linux/kernel/time/sched_clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic sched_clock() support, to extend low level hardware time
   4 * counters to full 64-bit ns values.
   5 */
   6#include <linux/clocksource.h>
   7#include <linux/init.h>
   8#include <linux/jiffies.h>
   9#include <linux/ktime.h>
  10#include <linux/kernel.h>
  11#include <linux/moduleparam.h>
  12#include <linux/sched.h>
  13#include <linux/sched/clock.h>
  14#include <linux/syscore_ops.h>
  15#include <linux/hrtimer.h>
  16#include <linux/sched_clock.h>
  17#include <linux/seqlock.h>
  18#include <linux/bitops.h>
  19
  20#include "timekeeping.h"
  21
  22/**
  23 * struct clock_data - all data needed for sched_clock() (including
  24 *                     registration of a new clock source)
  25 *
  26 * @seq:                Sequence counter for protecting updates. The lowest
  27 *                      bit is the index for @read_data.
  28 * @read_data:          Data required to read from sched_clock.
  29 * @wrap_kt:            Duration for which clock can run before wrapping.
  30 * @rate:               Tick rate of the registered clock.
  31 * @actual_read_sched_clock: Registered hardware level clock read function.
  32 *
  33 * The ordering of this structure has been chosen to optimize cache
  34 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
  35 * into a single 64-byte cache line.
  36 */
  37struct clock_data {
  38        seqcount_latch_t        seq;
  39        struct clock_read_data  read_data[2];
  40        ktime_t                 wrap_kt;
  41        unsigned long           rate;
  42
  43        u64 (*actual_read_sched_clock)(void);
  44};
  45
  46static struct hrtimer sched_clock_timer;
  47static int irqtime = -1;
  48
  49core_param(irqtime, irqtime, int, 0400);
  50
  51static u64 notrace jiffy_sched_clock_read(void)
  52{
  53        /*
  54         * We don't need to use get_jiffies_64 on 32-bit arches here
  55         * because we register with BITS_PER_LONG
  56         */
  57        return (u64)(jiffies - INITIAL_JIFFIES);
  58}
  59
  60static struct clock_data cd ____cacheline_aligned = {
  61        .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
  62                          .read_sched_clock = jiffy_sched_clock_read, },
  63        .actual_read_sched_clock = jiffy_sched_clock_read,
  64};
  65
  66static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
  67{
  68        return (cyc * mult) >> shift;
  69}
  70
  71notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
  72{
  73        *seq = raw_read_seqcount_latch(&cd.seq);
  74        return cd.read_data + (*seq & 1);
  75}
  76
  77notrace int sched_clock_read_retry(unsigned int seq)
  78{
  79        return read_seqcount_latch_retry(&cd.seq, seq);
  80}
  81
  82unsigned long long notrace sched_clock(void)
  83{
  84        u64 cyc, res;
  85        unsigned int seq;
  86        struct clock_read_data *rd;
  87
  88        do {
  89                rd = sched_clock_read_begin(&seq);
  90
  91                cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
  92                      rd->sched_clock_mask;
  93                res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
  94        } while (sched_clock_read_retry(seq));
  95
  96        return res;
  97}
  98
  99/*
 100 * Updating the data required to read the clock.
 101 *
 102 * sched_clock() will never observe mis-matched data even if called from
 103 * an NMI. We do this by maintaining an odd/even copy of the data and
 104 * steering sched_clock() to one or the other using a sequence counter.
 105 * In order to preserve the data cache profile of sched_clock() as much
 106 * as possible the system reverts back to the even copy when the update
 107 * completes; the odd copy is used *only* during an update.
 108 */
 109static void update_clock_read_data(struct clock_read_data *rd)
 110{
 111        /* update the backup (odd) copy with the new data */
 112        cd.read_data[1] = *rd;
 113
 114        /* steer readers towards the odd copy */
 115        raw_write_seqcount_latch(&cd.seq);
 116
 117        /* now its safe for us to update the normal (even) copy */
 118        cd.read_data[0] = *rd;
 119
 120        /* switch readers back to the even copy */
 121        raw_write_seqcount_latch(&cd.seq);
 122}
 123
 124/*
 125 * Atomically update the sched_clock() epoch.
