linux/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic helpers for smp ipi calls
   4 *
   5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/irq_work.h>
  11#include <linux/rcupdate.h>
  12#include <linux/rculist.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/percpu.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/gfp.h>
  19#include <linux/smp.h>
  20#include <linux/cpu.h>
  21#include <linux/sched.h>
  22#include <linux/sched/idle.h>
  23#include <linux/hypervisor.h>
  24#include <linux/sched/clock.h>
  25#include <linux/nmi.h>
  26#include <linux/sched/debug.h>
  27#include <linux/jump_label.h>
  28
  29#include "smpboot.h"
  30#include "sched/smp.h"
  31
  32#define CSD_TYPE(_csd)  ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
  33
  34#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
  35union cfd_seq_cnt {
  36        u64             val;
  37        struct {
  38                u64     src:16;
  39                u64     dst:16;
  40#define CFD_SEQ_NOCPU   0xffff
  41                u64     type:4;
  42#define CFD_SEQ_QUEUE   0
  43#define CFD_SEQ_IPI     1
  44#define CFD_SEQ_NOIPI   2
  45#define CFD_SEQ_PING    3
  46#define CFD_SEQ_PINGED  4
  47#define CFD_SEQ_HANDLE  5
  48#define CFD_SEQ_DEQUEUE 6
  49#define CFD_SEQ_IDLE    7
  50#define CFD_SEQ_GOTIPI  8
  51#define CFD_SEQ_HDLEND  9
  52                u64     cnt:28;
  53        }               u;
  54};
  55
  56static char *seq_type[] = {
  57        [CFD_SEQ_QUEUE]         = "queue",
  58        [CFD_SEQ_IPI]           = "ipi",
  59        [CFD_SEQ_NOIPI]         = "noipi",
  60        [CFD_SEQ_PING]          = "ping",
  61        [CFD_SEQ_PINGED]        = "pinged",
  62        [CFD_SEQ_HANDLE]        = "handle",
  63        [CFD_SEQ_DEQUEUE]       = "dequeue (src CPU 0 == empty)",
  64        [CFD_SEQ_IDLE]          = "idle",
  65        [CFD_SEQ_GOTIPI]        = "gotipi",
  66        [CFD_SEQ_HDLEND]        = "hdlend (src CPU 0 == early)",
  67};
  68
  69struct cfd_seq_local {
  70        u64     ping;
  71        u64     pinged;
  72        u64     handle;
  73        u64     dequeue;
  74        u64     idle;
  75        u64     gotipi;
  76        u64     hdlend;
  77};
  78#endif
  79
  80struct cfd_percpu {
  81        call_single_data_t      csd;
  82#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
  83        u64     seq_queue;
  84        u64     seq_ipi;
  85        u64     seq_noipi;
  86#endif
  87};
  88
  89struct call_function_data {
  90        struct cfd_percpu       __percpu *pcpu;
  91        cpumask_var_t           cpumask;
  92        cpumask_var_t           cpumask_ipi;
  93};
  94
  95static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
  96
  97static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
  98
  99static void flush_smp_call_function_queue(bool warn_cpu_offline);
 100
 101int smpcfd_prepare_cpu(unsigned int cpu)
 102{
 103        struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 104
 105        if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
 106                                     cpu_to_node(cpu)))
 107                return -ENOMEM;
 108        if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
 109                                     cpu_to_node(cpu))) {
 110                free_cpumask_var(cfd->cpumask);
 111                return -ENOMEM;
 112        }
 113        cfd->pcpu = alloc_percpu(struct cfd_percpu);
 114        if (!cfd->pcpu) {
 115                free_cpumask_var(cfd->cpumask);
 116                free_cpumask_var(cfd->cpumask_ipi);
 117                return -ENOMEM;
 118        }
 119
 120        return 0;
 121}
 122
 123int smpcfd_dead_cpu(unsigned int cpu)
 124{
 125        struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 126
 127        free_cpumask_var(cfd->cpumask);
 128        free_cpumask_var(cfd->cpumask_ipi);
 129        free_percpu(cfd->pcpu);
 130        return 0;
 131}
 132
 133int smpcfd_dying_cpu(unsigned int cpu)
 134{
 135        /*
 136         * The IPIs for the smp-call-function callbacks queued by other
 137         * CPUs might arrive late, either due to hardware latencies or
 138         * because this CPU disabled interrupts (inside stop-machine)
 139         * before the IPIs were sent. So flush out any pending callbacks
 140         * explicitly (without waiting for the IPIs to arrive), to
 141         * ensure that the outgoing CPU doesn't go offline with work
 142         * still pending.
