1
2
3
4
5
6#include <linux/clocksource.h>
7#include <linux/init.h>
8#include <linux/jiffies.h>
9#include <linux/ktime.h>
10#include <linux/kernel.h>
11#include <linux/moduleparam.h>
12#include <linux/sched.h>
13#include <linux/sched/clock.h>
14#include <linux/syscore_ops.h>
15#include <linux/hrtimer.h>
16#include <linux/sched_clock.h>
17#include <linux/seqlock.h>
18#include <linux/bitops.h>
19
20#include "timekeeping.h"
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37struct clock_data {
38 seqcount_latch_t seq;
39 struct clock_read_data read_data[2];
40 ktime_t wrap_kt;
41 unsigned long rate;
42
43 u64 (*actual_read_sched_clock)(void);
44};
45
46static struct hrtimer sched_clock_timer;
47static int irqtime = -1;
48
49core_param(irqtime, irqtime, int, 0400);
50
51static u64 notrace jiffy_sched_clock_read(void)
52{
53
54
55
56
57 return (u64)(jiffies - INITIAL_JIFFIES);
58}
59
60static struct clock_data cd ____cacheline_aligned = {
61 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
62 .read_sched_clock = jiffy_sched_clock_read, },
63 .actual_read_sched_clock = jiffy_sched_clock_read,
64};
65
66static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
67{
68 return (cyc * mult) >> shift;
69}
70
71notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
72{
73 *seq = raw_read_seqcount_latch(&cd.seq);
74 return cd.read_data + (*seq & 1);
75}
76
77notrace int sched_clock_read_retry(unsigned int seq)
78{
79 return read_seqcount_latch_retry(&cd.seq, seq);
80}
81
82unsigned long long notrace sched_clock(void)
83{
84 u64 cyc, res;
85 unsigned int seq;
86 struct clock_read_data *rd;
87
88 do {
89 rd = sched_clock_read_begin(&seq);
90
91 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
92 rd->sched_clock_mask;
93 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
94 } while (sched_clock_read_retry(seq));
95
96 return res;
97}
98
99
100
101
102
103
104
105
106
107
108
109static void update_clock_read_data(struct clock_read_data *rd)
110{
111
112 cd.read_data[1] = *rd;
113
114
115 raw_write_seqcount_latch(&cd.seq);
116
117
118 cd.read_data[0] = *rd;
119
120
121 raw_write_seqcount_latch(&cd.seq);
122}
123
124
125
126
127static void update_sched_clock(void)
128{
129 u64 cyc;
130 u64 ns;
131 struct clock_read_data rd;
132
133 rd = cd.read_data[0];
134
135 cyc = cd.actual_read_sched_clock();
136 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
137
138 rd.epoch_ns = ns;
139 rd.epoch_cyc = cyc;
140
141 update_clock_read_data(&rd);
142}
143
144static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
145{
146 update_sched_clock();
147 hrtimer_forward_now(hrt, cd.wrap_kt);
148
149 return HRTIMER_RESTART;
150}
151
152void __init
153sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
154{
155 u64 res, wrap, new_mask, new_epoch, cyc, ns;
156 u32 new_mult, new_shift;
157 unsigned long r, flags;
158 char r_unit;
159 struct clock_read_data rd;
160
161 if (cd.rate > rate)
162 return;
163
164
165 local_irq_save(flags);
166
167
168 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
169
170 new_mask = CLOCKSOURCE_MASK(bits);
171 cd.rate = rate;
172
173
174 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
175 cd.wrap_kt = ns_to_ktime(wrap);
176
177 rd = cd.read_data[0];
178
179
180 new_epoch = read();
181 cyc = cd.actual_read_sched_clock();
182 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
183 cd.actual_read_sched_clock = read;
184
185 rd.read_sched_clock = read;
186 rd.sched_clock_mask = new_mask;
187 rd.mult = new_mult;
188 rd.shift = new_shift;
189 rd.epoch_cyc = new_epoch;
190 rd.epoch_ns = ns;
191
192 update_clock_read_data(&rd);
193
194 if (sched_clock_timer.function != NULL) {
195
196 hrtimer_start(&sched_clock_timer, cd.wrap_kt,
197 HRTIMER_MODE_REL_HARD);
198 }
199
200 r = rate;
201 if (r >= 4000000) {
202 r /= 1000000;
203 r_unit = 'M';
204 } else {
205 if (r >= 1000) {
206 r /= 1000;
207 r_unit = 'k';
208 } else {
209 r_unit = ' ';
210 }
211 }
212
213
214 res = cyc_to_ns(1ULL, new_mult, new_shift);
215
216 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
217 bits, r, r_unit, res, wrap);
218
219
220 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
221 enable_sched_clock_irqtime();
222
223 local_irq_restore(flags);
224
225 pr_debug("Registered %pS as sched_clock source\n", read);
226}
227
228void __init generic_sched_clock_init(void)
229{
230
231
232
233
234 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
235 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
236
237 update_sched_clock();
238
239
240
241
242
243 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
244 sched_clock_timer.function = sched_clock_poll;
245 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
246}
247
248
249
250
251
252
253
254
255
256
257
258
259static u64 notrace suspended_sched_clock_read(void)
260{
261 unsigned int seq = raw_read_seqcount_latch(&cd.seq);
262
263 return cd.read_data[seq & 1].epoch_cyc;
264}
265
266int sched_clock_suspend(void)
267{
268 struct clock_read_data *rd = &cd.read_data[0];
269
270 update_sched_clock();
271 hrtimer_cancel(&sched_clock_timer);
272 rd->read_sched_clock = suspended_sched_clock_read;
273
274 return 0;
275}
276
277void sched_clock_resume(void)
278{
279 struct clock_read_data *rd = &cd.read_data[0];
280
281 rd->epoch_cyc = cd.actual_read_sched_clock();
282 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
283 rd->read_sched_clock = cd.actual_read_sched_clock;
284}
285
286static struct syscore_ops sched_clock_ops = {
287 .suspend = sched_clock_suspend,
288 .resume = sched_clock_resume,
289};
290
291static int __init sched_clock_syscore_init(void)
292{
293 register_syscore_ops(&sched_clock_ops);
294
295 return 0;
296}
297device_initcall(sched_clock_syscore_init);
298