339
2340                default:
2341                        /* Divert to percpu allocation if a percpu var. */
2342                        if (sym[i].st_shndx == info->index.pcpu)
2343                                secbase = (unsigned long)mod_percpu(mod);
2344                        else
2345                                secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2346                        sym[i].st_value += secbase;
2347                        break;
2348                }
2349        }
2350
2351        return ret;
2352}
2353
2354static int apply_relocations(struct module *mod, const struct load_info *info)
2355{
2356        unsigned int i;
2357        int err = 0;
2358
2359        /* Now do relocations. */
2360        for (i = 1; i < info->hdr->e_shnum; i++) {
2361                unsigned int infosec = info->sechdrs[i].sh_info;
2362
2363                /* Not a valid relocation section? */
2364                if (infosec >= info->hdr->e_shnum)
2365                        continue;
2366
2367                /* Don't bother with non-allocated sections */
2368                if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2369                        continue;
2370
2371                if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2372                        err = klp_apply_section_relocs(mod, info->sechdrs,
2373                                                       info->secstrings,
2374                                                       info->strtab,
2375                                                       info->index.sym, i,
2376                                                       NULL);
2377                else if (info->sechdrs[i].sh_type == SHT_REL)
2378                        err = apply_relocate(info->sechdrs, info->strtab,
2379                                             info->index.sym, i, mod);
2380                else if (info->sechdrs[i].sh_type == SHT_RELA)
2381                        err = apply_relocate_add(info->sechdrs, info->strtab,
2382                                                 info->index.sym, i, mod);
2383                if (err < 0)
2384                        break;
2385        }
2386        return err;
2387}
2388
2389/* Additional bytes needed by arch in front of individual sections */
2390unsigned int __weak arch_mod_section_prepend(struct module *mod,
2391                                             unsigned int section)
2392{
2393        /* default implementation just returns zero */
2394        return 0;
2395}
2396
2397/* Update size with this section: return offset. */
2398static long get_offset(struct module *mod, unsigned int *size,
2399                       Elf_Shdr *sechdr, unsigned int section)
2400{
2401        long ret;
2402
2403        *size += arch_mod_section_prepend(mod, section);
2404        ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2405        *size = ret + sechdr->sh_size;
2406        return ret;
2407}
2408
2409static bool module_init_layout_section(const char *sname)
2410{
2411#ifndef CONFIG_MODULE_UNLOAD
2412        if (module_exit_section(sname))
2413                return true;
2414#endif
2415        return module_init_section(sname);
2416}
2417
2418/*
2419 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2420 * might -- code, read-only data, read-write data, small data.  Tally
2421 * sizes, and place the offsets into sh_entsize fields: high bit means it
2422 * belongs in init.
2423 */
2424static void layout_sections(struct module *mod, struct load_info *info)
2425{
2426        static unsigned long const masks[][2] = {
2427                /*
2428                 * NOTE: all executable code must be the first section
2429                 * in this array; otherwise modify the text_size
2430                 * finder in the two loops below
2431                 */
2432                { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2433                { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2434                { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2435                { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2436                { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2437        };
2438        unsigned int m, i;
2439
2440        for (i = 0; i < info->hdr->e_shnum; i++)
2441                info->sechdrs[i].sh_entsize = ~0UL;
2442
2443        pr_debug("Core section allocation order:\n");
2444        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2445                for (i = 0; i < info->hdr->e_shnum; ++i) {
2446                        Elf_Shdr *s = &info->sechdrs[i];
2447                        const char *sname = info->secstrings + s->sh_name;
2448
2449                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2450                            || (s->sh_flags & masks[m][1])
2451                            || s->sh_entsize != ~0UL
2452                            || module_init_layout_section(sname))
2453                                continue;
2454                        s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2455                        pr_debug("\t%s\n", sname);
2456                }
2457                switch (m) {
2458                case 0: /* executable */
2459                        mod->core_layout.size = debug_align(mod->core_layout.size);
2460                        mod->core_layout.text_size = mod->core_layout.size;
2461                        break;
2462                case 1: /* RO: text and ro-data */
2463                        mod->core_layout.size = debug_align(mod->core_layout.size);
2464                        mod->core_layout.ro_size = mod->core_layout.size;
2465                        break;
2466                case 2: /* RO after init */
2467                        mod->core_layout.size = debug_align(mod->core_layout.size);
2468                        mod->core_layout.ro_after_init_size = mod->core_layout.size;
2469                        break;
2470                case 4: /* whole core */
2471                        mod->core_layout.size = debug_align(mod->core_layout.size);
2472                        break;
2473                }
2474        }
2475
2476        pr_debug("Init section allocation order:\n");
2477        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2478                for (i = 0; i < info->hdr->e_shnum; ++i) {
2479                        Elf_Shdr *s = &info->sechdrs[i];
2480                        const char *sname = info->secstrings + s->sh_name;
2481
2482                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2483                            || (s->sh_flags & masks[m][1])
2484                            || s->sh_entsize != ~0UL
2485                            || !module_init_layout_section(sname))
2486                                continue;
2487                        s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2488                                         | INIT_OFFSET_MASK);
2489                        pr_debug("\t%s\n", sname);
2490                }
2491                switch (m) {
2492                case 0: /* executable */
2493                        mod->init_layout.size = debug_align(mod->init_layout.size);
2494                        mod->init_layout.text_size = mod->init_layout.size;
2495                        break;
2496                case 1: /* RO: text and ro-data */
2497                        mod->init_layout.size = debug_align(mod->init_layout.size);
2498                        mod->init_layout.ro_size = mod->init_layout.size;
2499                        break;
2500                case 2:
2501                        /*
2502                         * RO after init doesn't apply to init_layout (only
2503                         * core_layout), so it just takes the value of ro_size.
2504                         */
2505                        mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2506                        break;
2507                case 4: /* whole init */
2508                        mod->init_layout.size = debug_align(mod->init_layout.size);
2509                        break;
2510                }
2511        }
2512}
2513
2514static void set_license(struct module *mod, const char *license)
2515{
2516        if (!license)
2517                license = "unspecified";
2518
2519        if (!license_is_gpl_compatible(license)) {
2520                if (!test_taint(TAINT_PROPRIETARY_MODULE))
2521                        pr_warn("%s: module license '%s' taints kernel.\n",
2522                                mod->name, license);
2523                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2524                                 LOCKDEP_NOW_UNRELIABLE);
2525        }
2526}
2527
2528/* Parse tag=value strings from .modinfo section */
2529static char *next_string(char *string, unsigned long *secsize)
2530{
2531        /* Skip non-zero chars */
2532        while (string[0]) {
2533                string++;
2534                if ((*secsize)-- <= 1)
2535                        return NULL;
2536        }
2537
2538        /* Skip any zero padding. */
2539        while (!string[0]) {
2540                string++;
2541                if ((*secsize)-- <= 1)
2542                        return NULL;
2543        }
2544        return string;
2545}
2546
2547static char *get_next_modinfo(const struct load_info *info, const char *tag,
2548                              char *prev)
2549{
2550        char *p;
2551        unsigned int taglen = strlen(tag);
2552        Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2553        unsigned long size = infosec->sh_size;
2554
2555        /*
2556         * get_modinfo() calls made before rewrite_section_headers()
2557         * must use sh_offset, as sh_addr isn't set!
