linux/kernel/trace/trace_events_filter.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * trace_events_filter - generic event filtering
   4 *
   5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
   6 */
   7
   8#include <linux/uaccess.h>
   9#include <linux/module.h>
  10#include <linux/ctype.h>
  11#include <linux/mutex.h>
  12#include <linux/perf_event.h>
  13#include <linux/slab.h>
  14
  15#include "trace.h"
  16#include "trace_output.h"
  17
  18#define DEFAULT_SYS_FILTER_MESSAGE                                      \
  19        "### global filter ###\n"                                       \
  20        "# Use this to set filters for multiple events.\n"              \
  21        "# Only events with the given fields will be affected.\n"       \
  22        "# If no events are modified, an error message will be displayed here"
  23
  24/* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
  25#define OPS                                     \
  26        C( OP_GLOB,     "~"  ),                 \
  27        C( OP_NE,       "!=" ),                 \
  28        C( OP_EQ,       "==" ),                 \
  29        C( OP_LE,       "<=" ),                 \
  30        C( OP_LT,       "<"  ),                 \
  31        C( OP_GE,       ">=" ),                 \
  32        C( OP_GT,       ">"  ),                 \
  33        C( OP_BAND,     "&"  ),                 \
  34        C( OP_MAX,      NULL )
  35
  36#undef C
  37#define C(a, b) a
  38
  39enum filter_op_ids { OPS };
  40
  41#undef C
  42#define C(a, b) b
  43
  44static const char * ops[] = { OPS };
  45
  46/*
  47 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
  48 * pred_funcs_##type below must match the order of them above.
  49 */
  50#define PRED_FUNC_START                 OP_LE
  51#define PRED_FUNC_MAX                   (OP_BAND - PRED_FUNC_START)
  52
  53#define ERRORS                                                          \
  54        C(NONE,                 "No error"),                            \
  55        C(INVALID_OP,           "Invalid operator"),                    \
  56        C(TOO_MANY_OPEN,        "Too many '('"),                        \
  57        C(TOO_MANY_CLOSE,       "Too few '('"),                         \
  58        C(MISSING_QUOTE,        "Missing matching quote"),              \
  59        C(OPERAND_TOO_LONG,     "Operand too long"),                    \
  60        C(EXPECT_STRING,        "Expecting string field"),              \
  61        C(EXPECT_DIGIT,         "Expecting numeric field"),             \
  62        C(ILLEGAL_FIELD_OP,     "Illegal operation for field type"),    \
  63        C(FIELD_NOT_FOUND,      "Field not found"),                     \
  64        C(ILLEGAL_INTVAL,       "Illegal integer value"),               \
  65        C(BAD_SUBSYS_FILTER,    "Couldn't find or set field in one of a subsystem's events"), \
  66        C(TOO_MANY_PREDS,       "Too many terms in predicate expression"), \
  67        C(INVALID_FILTER,       "Meaningless filter expression"),       \
  68        C(IP_FIELD_ONLY,        "Only 'ip' field is supported for function trace"), \
  69        C(INVALID_VALUE,        "Invalid value (did you forget quotes)?"), \
  70        C(ERRNO,                "Error"),                               \
  71        C(NO_FILTER,            "No filter found")
  72
  73#undef C
  74#define C(a, b)         FILT_ERR_##a
  75
  76enum { ERRORS };
  77
  78#undef C
  79#define C(a, b)         b
  80
  81static const char *err_text[] = { ERRORS };
  82
  83/* Called after a '!' character but "!=" and "!~" are not "not"s */
  84static bool is_not(const char *str)
  85{
  86        switch (str[1]) {
  87        case '=':
  88        case '~':
  89                return false;
  90        }
  91        return true;
  92}
  93
  94/**
  95 * prog_entry - a singe entry in the filter program
  96 * @target:          Index to jump to on a branch (actually one minus the index)
  97 * @when_to_branch:  The value of the result of the predicate to do a branch
  98 * @pred:            The predicate to execute.
  99 */
 100struct prog_entry {
 101        int                     target;
 102        int                     when_to_branch;
 103        struct filter_pred      *pred;
 104};
 105
 106/**
 107 * update_preds- assign a program entry a label target
 108 * @prog: The program array
 109 * @N: The index of the current entry in @prog
 110 * @when_to_branch: What to assign a program entry for its branch condition
 111 *
 112 * The program entry at @N has a target that points to the index of a program
 113 * entry that can have its target and when_to_branch fields updated.
 114 * Update the current program entry denoted by index @N target field to be
 115 * that of the updated entry. This will denote the entry to update if
 116 * we are processing an "||" after an "&&"
 117 */
 118static void update_preds(struct prog_entry *prog, int N, int invert)
 119{
 120        int t, s;
 121
 122        t = prog[N].target;
 123        s = prog[t].target;
 124        prog[t].when_to_branch = invert;
 125        prog[t].target = N;
 126        prog[N].target = s;
 127}
 128
 129struct filter_parse_error {
 130        int lasterr;
 131        int lasterr_pos;
 132};
 133
 134static void parse_error(struct filter_parse_error *pe, int err, int pos)
 135{
 136        pe->lasterr = err;
 137        pe->lasterr_pos = pos;
 138}
 139
 140typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
 141                             struct filter_parse_error *pe,
 142                             struct filter_pred **pred);
 143
 144enum {
 145        INVERT          = 1,
 146        PROCESS_AND     = 2,
 147        PROCESS_OR      = 4,
 148};
 149
 150/*
 151 * Without going into a formal proof, this explains the method that is used in
 152 * parsing the logical expressions.
