linux/kernel/resource.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      linux/kernel/resource.c
   4 *
   5 * Copyright (C) 1999   Linus Torvalds
   6 * Copyright (C) 1999   Martin Mares <mj@ucw.cz>
   7 *
   8 * Arbitrary resource management.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/export.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/proc_fs.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/sched.h>
  23#include <linux/seq_file.h>
  24#include <linux/device.h>
  25#include <linux/pfn.h>
  26#include <linux/mm.h>
  27#include <linux/mount.h>
  28#include <linux/resource_ext.h>
  29#include <uapi/linux/magic.h>
  30#include <asm/io.h>
  31
  32
  33struct resource ioport_resource = {
  34        .name   = "PCI IO",
  35        .start  = 0,
  36        .end    = IO_SPACE_LIMIT,
  37        .flags  = IORESOURCE_IO,
  38};
  39EXPORT_SYMBOL(ioport_resource);
  40
  41struct resource iomem_resource = {
  42        .name   = "PCI mem",
  43        .start  = 0,
  44        .end    = -1,
  45        .flags  = IORESOURCE_MEM,
  46};
  47EXPORT_SYMBOL(iomem_resource);
  48
  49/* constraints to be met while allocating resources */
  50struct resource_constraint {
  51        resource_size_t min, max, align;
  52        resource_size_t (*alignf)(void *, const struct resource *,
  53                        resource_size_t, resource_size_t);
  54        void *alignf_data;
  55};
  56
  57static DEFINE_RWLOCK(resource_lock);
  58
  59static struct resource *next_resource(struct resource *p)
  60{
  61        if (p->child)
  62                return p->child;
  63        while (!p->sibling && p->parent)
  64                p = p->parent;
  65        return p->sibling;
  66}
  67
  68static struct resource *next_resource_skip_children(struct resource *p)
  69{
  70        while (!p->sibling && p->parent)
  71                p = p->parent;
  72        return p->sibling;
  73}
  74
  75#define for_each_resource(_root, _p, _skip_children) \
  76        for ((_p) = (_root)->child; (_p); \
  77             (_p) = (_skip_children) ? next_resource_skip_children(_p) : \
  78                                       next_resource(_p))
  79
  80static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  81{
  82        struct resource *p = v;
  83        (*pos)++;
  84        return (void *)next_resource(p);
  85}
  86
  87#ifdef CONFIG_PROC_FS
  88
  89enum { MAX_IORES_LEVEL = 5 };
  90
  91static void *r_start(struct seq_file *m, loff_t *pos)
  92        __acquires(resource_lock)
  93{
  94        struct resource *p = pde_data(file_inode(m->file));
  95        loff_t l = 0;
  96        read_lock(&resource_lock);
  97        for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  98                ;
  99        return p;
 100}
 101
 102static void r_stop(struct seq_file *m, void *v)
 103        __releases(resource_lock)
 104{
 105        read_unlock(&resource_lock);
 106}
 107
 108static int r_show(struct seq_file *m, void *v)
 109{
 110        struct resource *root = pde_data(file_inode(m->file));
 111        struct resource *r = v, *p;
 112        unsigned long long start, end;
 113        int width = root->end < 0x10000 ? 4 : 8;
 114        int depth;
 115
 116        for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 117                if (p->parent == root)
 118                        break;
 119
 120        if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 121                start = r->start;
 122                end = r->end;
 123        } else {
 124                start = end = 0;
 125        }
 126
 127        seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 128                        depth * 2, "",
 129                        width, start,
 130                        width, end,
 131                        r->name ? r->name : "<BAD>");
 132        return 0;
 133}
 134
 135static const struct seq_operations resource_op = {
 136        .start  = r_start,
 137        .next   = r_next,
 138        .stop   = r_stop,
 139        .show   = r_show,
 140};
 141
 142static int __init ioresources_init(void)
 143{
 144        proc_create_seq_data("ioports", 0, NULL, &resource_op,
 145                        &ioport_resource);
 146        proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
 147        return 0;
 148}
 149__initcall(ioresources_init);
 150
 151#endif /* CONFIG_PROC_FS */
 152
 153static void free_resource(struct resource *res)
 154{
 155        /**
 156         * If the resource was allocated using memblock early during boot
 157         * we'll leak it here: we can only return full pages back to the
 158         * buddy and trying to be smart and reusing them eventually in
 159         * alloc_resource() overcomplicates resource handling.
 160         */
 161        if (res && PageSlab(virt_to_head_page(res)))
 162                kfree(res);
 163}
 164
 165static struct resource *alloc_resource(gfp_t flags)
 166{
 167        return kzalloc(sizeof(struct resource), flags);
 168}
 169
 170/* Return the conflict entry if you can't request it */
 171static struct resource * __request_resource(struct resource *root, struct resource *new)
 172{
 173        resource_size_t start = new->start;
 174        resource_size_t end = new->end;
 175        struct resource *tmp, **p;
 176
 177        if (end < start)
 178                return root;
 179        if (start < root->start)
 180                return root;
 181        if (end > root->end)
 182                return root;
 183        p = &root->child;
 184        for (;;) {
 185                tmp = *p;
 186                if (!tmp || tmp->start > end) {
 187                        new->sibling = tmp;
 188                        *p = new;
 189                        new->parent = root;
 190                        return NULL;
 191                }
 192                p = &tmp->sibling;
 193                if (tmp->end < start)
 194                        continue;
 195                return tmp;
 196        }
 197}
 198
 199static int __release_resource(struct resource *old, bool release_child)
 200{
 201        struct resource *tmp, **p, *chd;
 202
 203        p = &old->parent->child;
 204        for (;;) {
 205                tmp = *p;
 206                if (!tmp)
 207                        break;
 208                if (tmp == old) {
 209                        if (release_child || !(tmp->child)) {
 210                                *p = tmp->sibling;
 211                        } else {
 212                                for (chd = tmp->child;; chd = chd->sibling) {
 213                                        chd->parent = tmp->parent;
 214                                        if (!(chd->sibling))
 215                                                break;
 216                                }
 217                                *p = tmp->child;
 218                                chd->sibling = tmp->sibling;
 219                        }
 220                        old->parent = NULL;
 221                        return 0;
 222                }
 223                p = &tmp->sibling;
 224        }
 225        return -EINVAL;
 226}
 227
 228static void __release_child_resources(struct resource *r)
 229{
 230        struct resource *tmp, *p;
 231        resource_size_t size;
 232
 233        p = r->child;
 234        r->child = NULL;
 235        while (p) {
 236                tmp = p;
 237                p = p->sibling;
 238
 239                tmp->parent = NULL;
 240                tmp->sibling = NULL;
 241                __release_child_resources(tmp);
 242
 243                printk(KERN_DEBUG "release child resource %pR\n", tmp);
 244                /* need to restore size, and keep flags */
 245                size = resource_size(tmp);
 246                tmp->start = 0;
 247                tmp->end = size - 1;
 248        }
 249}
 250
 251void release_child_resources(struct resource *r)
 252{
 253        write_lock(&resource_lock);
 254        __release_child_resources(r);
 255        write_unlock(&resource_lock);
 256}
 257
 258/**
 259 * request_resource_conflict - request and reserve an I/O or memory resource
 260 * @root: root resource descriptor
 261 * @new: resource descriptor desired by caller
 262 *
 263 * Returns 0 for success, conflict resource on error.