2558         */
2559        char *modinfo = (char *)info->hdr + infosec->sh_offset;
2560
2561        if (prev) {
2562                size -= prev - modinfo;
2563                modinfo = next_string(prev, &size);
2564        }
2565
2566        for (p = modinfo; p; p = next_string(p, &size)) {
2567                if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2568                        return p + taglen + 1;
2569        }
2570        return NULL;
2571}
2572
2573static char *get_modinfo(const struct load_info *info, const char *tag)
2574{
2575        return get_next_modinfo(info, tag, NULL);
2576}
2577
2578static void setup_modinfo(struct module *mod, struct load_info *info)
2579{
2580        struct module_attribute *attr;
2581        int i;
2582
2583        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2584                if (attr->setup)
2585                        attr->setup(mod, get_modinfo(info, attr->attr.name));
2586        }
2587}
2588
2589static void free_modinfo(struct module *mod)
2590{
2591        struct module_attribute *attr;
2592        int i;
2593
2594        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2595                if (attr->free)
2596                        attr->free(mod);
2597        }
2598}
2599
2600#ifdef CONFIG_KALLSYMS
2601
2602/* Lookup exported symbol in given range of kernel_symbols */
2603static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2604                                                          const struct kernel_symbol *start,
2605                                                          const struct kernel_symbol *stop)
2606{
2607        return bsearch(name, start, stop - start,
2608                        sizeof(struct kernel_symbol), cmp_name);
2609}
2610
2611static int is_exported(const char *name, unsigned long value,
2612                       const struct module *mod)
2613{
2614        const struct kernel_symbol *ks;
2615        if (!mod)
2616                ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2617        else
2618                ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2619
2620        return ks != NULL && kernel_symbol_value(ks) == value;
2621}
2622
2623/* As per nm */
2624static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2625{
2626        const Elf_Shdr *sechdrs = info->sechdrs;
2627
2628        if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2629                if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2630                        return 'v';
2631                else
2632                        return 'w';
2633        }
2634        if (sym->st_shndx == SHN_UNDEF)
2635                return 'U';
2636        if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2637                return 'a';
2638        if (sym->st_shndx >= SHN_LORESERVE)
2639                return '?';
2640        if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2641                return 't';
2642        if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2643            && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2644                if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2645                        return 'r';
2646                else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2647                        return 'g';
2648                else
2649                        return 'd';
2650        }
2651        if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2652                if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2653                        return 's';
2654                else
2655                        return 'b';
2656        }
2657        if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2658                      ".debug")) {
2659                return 'n';
2660        }
2661        return '?';
2662}
2663
2664static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2665                        unsigned int shnum, unsigned int pcpundx)
2666{
2667        const Elf_Shdr *sec;
2668
2669        if (src->st_shndx == SHN_UNDEF
2670            || src->st_shndx >= shnum
2671            || !src->st_name)
2672                return false;
2673
2674#ifdef CONFIG_KALLSYMS_ALL
2675        if (src->st_shndx == pcpundx)
2676                return true;
2677#endif
2678
2679        sec = sechdrs + src->st_shndx;
2680        if (!(sec->sh_flags & SHF_ALLOC)
2681#ifndef CONFIG_KALLSYMS_ALL
2682            || !(sec->sh_flags & SHF_EXECINSTR)
2683#endif
2684            || (sec->sh_entsize & INIT_OFFSET_MASK))
2685                return false;
2686
2687        return true;
2688}
2689
2690/*
2691 * We only allocate and copy the strings needed by the parts of symtab
2692 * we keep.  This is simple, but has the effect of making multiple
2693 * copies of duplicates.  We could be more sophisticated, see
2694 * linux-kernel thread starting with
2695 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2696 */
2697static void layout_symtab(struct module *mod, struct load_info *info)
2698{
2699        Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2700        Elf_Shdr *strsect = info->sechdrs + info->index.str;
2701        const Elf_Sym *src;
2702        unsigned int i, nsrc, ndst, strtab_size = 0;
2703
2704        /* Put symbol section at end of init part of module. */
2705        symsect->sh_flags |= SHF_ALLOC;
2706        symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2707                                         info->index.sym) | INIT_OFFSET_MASK;
2708        pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2709
2710        src = (void *)info->hdr + symsect->sh_offset;
2711        nsrc = symsect->sh_size / sizeof(*src);
2712
2713        /* Compute total space required for the core symbols' strtab. */
2714        for (ndst = i = 0; i < nsrc; i++) {
2715                if (i == 0 || is_livepatch_module(mod) ||
2716                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2717                                   info->index.pcpu)) {
2718                        strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2719                        ndst++;
2720                }
2721        }
2722
2723        /* Append room for core symbols at end of core part. */
2724        info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2725        info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2726        mod->core_layout.size += strtab_size;
2727        info->core_typeoffs = mod->core_layout.size;
2728        mod->core_layout.size += ndst * sizeof(char);
2729        mod->core_layout.size = debug_align(mod->core_layout.size);
2730
2731        /* Put string table section at end of init part of module. */
2732        strsect->sh_flags |= SHF_ALLOC;
2733        strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2734                                         info->index.str) | INIT_OFFSET_MASK;
2735        pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2736
2737        /* We'll tack temporary mod_kallsyms on the end. */
2738        mod->init_layout.size = ALIGN(mod->init_layout.size,
2739                                      __alignof__(struct mod_kallsyms));
2740        info->mod_kallsyms_init_off = mod->init_layout.size;
2741        mod->init_layout.size += sizeof(struct mod_kallsyms);
2742        info->init_typeoffs = mod->init_layout.size;
2743        mod->init_layout.size += nsrc * sizeof(char);
2744        mod->init_layout.size = debug_align(mod->init_layout.size);
2745}
2746
2747/*
2748 * We use the full symtab and strtab which layout_symtab arranged to
2749 * be appended to the init section.  Later we switch to the cut-down
2750 * core-only ones.
2751 */
2752static void add_kallsyms(struct module *mod, const struct load_info *info)
2753{
2754        unsigned int i, ndst;
2755        const Elf_Sym *src;
2756        Elf_Sym *dst;
2757        char *s;
2758        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2759
2760        /* Set up to point into init section. */
2761        mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2762
2763        mod->kallsyms->symtab = (void *)symsec->sh_addr;
2764        mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2765        /* Make sure we get permanent strtab: don't use info->strtab. */
2766        mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2767        mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2768
2769        /*
2770         * Now populate the cut down core kallsyms for after init
2771         * and set types up while we still have access to sections.
2772         */
2773        mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2774        mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2775        mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2776        src = mod->kallsyms->symtab;
2777        for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2778                mod->kallsyms->typetab[i] = elf_type(src + i, info);
2779                if (i == 0 || is_livepatch_module(mod) ||
2780                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2781                                   info->index.pcpu)) {
2782                        mod->core_kallsyms.typetab[ndst] =
2783                            mod->kallsyms->typetab[i];
2784                        dst[ndst] = src[i];
2785                        dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2786                        s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2787                                     KSYM_NAME_LEN) + 1;
2788                }
2789        }
2790        mod->core_kallsyms.num_symtab = ndst;
2791}
2792#else
2793static inline void layout_symtab(struct module *mod, struct load_info *info)
2794{
2795}
2796
2797static void add_kallsyms(struct module *mod, const struct load_info *info)
2798{
2799}
2800#endif /* CONFIG_KALLSYMS */
2801
2802#if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
2803static void init_build_id(struct module *mod, const struct load_info *info)
2804{
2805        const Elf_Shdr *sechdr;
2806        unsigned int i;
2807
2808        for (i = 0; i < info->hdr->e_shnum; i++) {
2809                sechdr = &info->sechdrs[i];
2810                if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2811                    !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2812                                        sechdr->sh_size))
2813                        break;
2814        }
2815}
2816#else
2817static void init_build_id(struct module *mod, const struct load_info *info)
2818{
2819}
2820#endif
2821
2822static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2823{
2824        if (!debug)
2825                return;
2826        ddebug_add_module(debug, num, mod->name);
2827}
2828
2829static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2830{
2831        if (debug)
2832                ddebug_remove_module(mod->name);
2833}
2834
2835void * __weak module_alloc(unsigned long size)
2836{
2837        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2838                        GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2839                        NUMA_NO_NODE, __builtin_return_address(0));
2840}
2841
2842bool __weak module_init_section(const char *name)
2843{
2844        return strstarts(name, ".init");
2845}
2846
2847bool __weak module_exit_section(const char *name)
2848{
2849        return strstarts(name, ".exit");
2850}
2851
2852#ifdef CONFIG_DEBUG_KMEMLEAK
2853static void kmemleak_load_module(const struct module *mod,
2854                                 const struct load_info *info)
2855{
2856        unsigned int i;
2857
2858        /* only scan the sections containing data */
2859        kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2860
2861        for (i = 1; i < info->hdr->e_shnum; i++) {
2862                /* Scan all writable sections that's not executable */
2863                if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2864                    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2865                    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2866                        continue;
2867
2868                kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2869                                   info->sechdrs[i].sh_size, GFP_KERNEL);
2870        }
2871}
2872#else
2873static inline void kmemleak_load_module(const struct module *mod,
2874                                        const struct load_info *info)
2875{
2876}
2877#endif
2878
2879#ifdef CONFIG_MODULE_SIG
2880static int module_sig_check(struct load_info *info, int flags)
2881{
2882        int err = -ENODATA;
2883        const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2884        const char *reason;
2885        const void *mod = info->hdr;
2886        bool mangled_module = flags & (MODULE_INIT_IGNORE_MODVERSIONS |
2887                                       MODULE_INIT_IGNORE_VERMAGIC);
2888        /*
2889         * Do not allow mangled modules as a module with version information
2890         * removed is no longer the module that was signed.
2891         */
2892        if (!mangled_module &&
2893            info->len > markerlen &&
2894            memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895                /* We truncate the module to discard the signature */
2896                info->len -= markerlen;
2897                err = mod_verify_sig(mod, info);
2898                if (!err) {
2899                        info->sig_ok = true;
2900                        return 0;
2901                }
2902        }
2903
2904        /*
2905         * We don't permit modules to be loaded into the trusted kernels
2906         * without a valid signature on them, but if we're not enforcing,
2907         * certain errors are non-fatal.
2908         */
2909        switch (err) {
2910        case -ENODATA:
2911                reason = "unsigned module";
2912                break;
2913        case -ENOPKG:
2914                reason = "module with unsupported crypto";
2915                break;
2916        case -ENOKEY:
2917                reason = "module with unavailable key";
2918                break;
2919
2920        default:
2921                /*
2922                 * All other errors are fatal, including lack of memory,
2923                 * unparseable signatures, and signature check failures --
2924                 * even if signatures aren't required.
2925                 */
2926                return err;
2927        }
2928
2929        if (is_module_sig_enforced()) {
2930                pr_notice("Loading of %s is rejected\n", reason);
2931                return -EKEYREJECTED;
2932        }
2933
2934        return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2935}
2936#else /* !CONFIG_MODULE_SIG */
2937static int module_sig_check(struct load_info *info, int flags)
2938{
2939        return 0;
2940}
2941#endif /* !CONFIG_MODULE_SIG */
2942
2943static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2944{
2945#if defined(CONFIG_64BIT)
2946        unsigned long long secend;
2947#else
2948        unsigned long secend;
2949#endif
2950
2951        /*
2952         * Check for both overflow and offset/size being
2953         * too large.
2954         */
2955        secend = shdr->sh_offset + shdr->sh_size;
2956        if (secend < shdr->sh_offset || secend > info->len)
2957                return -ENOEXEC;
2958
2959        return 0;
2960}
2961
2962/*
2963 * Sanity checks against invalid binaries, wrong arch, weird elf version.