 143         */
 144        flush_smp_call_function_queue(false);
 145        irq_work_run();
 146        return 0;
 147}
 148
 149void __init call_function_init(void)
 150{
 151        int i;
 152
 153        for_each_possible_cpu(i)
 154                init_llist_head(&per_cpu(call_single_queue, i));
 155
 156        smpcfd_prepare_cpu(smp_processor_id());
 157}
 158
 159#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 160
 161static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
 162static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
 163
 164static int __init csdlock_debug(char *str)
 165{
 166        unsigned int val = 0;
 167
 168        if (str && !strcmp(str, "ext")) {
 169                val = 1;
 170                static_branch_enable(&csdlock_debug_extended);
 171        } else
 172                get_option(&str, &val);
 173
 174        if (val)
 175                static_branch_enable(&csdlock_debug_enabled);
 176
 177        return 0;
 178}
 179early_param("csdlock_debug", csdlock_debug);
 180
 181static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
 182static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
 183static DEFINE_PER_CPU(void *, cur_csd_info);
 184static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
 185
 186#define CSD_LOCK_TIMEOUT (5ULL * NSEC_PER_SEC)
 187static atomic_t csd_bug_count = ATOMIC_INIT(0);
 188static u64 cfd_seq;
 189
 190#define CFD_SEQ(s, d, t, c)     \
 191        (union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
 192
 193static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
 194{
 195        union cfd_seq_cnt new, old;
 196
 197        new = CFD_SEQ(src, dst, type, 0);
 198
 199        do {
 200                old.val = READ_ONCE(cfd_seq);
 201                new.u.cnt = old.u.cnt + 1;
 202        } while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
 203
 204        return old.val;
 205}
 206
 207#define cfd_seq_store(var, src, dst, type)                              \
 208        do {                                                            \
 209                if (static_branch_unlikely(&csdlock_debug_extended))    \
 210                        var = cfd_seq_inc(src, dst, type);              \
 211        } while (0)
 212
 213/* Record current CSD work for current CPU, NULL to erase. */
 214static void __csd_lock_record(struct __call_single_data *csd)
 215{
 216        if (!csd) {
 217                smp_mb(); /* NULL cur_csd after unlock. */
 218                __this_cpu_write(cur_csd, NULL);
 219                return;
 220        }
 221        __this_cpu_write(cur_csd_func, csd->func);
 222        __this_cpu_write(cur_csd_info, csd->info);
 223        smp_wmb(); /* func and info before csd. */
 224        __this_cpu_write(cur_csd, csd);
 225        smp_mb(); /* Update cur_csd before function call. */
 226                  /* Or before unlock, as the case may be. */
 227}
 228
 229static __always_inline void csd_lock_record(struct __call_single_data *csd)
 230{
 231        if (static_branch_unlikely(&csdlock_debug_enabled))
 232                __csd_lock_record(csd);
 233}
 234
 235static int csd_lock_wait_getcpu(struct __call_single_data *csd)
 236{
 237        unsigned int csd_type;
 238
 239        csd_type = CSD_TYPE(csd);
 240        if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
 241                return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
 242        return -1;
 243}
 244
 245static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
 246                             unsigned int type, union cfd_seq_cnt *data,
 247                             unsigned int *n_data, unsigned int now)
 248{
 249        union cfd_seq_cnt new[2];
 250        unsigned int i, j, k;
 251
 252        new[0].val = val;
 253        new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
 254
 255        for (i = 0; i < 2; i++) {
 256                if (new[i].u.cnt <= now)
 257                        new[i].u.cnt |= 0x80000000U;
 258                for (j = 0; j < *n_data; j++) {
 259                        if (new[i].u.cnt == data[j].u.cnt) {
 260                                /* Direct read value trumps generated one. */
 261                                if (i == 0)
 262                                        data[j].val = new[i].val;
 263                                break;
 264                        }
 265                        if (new[i].u.cnt < data[j].u.cnt) {
 266                                for (k = *n_data; k > j; k--)
 267                                        data[k].val = data[k - 1].val;
 268                                data[j].val = new[i].val;
 269                                (*n_data)++;
 270                                break;
 271                        }
 272                }
 273                if (j == *n_data) {
 274                        data[j].val = new[i].val;
 275                        (*n_data)++;
 276                }
 277        }
 278}
 279
 280static const char *csd_lock_get_type(unsigned int type)
 281{
 282        return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
 283}
 284
 285static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
 286{
 287        struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
 288        unsigned int srccpu = csd->node.src;
 289        struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
 290        struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 291        unsigned int now;
 292        union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
 293        unsigned int n_data = 0, i;
 294
 295        data[0].val = READ_ONCE(cfd_seq);
 296        now = data[0].u.cnt;
 297
 298        cfd_seq_data_add(pcpu->seq_queue,                       srccpu, cpu,           CFD_SEQ_QUEUE,  data, &n_data, now);
 299        cfd_seq_data_add(pcpu->seq_ipi,                         srccpu, cpu,           CFD_SEQ_IPI,    data, &n_data, now);
 300        cfd_seq_data_add(pcpu->seq_noipi,                       srccpu, cpu,           CFD_SEQ_NOIPI,  data, &n_data, now);
 301
 302        cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu),   srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING,   data, &n_data, now);
 303        cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
 304
 305        cfd_seq_data_add(seq->idle,    CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE,    data, &n_data, now);
 306        cfd_seq_data_add(seq->gotipi,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI,  data, &n_data, now);
 307        cfd_seq_data_add(seq->handle,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE,  data, &n_data, now);
 308        cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
 309        cfd_seq_data_add(seq->hdlend,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND,  data, &n_data, now);
 310
 311        for (i = 0; i < n_data; i++) {
 312                pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
 313                         data[i].u.cnt & ~0x80000000U, data[i].u.src,
 314                         data[i].u.dst, csd_lock_get_type(data[i].u.type));
 315        }
 316        pr_alert("\tcsd: cnt now: %07x\n", now);
 317}
 318
 319/*
 320 * Complain if too much time spent waiting.  Note that only
 321 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
 322 * so waiting on other types gets much less information.