 264 */
 265struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 266{
 267        struct resource *conflict;
 268
 269        write_lock(&resource_lock);
 270        conflict = __request_resource(root, new);
 271        write_unlock(&resource_lock);
 272        return conflict;
 273}
 274
 275/**
 276 * request_resource - request and reserve an I/O or memory resource
 277 * @root: root resource descriptor
 278 * @new: resource descriptor desired by caller
 279 *
 280 * Returns 0 for success, negative error code on error.
 281 */
 282int request_resource(struct resource *root, struct resource *new)
 283{
 284        struct resource *conflict;
 285
 286        conflict = request_resource_conflict(root, new);
 287        return conflict ? -EBUSY : 0;
 288}
 289
 290EXPORT_SYMBOL(request_resource);
 291
 292/**
 293 * release_resource - release a previously reserved resource
 294 * @old: resource pointer
 295 */
 296int release_resource(struct resource *old)
 297{
 298        int retval;
 299
 300        write_lock(&resource_lock);
 301        retval = __release_resource(old, true);
 302        write_unlock(&resource_lock);
 303        return retval;
 304}
 305
 306EXPORT_SYMBOL(release_resource);
 307
 308/**
 309 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
 310 *                       [@start..@end].
 311 *
 312 * If a resource is found, returns 0 and @*res is overwritten with the part
 313 * of the resource that's within [@start..@end]; if none is found, returns
 314 * -ENODEV.  Returns -EINVAL for invalid parameters.
 315 *
 316 * @start:      start address of the resource searched for
 317 * @end:        end address of same resource
 318 * @flags:      flags which the resource must have
 319 * @desc:       descriptor the resource must have
 320 * @res:        return ptr, if resource found
 321 *
 322 * The caller must specify @start, @end, @flags, and @desc
 323 * (which may be IORES_DESC_NONE).
 324 */
 325static int find_next_iomem_res(resource_size_t start, resource_size_t end,
 326                               unsigned long flags, unsigned long desc,
 327                               struct resource *res)
 328{
 329        struct resource *p;
 330
 331        if (!res)
 332                return -EINVAL;
 333
 334        if (start >= end)
 335                return -EINVAL;
 336
 337        read_lock(&resource_lock);
 338
 339        for (p = iomem_resource.child; p; p = next_resource(p)) {
 340                /* If we passed the resource we are looking for, stop */
 341                if (p->start > end) {
 342                        p = NULL;
 343                        break;
 344                }
 345
 346                /* Skip until we find a range that matches what we look for */
 347                if (p->end < start)
 348                        continue;
 349
 350                if ((p->flags & flags) != flags)
 351                        continue;
 352                if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 353                        continue;
 354
 355                /* Found a match, break */
 356                break;
 357        }
 358
 359        if (p) {
 360                /* copy data */
 361                *res = (struct resource) {
 362                        .start = max(start, p->start),
 363                        .end = min(end, p->end),
 364                        .flags = p->flags,
 365                        .desc = p->desc,
 366                        .parent = p->parent,
 367                };
 368        }
 369
 370        read_unlock(&resource_lock);
 371        return p ? 0 : -ENODEV;
 372}
 373
 374static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
 375                                 unsigned long flags, unsigned long desc,
 376                                 void *arg,
 377                                 int (*func)(struct resource *, void *))
 378{
 379        struct resource res;
 380        int ret = -EINVAL;
 381
 382        while (start < end &&
 383               !find_next_iomem_res(start, end, flags, desc, &res)) {
 384                ret = (*func)(&res, arg);
 385                if (ret)
 386                        break;
 387
 388                start = res.end + 1;
 389        }
 390
 391        return ret;
 392}
 393
 394/**
 395 * walk_iomem_res_desc - Walks through iomem resources and calls func()
 396 *                       with matching resource ranges.
 397 * *
 398 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 399 * @flags: I/O resource flags
 400 * @start: start addr
 401 * @end: end addr
 402 * @arg: function argument for the callback @func
 403 * @func: callback function that is called for each qualifying resource area
 404 *
 405 * All the memory ranges which overlap start,end and also match flags and
 406 * desc are valid candidates.
 407 *
 408 * NOTE: For a new descriptor search, define a new IORES_DESC in
 409 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 410 */
 411int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 412                u64 end, void *arg, int (*func)(struct resource *, void *))
 413{
 414        return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
 415}
 416EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
 417
 418/*
 419 * This function calls the @func callback against all memory ranges of type
 420 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 421 * Now, this function is only for System RAM, it deals with full ranges and
 422 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 423 * ranges.
 424 */
 425int walk_system_ram_res(u64 start, u64 end, void *arg,
 426                        int (*func)(struct resource *, void *))
 427{
 428        unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 429
 430        return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 431                                     func);
 432}
 433
 434/*
 435 * This function calls the @func callback against all memory ranges, which
 436 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 437 */
 438int walk_mem_res(u64 start, u64 end, void *arg,
 439                 int (*func)(struct resource *, void *))
 440{
 441        unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 442
 443        return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 444                                     func);
 445}
 446
 447/*
 448 * This function calls the @func callback against all memory ranges of type
 449 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 450 * It is to be used only for System RAM.
 451 */
 452int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 453                          void *arg, int (*func)(unsigned long, unsigned long, void *))
 454{
 455        resource_size_t start, end;
 456        unsigned long flags;
 457        struct resource res;
 458        unsigned long pfn, end_pfn;
 459        int ret = -EINVAL;
 460
 461        start = (u64) start_pfn << PAGE_SHIFT;
 462        end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 463        flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 464        while (start < end &&
 465               !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
 466                pfn = PFN_UP(res.start);
 467                end_pfn = PFN_DOWN(res.end + 1);
 468                if (end_pfn > pfn)
 469                        ret = (*func)(pfn, end_pfn - pfn, arg);
 470                if (ret)
 471                        break;
 472                start = res.end + 1;
 473        }
 474        return ret;
 475}
 476
 477static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 478{
 479        return 1;
 480}
 481
 482/*
 483 * This generic page_is_ram() returns true if specified address is
 484 * registered as System RAM in iomem_resource list.
 485 */
 486int __weak page_is_ram(unsigned long pfn)
 487{
 488        return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 489}
 490EXPORT_SYMBOL_GPL(page_is_ram);
 491
 492static int __region_intersects(resource_size_t start, size_t size,
 493                        unsigned long flags, unsigned long desc)
 494{
 495        struct resource res;
 496        int type = 0; int other = 0;
 497        struct resource *p;
 498
 499        res.start = start;
 500        res.end = start + size - 1;
 501
 502        for (p = iomem_resource.child; p ; p = p->sibling) {
 503                bool is_type = (((p->flags & flags) == flags) &&
 504                                ((desc == IORES_DESC_NONE) ||
 505                                 (desc == p->desc)));
 506
 507                if (resource_overlaps(p, &res))
 508                        is_type ? type++ : other++;
 509        }
 510
 511        if (type == 0)
 512                return REGION_DISJOINT;
 513
 514        if (other == 0)
 515                return REGION_INTERSECTS;
 516
 517        return REGION_MIXED;
 518}
 519
 520/**
 521 * region_intersects() - determine intersection of region with known resources
 522 * @start: region start address
 523 * @size: size of region
 524 * @flags: flags of resource (in iomem_resource)
 525 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 526 *
 527 * Check if the specified region partially overlaps or fully eclipses a
 528 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 529 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 530 * return REGION_MIXED if the region overlaps @flags/@desc and another
 531 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 532 * and no other defined resource. Note that REGION_INTERSECTS is also
 533 * returned in the case when the specified region overlaps RAM and undefined
 534 * memory holes.