2964 *
2965 * Also do basic validity checks against section offsets and sizes, the
2966 * section name string table, and the indices used for it (sh_name).
2967 */
2968static int elf_validity_check(struct load_info *info)
2969{
2970        unsigned int i;
2971        Elf_Shdr *shdr, *strhdr;
2972        int err;
2973
2974        if (info->len < sizeof(*(info->hdr))) {
2975                pr_err("Invalid ELF header len %lu\n", info->len);
2976                goto no_exec;
2977        }
2978
2979        if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
2980                pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
2981                goto no_exec;
2982        }
2983        if (info->hdr->e_type != ET_REL) {
2984                pr_err("Invalid ELF header type: %u != %u\n",
2985                       info->hdr->e_type, ET_REL);
2986                goto no_exec;
2987        }
2988        if (!elf_check_arch(info->hdr)) {
2989                pr_err("Invalid architecture in ELF header: %u\n",
2990                       info->hdr->e_machine);
2991                goto no_exec;
2992        }
2993        if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
2994                pr_err("Invalid ELF section header size\n");
2995                goto no_exec;
2996        }
2997
2998        /*
2999         * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
3000         * known and small. So e_shnum * sizeof(Elf_Shdr)
3001         * will not overflow unsigned long on any platform.
3002         */
3003        if (info->hdr->e_shoff >= info->len
3004            || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
3005                info->len - info->hdr->e_shoff)) {
3006                pr_err("Invalid ELF section header overflow\n");
3007                goto no_exec;
3008        }
3009
3010        info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3011
3012        /*
3013         * Verify if the section name table index is valid.
3014         */
3015        if (info->hdr->e_shstrndx == SHN_UNDEF
3016            || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
3017                pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
3018                       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
3019                       info->hdr->e_shnum);
3020                goto no_exec;
3021        }
3022
3023        strhdr = &info->sechdrs[info->hdr->e_shstrndx];
3024        err = validate_section_offset(info, strhdr);
3025        if (err < 0) {
3026                pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
3027                return err;
3028        }
3029
3030        /*
3031         * The section name table must be NUL-terminated, as required
3032         * by the spec. This makes strcmp and pr_* calls that access
3033         * strings in the section safe.
3034         */
3035        info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3036        if (info->secstrings[strhdr->sh_size - 1] != '\0') {
3037                pr_err("ELF Spec violation: section name table isn't null terminated\n");
3038                goto no_exec;
3039        }
3040
3041        /*
3042         * The code assumes that section 0 has a length of zero and
3043         * an addr of zero, so check for it.
3044         */
3045        if (info->sechdrs[0].sh_type != SHT_NULL
3046            || info->sechdrs[0].sh_size != 0
3047            || info->sechdrs[0].sh_addr != 0) {
3048                pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
3049                       info->sechdrs[0].sh_type);
3050                goto no_exec;
3051        }
3052
3053        for (i = 1; i < info->hdr->e_shnum; i++) {
3054                shdr = &info->sechdrs[i];
3055                switch (shdr->sh_type) {
3056                case SHT_NULL:
3057                case SHT_NOBITS:
3058                        continue;
3059                case SHT_SYMTAB:
3060                        if (shdr->sh_link == SHN_UNDEF
3061                            || shdr->sh_link >= info->hdr->e_shnum) {
3062                                pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
3063                                       shdr->sh_link, shdr->sh_link,
3064                                       info->hdr->e_shnum);
3065                                goto no_exec;
3066                        }
3067                        fallthrough;
3068                default:
3069                        err = validate_section_offset(info, shdr);
3070                        if (err < 0) {
3071                                pr_err("Invalid ELF section in module (section %u type %u)\n",
3072                                        i, shdr->sh_type);
3073                                return err;
3074                        }
3075
3076                        if (shdr->sh_flags & SHF_ALLOC) {
3077                                if (shdr->sh_name >= strhdr->sh_size) {
3078                                        pr_err("Invalid ELF section name in module (section %u type %u)\n",
3079                                               i, shdr->sh_type);
3080                                        return -ENOEXEC;
3081                                }
3082                        }
3083                        break;
3084                }
3085        }
3086
3087        return 0;
3088
3089no_exec:
3090        return -ENOEXEC;
3091}
3092
3093#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3094
3095static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3096{
3097        do {
3098                unsigned long n = min(len, COPY_CHUNK_SIZE);
3099
3100                if (copy_from_user(dst, usrc, n) != 0)
3101                        return -EFAULT;
3102                cond_resched();
3103                dst += n;
3104                usrc += n;
3105                len -= n;
3106        } while (len);
3107        return 0;
3108}
3109
3110#ifdef CONFIG_LIVEPATCH
3111static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3112{
3113        if (get_modinfo(info, "livepatch")) {
3114                mod->klp = true;
3115                add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3116                pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3117                               mod->name);
3118        }
3119
3120        return 0;
3121}
3122#else /* !CONFIG_LIVEPATCH */
3123static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3124{
3125        if (get_modinfo(info, "livepatch")) {
3126                pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3127                       mod->name);
3128                return -ENOEXEC;
3129        }
3130
3131        return 0;
3132}
3133#endif /* CONFIG_LIVEPATCH */
3134
3135static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3136{
3137        if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3138                return;
3139
3140        pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3141                mod->name);
3142}
3143
3144/* Sets info->hdr and info->len. */
3145static int copy_module_from_user(const void __user *umod, unsigned long len,
3146                                  struct load_info *info)
3147{
3148        int err;
3149
3150        info->len = len;
3151        if (info->len < sizeof(*(info->hdr)))
3152                return -ENOEXEC;
3153
3154        err = security_kernel_load_data(LOADING_MODULE, true);
3155        if (err)
3156                return err;
3157
3158        /* Suck in entire file: we'll want most of it. */
3159        info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3160        if (!info->hdr)
3161                return -ENOMEM;
3162
3163        if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3164                err = -EFAULT;
3165                goto out;
3166        }
3167
3168        err = security_kernel_post_load_data((char *)info->hdr, info->len,
3169                                             LOADING_MODULE, "init_module");
3170out:
3171        if (err)
3172                vfree(info->hdr);
3173
3174        return err;
3175}
3176
3177static void free_copy(struct load_info *info, int flags)
3178{
3179        if (flags & MODULE_INIT_COMPRESSED_FILE)
3180                module_decompress_cleanup(info);
3181        else
3182                vfree(info->hdr);
3183}
3184
3185static int rewrite_section_headers(struct load_info *info, int flags)
3186{
3187        unsigned int i;
3188
3189        /* This should always be true, but let's be sure. */
3190        info->sechdrs[0].sh_addr = 0;
3191
3192        for (i = 1; i < info->hdr->e_shnum; i++) {
3193                Elf_Shdr *shdr = &info->sechdrs[i];
3194
3195                /*
3196                 * Mark all sections sh_addr with their address in the
3197                 * temporary image.
3198                 */
3199                shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3200
3201        }
3202
3203        /* Track but don't keep modinfo and version sections. */
3204        info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3205        info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3206
3207        return 0;
3208}
3209
3210/*
3211 * Set up our basic convenience variables (pointers to section headers,
3212 * search for module section index etc), and do some basic section
3213 * verification.
3214 *
3215 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3216 * will be allocated in move_module().
3217 */
3218static int setup_load_info(struct load_info *info, int flags)
3219{
3220        unsigned int i;
3221
3222        /* Try to find a name early so we can log errors with a module name */
3223        info->index.info = find_sec(info, ".modinfo");
3224        if (info->index.info)
3225                info->name = get_modinfo(info, "name");
3226
3227        /* Find internal symbols and strings. */
3228        for (i = 1; i < info->hdr->e_shnum; i++) {
3229                if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3230                        info->index.sym = i;
3231                        info->index.str = info->sechdrs[i].sh_link;
3232                        info->strtab = (char *)info->hdr
3233                                + info->sechdrs[info->index.str].sh_offset;
3234                        break;
3235                }
3236        }
3237
3238        if (info->index.sym == 0) {
3239                pr_warn("%s: module has no symbols (stripped?)\n",
3240                        info->name ?: "(missing .modinfo section or name field)");
3241                return -ENOEXEC;
3242        }
3243
3244        info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3245        if (!info->index.mod) {
3246                pr_warn("%s: No module found in object\n",
3247                        info->name ?: "(missing .modinfo section or name field)");
3248                return -ENOEXEC;
3249        }
3250        /* This is temporary: point mod into copy of data. */
3251        info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3252
3253        /*
3254         * If we didn't load the .modinfo 'name' field earlier, fall back to
3255         * on-disk struct mod 'name' field.