 153 *
 154 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
 155 * The first pass will convert it into the following program:
 156 *
 157 * n1: r=a;       l1: if (!r) goto l4;
 158 * n2: r=b;       l2: if (!r) goto l4;
 159 * n3: r=c; r=!r; l3: if (r) goto l4;
 160 * n4: r=g; r=!r; l4: if (r) goto l5;
 161 * n5: r=d;       l5: if (r) goto T
 162 * n6: r=e;       l6: if (!r) goto l7;
 163 * n7: r=f; r=!r; l7: if (!r) goto F
 164 * T: return TRUE
 165 * F: return FALSE
 166 *
 167 * To do this, we use a data structure to represent each of the above
 168 * predicate and conditions that has:
 169 *
 170 *  predicate, when_to_branch, invert, target
 171 *
 172 * The "predicate" will hold the function to determine the result "r".
 173 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
 174 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
 175 * The "invert" holds whether the value should be reversed before testing.
 176 * The "target" contains the label "l#" to jump to.
 177 *
 178 * A stack is created to hold values when parentheses are used.
 179 *
 180 * To simplify the logic, the labels will start at 0 and not 1.
 181 *
 182 * The possible invert values are 1 and 0. The number of "!"s that are in scope
 183 * before the predicate determines the invert value, if the number is odd then
 184 * the invert value is 1 and 0 otherwise. This means the invert value only
 185 * needs to be toggled when a new "!" is introduced compared to what is stored
 186 * on the stack, where parentheses were used.
 187 *
 188 * The top of the stack and "invert" are initialized to zero.
 189 *
 190 * ** FIRST PASS **
 191 *
 192 * #1 A loop through all the tokens is done:
 193 *
 194 * #2 If the token is an "(", the stack is push, and the current stack value
 195 *    gets the current invert value, and the loop continues to the next token.
 196 *    The top of the stack saves the "invert" value to keep track of what
 197 *    the current inversion is. As "!(a && !b || c)" would require all
 198 *    predicates being affected separately by the "!" before the parentheses.
 199 *    And that would end up being equivalent to "(!a || b) && !c"
 200 *
 201 * #3 If the token is an "!", the current "invert" value gets inverted, and
 202 *    the loop continues. Note, if the next token is a predicate, then
 203 *    this "invert" value is only valid for the current program entry,
 204 *    and does not affect other predicates later on.
 205 *
 206 * The only other acceptable token is the predicate string.
 207 *
 208 * #4 A new entry into the program is added saving: the predicate and the
 209 *    current value of "invert". The target is currently assigned to the
 210 *    previous program index (this will not be its final value).
 211 *
 212 * #5 We now enter another loop and look at the next token. The only valid
 213 *    tokens are ")", "&&", "||" or end of the input string "\0".
 214 *
 215 * #6 The invert variable is reset to the current value saved on the top of
 216 *    the stack.
 217 *
 218 * #7 The top of the stack holds not only the current invert value, but also
 219 *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
 220 *    precedence than "||". That is "a && b || c && d" is equivalent to
 221 *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
 222 *    to be processed. This is the case if an "&&" was the last token. If it was
 223 *    then we call update_preds(). This takes the program, the current index in
 224 *    the program, and the current value of "invert".  More will be described
 225 *    below about this function.
 226 *
 227 * #8 If the next token is "&&" then we set a flag in the top of the stack
 228 *    that denotes that "&&" needs to be processed, break out of this loop
 229 *    and continue with the outer loop.
 230 *
 231 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
 232 *    This is called with the program, the current index in the program, but
 233 *    this time with an inverted value of "invert" (that is !invert). This is
 234 *    because the value taken will become the "when_to_branch" value of the
 235 *    program.
 236 *    Note, this is called when the next token is not an "&&". As stated before,
 237 *    "&&" takes higher precedence, and "||" should not be processed yet if the
 238 *    next logical operation is "&&".
 239 *
 240 * #10 If the next token is "||" then we set a flag in the top of the stack
 241 *     that denotes that "||" needs to be processed, break out of this loop
 242 *     and continue with the outer loop.
 243 *
 244 * #11 If this is the end of the input string "\0" then we break out of both
 245 *     loops.
 246 *
 247 * #12 Otherwise, the next token is ")", where we pop the stack and continue
 248 *     this inner loop.
 249 *
 250 * Now to discuss the update_pred() function, as that is key to the setting up
 251 * of the program. Remember the "target" of the program is initialized to the
 252 * previous index and not the "l" label. The target holds the index into the
 253 * program that gets affected by the operand. Thus if we have something like
 254 *  "a || b && c", when we process "a" the target will be "-1" (undefined).