 535 *
 536 * region_intersect() is used by memory remapping functions to ensure
 537 * the user is not remapping RAM and is a vast speed up over walking
 538 * through the resource table page by page.
 539 */
 540int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 541                      unsigned long desc)
 542{
 543        int ret;
 544
 545        read_lock(&resource_lock);
 546        ret = __region_intersects(start, size, flags, desc);
 547        read_unlock(&resource_lock);
 548
 549        return ret;
 550}
 551EXPORT_SYMBOL_GPL(region_intersects);
 552
 553void __weak arch_remove_reservations(struct resource *avail)
 554{
 555}
 556
 557static resource_size_t simple_align_resource(void *data,
 558                                             const struct resource *avail,
 559                                             resource_size_t size,
 560                                             resource_size_t align)
 561{
 562        return avail->start;
 563}
 564
 565static void resource_clip(struct resource *res, resource_size_t min,
 566                          resource_size_t max)
 567{
 568        if (res->start < min)
 569                res->start = min;
 570        if (res->end > max)
 571                res->end = max;
 572}
 573
 574/*
 575 * Find empty slot in the resource tree with the given range and
 576 * alignment constraints
 577 */
 578static int __find_resource(struct resource *root, struct resource *old,
 579                         struct resource *new,
 580                         resource_size_t  size,
 581                         struct resource_constraint *constraint)
 582{
 583        struct resource *this = root->child;
 584        struct resource tmp = *new, avail, alloc;
 585
 586        tmp.start = root->start;
 587        /*
 588         * Skip past an allocated resource that starts at 0, since the assignment
 589         * of this->start - 1 to tmp->end below would cause an underflow.
 590         */
 591        if (this && this->start == root->start) {
 592                tmp.start = (this == old) ? old->start : this->end + 1;
 593                this = this->sibling;
 594        }
 595        for(;;) {
 596                if (this)
 597                        tmp.end = (this == old) ?  this->end : this->start - 1;
 598                else
 599                        tmp.end = root->end;
 600
 601                if (tmp.end < tmp.start)
 602                        goto next;
 603
 604                resource_clip(&tmp, constraint->min, constraint->max);
 605                arch_remove_reservations(&tmp);
 606
 607                /* Check for overflow after ALIGN() */
 608                avail.start = ALIGN(tmp.start, constraint->align);
 609                avail.end = tmp.end;
 610                avail.flags = new->flags & ~IORESOURCE_UNSET;
 611                if (avail.start >= tmp.start) {
 612                        alloc.flags = avail.flags;
 613                        alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 614                                        size, constraint->align);
 615                        alloc.end = alloc.start + size - 1;
 616                        if (alloc.start <= alloc.end &&
 617                            resource_contains(&avail, &alloc)) {
 618                                new->start = alloc.start;
 619                                new->end = alloc.end;
 620                                return 0;
 621                        }
 622                }
 623
 624next:           if (!this || this->end == root->end)
 625                        break;
 626
 627                if (this != old)
 628                        tmp.start = this->end + 1;
 629                this = this->sibling;
 630        }
 631        return -EBUSY;
 632}
 633
 634/*
 635 * Find empty slot in the resource tree given range and alignment.
 636 */
 637static int find_resource(struct resource *root, struct resource *new,
 638                        resource_size_t size,
 639                        struct resource_constraint  *constraint)
 640{
 641        return  __find_resource(root, NULL, new, size, constraint);
 642}
 643
 644/**
 645 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 646 *      The resource will be relocated if the new size cannot be reallocated in the
 647 *      current location.
 648 *
 649 * @root: root resource descriptor
 650 * @old:  resource descriptor desired by caller
 651 * @newsize: new size of the resource descriptor
 652 * @constraint: the size and alignment constraints to be met.
 653 */
 654static int reallocate_resource(struct resource *root, struct resource *old,
 655                               resource_size_t newsize,
 656                               struct resource_constraint *constraint)
 657{
 658        int err=0;
 659        struct resource new = *old;
 660        struct resource *conflict;
 661
 662        write_lock(&resource_lock);
 663
 664        if ((err = __find_resource(root, old, &new, newsize, constraint)))
 665                goto out;
 666
 667        if (resource_contains(&new, old)) {
 668                old->start = new.start;
 669                old->end = new.end;
 670                goto out;
 671        }
 672
 673        if (old->child) {
 674                err = -EBUSY;
 675                goto out;
 676        }
 677
 678        if (resource_contains(old, &new)) {
 679                old->start = new.start;
 680                old->end = new.end;
 681        } else {
 682                __release_resource(old, true);
 683                *old = new;
 684                conflict = __request_resource(root, old);
 685                BUG_ON(conflict);
 686        }
 687out:
 688        write_unlock(&resource_lock);
 689        return err;
 690}
 691
 692
 693/**
 694 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 695 *      The resource will be reallocated with a new size if it was already allocated
 696 * @root: root resource descriptor
 697 * @new: resource descriptor desired by caller
 698 * @size: requested resource region size
 699 * @min: minimum boundary to allocate
 700 * @max: maximum boundary to allocate
 701 * @align: alignment requested, in bytes
 702 * @alignf: alignment function, optional, called if not NULL
 703 * @alignf_data: arbitrary data to pass to the @alignf function
 704 */
 705int allocate_resource(struct resource *root, struct resource *new,
 706                      resource_size_t size, resource_size_t min,
 707                      resource_size_t max, resource_size_t align,
 708                      resource_size_t (*alignf)(void *,
 709                                                const struct resource *,
 710                                                resource_size_t,
 711                                                resource_size_t),
 712                      void *alignf_data)
 713{
 714        int err;
 715        struct resource_constraint constraint;
 716
 717        if (!alignf)
 718                alignf = simple_align_resource;
 719
 720        constraint.min = min;
 721        constraint.max = max;
 722        constraint.align = align;
 723        constraint.alignf = alignf;
 724        constraint.alignf_data = alignf_data;
 725
 726        if ( new->parent ) {
 727                /* resource is already allocated, try reallocating with
 728                   the new constraints */
 729                return reallocate_resource(root, new, size, &constraint);
 730        }
 731
 732        write_lock(&resource_lock);
 733        err = find_resource(root, new, size, &constraint);
 734        if (err >= 0 && __request_resource(root, new))
 735                err = -EBUSY;
 736        write_unlock(&resource_lock);
 737        return err;
 738}
 739
 740EXPORT_SYMBOL(allocate_resource);
 741
 742/**