3256         */
3257        if (!info->name)
3258                info->name = info->mod->name;
3259
3260        if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3261                info->index.vers = 0; /* Pretend no __versions section! */
3262        else
3263                info->index.vers = find_sec(info, "__versions");
3264
3265        info->index.pcpu = find_pcpusec(info);
3266
3267        return 0;
3268}
3269
3270static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3271{
3272        const char *modmagic = get_modinfo(info, "vermagic");
3273        int err;
3274
3275        if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3276                modmagic = NULL;
3277
3278        /* This is allowed: modprobe --force will invalidate it. */
3279        if (!modmagic) {
3280                err = try_to_force_load(mod, "bad vermagic");
3281                if (err)
3282                        return err;
3283        } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3284                pr_err("%s: version magic '%s' should be '%s'\n",
3285                       info->name, modmagic, vermagic);
3286                return -ENOEXEC;
3287        }
3288
3289        if (!get_modinfo(info, "intree")) {
3290                if (!test_taint(TAINT_OOT_MODULE))
3291                        pr_warn("%s: loading out-of-tree module taints kernel.\n",
3292                                mod->name);
3293                add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3294        }
3295
3296        check_modinfo_retpoline(mod, info);
3297
3298        if (get_modinfo(info, "staging")) {
3299                add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3300                pr_warn("%s: module is from the staging directory, the quality "
3301                        "is unknown, you have been warned.\n", mod->name);
3302        }
3303
3304        err = check_modinfo_livepatch(mod, info);
3305        if (err)
3306                return err;
3307
3308        /* Set up license info based on the info section */
3309        set_license(mod, get_modinfo(info, "license"));
3310
3311        return 0;
3312}
3313
3314static int find_module_sections(struct module *mod, struct load_info *info)
3315{
3316        mod->kp = section_objs(info, "__param",
3317                               sizeof(*mod->kp), &mod->num_kp);
3318        mod->syms = section_objs(info, "__ksymtab",
3319                                 sizeof(*mod->syms), &mod->num_syms);
3320        mod->crcs = section_addr(info, "__kcrctab");
3321        mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3322                                     sizeof(*mod->gpl_syms),
3323                                     &mod->num_gpl_syms);
3324        mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3325
3326#ifdef CONFIG_CONSTRUCTORS
3327        mod->ctors = section_objs(info, ".ctors",
3328                                  sizeof(*mod->ctors), &mod->num_ctors);
3329        if (!mod->ctors)
3330                mod->ctors = section_objs(info, ".init_array",
3331                                sizeof(*mod->ctors), &mod->num_ctors);
3332        else if (find_sec(info, ".init_array")) {
3333                /*
3334                 * This shouldn't happen with same compiler and binutils
3335                 * building all parts of the module.
3336                 */
3337                pr_warn("%s: has both .ctors and .init_array.\n",
3338                       mod->name);
3339                return -EINVAL;
3340        }
3341#endif
3342
3343        mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3344                                                &mod->noinstr_text_size);
3345
3346#ifdef CONFIG_TRACEPOINTS
3347        mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3348                                             sizeof(*mod->tracepoints_ptrs),
3349                                             &mod->num_tracepoints);
3350#endif
3351#ifdef CONFIG_TREE_SRCU
3352        mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3353                                             sizeof(*mod->srcu_struct_ptrs),
3354                                             &mod->num_srcu_structs);
3355#endif
3356#ifdef CONFIG_BPF_EVENTS
3357        mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3358                                           sizeof(*mod->bpf_raw_events),
3359                                           &mod->num_bpf_raw_events);
3360#endif
3361#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3362        mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3363#endif
3364#ifdef CONFIG_JUMP_LABEL
3365        mod->jump_entries = section_objs(info, "__jump_table",
3366                                        sizeof(*mod->jump_entries),
3367                                        &mod->num_jump_entries);
3368#endif
3369#ifdef CONFIG_EVENT_TRACING
3370        mod->trace_events = section_objs(info, "_ftrace_events",
3371                                         sizeof(*mod->trace_events),
3372                                         &mod->num_trace_events);
3373        mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3374                                        sizeof(*mod->trace_evals),
3375                                        &mod->num_trace_evals);
3376#endif
3377#ifdef CONFIG_TRACING
3378        mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3379                                         sizeof(*mod->trace_bprintk_fmt_start),
3380                                         &mod->num_trace_bprintk_fmt);
3381#endif
3382#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3383        /* sechdrs[0].sh_size is always zero */
3384        mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3385                                             sizeof(*mod->ftrace_callsites),
3386                                             &mod->num_ftrace_callsites);
3387#endif
3388#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3389        mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3390                                            sizeof(*mod->ei_funcs),
3391                                            &mod->num_ei_funcs);
3392#endif
3393#ifdef CONFIG_KPROBES
3394        mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3395                                                &mod->kprobes_text_size);
3396        mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3397                                                sizeof(unsigned long),
3398                                                &mod->num_kprobe_blacklist);
3399#endif
3400#ifdef CONFIG_PRINTK_INDEX
3401        mod->printk_index_start = section_objs(info, ".printk_index",
3402                                               sizeof(*mod->printk_index_start),
3403                                               &mod->printk_index_size);
3404#endif
3405#ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3406        mod->static_call_sites = section_objs(info, ".static_call_sites",
3407                                              sizeof(*mod->static_call_sites),
3408                                              &mod->num_static_call_sites);
3409#endif
3410        mod->extable = section_objs(info, "__ex_table",
3411                                    sizeof(*mod->extable), &mod->num_exentries);
3412
3413        if (section_addr(info, "__obsparm"))
3414                pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3415
3416        info->debug = section_objs(info, "__dyndbg",
3417                                   sizeof(*info->debug), &info->num_debug);
3418
3419        return 0;
3420}
3421
3422static int move_module(struct module *mod, struct load_info *info)
3423{
3424        int i;
3425        void *ptr;
3426
3427        /* Do the allocs. */
3428        ptr = module_alloc(mod->core_layout.size);
3429        /*
3430         * The pointer to this block is stored in the module structure
3431         * which is inside the block. Just mark it as not being a
3432         * leak.
3433         */
3434        kmemleak_not_leak(ptr);
3435        if (!ptr)
3436                return -ENOMEM;
3437
3438        memset(ptr, 0, mod->core_layout.size);
3439        mod->core_layout.base = ptr;
3440
3441        if (mod->init_layout.size) {
3442                ptr = module_alloc(mod->init_layout.size);
3443                /*
3444                 * The pointer to this block is stored in the module structure
3445                 * which is inside the block. This block doesn't need to be
3446                 * scanned as it contains data and code that will be freed
3447                 * after the module is initialized.
3448                 */
3449                kmemleak_ignore(ptr);
3450                if (!ptr) {
3451                        module_memfree(mod->core_layout.base);
3452                        return -ENOMEM;
3453                }
3454                memset(ptr, 0, mod->init_layout.size);
3455                mod->init_layout.base = ptr;
3456        } else
3457                mod->init_layout.base = NULL;
3458
3459        /* Transfer each section which specifies SHF_ALLOC */
3460        pr_debug("final section addresses:\n");
3461        for (i = 0; i < info->hdr->e_shnum; i++) {
3462                void *dest;
3463                Elf_Shdr *shdr = &info->sechdrs[i];
3464
3465                if (!(shdr->sh_flags & SHF_ALLOC))
3466                        continue;
3467
3468                if (shdr->sh_entsize & INIT_OFFSET_MASK)
3469                        dest = mod->init_layout.base
3470                                + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3471                else
3472                        dest = mod->core_layout.base + shdr->sh_entsize;
3473
3474                if (shdr->sh_type != SHT_NOBITS)
3475                        memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3476                /* Update sh_addr to point to copy in image. */
3477                shdr->sh_addr = (unsigned long)dest;
3478                pr_debug("\t0x%lx %s\n",
3479                         (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3480        }
3481
3482        return 0;
3483}
3484
3485static int check_module_license_and_versions(struct module *mod)
3486{
3487        int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3488
3489        /*
3490         * ndiswrapper is under GPL by itself, but loads proprietary modules.
3491         * Don't use add_taint_module(), as it would prevent ndiswrapper from
3492         * using GPL-only symbols it needs.
3493         */
3494        if (strcmp(mod->name, "ndiswrapper") == 0)
3495                add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3496
3497        /* driverloader was caught wrongly pretending to be under GPL */
3498        if (strcmp(mod->name, "driverloader") == 0)
3499                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3500                                 LOCKDEP_NOW_UNRELIABLE);
3501
3502        /* lve claims to be GPL but upstream won't provide source */
3503        if (strcmp(mod->name, "lve") == 0)
3504                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3505                                 LOCKDEP_NOW_UNRELIABLE);
3506
3507        if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3508                pr_warn("%s: module license taints kernel.\n", mod->name);
3509
3510#ifdef CONFIG_MODVERSIONS
3511        if ((mod->num_syms && !mod->crcs) ||
3512            (mod->num_gpl_syms && !mod->gpl_crcs)) {
3513                return try_to_force_load(mod,
3514                                         "no versions for exported symbols");
3515        }
3516#endif
3517        return 0;
3518}
3519
3520static void flush_module_icache(const struct module *mod)
3521{
3522        /*
3523         * Flush the instruction cache, since we've played with text.
3524         * Do it before processing of module parameters, so the module
3525         * can provide parameter accessor functions of its own.
3526         */
3527        if (mod->init_layout.base)
3528                flush_icache_range((unsigned long)mod->init_layout.base,
3529                                   (unsigned long)mod->init_layout.base
3530                                   + mod->init_layout.size);
3531        flush_icache_range((unsigned long)mod->core_layout.base,
3532                           (unsigned long)mod->core_layout.base + mod->core_layout.size);
3533}
3534
3535int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3536                                     Elf_Shdr *sechdrs,
3537                                     char *secstrings,
3538                                     struct module *mod)
3539{
3540        return 0;
3541}
3542
3543/* module_blacklist is a comma-separated list of module names */
3544static char *module_blacklist;
3545static bool blacklisted(const char *module_name)
3546{
3547        const char *p;
3548        size_t len;
3549
3550        if (!module_blacklist)
3551                return false;
3552
3553        for (p = module_blacklist; *p; p += len) {
3554                len = strcspn(p, ",");
3555                if (strlen(module_name) == len && !memcmp(module_name, p, len))
3556                        return true;
3557                if (p[len] == ',')
3558                        len++;
3559        }
3560        return false;
3561}
3562core_param(module_blacklist, module_blacklist, charp, 0400);
3563
3564static struct module *layout_and_allocate(struct load_info *info, int flags)
3565{
3566        struct module *mod;
3567        unsigned int ndx;
3568        int err;
3569
3570        err = check_modinfo(info->mod, info, flags);
3571        if (err)
3572                return ERR_PTR(err);
3573
3574        /* Allow arches to frob section contents and sizes.  */
3575        err = module_frob_arch_sections(info->hdr, info->sechdrs,
3576                                        info->secstrings, info->mod);
3577        if (err < 0)
3578                return ERR_PTR(err);
3579
3580        err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3581                                          info->secstrings, info->mod);
3582        if (err < 0)
3583                return ERR_PTR(err);
3584
3585        /* We will do a special allocation for per-cpu sections later. */
3586        info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3587
3588        /*
3589         * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3590         * layout_sections() can put it in the right place.