 323 */
 324static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
 325{
 326        int cpu = -1;
 327        int cpux;
 328        bool firsttime;
 329        u64 ts2, ts_delta;
 330        call_single_data_t *cpu_cur_csd;
 331        unsigned int flags = READ_ONCE(csd->node.u_flags);
 332
 333        if (!(flags & CSD_FLAG_LOCK)) {
 334                if (!unlikely(*bug_id))
 335                        return true;
 336                cpu = csd_lock_wait_getcpu(csd);
 337                pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
 338                         *bug_id, raw_smp_processor_id(), cpu);
 339                return true;
 340        }
 341
 342        ts2 = sched_clock();
 343        ts_delta = ts2 - *ts1;
 344        if (likely(ts_delta <= CSD_LOCK_TIMEOUT))
 345                return false;
 346
 347        firsttime = !*bug_id;
 348        if (firsttime)
 349                *bug_id = atomic_inc_return(&csd_bug_count);
 350        cpu = csd_lock_wait_getcpu(csd);
 351        if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
 352                cpux = 0;
 353        else
 354                cpux = cpu;
 355        cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
 356        pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
 357                 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
 358                 cpu, csd->func, csd->info);
 359        if (cpu_cur_csd && csd != cpu_cur_csd) {
 360                pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
 361                         *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
 362                         READ_ONCE(per_cpu(cur_csd_info, cpux)));
 363        } else {
 364                pr_alert("\tcsd: CSD lock (#%d) %s.\n",
 365                         *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
 366        }
 367        if (cpu >= 0) {
 368                if (static_branch_unlikely(&csdlock_debug_extended))
 369                        csd_lock_print_extended(csd, cpu);
 370                if (!trigger_single_cpu_backtrace(cpu))
 371                        dump_cpu_task(cpu);
 372                if (!cpu_cur_csd) {
 373                        pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
 374                        arch_send_call_function_single_ipi(cpu);
 375                }
 376        }
 377        dump_stack();
 378        *ts1 = ts2;
 379
 380        return false;
 381}
 382
 383/*
 384 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 385 *
 386 * For non-synchronous ipi calls the csd can still be in use by the
 387 * previous function call. For multi-cpu calls its even more interesting
 388 * as we'll have to ensure no other cpu is observing our csd.
 389 */
 390static void __csd_lock_wait(struct __call_single_data *csd)
 391{
 392        int bug_id = 0;
 393        u64 ts0, ts1;
 394
 395        ts1 = ts0 = sched_clock();
 396        for (;;) {
 397                if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
 398                        break;
 399                cpu_relax();
 400        }
 401        smp_acquire__after_ctrl_dep();
 402}
 403
 404static __always_inline void csd_lock_wait(struct __call_single_data *csd)
 405{
 406        if (static_branch_unlikely(&csdlock_debug_enabled)) {
 407                __csd_lock_wait(csd);
 408                return;
 409        }
 410
 411        smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 412}
 413
 414static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
 415{
 416        unsigned int this_cpu = smp_processor_id();
 417        struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
 418        struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
 419        struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 420
 421        cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
 422        if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
 423                cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
 424                cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
 425                send_call_function_single_ipi(cpu);
 426                cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
 427        } else {
 428                cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
 429        }
 430}
 431#else
 432#define cfd_seq_store(var, src, dst, type)
 433
 434static void csd_lock_record(struct __call_single_data *csd)
 435{
 436}
 437
 438static __always_inline void csd_lock_wait(struct __call_single_data *csd)
 439{
 440        smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 441}
 442#endif
 443
 444static __always_inline void csd_lock(struct __call_single_data *csd)
 445{
 446        csd_lock_wait(csd);
 447        csd->node.u_flags |= CSD_FLAG_LOCK;
 448
 449        /*
 450         * prevent CPU from reordering the above assignment
 451         * to ->flags with any subsequent assignments to other
 452         * fields of the specified call_single_data_t structure:
 453         */
 454        smp_wmb();
 455}
 456
 457static __always_inline void csd_unlock(struct __call_single_data *csd)
 458{
 459        WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
 460
 461        /*
 462         * ensure we're all done before releasing data:
 463         */
 464        smp_store_release(&csd->node.u_flags, 0);
 465}
 466
 467static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
 468
 469void __smp_call_single_queue(int cpu, struct llist_node *node)
 470{
 471#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 472        if (static_branch_unlikely(&csdlock_debug_extended)) {
 473                unsigned int type;
 474
 475                type = CSD_TYPE(container_of(node, call_single_data_t,
 476                                             node.llist));
 477                if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
 478                        __smp_call_single_queue_debug(cpu, node);
 479                        return;
 480                }
 481        }
 482#endif
 483
 484        /*
 485         * The list addition should be visible before sending the IPI
 486         * handler locks the list to pull the entry off it because of
 487         * normal cache coherency rules implied by spinlocks.