 743 * lookup_resource - find an existing resource by a resource start address
 744 * @root: root resource descriptor
 745 * @start: resource start address
 746 *
 747 * Returns a pointer to the resource if found, NULL otherwise
 748 */
 749struct resource *lookup_resource(struct resource *root, resource_size_t start)
 750{
 751        struct resource *res;
 752
 753        read_lock(&resource_lock);
 754        for (res = root->child; res; res = res->sibling) {
 755                if (res->start == start)
 756                        break;
 757        }
 758        read_unlock(&resource_lock);
 759
 760        return res;
 761}
 762
 763/*
 764 * Insert a resource into the resource tree. If successful, return NULL,
 765 * otherwise return the conflicting resource (compare to __request_resource())
 766 */
 767static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 768{
 769        struct resource *first, *next;
 770
 771        for (;; parent = first) {
 772                first = __request_resource(parent, new);
 773                if (!first)
 774                        return first;
 775
 776                if (first == parent)
 777                        return first;
 778                if (WARN_ON(first == new))      /* duplicated insertion */
 779                        return first;
 780
 781                if ((first->start > new->start) || (first->end < new->end))
 782                        break;
 783                if ((first->start == new->start) && (first->end == new->end))
 784                        break;
 785        }
 786
 787        for (next = first; ; next = next->sibling) {
 788                /* Partial overlap? Bad, and unfixable */
 789                if (next->start < new->start || next->end > new->end)
 790                        return next;
 791                if (!next->sibling)
 792                        break;
 793                if (next->sibling->start > new->end)
 794                        break;
 795        }
 796
 797        new->parent = parent;
 798        new->sibling = next->sibling;
 799        new->child = first;
 800
 801        next->sibling = NULL;
 802        for (next = first; next; next = next->sibling)
 803                next->parent = new;
 804
 805        if (parent->child == first) {
 806                parent->child = new;
 807        } else {
 808                next = parent->child;
 809                while (next->sibling != first)
 810                        next = next->sibling;
 811                next->sibling = new;
 812        }
 813        return NULL;
 814}
 815
 816/**
 817 * insert_resource_conflict - Inserts resource in the resource tree
 818 * @parent: parent of the new resource
 819 * @new: new resource to insert
 820 *
 821 * Returns 0 on success, conflict resource if the resource can't be inserted.
 822 *
 823 * This function is equivalent to request_resource_conflict when no conflict
 824 * happens. If a conflict happens, and the conflicting resources
 825 * entirely fit within the range of the new resource, then the new
 826 * resource is inserted and the conflicting resources become children of
 827 * the new resource.
 828 *
 829 * This function is intended for producers of resources, such as FW modules
 830 * and bus drivers.
 831 */
 832struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 833{
 834        struct resource *conflict;
 835
 836        write_lock(&resource_lock);
 837        conflict = __insert_resource(parent, new);
 838        write_unlock(&resource_lock);
 839        return conflict;
 840}
 841
 842/**
 843 * insert_resource - Inserts a resource in the resource tree
 844 * @parent: parent of the new resource
 845 * @new: new resource to insert
 846 *
 847 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 848 *
 849 * This function is intended for producers of resources, such as FW modules
 850 * and bus drivers.
 851 */
 852int insert_resource(struct resource *parent, struct resource *new)
 853{
 854        struct resource *conflict;
 855
 856        conflict = insert_resource_conflict(parent, new);
 857        return conflict ? -EBUSY : 0;
 858}
 859EXPORT_SYMBOL_GPL(insert_resource);
 860
 861/**
 862 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 863 * @root: root resource descriptor
 864 * @new: new resource to insert
 865 *
 866 * Insert a resource into the resource tree, possibly expanding it in order
 867 * to make it encompass any conflicting resources.
 868 */
 869void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 870{
 871        if (new->parent)
 872                return;
 873
 874        write_lock(&resource_lock);
 875        for (;;) {
 876                struct resource *conflict;
 877
 878                conflict = __insert_resource(root, new);
 879                if (!conflict)
 880                        break;
 881                if (conflict == root)
 882                        break;
 883
 884                /* Ok, expand resource to cover the conflict, then try again .. */
 885                if (conflict->start < new->start)
 886                        new->start = conflict->start;
 887                if (conflict->end > new->end)
 888                        new->end = conflict->end;
 889
 890                printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 891        }
 892        write_unlock(&resource_lock);
 893}
 894
 895/**
 896 * remove_resource - Remove a resource in the resource tree
 897 * @old: resource to remove
 898 *
 899 * Returns 0 on success, -EINVAL if the resource is not valid.
 900 *
 901 * This function removes a resource previously inserted by insert_resource()
 902 * or insert_resource_conflict(), and moves the children (if any) up to
 903 * where they were before.  insert_resource() and insert_resource_conflict()
 904 * insert a new resource, and move any conflicting resources down to the
 905 * children of the new resource.
 906 *
 907 * insert_resource(), insert_resource_conflict() and remove_resource() are
 908 * intended for producers of resources, such as FW modules and bus drivers.
 909 */
 910int remove_resource(struct resource *old)
 911{
 912        int retval;
 913
 914        write_lock(&resource_lock);
 915        retval = __release_resource(old, false);
 916        write_unlock(&resource_lock);
 917        return retval;
 918}
 919EXPORT_SYMBOL_GPL(remove_resource);
 920
 921static int __adjust_resource(struct resource *res, resource_size_t start,
 922                                resource_size_t size)
 923{
 924        struct resource *tmp, *parent = res->parent;
 925        resource_size_t end = start + size - 1;
 926        int result = -EBUSY;
 927
 928        if (!parent)
 929                goto skip;
 930
 931        if ((start < parent->start) || (end > parent->end))
 932                goto out;
 933
 934        if (res->sibling && (res->sibling->start <= end))
 935                goto out;
 936
 937        tmp = parent->child;
 938        if (tmp != res) {
 939                while (tmp->sibling != res)
 940                        tmp = tmp->sibling;
 941                if (start <= tmp->end)
 942                        goto out;
 943        }
 944
 945skip:
 946        for (tmp = res->child; tmp; tmp = tmp->sibling)
 947                if ((tmp->start < start) || (tmp->end > end))
 948                        goto out;
 949
 950        res->start = start;
 951        res->end = end;
 952        result = 0;
 953
 954 out:
 955        return result;
 956}
 957
 958/**
 959 * adjust_resource - modify a resource's start and size
 960 * @res: resource to modify
 961 * @start: new start value
 962 * @size: new size
 963 *
 964 * Given an existing resource, change its start and size to match the
 965 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 966 * Existing children of the resource are assumed to be immutable.