3591         * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3592         */
3593        ndx = find_sec(info, ".data..ro_after_init");
3594        if (ndx)
3595                info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3596        /*
3597         * Mark the __jump_table section as ro_after_init as well: these data
3598         * structures are never modified, with the exception of entries that
3599         * refer to code in the __init section, which are annotated as such
3600         * at module load time.
3601         */
3602        ndx = find_sec(info, "__jump_table");
3603        if (ndx)
3604                info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3605
3606        /*
3607         * Determine total sizes, and put offsets in sh_entsize.  For now
3608         * this is done generically; there doesn't appear to be any
3609         * special cases for the architectures.
3610         */
3611        layout_sections(info->mod, info);
3612        layout_symtab(info->mod, info);
3613
3614        /* Allocate and move to the final place */
3615        err = move_module(info->mod, info);
3616        if (err)
3617                return ERR_PTR(err);
3618
3619        /* Module has been copied to its final place now: return it. */
3620        mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3621        kmemleak_load_module(mod, info);
3622        return mod;
3623}
3624
3625/* mod is no longer valid after this! */
3626static void module_deallocate(struct module *mod, struct load_info *info)
3627{
3628        percpu_modfree(mod);
3629        module_arch_freeing_init(mod);
3630        module_memfree(mod->init_layout.base);
3631        module_memfree(mod->core_layout.base);
3632}
3633
3634int __weak module_finalize(const Elf_Ehdr *hdr,
3635                           const Elf_Shdr *sechdrs,
3636                           struct module *me)
3637{
3638        return 0;
3639}
3640
3641static int post_relocation(struct module *mod, const struct load_info *info)
3642{
3643        /* Sort exception table now relocations are done. */
3644        sort_extable(mod->extable, mod->extable + mod->num_exentries);
3645
3646        /* Copy relocated percpu area over. */
3647        percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3648                       info->sechdrs[info->index.pcpu].sh_size);
3649
3650        /* Setup kallsyms-specific fields. */
3651        add_kallsyms(mod, info);
3652
3653        /* Arch-specific module finalizing. */
3654        return module_finalize(info->hdr, info->sechdrs, mod);
3655}
3656
3657/* Is this module of this name done loading?  No locks held. */
3658static bool finished_loading(const char *name)
3659{
3660        struct module *mod;
3661        bool ret;
3662
3663        /*
3664         * The module_mutex should not be a heavily contended lock;
3665         * if we get the occasional sleep here, we'll go an extra iteration
3666         * in the wait_event_interruptible(), which is harmless.
3667         */
3668        sched_annotate_sleep();
3669        mutex_lock(&module_mutex);
3670        mod = find_module_all(name, strlen(name), true);
3671        ret = !mod || mod->state == MODULE_STATE_LIVE;
3672        mutex_unlock(&module_mutex);
3673
3674        return ret;
3675}
3676
3677/* Call module constructors. */
3678static void do_mod_ctors(struct module *mod)
3679{
3680#ifdef CONFIG_CONSTRUCTORS
3681        unsigned long i;
3682
3683        for (i = 0; i < mod->num_ctors; i++)
3684                mod->ctors[i]();
3685#endif
3686}
3687
3688/* For freeing module_init on success, in case kallsyms traversing */
3689struct mod_initfree {
3690        struct llist_node node;
3691        void *module_init;
3692};
3693
3694static void do_free_init(struct work_struct *w)
3695{
3696        struct llist_node *pos, *n, *list;
3697        struct mod_initfree *initfree;
3698
3699        list = llist_del_all(&init_free_list);
3700
3701        synchronize_rcu();
3702
3703        llist_for_each_safe(pos, n, list) {
3704                initfree = container_of(pos, struct mod_initfree, node);
3705                module_memfree(initfree->module_init);
3706                kfree(initfree);
3707        }
3708}
3709
3710/*
3711 * This is where the real work happens.
3712 *
3713 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3714 * helper command 'lx-symbols'.
3715 */
3716static noinline int do_init_module(struct module *mod)
3717{
3718        int ret = 0;
3719        struct mod_initfree *freeinit;
3720
3721        freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3722        if (!freeinit) {
3723                ret = -ENOMEM;
3724                goto fail;
3725        }
3726        freeinit->module_init = mod->init_layout.base;
3727
3728        do_mod_ctors(mod);
3729        /* Start the module */
3730        if (mod->init != NULL)
3731                ret = do_one_initcall(mod->init);
3732        if (ret < 0) {
3733                goto fail_free_freeinit;
3734        }
3735        if (ret > 0) {
3736                pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3737                        "follow 0/-E convention\n"
3738                        "%s: loading module anyway...\n",
3739                        __func__, mod->name, ret, __func__);
3740                dump_stack();
3741        }
3742
3743        /* Now it's a first class citizen! */
3744        mod->state = MODULE_STATE_LIVE;
3745        blocking_notifier_call_chain(&module_notify_list,
3746                                     MODULE_STATE_LIVE, mod);
3747
3748        /* Delay uevent until module has finished its init routine */
3749        kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3750
3751        /*
3752         * We need to finish all async code before the module init sequence
3753         * is done. This has potential to deadlock if synchronous module
3754         * loading is requested from async (which is not allowed!).
3755         *
3756         * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3757         * request_module() from async workers") for more details.
3758         */
3759        if (!mod->async_probe_requested)
3760                async_synchronize_full();
3761
3762        ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3763                        mod->init_layout.size);
3764        mutex_lock(&module_mutex);
3765        /* Drop initial reference. */
3766        module_put(mod);
3767        trim_init_extable(mod);
3768#ifdef CONFIG_KALLSYMS
3769        /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3770        rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3771#endif
3772        module_enable_ro(mod, true);
3773        mod_tree_remove_init(mod);
3774        module_arch_freeing_init(mod);
3775        mod->init_layout.base = NULL;
3776        mod->init_layout.size = 0;
3777        mod->init_layout.ro_size = 0;
3778        mod->init_layout.ro_after_init_size = 0;
3779        mod->init_layout.text_size = 0;
3780#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3781        /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3782        mod->btf_data = NULL;
3783#endif
3784        /*
3785         * We want to free module_init, but be aware that kallsyms may be
3786         * walking this with preempt disabled.  In all the failure paths, we
3787         * call synchronize_rcu(), but we don't want to slow down the success
3788         * path. module_memfree() cannot be called in an interrupt, so do the
3789         * work and call synchronize_rcu() in a work queue.
3790         *
3791         * Note that module_alloc() on most architectures creates W+X page
3792         * mappings which won't be cleaned up until do_free_init() runs.  Any
3793         * code such as mark_rodata_ro() which depends on those mappings to
3794         * be cleaned up needs to sync with the queued work - ie
3795         * rcu_barrier()
3796         */
3797        if (llist_add(&freeinit->node, &init_free_list))
3798                schedule_work(&init_free_wq);
3799
3800        mutex_unlock(&module_mutex);
3801        wake_up_all(&module_wq);
3802
3803        return 0;
3804
3805fail_free_freeinit:
3806        kfree(freeinit);
3807fail:
3808        /* Try to protect us from buggy refcounters. */
3809        mod->state = MODULE_STATE_GOING;
3810        synchronize_rcu();
3811        module_put(mod);
3812        blocking_notifier_call_chain(&module_notify_list,
3813                                     MODULE_STATE_GOING, mod);
3814        klp_module_going(mod);
3815        ftrace_release_mod(mod);
3816        free_module(mod);
3817        wake_up_all(&module_wq);
3818        return ret;
3819}
3820
3821static int may_init_module(void)
3822{
3823        if (!capable(CAP_SYS_MODULE) || modules_disabled)
3824                return -EPERM;
3825
3826        return 0;
3827}
3828
3829/*
3830 * We try to place it in the list now to make sure it's unique before
3831 * we dedicate too many resources.  In particular, temporary percpu
3832 * memory exhaustion.