 488         *
 489         * If IPIs can go out of order to the cache coherency protocol
 490         * in an architecture, sufficient synchronisation should be added
 491         * to arch code to make it appear to obey cache coherency WRT
 492         * locking and barrier primitives. Generic code isn't really
 493         * equipped to do the right thing...
 494         */
 495        if (llist_add(node, &per_cpu(call_single_queue, cpu)))
 496                send_call_function_single_ipi(cpu);
 497}
 498
 499/*
 500 * Insert a previously allocated call_single_data_t element
 501 * for execution on the given CPU. data must already have
 502 * ->func, ->info, and ->flags set.
 503 */
 504static int generic_exec_single(int cpu, struct __call_single_data *csd)
 505{
 506        if (cpu == smp_processor_id()) {
 507                smp_call_func_t func = csd->func;
 508                void *info = csd->info;
 509                unsigned long flags;
 510
 511                /*
 512                 * We can unlock early even for the synchronous on-stack case,
 513                 * since we're doing this from the same CPU..
 514                 */
 515                csd_lock_record(csd);
 516                csd_unlock(csd);
 517                local_irq_save(flags);
 518                func(info);
 519                csd_lock_record(NULL);
 520                local_irq_restore(flags);
 521                return 0;
 522        }
 523
 524        if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
 525                csd_unlock(csd);
 526                return -ENXIO;
 527        }
 528
 529        __smp_call_single_queue(cpu, &csd->node.llist);
 530
 531        return 0;
 532}
 533
 534/**
 535 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
 536 *
 537 * Invoked by arch to handle an IPI for call function single.
 538 * Must be called with interrupts disabled.
 539 */
 540void generic_smp_call_function_single_interrupt(void)
 541{
 542        cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
 543                      smp_processor_id(), CFD_SEQ_GOTIPI);
 544        flush_smp_call_function_queue(true);
 545}
 546
 547/**
 548 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 549 *
 550 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
 551 *                    offline CPU. Skip this check if set to 'false'.
 552 *
 553 * Flush any pending smp-call-function callbacks queued on this CPU. This is
 554 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
 555 * to ensure that all pending IPI callbacks are run before it goes completely
 556 * offline.
 557 *
 558 * Loop through the call_single_queue and run all the queued callbacks.
 559 * Must be called with interrupts disabled.
 560 */
 561static void flush_smp_call_function_queue(bool warn_cpu_offline)
 562{
 563        call_single_data_t *csd, *csd_next;
 564        struct llist_node *entry, *prev;
 565        struct llist_head *head;
 566        static bool warned;
 567
 568        lockdep_assert_irqs_disabled();
 569
 570        head = this_cpu_ptr(&call_single_queue);
 571        cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
 572                      smp_processor_id(), CFD_SEQ_HANDLE);
 573        entry = llist_del_all(head);
 574        cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
 575                      /* Special meaning of source cpu: 0 == queue empty */
 576                      entry ? CFD_SEQ_NOCPU : 0,
 577                      smp_processor_id(), CFD_SEQ_DEQUEUE);
 578        entry = llist_reverse_order(entry);
 579
 580        /* There shouldn't be any pending callbacks on an offline CPU. */
 581        if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
 582                     !warned && entry != NULL)) {
 583                warned = true;
 584                WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
 585
 586                /*
 587                 * We don't have to use the _safe() variant here
 588                 * because we are not invoking the IPI handlers yet.
 589                 */
 590                llist_for_each_entry(csd, entry, node.llist) {
 591                        switch (CSD_TYPE(csd)) {
 592                        case CSD_TYPE_ASYNC:
 593                        case CSD_TYPE_SYNC:
 594                        case CSD_TYPE_IRQ_WORK:
 595                                pr_warn("IPI callback %pS sent to offline CPU\n",
 596                                        csd->func);
 597                                break;
 598
 599                        case CSD_TYPE_TTWU:
 600                                pr_warn("IPI task-wakeup sent to offline CPU\n");
 601                                break;
 602
 603                        default:
 604                                pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
 605                                        CSD_TYPE(csd));
 606                                break;
 607                        }
 608                }
 609        }
 610
 611        /*
 612         * First; run all SYNC callbacks, people are waiting for us.