 967 */
 968int adjust_resource(struct resource *res, resource_size_t start,
 969                    resource_size_t size)
 970{
 971        int result;
 972
 973        write_lock(&resource_lock);
 974        result = __adjust_resource(res, start, size);
 975        write_unlock(&resource_lock);
 976        return result;
 977}
 978EXPORT_SYMBOL(adjust_resource);
 979
 980static void __init
 981__reserve_region_with_split(struct resource *root, resource_size_t start,
 982                            resource_size_t end, const char *name)
 983{
 984        struct resource *parent = root;
 985        struct resource *conflict;
 986        struct resource *res = alloc_resource(GFP_ATOMIC);
 987        struct resource *next_res = NULL;
 988        int type = resource_type(root);
 989
 990        if (!res)
 991                return;
 992
 993        res->name = name;
 994        res->start = start;
 995        res->end = end;
 996        res->flags = type | IORESOURCE_BUSY;
 997        res->desc = IORES_DESC_NONE;
 998
 999        while (1) {
1000
1001                conflict = __request_resource(parent, res);
1002                if (!conflict) {
1003                        if (!next_res)
1004                                break;
1005                        res = next_res;
1006                        next_res = NULL;
1007                        continue;
1008                }
1009
1010                /* conflict covered whole area */
1011                if (conflict->start <= res->start &&
1012                                conflict->end >= res->end) {
1013                        free_resource(res);
1014                        WARN_ON(next_res);
1015                        break;
1016                }
1017
1018                /* failed, split and try again */
1019                if (conflict->start > res->start) {
1020                        end = res->end;
1021                        res->end = conflict->start - 1;
1022                        if (conflict->end < end) {
1023                                next_res = alloc_resource(GFP_ATOMIC);
1024                                if (!next_res) {
1025                                        free_resource(res);
1026                                        break;
1027                                }
1028                                next_res->name = name;
1029                                next_res->start = conflict->end + 1;
1030                                next_res->end = end;
1031                                next_res->flags = type | IORESOURCE_BUSY;
1032                                next_res->desc = IORES_DESC_NONE;
1033                        }
1034                } else {
1035                        res->start = conflict->end + 1;
1036                }
1037        }
1038
1039}
1040
1041void __init
1042reserve_region_with_split(struct resource *root, resource_size_t start,
1043                          resource_size_t end, const char *name)
1044{
1045        int abort = 0;
1046
1047        write_lock(&resource_lock);
1048        if (root->start > start || root->end < end) {
1049                pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1050                       (unsigned long long)start, (unsigned long long)end,
1051                       root);
1052                if (start > root->end || end < root->start)
1053                        abort = 1;
1054                else {
1055                        if (end > root->end)
1056                                end = root->end;
1057                        if (start < root->start)
1058                                start = root->start;
1059                        pr_err("fixing request to [0x%llx-0x%llx]\n",
1060                               (unsigned long long)start,
1061                               (unsigned long long)end);
1062                }
1063                dump_stack();
1064        }
1065        if (!abort)
1066                __reserve_region_with_split(root, start, end, name);
1067        write_unlock(&resource_lock);
1068}
1069
1070/**
1071 * resource_alignment - calculate resource's alignment
1072 * @res: resource pointer
1073 *
1074 * Returns alignment on success, 0 (invalid alignment) on failure.
1075 */
1076resource_size_t resource_alignment(struct resource *res)
1077{
1078        switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1079        case IORESOURCE_SIZEALIGN:
1080                return resource_size(res);
1081        case IORESOURCE_STARTALIGN:
1082                return res->start;
1083        default:
1084                return 0;
1085        }
1086}
1087
1088/*
1089 * This is compatibility stuff for IO resources.
1090 *
1091 * Note how this, unlike the above, knows about
1092 * the IO flag meanings (busy etc).
1093 *
1094 * request_region creates a new busy region.
1095 *
1096 * release_region releases a matching busy region.
1097 */
1098
1099static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1100
1101static struct inode *iomem_inode;
1102
1103#ifdef CONFIG_IO_STRICT_DEVMEM
1104static void revoke_iomem(struct resource *res)
1105{
1106        /* pairs with smp_store_release() in iomem_init_inode() */
1107        struct inode *inode = smp_load_acquire(&iomem_inode);
1108
1109        /*
1110         * Check that the initialization has completed. Losing the race
1111         * is ok because it means drivers are claiming resources before
1112         * the fs_initcall level of init and prevent iomem_get_mapping users
1113         * from establishing mappings.
1114         */
1115        if (!inode)
1116                return;
1117
1118        /*
1119         * The expectation is that the driver has successfully marked
1120         * the resource busy by this point, so devmem_is_allowed()
1121         * should start returning false, however for performance this
1122         * does not iterate the entire resource range.
1123         */
1124        if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1125            devmem_is_allowed(PHYS_PFN(res->end))) {
1126                /*
1127                 * *cringe* iomem=relaxed says "go ahead, what's the
1128                 * worst that can happen?"
1129                 */
1130                return;
1131        }
1132
1133        unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1134}
1135#else
1136static void revoke_iomem(struct resource *res) {}
1137#endif
1138
1139struct address_space *iomem_get_mapping(void)
1140{
1141        /*
1142         * This function is only called from file open paths, hence guaranteed
1143         * that fs_initcalls have completed and no need to check for NULL. But
1144         * since revoke_iomem can be called before the initcall we still need
1145         * the barrier to appease checkers.
1146         */
1147        return smp_load_acquire(&iomem_inode)->i_mapping;
1148}
1149
1150static int __request_region_locked(struct resource *res, struct resource *parent,
1151                                   resource_size_t start, resource_size_t n,
1152                                   const char *name, int flags)
1153{
1154        DECLARE_WAITQUEUE(wait, current);
1155
1156        res->name = name;
1157        res->start = start;
1158        res->end = start + n - 1;
1159
1160        for (;;) {
1161                struct resource *conflict;
1162
1163                res->flags = resource_type(parent) | resource_ext_type(parent);
1164                res->flags |= IORESOURCE_BUSY | flags;
1165                res->desc = parent->desc;
1166
1167                conflict = __request_resource(parent, res);
1168                if (!conflict)
1169                        break;
1170                /*
1171                 * mm/hmm.c reserves physical addresses which then
1172                 * become unavailable to other users.  Conflicts are
1173                 * not expected.  Warn to aid debugging if encountered.
1174                 */
1175                if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1176                        pr_warn("Unaddressable device %s %pR conflicts with %pR",
1177                                conflict->name, conflict, res);
1178                }
1179                if (conflict != parent) {
1180                        if (!(conflict->flags & IORESOURCE_BUSY)) {
1181                                parent = conflict;
1182                                continue;
1183                        }
1184                }
1185                if (conflict->flags & flags & IORESOURCE_MUXED) {
1186                        add_wait_queue(&muxed_resource_wait, &wait);
1187                        write_unlock(&resource_lock);
1188                        set_current_state(TASK_UNINTERRUPTIBLE);
1189                        schedule();
1190                        remove_wait_queue(&muxed_resource_wait, &wait);
1191                        write_lock(&resource_lock);
1192                        continue;
1193                }
1194                /* Uhhuh, that didn't work out.. */
1195                return -EBUSY;
1196        }
1197
1198        return 0;
1199}
1200
1201/**
1202 * __request_region - create a new busy resource region
1203 * @parent: parent resource descriptor
1204 * @start: resource start address
1205 * @n: resource region size
1206 * @name: reserving caller's ID string
1207 * @flags: IO resource flags
1208 */
1209struct resource *__request_region(struct resource *parent,
1210                                  resource_size_t start, resource_size_t n,
1211                                  const char *name, int flags)
1212{
1213        struct resource *res = alloc_resource(GFP_KERNEL);
1214        int ret;
1215
1216        if (!res)
1217                return NULL;
1218
1219        write_lock(&resource_lock);
1220        ret = __request_region_locked(res, parent, start, n, name, flags);
1221        write_unlock(&resource_lock);
1222
1223        if (ret) {
1224                free_resource(res);
1225                return NULL;
1226        }
1227
1228        if (parent == &iomem_resource)
1229                revoke_iomem(res);
1230
1231        return res;
1232}
1233EXPORT_SYMBOL(__request_region);
1234
1235/**
1236 * __release_region - release a previously reserved resource region
1237 * @parent: parent resource descriptor
1238 * @start: resource start address
1239 * @n: resource region size
1240 *
1241 * The described resource region must match a currently busy region.