3833 */
3834static int add_unformed_module(struct module *mod)
3835{
3836        int err;
3837        struct module *old;
3838
3839        mod->state = MODULE_STATE_UNFORMED;
3840
3841again:
3842        mutex_lock(&module_mutex);
3843        old = find_module_all(mod->name, strlen(mod->name), true);
3844        if (old != NULL) {
3845                if (old->state != MODULE_STATE_LIVE) {
3846                        /* Wait in case it fails to load. */
3847                        mutex_unlock(&module_mutex);
3848                        err = wait_event_interruptible(module_wq,
3849                                               finished_loading(mod->name));
3850                        if (err)
3851                                goto out_unlocked;
3852                        goto again;
3853                }
3854                err = -EEXIST;
3855                goto out;
3856        }
3857        mod_update_bounds(mod);
3858        list_add_rcu(&mod->list, &modules);
3859        mod_tree_insert(mod);
3860        err = 0;
3861
3862out:
3863        mutex_unlock(&module_mutex);
3864out_unlocked:
3865        return err;
3866}
3867
3868static int complete_formation(struct module *mod, struct load_info *info)
3869{
3870        int err;
3871
3872        mutex_lock(&module_mutex);
3873
3874        /* Find duplicate symbols (must be called under lock). */
3875        err = verify_exported_symbols(mod);
3876        if (err < 0)
3877                goto out;
3878
3879        /* This relies on module_mutex for list integrity. */
3880        module_bug_finalize(info->hdr, info->sechdrs, mod);
3881
3882        module_enable_ro(mod, false);
3883        module_enable_nx(mod);
3884        module_enable_x(mod);
3885
3886        /*
3887         * Mark state as coming so strong_try_module_get() ignores us,
3888         * but kallsyms etc. can see us.
3889         */
3890        mod->state = MODULE_STATE_COMING;
3891        mutex_unlock(&module_mutex);
3892
3893        return 0;
3894
3895out:
3896        mutex_unlock(&module_mutex);
3897        return err;
3898}
3899
3900static int prepare_coming_module(struct module *mod)
3901{
3902        int err;
3903
3904        ftrace_module_enable(mod);
3905        err = klp_module_coming(mod);
3906        if (err)
3907                return err;
3908
3909        err = blocking_notifier_call_chain_robust(&module_notify_list,
3910                        MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3911        err = notifier_to_errno(err);
3912        if (err)
3913                klp_module_going(mod);
3914
3915        return err;
3916}
3917
3918static int unknown_module_param_cb(char *param, char *val, const char *modname,
3919                                   void *arg)
3920{
3921        struct module *mod = arg;
3922        int ret;
3923
3924        if (strcmp(param, "async_probe") == 0) {
3925                mod->async_probe_requested = true;
3926                return 0;
3927        }
3928
3929        /* Check for magic 'dyndbg' arg */
3930        ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3931        if (ret != 0)
3932                pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3933        return 0;
3934}
3935
3936static void cfi_init(struct module *mod);
3937
3938/*
3939 * Allocate and load the module: note that size of section 0 is always
3940 * zero, and we rely on this for optional sections.
3941 */
3942static int load_module(struct load_info *info, const char __user *uargs,
3943                       int flags)
3944{
3945        struct module *mod;
3946        long err = 0;
3947        char *after_dashes;
3948
3949        /*
3950         * Do the signature check (if any) first. All that
3951         * the signature check needs is info->len, it does
3952         * not need any of the section info. That can be
3953         * set up later. This will minimize the chances
3954         * of a corrupt module causing problems before
3955         * we even get to the signature check.
3956         *
3957         * The check will also adjust info->len by stripping
3958         * off the sig length at the end of the module, making
3959         * checks against info->len more correct.
3960         */
3961        err = module_sig_check(info, flags);
3962        if (err)
3963                goto free_copy;
3964
3965        /*
3966         * Do basic sanity checks against the ELF header and
3967         * sections.
3968         */
3969        err = elf_validity_check(info);
3970        if (err)
3971                goto free_copy;
3972
3973        /*
3974         * Everything checks out, so set up the section info
3975         * in the info structure.
3976         */
3977        err = setup_load_info(info, flags);
3978        if (err)
3979                goto free_copy;
3980
3981        /*
3982         * Now that we know we have the correct module name, check
3983         * if it's blacklisted.
3984         */
3985        if (blacklisted(info->name)) {
3986                err = -EPERM;
3987                pr_err("Module %s is blacklisted\n", info->name);
3988                goto free_copy;
3989        }
3990
3991        err = rewrite_section_headers(info, flags);
3992        if (err)
3993                goto free_copy;
3994
3995        /* Check module struct version now, before we try to use module. */
3996        if (!check_modstruct_version(info, info->mod)) {
3997                err = -ENOEXEC;
3998                goto free_copy;
3999        }
4000
4001        /* Figure out module layout, and allocate all the memory. */
4002        mod = layout_and_allocate(info, flags);
4003        if (IS_ERR(mod)) {
4004                err = PTR_ERR(mod);
4005                goto free_copy;
4006        }
4007
4008        audit_log_kern_module(mod->name);
4009
4010        /* Reserve our place in the list. */
4011        err = add_unformed_module(mod);
4012        if (err)
4013                goto free_module;
4014
4015#ifdef CONFIG_MODULE_SIG
4016        mod->sig_ok = info->sig_ok;
4017        if (!mod->sig_ok) {
4018                pr_notice_once("%s: module verification failed: signature "
4019                               "and/or required key missing - tainting "
4020                               "kernel\n", mod->name);
4021                add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
4022        }
4023#endif
4024
4025        /* To avoid stressing percpu allocator, do this once we're unique. */
4026        err = percpu_modalloc(mod, info);
4027        if (err)
4028                goto unlink_mod;
4029
4030        /* Now module is in final location, initialize linked lists, etc. */
4031        err = module_unload_init(mod);
4032        if (err)
4033                goto unlink_mod;
4034
4035        init_param_lock(mod);
4036
4037        /*
4038         * Now we've got everything in the final locations, we can
4039         * find optional sections.
4040         */
4041        err = find_module_sections(mod, info);
4042        if (err)
4043                goto free_unload;
4044
4045        err = check_module_license_and_versions(mod);
4046        if (err)
4047                goto free_unload;
4048
4049        /* Set up MODINFO_ATTR fields */
4050        setup_modinfo(mod, info);
4051
4052        /* Fix up syms, so that st_value is a pointer to location. */
4053        err = simplify_symbols(mod, info);
4054        if (err < 0)
4055                goto free_modinfo;
4056
4057        err = apply_relocations(mod, info);
4058        if (err < 0)
4059                goto free_modinfo;
4060
4061        err = post_relocation(mod, info);
4062        if (err < 0)
4063                goto free_modinfo;
4064
4065        flush_module_icache(mod);
4066
4067        /* Setup CFI for the module. */
4068        cfi_init(mod);
4069
4070        /* Now copy in args */
4071        mod->args = strndup_user(uargs, ~0UL >> 1);
4072        if (IS_ERR(mod->args)) {
4073                err = PTR_ERR(mod->args);
4074                goto free_arch_cleanup;
4075        }
4076
4077        init_build_id(mod, info);
4078        dynamic_debug_setup(mod, info->debug, info->num_debug);
4079
4080        /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4081        ftrace_module_init(mod);
4082
4083        /* Finally it's fully formed, ready to start executing. */
4084        err = complete_formation(mod, info);
4085        if (err)
4086                goto ddebug_cleanup;
4087
4088        err = prepare_coming_module(mod);
4089        if (err)
4090                goto bug_cleanup;
4091
4092        /* Module is ready to execute: parsing args may do that. */
4093        after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4094                                  -32768, 32767, mod,
4095                                  unknown_module_param_cb);
4096        if (IS_ERR(after_dashes)) {
4097                err = PTR_ERR(after_dashes);
4098                goto coming_cleanup;
4099        } else if (after_dashes) {
4100                pr_warn("%s: parameters '%s' after `--' ignored\n",
4101                       mod->name, after_dashes);
4102        }
4103
4104        /* Link in to sysfs. */
4105        err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4106        if (err < 0)
4107                goto coming_cleanup;
4108
4109        if (is_livepatch_module(mod)) {
4110                err = copy_module_elf(mod, info);
4111                if (err < 0)
4112                        goto sysfs_cleanup;
4113        }
4114
4115        /* Get rid of temporary copy. */
4116        free_copy(info, flags);
4117
4118        /* Done! */
4119        trace_module_load(mod);
4120
4121        return do_init_module(mod);
4122
4123 sysfs_cleanup:
4124        mod_sysfs_teardown(mod);
4125 coming_cleanup:
4126        mod->state = MODULE_STATE_GOING;
4127        destroy_params(mod->kp, mod->num_kp);
4128        blocking_notifier_call_chain(&module_notify_list,
4129                                     MODULE_STATE_GOING, mod);
4130        klp_module_going(mod);
4131 bug_cleanup:
4132        mod->state = MODULE_STATE_GOING;
4133        /* module_bug_cleanup needs module_mutex protection */
4134        mutex_lock(&module_mutex);
4135        module_bug_cleanup(mod);
4136        mutex_unlock(&module_mutex);
4137
4138 ddebug_cleanup:
4139        ftrace_release_mod(mod);
4140        dynamic_debug_remove(mod, info->debug);
4141        synchronize_rcu();
4142        kfree(mod->args);
4143 free_arch_cleanup:
4144        cfi_cleanup(mod);
4145        module_arch_cleanup(mod);
4146 free_modinfo:
4147        free_modinfo(mod);
4148 free_unload:
4149        module_unload_free(mod);
4150 unlink_mod:
4151        mutex_lock(&module_mutex);
4152        /* Unlink carefully: kallsyms could be walking list. */
4153        list_del_rcu(&mod->list);
4154        mod_tree_remove(mod);
4155        wake_up_all(&module_wq);
4156        /* Wait for RCU-sched synchronizing before releasing mod->list. */
4157        synchronize_rcu();
4158        mutex_unlock(&module_mutex);
4159 free_module:
4160        /* Free lock-classes; relies on the preceding sync_rcu() */
4161        lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4162
4163        module_deallocate(mod, info);
4164 free_copy:
4165        free_copy(info, flags);
4166        return err;
4167}
4168
4169SYSCALL_DEFINE3(init_module, void __user *, umod,
4170                unsigned long, len, const char __user *, uargs)
4171{
4172        int err;
4173        struct load_info info = { };
4174
4175        err = may_init_module();
4176        if (err)
4177                return err;
4178
4179        pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4180               umod, len, uargs);
4181
4182        err = copy_module_from_user(umod, len, &info);
4183        if (err)
4184                return err;
4185
4186        return load_module(&info, uargs, 0);
4187}
4188
4189SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4190{
4191        struct load_info info = { };
4192        void *buf = NULL;
4193        int len;
4194        int err;
4195
4196        err = may_init_module();
4197        if (err)
4198                return err;
4199
4200        pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4201
4202        if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4203                      |MODULE_INIT_IGNORE_VERMAGIC
4204                      |MODULE_INIT_COMPRESSED_FILE))
4205                return -EINVAL;
4206
4207        len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
4208                                       READING_MODULE);
4209        if (len < 0)
4210                return len;
4211
4212        if (flags & MODULE_INIT_COMPRESSED_FILE) {
4213                err = module_decompress(&info, buf, len);
4214                vfree(buf); /* compressed data is no longer needed */
4215                if (err)
4216                        return err;
4217        } else {
4218                info.hdr = buf;
4219                info.len = len;
4220        }
4221
4222        return load_module(&info, uargs, flags);
4223}
4224
4225static inline int within(unsigned long addr, void *start, unsigned long size)
4226{
4227        return ((void *)addr >= start && (void *)addr < start + size);
4228}
4229
4230#ifdef CONFIG_KALLSYMS
4231/*
4232 * This ignores the intensely annoying "mapping symbols" found
4233 * in ARM ELF files: $a, $t and $d.