 613         */
 614        prev = NULL;
 615        llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 616                /* Do we wait until *after* callback? */
 617                if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
 618                        smp_call_func_t func = csd->func;
 619                        void *info = csd->info;
 620
 621                        if (prev) {
 622                                prev->next = &csd_next->node.llist;
 623                        } else {
 624                                entry = &csd_next->node.llist;
 625                        }
 626
 627                        csd_lock_record(csd);
 628                        func(info);
 629                        csd_unlock(csd);
 630                        csd_lock_record(NULL);
 631                } else {
 632                        prev = &csd->node.llist;
 633                }
 634        }
 635
 636        if (!entry) {
 637                cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
 638                              0, smp_processor_id(),
 639                              CFD_SEQ_HDLEND);
 640                return;
 641        }
 642
 643        /*
 644         * Second; run all !SYNC callbacks.
 645         */
 646        prev = NULL;
 647        llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 648                int type = CSD_TYPE(csd);
 649
 650                if (type != CSD_TYPE_TTWU) {
 651                        if (prev) {
 652                                prev->next = &csd_next->node.llist;
 653                        } else {
 654                                entry = &csd_next->node.llist;
 655                        }
 656
 657                        if (type == CSD_TYPE_ASYNC) {
 658                                smp_call_func_t func = csd->func;
 659                                void *info = csd->info;
 660
 661                                csd_lock_record(csd);
 662                                csd_unlock(csd);
 663                                func(info);
 664                                csd_lock_record(NULL);
 665                        } else if (type == CSD_TYPE_IRQ_WORK) {
 666                                irq_work_single(csd);
 667                        }
 668
 669                } else {
 670                        prev = &csd->node.llist;
 671                }
 672        }
 673
 674        /*
 675         * Third; only CSD_TYPE_TTWU is left, issue those.
 676         */
 677        if (entry)
 678                sched_ttwu_pending(entry);
 679
 680        cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
 681                      smp_processor_id(), CFD_SEQ_HDLEND);
 682}
 683
 684void flush_smp_call_function_from_idle(void)
 685{
 686        unsigned long flags;
 687
 688        if (llist_empty(this_cpu_ptr(&call_single_queue)))
 689                return;
 690
 691        cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
 692                      smp_processor_id(), CFD_SEQ_IDLE);
 693        local_irq_save(flags);
 694        flush_smp_call_function_queue(true);
 695        if (local_softirq_pending())
 696                do_softirq();
 697
 698        local_irq_restore(flags);
 699}
 700
 701/*
 702 * smp_call_function_single - Run a function on a specific CPU
 703 * @func: The function to run. This must be fast and non-blocking.
 704 * @info: An arbitrary pointer to pass to the function.
 705 * @wait: If true, wait until function has completed on other CPUs.
 706 *
 707 * Returns 0 on success, else a negative status code.
 708 */
 709int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
 710                             int wait)
 711{
 712        call_single_data_t *csd;
 713        call_single_data_t csd_stack = {
 714                .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
 715        };
 716        int this_cpu;
 717        int err;
 718
 719        /*
 720         * prevent preemption and reschedule on another processor,
 721         * as well as CPU removal
 722         */
 723        this_cpu = get_cpu();
 724
 725        /*
 726         * Can deadlock when called with interrupts disabled.
 727         * We allow cpu's that are not yet online though, as no one else can
 728         * send smp call function interrupt to this cpu and as such deadlocks
 729         * can't happen.
 730         */
 731        WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
 732                     && !oops_in_progress);
 733
 734        /*
 735         * When @wait we can deadlock when we interrupt between llist_add() and
 736         * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 737         * csd_lock() on because the interrupt context uses the same csd
 738         * storage.
 739         */
 740        WARN_ON_ONCE(!in_task());
 741
 742        csd = &csd_stack;
 743        if (!wait) {
 744                csd = this_cpu_ptr(&csd_data);
 745                csd_lock(csd);
 746        }
 747
 748        csd->func = func;
 749        csd->info = info;
 750#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 751        csd->node.src = smp_processor_id();
 752        csd->node.dst = cpu;
 753#endif
 754
 755        err = generic_exec_single(cpu, csd);
 756
 757        if (wait)
 758                csd_lock_wait(csd);
 759
 760        put_cpu();
 761
 762        return err;
 763}
 764EXPORT_SYMBOL(smp_call_function_single);
 765
 766/**
 767 * smp_call_function_single_async() - Run an asynchronous function on a
 768 *                               specific CPU.
 769 * @cpu: The CPU to run on.
 770 * @csd: Pre-allocated and setup data structure
 771 *
 772 * Like smp_call_function_single(), but the call is asynchonous and
 773 * can thus be done from contexts with disabled interrupts.
 774 *
 775 * The caller passes his own pre-allocated data structure
 776 * (ie: embedded in an object) and is responsible for synchronizing it
 777 * such that the IPIs performed on the @csd are strictly serialized.
 778 *
 779 * If the function is called with one csd which has not yet been
 780 * processed by previous call to smp_call_function_single_async(), the
 781 * function will return immediately with -EBUSY showing that the csd
 782 * object is still in progress.
 783 *
 784 * NOTE: Be careful, there is unfortunately no current debugging facility to
 785 * validate the correctness of this serialization.