1242 */
1243void __release_region(struct resource *parent, resource_size_t start,
1244                      resource_size_t n)
1245{
1246        struct resource **p;
1247        resource_size_t end;
1248
1249        p = &parent->child;
1250        end = start + n - 1;
1251
1252        write_lock(&resource_lock);
1253
1254        for (;;) {
1255                struct resource *res = *p;
1256
1257                if (!res)
1258                        break;
1259                if (res->start <= start && res->end >= end) {
1260                        if (!(res->flags & IORESOURCE_BUSY)) {
1261                                p = &res->child;
1262                                continue;
1263                        }
1264                        if (res->start != start || res->end != end)
1265                                break;
1266                        *p = res->sibling;
1267                        write_unlock(&resource_lock);
1268                        if (res->flags & IORESOURCE_MUXED)
1269                                wake_up(&muxed_resource_wait);
1270                        free_resource(res);
1271                        return;
1272                }
1273                p = &res->sibling;
1274        }
1275
1276        write_unlock(&resource_lock);
1277
1278        printk(KERN_WARNING "Trying to free nonexistent resource "
1279                "<%016llx-%016llx>\n", (unsigned long long)start,
1280                (unsigned long long)end);
1281}
1282EXPORT_SYMBOL(__release_region);
1283
1284#ifdef CONFIG_MEMORY_HOTREMOVE
1285/**
1286 * release_mem_region_adjustable - release a previously reserved memory region
1287 * @start: resource start address
1288 * @size: resource region size
1289 *
1290 * This interface is intended for memory hot-delete.  The requested region
1291 * is released from a currently busy memory resource.  The requested region
1292 * must either match exactly or fit into a single busy resource entry.  In
1293 * the latter case, the remaining resource is adjusted accordingly.
1294 * Existing children of the busy memory resource must be immutable in the
1295 * request.
1296 *
1297 * Note:
1298 * - Additional release conditions, such as overlapping region, can be
1299 *   supported after they are confirmed as valid cases.
1300 * - When a busy memory resource gets split into two entries, the code
1301 *   assumes that all children remain in the lower address entry for
1302 *   simplicity.  Enhance this logic when necessary.
1303 */
1304void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1305{
1306        struct resource *parent = &iomem_resource;
1307        struct resource *new_res = NULL;
1308        bool alloc_nofail = false;
1309        struct resource **p;
1310        struct resource *res;
1311        resource_size_t end;
1312
1313        end = start + size - 1;
1314        if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1315                return;
1316
1317        /*
1318         * We free up quite a lot of memory on memory hotunplug (esp., memap),
1319         * just before releasing the region. This is highly unlikely to
1320         * fail - let's play save and make it never fail as the caller cannot
1321         * perform any error handling (e.g., trying to re-add memory will fail
1322         * similarly).
1323         */
1324retry:
1325        new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1326
1327        p = &parent->child;
1328        write_lock(&resource_lock);
1329
1330        while ((res = *p)) {
1331                if (res->start >= end)
1332                        break;
1333
1334                /* look for the next resource if it does not fit into */
1335                if (res->start > start || res->end < end) {
1336                        p = &res->sibling;
1337                        continue;
1338                }
1339
1340                /*
1341                 * All memory regions added from memory-hotplug path have the
1342                 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1343                 * this flag, we know that we are dealing with a resource coming
1344                 * from HMM/devm. HMM/devm use another mechanism to add/release
1345                 * a resource. This goes via devm_request_mem_region and
1346                 * devm_release_mem_region.
1347                 * HMM/devm take care to release their resources when they want,
1348                 * so if we are dealing with them, let us just back off here.
1349                 */
1350                if (!(res->flags & IORESOURCE_SYSRAM)) {
1351                        break;
1352                }
1353
1354                if (!(res->flags & IORESOURCE_MEM))
1355                        break;
1356
1357                if (!(res->flags & IORESOURCE_BUSY)) {
1358                        p = &res->child;
1359                        continue;
1360                }
1361
1362                /* found the target resource; let's adjust accordingly */
1363                if (res->start == start && res->end == end) {
1364                        /* free the whole entry */
1365                        *p = res->sibling;
1366                        free_resource(res);
1367                } else if (res->start == start && res->end != end) {
1368                        /* adjust the start */
1369                        WARN_ON_ONCE(__adjust_resource(res, end + 1,
1370                                                       res->end - end));
1371                } else if (res->start != start && res->end == end) {
1372                        /* adjust the end */
1373                        WARN_ON_ONCE(__adjust_resource(res, res->start,
1374                                                       start - res->start));
1375                } else {
1376                        /* split into two entries - we need a new resource */
1377                        if (!new_res) {
1378                                new_res = alloc_resource(GFP_ATOMIC);
1379                                if (!new_res) {
1380                                        alloc_nofail = true;
1381                                        write_unlock(&resource_lock);
1382                                        goto retry;
1383                                }
1384                        }
1385                        new_res->name = res->name;
1386                        new_res->start = end + 1;
1387                        new_res->end = res->end;
1388                        new_res->flags = res->flags;
1389                        new_res->desc = res->desc;
1390                        new_res->parent = res->parent;
1391                        new_res->sibling = res->sibling;
1392                        new_res->child = NULL;
1393
1394                        if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1395                                                           start - res->start)))
1396                                break;
1397                        res->sibling = new_res;
1398                        new_res = NULL;
1399                }
1400
1401                break;
1402        }
1403
1404        write_unlock(&resource_lock);
1405        free_resource(new_res);
1406}
1407#endif  /* CONFIG_MEMORY_HOTREMOVE */
1408
1409#ifdef CONFIG_MEMORY_HOTPLUG
1410static bool system_ram_resources_mergeable(struct resource *r1,
1411                                           struct resource *r2)
1412{
1413        /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1414        return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1415               r1->name == r2->name && r1->desc == r2->desc &&
1416               !r1->child && !r2->child;
1417}
1418
1419/**
1420 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1421 *      merge it with adjacent, mergeable resources
1422 * @res: resource descriptor
1423 *
1424 * This interface is intended for memory hotplug, whereby lots of contiguous
1425 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1426 * the actual resource boundaries are not of interest (e.g., it might be
1427 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1428 * same parent, and that don't have any children are considered. All mergeable
1429 * resources must be immutable during the request.