4234 */
4235static inline int is_arm_mapping_symbol(const char *str)
4236{
4237        if (str[0] == '.' && str[1] == 'L')
4238                return true;
4239        return str[0] == '$' && strchr("axtd", str[1])
4240               && (str[2] == '\0' || str[2] == '.');
4241}
4242
4243static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4244{
4245        return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4246}
4247
4248/*
4249 * Given a module and address, find the corresponding symbol and return its name
4250 * while providing its size and offset if needed.
4251 */
4252static const char *find_kallsyms_symbol(struct module *mod,
4253                                        unsigned long addr,
4254                                        unsigned long *size,
4255                                        unsigned long *offset)
4256{
4257        unsigned int i, best = 0;
4258        unsigned long nextval, bestval;
4259        struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4260
4261        /* At worse, next value is at end of module */
4262        if (within_module_init(addr, mod))
4263                nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4264        else
4265                nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4266
4267        bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4268
4269        /*
4270         * Scan for closest preceding symbol, and next symbol. (ELF
4271         * starts real symbols at 1).
4272         */
4273        for (i = 1; i < kallsyms->num_symtab; i++) {
4274                const Elf_Sym *sym = &kallsyms->symtab[i];
4275                unsigned long thisval = kallsyms_symbol_value(sym);
4276
4277                if (sym->st_shndx == SHN_UNDEF)
4278                        continue;
4279
4280                /*
4281                 * We ignore unnamed symbols: they're uninformative
4282                 * and inserted at a whim.
4283                 */
4284                if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4285                    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4286                        continue;
4287
4288                if (thisval <= addr && thisval > bestval) {
4289                        best = i;
4290                        bestval = thisval;
4291                }
4292                if (thisval > addr && thisval < nextval)
4293                        nextval = thisval;
4294        }
4295
4296        if (!best)
4297                return NULL;
4298
4299        if (size)
4300                *size = nextval - bestval;
4301        if (offset)
4302                *offset = addr - bestval;
4303
4304        return kallsyms_symbol_name(kallsyms, best);
4305}
4306
4307void * __weak dereference_module_function_descriptor(struct module *mod,
4308                                                     void *ptr)
4309{
4310        return ptr;
4311}
4312
4313/*
4314 * For kallsyms to ask for address resolution.  NULL means not found.  Careful
4315 * not to lock to avoid deadlock on oopses, simply disable preemption.
4316 */
4317const char *module_address_lookup(unsigned long addr,
4318                            unsigned long *size,
4319                            unsigned long *offset,
4320                            char **modname,
4321                            const unsigned char **modbuildid,
4322                            char *namebuf)
4323{
4324        const char *ret = NULL;
4325        struct module *mod;
4326
4327        preempt_disable();
4328        mod = __module_address(addr);
4329        if (mod) {
4330                if (modname)
4331                        *modname = mod->name;
4332                if (modbuildid) {
4333#if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4334                        *modbuildid = mod->build_id;
4335#else
4336                        *modbuildid = NULL;
4337#endif
4338                }
4339
4340                ret = find_kallsyms_symbol(mod, addr, size, offset);
4341        }
4342        /* Make a copy in here where it's safe */
4343        if (ret) {
4344                strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4345                ret = namebuf;
4346        }
4347        preempt_enable();
4348
4349        return ret;
4350}
4351
4352int lookup_module_symbol_name(unsigned long addr, char *symname)
4353{
4354        struct module *mod;
4355
4356        preempt_disable();
4357        list_for_each_entry_rcu(mod, &modules, list) {
4358                if (mod->state == MODULE_STATE_UNFORMED)
4359                        continue;
4360                if (within_module(addr, mod)) {
4361                        const char *sym;
4362
4363                        sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4364                        if (!sym)
4365                                goto out;
4366
4367                        strlcpy(symname, sym, KSYM_NAME_LEN);
4368                        preempt_enable();
4369                        return 0;
4370                }
4371        }
4372out:
4373        preempt_enable();
4374        return -ERANGE;
4375}
4376
4377int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4378                        unsigned long *offset, char *modname, char *name)
4379{
4380        struct module *mod;
4381
4382        preempt_disable();
4383        list_for_each_entry_rcu(mod, &modules, list) {
4384                if (mod->state == MODULE_STATE_UNFORMED)
4385                        continue;
4386                if (within_module(addr, mod)) {
4387                        const char *sym;
4388
4389                        sym = find_kallsyms_symbol(mod, addr, size, offset);
4390                        if (!sym)
4391                                goto out;
4392                        if (modname)
4393                                strlcpy(modname, mod->name, MODULE_NAME_LEN);
4394                        if (name)
4395                                strlcpy(name, sym, KSYM_NAME_LEN);
4396                        preempt_enable();
4397                        return 0;
4398                }
4399        }
4400out:
4401        preempt_enable();
4402        return -ERANGE;
4403}
4404
4405int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4406                        char *name, char *module_name, int *exported)
4407{
4408        struct module *mod;
4409
4410        preempt_disable();
4411        list_for_each_entry_rcu(mod, &modules, list) {
4412                struct mod_kallsyms *kallsyms;
4413
4414                if (mod->state == MODULE_STATE_UNFORMED)
4415                        continue;
4416                kallsyms = rcu_dereference_sched(mod->kallsyms);
4417                if (symnum < kallsyms->num_symtab) {
4418                        const Elf_Sym *sym = &kallsyms->symtab[symnum];
4419
4420                        *value = kallsyms_symbol_value(sym);
4421                        *type = kallsyms->typetab[symnum];
4422                        strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4423                        strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4424                        *exported = is_exported(name, *value, mod);
4425                        preempt_enable();
4426                        return 0;
4427                }
4428                symnum -= kallsyms->num_symtab;
4429        }
4430        preempt_enable();
4431        return -ERANGE;
4432}
4433
4434/* Given a module and name of symbol, find and return the symbol's value */
4435static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4436{
4437        unsigned int i;
4438        struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4439
4440        for (i = 0; i < kallsyms->num_symtab; i++) {
4441                const Elf_Sym *sym = &kallsyms->symtab[i];
4442
4443                if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4444                    sym->st_shndx != SHN_UNDEF)
4445                        return kallsyms_symbol_value(sym);
4446        }
4447        return 0;
4448}
4449
4450/* Look for this name: can be of form module:name. */
4451unsigned long module_kallsyms_lookup_name(const char *name)
4452{
4453        struct module *mod;
4454        char *colon;
4455        unsigned long ret = 0;
4456
4457        /* Don't lock: we're in enough trouble already. */
4458        preempt_disable();
4459        if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4460                if ((mod = find_module_all(name, colon - name, false)) != NULL)
4461                        ret = find_kallsyms_symbol_value(mod, colon+1);
4462        } else {
4463                list_for_each_entry_rcu(mod, &modules, list) {
4464                        if (mod->state == MODULE_STATE_UNFORMED)
4465                                continue;
4466                        if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4467                                break;
4468                }
4469        }
4470        preempt_enable();
4471        return ret;
4472}
4473
4474#ifdef CONFIG_LIVEPATCH
4475int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4476                                             struct module *, unsigned long),
4477                                   void *data)
4478{
4479        struct module *mod;
4480        unsigned int i;
4481        int ret = 0;
4482
4483        mutex_lock(&module_mutex);
4484        list_for_each_entry(mod, &modules, list) {
4485                /* We hold module_mutex: no need for rcu_dereference_sched */
4486                struct mod_kallsyms *kallsyms = mod->kallsyms;
4487
4488                if (mod->state == MODULE_STATE_UNFORMED)
4489                        continue;
4490                for (i = 0; i < kallsyms->num_symtab; i++) {
4491                        const Elf_Sym *sym = &kallsyms->symtab[i];
4492
4493                        if (sym->st_shndx == SHN_UNDEF)
4494                                continue;
4495
4496                        ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4497                                 mod, kallsyms_symbol_value(sym));