 786 *
 787 * Return: %0 on success or negative errno value on error
 788 */
 789int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
 790{
 791        int err = 0;
 792
 793        preempt_disable();
 794
 795        if (csd->node.u_flags & CSD_FLAG_LOCK) {
 796                err = -EBUSY;
 797                goto out;
 798        }
 799
 800        csd->node.u_flags = CSD_FLAG_LOCK;
 801        smp_wmb();
 802
 803        err = generic_exec_single(cpu, csd);
 804
 805out:
 806        preempt_enable();
 807
 808        return err;
 809}
 810EXPORT_SYMBOL_GPL(smp_call_function_single_async);
 811
 812/*
 813 * smp_call_function_any - Run a function on any of the given cpus
 814 * @mask: The mask of cpus it can run on.
 815 * @func: The function to run. This must be fast and non-blocking.
 816 * @info: An arbitrary pointer to pass to the function.
 817 * @wait: If true, wait until function has completed.
 818 *
 819 * Returns 0 on success, else a negative status code (if no cpus were online).
 820 *
 821 * Selection preference:
 822 *      1) current cpu if in @mask
 823 *      2) any cpu of current node if in @mask
 824 *      3) any other online cpu in @mask
 825 */
 826int smp_call_function_any(const struct cpumask *mask,
 827                          smp_call_func_t func, void *info, int wait)
 828{
 829        unsigned int cpu;
 830        const struct cpumask *nodemask;
 831        int ret;
 832
 833        /* Try for same CPU (cheapest) */
 834        cpu = get_cpu();
 835        if (cpumask_test_cpu(cpu, mask))
 836                goto call;
 837
 838        /* Try for same node. */
 839        nodemask = cpumask_of_node(cpu_to_node(cpu));
 840        for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
 841             cpu = cpumask_next_and(cpu, nodemask, mask)) {
 842                if (cpu_online(cpu))
 843                        goto call;
 844        }
 845
 846        /* Any online will do: smp_call_function_single handles nr_cpu_ids. */
 847        cpu = cpumask_any_and(mask, cpu_online_mask);
 848call:
 849        ret = smp_call_function_single(cpu, func, info, wait);
 850        put_cpu();
 851        return ret;
 852}
 853EXPORT_SYMBOL_GPL(smp_call_function_any);
 854
 855/*
 856 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
 857 *
 858 * %SCF_WAIT:           Wait until function execution is completed
 859 * %SCF_RUN_LOCAL:      Run also locally if local cpu is set in cpumask
 860 */
 861#define SCF_WAIT        (1U << 0)
 862#define SCF_RUN_LOCAL   (1U << 1)
 863
 864static void smp_call_function_many_cond(const struct cpumask *mask,
 865                                        smp_call_func_t func, void *info,
 866                                        unsigned int scf_flags,
 867                                        smp_cond_func_t cond_func)
 868{
 869        int cpu, last_cpu, this_cpu = smp_processor_id();
 870        struct call_function_data *cfd;
 871        bool wait = scf_flags & SCF_WAIT;
 872        bool run_remote = false;
 873        bool run_local = false;
 874        int nr_cpus = 0;
 875
 876        lockdep_assert_preemption_disabled();
 877
 878        /*
 879         * Can deadlock when called with interrupts disabled.
 880         * We allow cpu's that are not yet online though, as no one else can
 881         * send smp call function interrupt to this cpu and as such deadlocks
 882         * can't happen.
 883         */
 884        if (cpu_online(this_cpu) && !oops_in_progress &&
 885            !early_boot_irqs_disabled)
 886                lockdep_assert_irqs_enabled();
 887
 888        /*
 889         * When @wait we can deadlock when we interrupt between llist_add() and
 890         * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 891         * csd_lock() on because the interrupt context uses the same csd
 892         * storage.
 893         */
 894        WARN_ON_ONCE(!in_task());
 895
 896        /* Check if we need local execution. */
 897        if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
 898                run_local = true;
 899
 900        /* Check if we need remote execution, i.e., any CPU excluding this one. */
 901        cpu = cpumask_first_and(mask, cpu_online_mask);
 902        if (cpu == this_cpu)
 903                cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
 904        if (cpu < nr_cpu_ids)
 905                run_remote = true;
 906
 907        if (run_remote) {
 908                cfd = this_cpu_ptr(&cfd_data);
 909                cpumask_and(cfd->cpumask, mask, cpu_online_mask);
 910                __cpumask_clear_cpu(this_cpu, cfd->cpumask);
 911
 912                cpumask_clear(cfd->cpumask_ipi);
 913                for_each_cpu(cpu, cfd->cpumask) {
 914                        struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 915                        call_single_data_t *csd = &pcpu->csd;
 916
 917                        if (cond_func && !cond_func(cpu, info))
 918                                continue;
 919
 920                        csd_lock(csd);
 921                        if (wait)
 922                                csd->node.u_flags |= CSD_TYPE_SYNC;
 923                        csd->func = func;
 924                        csd->info = info;
 925#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 926                        csd->node.src = smp_processor_id();
 927                        csd->node.dst = cpu;
 928#endif
 929                        cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
 930                        if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
 931                                __cpumask_set_cpu(cpu, cfd->cpumask_ipi);
 932                                nr_cpus++;
 933                                last_cpu = cpu;
 934
 935                                cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
 936                        } else {
 937                                cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
 938                        }
 939                }
 940
 941                cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
 942
 943                /*
 944                 * Choose the most efficient way to send an IPI. Note that the
 945                 * number of CPUs might be zero due to concurrent changes to the
 946                 * provided mask.