1430 *
1431 * Note:
1432 * - The caller has to make sure that no pointers to resources that are
1433 *   marked mergeable are used anymore after this call - the resource might
1434 *   be freed and the pointer might be stale!
1435 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1436 */
1437void merge_system_ram_resource(struct resource *res)
1438{
1439        const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1440        struct resource *cur;
1441
1442        if (WARN_ON_ONCE((res->flags & flags) != flags))
1443                return;
1444
1445        write_lock(&resource_lock);
1446        res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1447
1448        /* Try to merge with next item in the list. */
1449        cur = res->sibling;
1450        if (cur && system_ram_resources_mergeable(res, cur)) {
1451                res->end = cur->end;
1452                res->sibling = cur->sibling;
1453                free_resource(cur);
1454        }
1455
1456        /* Try to merge with previous item in the list. */
1457        cur = res->parent->child;
1458        while (cur && cur->sibling != res)
1459                cur = cur->sibling;
1460        if (cur && system_ram_resources_mergeable(cur, res)) {
1461                cur->end = res->end;
1462                cur->sibling = res->sibling;
1463                free_resource(res);
1464        }
1465        write_unlock(&resource_lock);
1466}
1467#endif  /* CONFIG_MEMORY_HOTPLUG */
1468
1469/*
1470 * Managed region resource
1471 */
1472static void devm_resource_release(struct device *dev, void *ptr)
1473{
1474        struct resource **r = ptr;
1475
1476        release_resource(*r);
1477}
1478
1479/**
1480 * devm_request_resource() - request and reserve an I/O or memory resource
1481 * @dev: device for which to request the resource
1482 * @root: root of the resource tree from which to request the resource
1483 * @new: descriptor of the resource to request
1484 *
1485 * This is a device-managed version of request_resource(). There is usually
1486 * no need to release resources requested by this function explicitly since
1487 * that will be taken care of when the device is unbound from its driver.
1488 * If for some reason the resource needs to be released explicitly, because
1489 * of ordering issues for example, drivers must call devm_release_resource()
1490 * rather than the regular release_resource().
1491 *
1492 * When a conflict is detected between any existing resources and the newly
1493 * requested resource, an error message will be printed.
1494 *
1495 * Returns 0 on success or a negative error code on failure.
1496 */
1497int devm_request_resource(struct device *dev, struct resource *root,
1498                          struct resource *new)
1499{
1500        struct resource *conflict, **ptr;
1501
1502        ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1503        if (!ptr)
1504                return -ENOMEM;
1505
1506        *ptr = new;
1507
1508        conflict = request_resource_conflict(root, new);
1509        if (conflict) {
1510                dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1511                        new, conflict->name, conflict);
1512                devres_free(ptr);
1513                return -EBUSY;
1514        }
1515
1516        devres_add(dev, ptr);
1517        return 0;
1518}
1519EXPORT_SYMBOL(devm_request_resource);
1520
1521static int devm_resource_match(struct device *dev, void *res, void *data)
1522{
1523        struct resource **ptr = res;
1524
1525        return *ptr == data;
1526}
1527
1528/**
1529 * devm_release_resource() - release a previously requested resource
1530 * @dev: device for which to release the resource
1531 * @new: descriptor of the resource to release
1532 *
1533 * Releases a resource previously requested using devm_request_resource().
1534 */
1535void devm_release_resource(struct device *dev, struct resource *new)
1536{
1537        WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1538                               new));
1539}
1540EXPORT_SYMBOL(devm_release_resource);
1541
1542struct region_devres {
1543        struct resource *parent;
1544        resource_size_t start;
1545        resource_size_t n;
1546};
1547
1548static void devm_region_release(struct device *dev, void *res)
1549{
1550        struct region_devres *this = res;
1551
1552        __release_region(this->parent, this->start, this->n);
1553}
1554
1555static int devm_region_match(struct device *dev, void *res, void *match_data)
1556{
1557        struct region_devres *this = res, *match = match_data;
1558
1559        return this->parent == match->parent &&
1560                this->start == match->start && this->n == match->n;
1561}
1562
1563struct resource *
1564__devm_request_region(struct device *dev, struct resource *parent,
1565                      resource_size_t start, resource_size_t n, const char *name)
1566{
1567        struct region_devres *dr = NULL;
1568        struct resource *res;
1569
1570        dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1571                          GFP_KERNEL);
1572        if (!dr)
1573                return NULL;
1574
1575        dr->parent = parent;
1576        dr->start = start;
1577        dr->n = n;
1578
1579        res = __request_region(parent, start, n, name, 0);
1580        if (res)
1581                devres_add(dev, dr);
1582        else
1583                devres_free(dr);
1584
1585        return res;
1586}
1587EXPORT_SYMBOL(__devm_request_region);
1588
1589void __devm_release_region(struct device *dev, struct resource *parent,
1590                           resource_size_t start, resource_size_t n)
1591{
1592        struct region_devres match_data = { parent, start, n };
1593
1594        __release_region(parent, start, n);
1595        WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1596                               &match_data));
1597}
1598EXPORT_SYMBOL(__devm_release_region);
1599
1600/*
1601 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1602 */
1603#define MAXRESERVE 4
1604static int __init reserve_setup(char *str)
1605{
1606        static int reserved;
1607        static struct resource reserve[MAXRESERVE];
1608
1609        for (;;) {
1610                unsigned int io_start, io_num;
1611                int x = reserved;
1612                struct resource *parent;
1613
1614                if (get_option(&str, &io_start) != 2)
1615                        break;
1616                if (get_option(&str, &io_num) == 0)
1617                        break;
1618                if (x < MAXRESERVE) {
1619                        struct resource *res = reserve + x;
1620
1621                        /*
1622                         * If the region starts below 0x10000, we assume it's
1623                         * I/O port space; otherwise assume it's memory.
1624                         */
1625                        if (io_start < 0x10000) {
1626                                res->flags = IORESOURCE_IO;
1627                                parent = &ioport_resource;
1628                        } else {
1629                                res->flags = IORESOURCE_MEM;
1630                                parent = &iomem_resource;
1631                        }
1632                        res->name = "reserved";
1633                        res->start = io_start;
1634                        res->end = io_start + io_num - 1;
1635                        res->flags |= IORESOURCE_BUSY;
1636                        res->desc = IORES_DESC_NONE;
1637                        res->child = NULL;
1638                        if (request_resource(parent, res) == 0)
1639                                reserved = x+1;
1640                }
1641        }
1642        return 1;
1643}
1644__setup("reserve=", reserve_setup);
1645
1646/*
1647 * Check if the requested addr and size spans more than any slot in the
1648 * iomem resource tree.
1649 */
1650int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1651{
1652        struct resource *p = &iomem_resource;
1653        int err = 0;
1654        loff_t l;
1655
1656        read_lock(&resource_lock);
1657        for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1658                /*
1659                 * We can probably skip the resources without
1660                 * IORESOURCE_IO attribute?