 126 */
 127static void update_sched_clock(void)
 128{
 129        u64 cyc;
 130        u64 ns;
 131        struct clock_read_data rd;
 132
 133        rd = cd.read_data[0];
 134
 135        cyc = cd.actual_read_sched_clock();
 136        ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
 137
 138        rd.epoch_ns = ns;
 139        rd.epoch_cyc = cyc;
 140
 141        update_clock_read_data(&rd);
 142}
 143
 144static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
 145{
 146        update_sched_clock();
 147        hrtimer_forward_now(hrt, cd.wrap_kt);
 148
 149        return HRTIMER_RESTART;
 150}
 151
 152void __init
 153sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
 154{
 155        u64 res, wrap, new_mask, new_epoch, cyc, ns;
 156        u32 new_mult, new_shift;
 157        unsigned long r, flags;
 158        char r_unit;
 159        struct clock_read_data rd;
 160
 161        if (cd.rate > rate)
 162                return;
 163
 164        /* Cannot register a sched_clock with interrupts on */
 165        local_irq_save(flags);
 166
 167        /* Calculate the mult/shift to convert counter ticks to ns. */
 168        clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
 169
 170        new_mask = CLOCKSOURCE_MASK(bits);
 171        cd.rate = rate;
 172
 173        /* Calculate how many nanosecs until we risk wrapping */
 174        wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
 175        cd.wrap_kt = ns_to_ktime(wrap);
 176
 177        rd = cd.read_data[0];
 178
 179        /* Update epoch for new counter and update 'epoch_ns' from old counter*/
 180        new_epoch = read();
 181        cyc = cd.actual_read_sched_clock();
 182        ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
 183        cd.actual_read_sched_clock = read;
 184
 185        rd.read_sched_clock     = read;
 186        rd.sched_clock_mask     = new_mask;
 187        rd.mult                 = new_mult;
 188        rd.shift                = new_shift;
 189        rd.epoch_cyc            = new_epoch;
 190        rd.epoch_ns             = ns;
 191
 192        update_clock_read_data(&rd);
 193
 194        if (sched_clock_timer.function != NULL) {
 195                /* update timeout for clock wrap */
 196                hrtimer_start(&sched_clock_timer, cd.wrap_kt,
 197                              HRTIMER_MODE_REL_HARD);
 198        }
 199
 200        r = rate;
 201        if (r >= 4000000) {
 202                r /= 1000000;
 203                r_unit = 'M';
 204        } else {
 205                if (r >= 1000) {
 206                        r /= 1000;
 207                        r_unit = 'k';
 208                } else {
 209                        r_unit = ' ';
 210                }
 211        }
 212
 213        /* Calculate the ns resolution of this counter */
 214        res = cyc_to_ns(1ULL, new_mult, new_shift);
 215
 216        pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
 217                bits, r, r_unit, res, wrap);
 218
 219        /* Enable IRQ time accounting if we have a fast enough sched_clock() */
 220        if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
 221                enable_sched_clock_irqtime();
 222
 223        local_irq_restore(flags);
 224
 225        pr_debug("Registered %pS as sched_clock source\n", read);
 226}
 227
 228void __init generic_sched_clock_init(void)
 229{
 230        /*
 231         * If no sched_clock() function has been provided at that point,
 232         * make it the final one.
 233         */
 234        if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
 235                sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
 236
 237        update_sched_clock();
 238
 239        /*
 240         * Start the timer to keep sched_clock() properly updated and
 241         * sets the initial epoch.
 242         */
 243        hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 244        sched_clock_timer.function = sched_clock_poll;
 245        hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
 246}
 247
 248/*
 249 * Clock read function for use when the clock is suspended.
 250 *
 251 * This function makes it appear to sched_clock() as if the clock
 252 * stopped counting at its last update.
 253 *
 254 * This function must only be called from the critical
 255 * section in sched_clock(). It relies on the read_seqcount_retry()
 256 * at the end of the critical section to be sure we observe the
 257 * correct copy of 'epoch_cyc'.
 258 */
 259static u64 notrace suspended_sched_clock_read(void)
 260{
 261        unsigned int seq = raw_read_seqcount_latch(&cd.seq);
 262
 263        return cd.read_data[seq & 1].epoch_cyc;
 264}
 265
 266int sched_clock_suspend(void)
 267{
 268        struct clock_read_data *rd = &cd.read_data[0];
 269
 270        update_sched_clock();
 271        hrtimer_cancel(&sched_clock_timer);
 272        rd->read_sched_clock = suspended_sched_clock_read;
 273
 274        return 0;
 275}
 276
 277void sched_clock_resume(void)
 278{
 279        struct clock_read_data *rd = &cd.read_data[0];
 280
 281        rd->epoch_cyc = cd.actual_read_sched_clock();
 282        hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
 283        rd->read_sched_clock = cd.actual_read_sched_clock;
 284}
 285
 286static struct syscore_ops sched_clock_ops = {
 287        .suspend        = sched_clock_suspend,
 288        .resume         = sched_clock_resume,
 289};
 290
 291static int __init sched_clock_syscore_init(void)
 292{
 293        register_syscore_ops(&sched_clock_ops);
 294
 295        return 0;
 296}
 297device_initcall(sched_clock_syscore_init);
 298