 947                 */
 948                if (nr_cpus == 1)
 949                        send_call_function_single_ipi(last_cpu);
 950                else if (likely(nr_cpus > 1))
 951                        arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
 952
 953                cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
 954        }
 955
 956        if (run_local && (!cond_func || cond_func(this_cpu, info))) {
 957                unsigned long flags;
 958
 959                local_irq_save(flags);
 960                func(info);
 961                local_irq_restore(flags);
 962        }
 963
 964        if (run_remote && wait) {
 965                for_each_cpu(cpu, cfd->cpumask) {
 966                        call_single_data_t *csd;
 967
 968                        csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
 969                        csd_lock_wait(csd);
 970                }
 971        }
 972}
 973
 974/**
 975 * smp_call_function_many(): Run a function on a set of CPUs.
 976 * @mask: The set of cpus to run on (only runs on online subset).
 977 * @func: The function to run. This must be fast and non-blocking.
 978 * @info: An arbitrary pointer to pass to the function.
 979 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
 980 *        (atomically) until function has completed on other CPUs. If
 981 *        %SCF_RUN_LOCAL is set, the function will also be run locally
 982 *        if the local CPU is set in the @cpumask.
 983 *
 984 * If @wait is true, then returns once @func has returned.
 985 *
 986 * You must not call this function with disabled interrupts or from a
 987 * hardware interrupt handler or from a bottom half handler. Preemption
 988 * must be disabled when calling this function.
 989 */
 990void smp_call_function_many(const struct cpumask *mask,
 991                            smp_call_func_t func, void *info, bool wait)
 992{
 993        smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
 994}
 995EXPORT_SYMBOL(smp_call_function_many);
 996
 997/**
 998 * smp_call_function(): Run a function on all other CPUs.
 999 * @func: The function to run. This must be fast and non-blocking.
1000 * @info: An arbitrary pointer to pass to the function.
1001 * @wait: If true, wait (atomically) until function has completed
1002 *        on other CPUs.
1003 *
1004 * Returns 0.
1005 *
1006 * If @wait is true, then returns once @func has returned; otherwise
1007 * it returns just before the target cpu calls @func.
1008 *
1009 * You must not call this function with disabled interrupts or from a
1010 * hardware interrupt handler or from a bottom half handler.
1011 */
1012void smp_call_function(smp_call_func_t func, void *info, int wait)
1013{
1014        preempt_disable();
1015        smp_call_function_many(cpu_online_mask, func, info, wait);
1016        preempt_enable();
1017}
1018EXPORT_SYMBOL(smp_call_function);
1019
1020/* Setup configured maximum number of CPUs to activate */
1021unsigned int setup_max_cpus = NR_CPUS;
1022EXPORT_SYMBOL(setup_max_cpus);
1023
1024
1025/*
1026 * Setup routine for controlling SMP activation
1027 *
1028 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1029 * activation entirely (the MPS table probe still happens, though).
1030 *
1031 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1032 * greater than 0, limits the maximum number of CPUs activated in
1033 * SMP mode to <NUM>.
1034 */
1035
1036void __weak arch_disable_smp_support(void) { }
1037
1038static int __init nosmp(char *str)
1039{
1040        setup_max_cpus = 0;
1041        arch_disable_smp_support();
1042
1043        return 0;
1044}
1045
1046early_param("nosmp", nosmp);
1047
1048/* this is hard limit */
1049static int __init nrcpus(char *str)
1050{
1051        int nr_cpus;
1052
1053        if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
1054                nr_cpu_ids = nr_cpus;
1055
1056        return 0;
1057}
1058
1059early_param("nr_cpus", nrcpus);
1060
1061static int __init maxcpus(char *str)
1062{
1063        get_option(&str, &setup_max_cpus);
1064        if (setup_max_cpus == 0)
1065                arch_disable_smp_support();
1066
1067        return 0;
1068}
1069
1070early_param("maxcpus", maxcpus);
1071
1072/* Setup number of possible processor ids */
1073unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1074EXPORT_SYMBOL(nr_cpu_ids);
1075
1076/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
1077void __init setup_nr_cpu_ids(void)
1078{
1079        nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
1080}
1081
1082/* Called by boot processor to activate the rest. */
1083void __init smp_init(void)
1084{
1085        int num_nodes, num_cpus;
1086
1087        idle_threads_init();
1088        cpuhp_threads_init();
1089
1090        pr_info("Bringing up secondary CPUs ...\n");
1091
1092        bringup_nonboot_cpus(setup_max_cpus);
1093
1094        num_nodes = num_online_nodes();
1095        num_cpus  = num_online_cpus();
1096        pr_info("Brought up %d node%s, %d CPU%s\n",
1097                num_nodes, (num_nodes > 1 ? "s" : ""),
1098                num_cpus,  (num_cpus  > 1 ? "s" : ""));
1099
1100        /* Any cleanup work */
1101        smp_cpus_done(setup_max_cpus);
1102}
1103
1104/*
1105 * on_each_cpu_cond(): Call a function on each processor for which
1106 * the supplied function cond_func returns true, optionally waiting
1107 * for all the required CPUs to finish. This may include the local
1108 * processor.