4498                        if (ret != 0)
4499                                goto out;
4500
4501                        cond_resched();
4502                }
4503        }
4504out:
4505        mutex_unlock(&module_mutex);
4506        return ret;
4507}
4508#endif /* CONFIG_LIVEPATCH */
4509#endif /* CONFIG_KALLSYMS */
4510
4511static void cfi_init(struct module *mod)
4512{
4513#ifdef CONFIG_CFI_CLANG
4514        initcall_t *init;
4515        exitcall_t *exit;
4516
4517        rcu_read_lock_sched();
4518        mod->cfi_check = (cfi_check_fn)
4519                find_kallsyms_symbol_value(mod, "__cfi_check");
4520        init = (initcall_t *)
4521                find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4522        exit = (exitcall_t *)
4523                find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4524        rcu_read_unlock_sched();
4525
4526        /* Fix init/exit functions to point to the CFI jump table */
4527        if (init)
4528                mod->init = *init;
4529#ifdef CONFIG_MODULE_UNLOAD
4530        if (exit)
4531                mod->exit = *exit;
4532#endif
4533
4534        cfi_module_add(mod, module_addr_min);
4535#endif
4536}
4537
4538static void cfi_cleanup(struct module *mod)
4539{
4540#ifdef CONFIG_CFI_CLANG
4541        cfi_module_remove(mod, module_addr_min);
4542#endif
4543}
4544
4545/* Maximum number of characters written by module_flags() */
4546#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4547
4548/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4549static char *module_flags(struct module *mod, char *buf)
4550{
4551        int bx = 0;
4552
4553        BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4554        if (mod->taints ||
4555            mod->state == MODULE_STATE_GOING ||
4556            mod->state == MODULE_STATE_COMING) {
4557                buf[bx++] = '(';
4558                bx += module_flags_taint(mod, buf + bx);
4559                /* Show a - for module-is-being-unloaded */
4560                if (mod->state == MODULE_STATE_GOING)
4561                        buf[bx++] = '-';
4562                /* Show a + for module-is-being-loaded */
4563                if (mod->state == MODULE_STATE_COMING)
4564                        buf[bx++] = '+';
4565                buf[bx++] = ')';
4566        }
4567        buf[bx] = '\0';
4568
4569        return buf;
4570}
4571
4572#ifdef CONFIG_PROC_FS
4573/* Called by the /proc file system to return a list of modules. */
4574static void *m_start(struct seq_file *m, loff_t *pos)
4575{
4576        mutex_lock(&module_mutex);
4577        return seq_list_start(&modules, *pos);
4578}
4579
4580static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4581{
4582        return seq_list_next(p, &modules, pos);
4583}
4584
4585static void m_stop(struct seq_file *m, void *p)
4586{
4587        mutex_unlock(&module_mutex);
4588}
4589
4590static int m_show(struct seq_file *m, void *p)
4591{
4592        struct module *mod = list_entry(p, struct module, list);
4593        char buf[MODULE_FLAGS_BUF_SIZE];
4594        void *value;
4595
4596        /* We always ignore unformed modules. */
4597        if (mod->state == MODULE_STATE_UNFORMED)
4598                return 0;
4599
4600        seq_printf(m, "%s %u",
4601                   mod->name, mod->init_layout.size + mod->core_layout.size);
4602        print_unload_info(m, mod);
4603
4604        /* Informative for users. */
4605        seq_printf(m, " %s",
4606                   mod->state == MODULE_STATE_GOING ? "Unloading" :
4607                   mod->state == MODULE_STATE_COMING ? "Loading" :
4608                   "Live");
4609        /* Used by oprofile and other similar tools. */
4610        value = m->private ? NULL : mod->core_layout.base;
4611        seq_printf(m, " 0x%px", value);
4612
4613        /* Taints info */
4614        if (mod->taints)
4615                seq_printf(m, " %s", module_flags(mod, buf));
4616
4617        seq_puts(m, "\n");
4618        return 0;
4619}
4620
4621/*
4622 * Format: modulename size refcount deps address
4623 *
4624 * Where refcount is a number or -, and deps is a comma-separated list
4625 * of depends or -.
4626 */
4627static const struct seq_operations modules_op = {
4628        .start  = m_start,
4629        .next   = m_next,
4630        .stop   = m_stop,
4631        .show   = m_show
4632};
4633
4634/*
4635 * This also sets the "private" pointer to non-NULL if the
4636 * kernel pointers should be hidden (so you can just test
4637 * "m->private" to see if you should keep the values private).
4638 *
4639 * We use the same logic as for /proc/kallsyms.
4640 */
4641static int modules_open(struct inode *inode, struct file *file)
4642{
4643        int err = seq_open(file, &modules_op);
4644
4645        if (!err) {
4646                struct seq_file *m = file->private_data;
4647                m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4648        }
4649
4650        return err;
4651}
4652
4653static const struct proc_ops modules_proc_ops = {
4654        .proc_flags     = PROC_ENTRY_PERMANENT,
4655        .proc_open      = modules_open,
4656        .proc_read      = seq_read,
4657        .proc_lseek     = seq_lseek,
4658        .proc_release   = seq_release,
4659};
4660
4661static int __init proc_modules_init(void)
4662{
4663        proc_create("modules", 0, NULL, &modules_proc_ops);
4664        return 0;
4665}
4666module_init(proc_modules_init);
4667#endif
4668
4669/* Given an address, look for it in the module exception tables. */
4670const struct exception_table_entry *search_module_extables(unsigned long addr)
4671{
4672        const struct exception_table_entry *e = NULL;
4673        struct module *mod;
4674
4675        preempt_disable();
4676        mod = __module_address(addr);
4677        if (!mod)
4678                goto out;
4679
4680        if (!mod->num_exentries)
4681                goto out;
4682
4683        e = search_extable(mod->extable,
4684                           mod->num_exentries,
4685                           addr);
4686out:
4687        preempt_enable();
4688
4689        /*
4690         * Now, if we found one, we are running inside it now, hence
4691         * we cannot unload the module, hence no refcnt needed.
4692         */
4693        return e;
4694}
4695
4696/**
4697 * is_module_address() - is this address inside a module?
4698 * @addr: the address to check.
4699 *
4700 * See is_module_text_address() if you simply want to see if the address
4701 * is code (not data).
4702 */
4703bool is_module_address(unsigned long addr)
4704{
4705        bool ret;
4706
4707        preempt_disable();
4708        ret = __module_address(addr) != NULL;
4709        preempt_enable();
4710
4711        return ret;
4712}
4713
4714/**
4715 * __module_address() - get the module which contains an address.
4716 * @addr: the address.
4717 *
4718 * Must be called with preempt disabled or module mutex held so that
4719 * module doesn't get freed during this.
4720 */
4721struct module *__module_address(unsigned long addr)
4722{
4723        struct module *mod;
4724
4725        if (addr < module_addr_min || addr > module_addr_max)
4726                return NULL;
4727
4728        module_assert_mutex_or_preempt();
4729
4730        mod = mod_find(addr);
4731        if (mod) {
4732                BUG_ON(!within_module(addr, mod));
4733                if (mod->state == MODULE_STATE_UNFORMED)
4734                        mod = NULL;
4735        }
4736        return mod;
4737}
4738
4739/**
4740 * is_module_text_address() - is this address inside module code?
4741 * @addr: the address to check.
4742 *
4743 * See is_module_address() if you simply want to see if the address is
4744 * anywhere in a module.  See kernel_text_address() for testing if an
4745 * address corresponds to kernel or module code.
4746 */
4747bool is_module_text_address(unsigned long addr)
4748{
4749        bool ret;
4750
4751        preempt_disable();
4752        ret = __module_text_address(addr) != NULL;
4753        preempt_enable();
4754
4755        return ret;
4756}
4757
4758/**
4759 * __module_text_address() - get the module whose code contains an address.
4760 * @addr: the address.
4761 *
4762 * Must be called with preempt disabled or module mutex held so that
4763 * module doesn't get freed during this.
4764 */
4765struct module *__module_text_address(unsigned long addr)
4766{
4767        struct module *mod = __module_address(addr);
4768        if (mod) {
4769                /* Make sure it's within the text section. */
4770                if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4771                    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4772                        mod = NULL;
4773        }
4774        return mod;
4775}
4776
4777/* Don't grab lock, we're oopsing. */
4778void print_modules(void)
4779{
4780        struct module *mod;
4781        char buf[MODULE_FLAGS_BUF_SIZE];
4782
4783        printk(KERN_DEFAULT "Modules linked in:");
4784        /* Most callers should already have preempt disabled, but make sure */
4785        preempt_disable();
4786        list_for_each_entry_rcu(mod, &modules, list) {
4787                if (mod->state == MODULE_STATE_UNFORMED)
4788                        continue;
4789                pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4790        }
4791        preempt_enable();
4792        if (last_unloaded_module[0])
4793                pr_cont(" [last unloaded: %s]", last_unloaded_module);
4794        pr_cont("\n");
4795}
4796
4797#ifdef CONFIG_MODVERSIONS
4798/*
4799 * Generate the signature for all relevant module structures here.
4800 * If these change, we don't want to try to parse the module.
4801 */
4802void module_layout(struct module *mod,
4803                   struct modversion_info *ver,
4804                   struct kernel_param *kp,
4805                   struct kernel_symbol *ks,
4806                   struct tracepoint * const *tp)
4807{
4808}
4809EXPORT_SYMBOL(module_layout);
4810#endif
4811