1661                 */
1662                if (p->start >= addr + size)
1663                        continue;
1664                if (p->end < addr)
1665                        continue;
1666                if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1667                    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1668                        continue;
1669                /*
1670                 * if a resource is "BUSY", it's not a hardware resource
1671                 * but a driver mapping of such a resource; we don't want
1672                 * to warn for those; some drivers legitimately map only
1673                 * partial hardware resources. (example: vesafb)
1674                 */
1675                if (p->flags & IORESOURCE_BUSY)
1676                        continue;
1677
1678                printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1679                       (unsigned long long)addr,
1680                       (unsigned long long)(addr + size - 1),
1681                       p->name, p);
1682                err = -1;
1683                break;
1684        }
1685        read_unlock(&resource_lock);
1686
1687        return err;
1688}
1689
1690#ifdef CONFIG_STRICT_DEVMEM
1691static int strict_iomem_checks = 1;
1692#else
1693static int strict_iomem_checks;
1694#endif
1695
1696/*
1697 * Check if an address is exclusive to the kernel and must not be mapped to
1698 * user space, for example, via /dev/mem.
1699 *
1700 * Returns true if exclusive to the kernel, otherwise returns false.
1701 */
1702bool iomem_is_exclusive(u64 addr)
1703{
1704        const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1705                                                  IORESOURCE_EXCLUSIVE;
1706        bool skip_children = false, err = false;
1707        int size = PAGE_SIZE;
1708        struct resource *p;
1709
1710        addr = addr & PAGE_MASK;
1711
1712        read_lock(&resource_lock);
1713        for_each_resource(&iomem_resource, p, skip_children) {
1714                if (p->start >= addr + size)
1715                        break;
1716                if (p->end < addr) {
1717                        skip_children = true;
1718                        continue;
1719                }
1720                skip_children = false;
1721
1722                /*
1723                 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1724                 * IORESOURCE_EXCLUSIVE is set, even if they
1725                 * are not busy and even if "iomem=relaxed" is set. The
1726                 * responsible driver dynamically adds/removes system RAM within
1727                 * such an area and uncontrolled access is dangerous.
1728                 */
1729                if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1730                        err = true;
1731                        break;
1732                }
1733
1734                /*
1735                 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1736                 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1737                 * resource is busy.
1738                 */
1739                if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1740                        continue;
1741                if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1742                                || p->flags & IORESOURCE_EXCLUSIVE) {
1743                        err = true;
1744                        break;
1745                }
1746        }
1747        read_unlock(&resource_lock);
1748
1749        return err;
1750}
1751
1752struct resource_entry *resource_list_create_entry(struct resource *res,
1753                                                  size_t extra_size)
1754{
1755        struct resource_entry *entry;
1756
1757        entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1758        if (entry) {
1759                INIT_LIST_HEAD(&entry->node);
1760                entry->res = res ? res : &entry->__res;
1761        }
1762
1763        return entry;
1764}
1765EXPORT_SYMBOL(resource_list_create_entry);
1766
1767void resource_list_free(struct list_head *head)
1768{
1769        struct resource_entry *entry, *tmp;
1770
1771        list_for_each_entry_safe(entry, tmp, head, node)
1772                resource_list_destroy_entry(entry);
1773}
1774EXPORT_SYMBOL(resource_list_free);
1775
1776#ifdef CONFIG_DEVICE_PRIVATE
1777static struct resource *__request_free_mem_region(struct device *dev,
1778                struct resource *base, unsigned long size, const char *name)
1779{
1780        resource_size_t end, addr;
1781        struct resource *res;
1782        struct region_devres *dr = NULL;
1783
1784        size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1785        end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1786        addr = end - size + 1UL;
1787
1788        res = alloc_resource(GFP_KERNEL);
1789        if (!res)
1790                return ERR_PTR(-ENOMEM);
1791
1792        if (dev) {
1793                dr = devres_alloc(devm_region_release,
1794                                sizeof(struct region_devres), GFP_KERNEL);
1795                if (!dr) {
1796                        free_resource(res);
1797                        return ERR_PTR(-ENOMEM);
1798                }
1799        }
1800
1801        write_lock(&resource_lock);
1802        for (; addr > size && addr >= base->start; addr -= size) {
1803                if (__region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1804                                REGION_DISJOINT)
1805                        continue;
1806
1807                if (__request_region_locked(res, &iomem_resource, addr, size,
1808                                                name, 0))
1809                        break;
1810
1811                if (dev) {
1812                        dr->parent = &iomem_resource;
1813                        dr->start = addr;
1814                        dr->n = size;
1815                        devres_add(dev, dr);
1816                }
1817
1818                res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1819                write_unlock(&resource_lock);
1820
1821                /*
1822                 * A driver is claiming this region so revoke any mappings.
1823                 */
1824                revoke_iomem(res);
1825                return res;
1826        }
1827        write_unlock(&resource_lock);
1828
1829        free_resource(res);
1830        if (dr)
1831                devres_free(dr);
1832
1833        return ERR_PTR(-ERANGE);
1834}
1835
1836/**
1837 * devm_request_free_mem_region - find free region for device private memory
1838 *
1839 * @dev: device struct to bind the resource to
1840 * @size: size in bytes of the device memory to add
1841 * @base: resource tree to look in
1842 *
1843 * This function tries to find an empty range of physical address big enough to
1844 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1845 * memory, which in turn allocates struct pages.
1846 */
1847struct resource *devm_request_free_mem_region(struct device *dev,
1848                struct resource *base, unsigned long size)
1849{
1850        return __request_free_mem_region(dev, base, size, dev_name(dev));
1851}
1852EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1853
1854struct resource *request_free_mem_region(struct resource *base,
1855                unsigned long size, const char *name)
1856{
1857        return __request_free_mem_region(NULL, base, size, name);
1858}
1859EXPORT_SYMBOL_GPL(request_free_mem_region);
1860
1861#endif /* CONFIG_DEVICE_PRIVATE */
1862
1863static int __init strict_iomem(char *str)
1864{
1865        if (strstr(str, "relaxed"))
1866                strict_iomem_checks = 0;
1867        if (strstr(str, "strict"))
1868                strict_iomem_checks = 1;
1869        return 1;
1870}
1871
1872static int iomem_fs_init_fs_context(struct fs_context *fc)
1873{
1874        return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1875}
1876
1877static struct file_system_type iomem_fs_type = {
1878        .name           = "iomem",
1879        .owner          = THIS_MODULE,
1880        .init_fs_context = iomem_fs_init_fs_context,
1881        .kill_sb        = kill_anon_super,
1882};
1883
1884static int __init iomem_init_inode(void)
1885{
1886        static struct vfsmount *iomem_vfs_mount;
1887        static int iomem_fs_cnt;
1888        struct inode *inode;
1889        int rc;
1890
1891        rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1892        if (rc < 0) {
1893                pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1894                return rc;
1895        }
1896
1897        inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1898        if (IS_ERR(inode)) {
1899                rc = PTR_ERR(inode);
1900                pr_err("Cannot allocate inode for iomem: %d\n", rc);
1901                simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1902                return rc;
1903        }
1904
1905        /*
1906         * Publish iomem revocation inode initialized.
1907         * Pairs with smp_load_acquire() in revoke_iomem().
1908         */
1909        smp_store_release(&iomem_inode, inode);
1910
1911        return 0;
1912}
1913
1914fs_initcall(iomem_init_inode);
1915
1916__setup("iomem=", strict_iomem);
1917