1109 * @cond_func:  A callback function that is passed a cpu id and
1110 *              the info parameter. The function is called
1111 *              with preemption disabled. The function should
1112 *              return a blooean value indicating whether to IPI
1113 *              the specified CPU.
1114 * @func:       The function to run on all applicable CPUs.
1115 *              This must be fast and non-blocking.
1116 * @info:       An arbitrary pointer to pass to both functions.
1117 * @wait:       If true, wait (atomically) until function has
1118 *              completed on other CPUs.
1119 *
1120 * Preemption is disabled to protect against CPUs going offline but not online.
1121 * CPUs going online during the call will not be seen or sent an IPI.
1122 *
1123 * You must not call this function with disabled interrupts or
1124 * from a hardware interrupt handler or from a bottom half handler.
1125 */
1126void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1127                           void *info, bool wait, const struct cpumask *mask)
1128{
1129        unsigned int scf_flags = SCF_RUN_LOCAL;
1130
1131        if (wait)
1132                scf_flags |= SCF_WAIT;
1133
1134        preempt_disable();
1135        smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1136        preempt_enable();
1137}
1138EXPORT_SYMBOL(on_each_cpu_cond_mask);
1139
1140static void do_nothing(void *unused)
1141{
1142}
1143
1144/**
1145 * kick_all_cpus_sync - Force all cpus out of idle
1146 *
1147 * Used to synchronize the update of pm_idle function pointer. It's
1148 * called after the pointer is updated and returns after the dummy
1149 * callback function has been executed on all cpus. The execution of
1150 * the function can only happen on the remote cpus after they have
1151 * left the idle function which had been called via pm_idle function
1152 * pointer. So it's guaranteed that nothing uses the previous pointer
1153 * anymore.
1154 */
1155void kick_all_cpus_sync(void)
1156{
1157        /* Make sure the change is visible before we kick the cpus */
1158        smp_mb();
1159        smp_call_function(do_nothing, NULL, 1);
1160}
1161EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1162
1163/**
1164 * wake_up_all_idle_cpus - break all cpus out of idle
1165 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1166 * including idle polling cpus, for non-idle cpus, we will do nothing
1167 * for them.
1168 */
1169void wake_up_all_idle_cpus(void)
1170{
1171        int cpu;
1172
1173        for_each_possible_cpu(cpu) {
1174                preempt_disable();
1175                if (cpu != smp_processor_id() && cpu_online(cpu))
1176                        wake_up_if_idle(cpu);
1177                preempt_enable();
1178        }
1179}
1180EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1181
1182/**
1183 * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1184 * @work: &work_struct
1185 * @done: &completion to signal
1186 * @func: function to call
1187 * @data: function's data argument
1188 * @ret: return value from @func
1189 * @cpu: target CPU (%-1 for any CPU)
1190 *
1191 * Used to call a function on a specific cpu and wait for it to return.
1192 * Optionally make sure the call is done on a specified physical cpu via vcpu
1193 * pinning in order to support virtualized environments.
1194 */
1195struct smp_call_on_cpu_struct {
1196        struct work_struct      work;
1197        struct completion       done;
1198        int                     (*func)(void *);
1199        void                    *data;
1200        int                     ret;
1201        int                     cpu;
1202};
1203
1204static void smp_call_on_cpu_callback(struct work_struct *work)
1205{
1206        struct smp_call_on_cpu_struct *sscs;
1207
1208        sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1209        if (sscs->cpu >= 0)
1210                hypervisor_pin_vcpu(sscs->cpu);
1211        sscs->ret = sscs->func(sscs->data);
1212        if (sscs->cpu >= 0)
1213                hypervisor_pin_vcpu(-1);
1214
1215        complete(&sscs->done);
1216}
1217
1218int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1219{
1220        struct smp_call_on_cpu_struct sscs = {
1221                .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1222                .func = func,
1223                .data = par,
1224                .cpu  = phys ? cpu : -1,
1225        };
1226
1227        INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1228
1229        if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1230                return -ENXIO;
1231
1232        queue_work_on(cpu, system_wq, &sscs.work);
1233        wait_for_completion(&sscs.done);
1234
1235        return sscs.ret;
1236}
1237EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1238