 255 * When we process "b", its target is "0", which is the index of "a", as that's
 256 * the predicate that is affected by "||". But because the next token after "b"
 257 * is "&&" we don't call update_preds(). Instead continue to "c". As the
 258 * next token after "c" is not "&&" but the end of input, we first process the
 259 * "&&" by calling update_preds() for the "&&" then we process the "||" by
 260 * calling updates_preds() with the values for processing "||".
 261 *
 262 * What does that mean? What update_preds() does is to first save the "target"
 263 * of the program entry indexed by the current program entry's "target"
 264 * (remember the "target" is initialized to previous program entry), and then
 265 * sets that "target" to the current index which represents the label "l#".
 266 * That entry's "when_to_branch" is set to the value passed in (the "invert"
 267 * or "!invert"). Then it sets the current program entry's target to the saved
 268 * "target" value (the old value of the program that had its "target" updated
 269 * to the label).
 270 *
 271 * Looking back at "a || b && c", we have the following steps:
 272 *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
 273 *  "||" - flag that we need to process "||"; continue outer loop
 274 *  "b"  - prog[1] = { "b", X, 0 }
 275 *  "&&" - flag that we need to process "&&"; continue outer loop
 276 * (Notice we did not process "||")
 277 *  "c"  - prog[2] = { "c", X, 1 }
 278 *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
 279 *    t = prog[2].target; // t = 1
 280 *    s = prog[t].target; // s = 0
 281 *    prog[t].target = 2; // Set target to "l2"
 282 *    prog[t].when_to_branch = 0;
 283 *    prog[2].target = s;
 284 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
 285 *    t = prog[2].target; // t = 0
 286 *    s = prog[t].target; // s = -1
 287 *    prog[t].target = 2; // Set target to "l2"
 288 *    prog[t].when_to_branch = 1;
 289 *    prog[2].target = s;
 290 *
 291 * #13 Which brings us to the final step of the first pass, which is to set
 292 *     the last program entry's when_to_branch and target, which will be
 293 *     when_to_branch = 0; target = N; ( the label after the program entry after
 294 *     the last program entry processed above).
 295 *
 296 * If we denote "TRUE" to be the entry after the last program entry processed,
 297 * and "FALSE" the program entry after that, we are now done with the first
 298 * pass.
 299 *
 300 * Making the above "a || b && c" have a program of:
 301 *  prog[0] = { "a", 1, 2 }
 302 *  prog[1] = { "b", 0, 2 }
 303 *  prog[2] = { "c", 0, 3 }
 304 *
 305 * Which translates into:
 306 * n0: r = a; l0: if (r) goto l2;
 307 * n1: r = b; l1: if (!r) goto l2;
 308 * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
 309 * T: return TRUE; l3:
 310 * F: return FALSE
 311 *
 312 * Although, after the first pass, the program is correct, it is
 313 * inefficient. The simple sample of "a || b && c" could be easily been
 314 * converted into:
 315 * n0: r = a; if (r) goto T
 316 * n1: r = b; if (!r) goto F
 317 * n2: r = c; if (!r) goto F
 318 * T: return TRUE;
 319 * F: return FALSE;
 320 *
 321 * The First Pass is over the input string. The next too passes are over
 322 * the program itself.
 323 *
 324 * ** SECOND PASS **
 325 *
 326 * Which brings us to the second pass. If a jump to a label has the
 327 * same condition as that label, it can instead jump to its target.
 328 * The original example of "a && !(!b || (c && g)) || d || e && !f"
 329 * where the first pass gives us:
 330 *
 331 * n1: r=a;       l1: if (!r) goto l4;
 332 * n2: r=b;       l2: if (!r) goto l4;
 333 * n3: r=c; r=!r; l3: if (r) goto l4;
 334 * n4: r=g; r=!r; l4: if (r) goto l5;
 335 * n5: r=d;       l5: if (r) goto T
 336 * n6: r=e;       l6: if (!r) goto l7;
 337 * n7: r=f; r=!r; l7: if (!r) goto F:
 338 * T: return TRUE;
 339 * F: return FALSE
 340 *
 341 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
 342 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
 343 * to go directly to T. To accomplish this, we start from the last
 344 * entry in the program and work our way back. If the target of the entry
 345 * has the same "when_to_branch" then we could use that entry's target.
 346 * Doing this, the above would end up as:
 347 *
 348 * n1: r=a;       l1: if (!r) goto l4;
 349 * n2: r=b;       l2: if (!r) goto l4;
 350 * n3: r=c; r=!r; l3: if (r) goto T;
 351 * n4: r=g; r=!r; l4: if (r) goto T;
 352 * n5: r=d;       l5: if (r) goto T;
 353 * n6: r=e;       l6: if (!r) goto F;
 354 * n7: r=f; r=!r; l7: if (!r) goto F;
 355 * T: return TRUE
 356 * F: return FALSE
 357 *
 358 * In that same pass, if the "when_to_branch" doesn't match, we can simply
 359 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
 360 * where "l4: if (r) goto T;", then we can convert l2 to be:
 361 * "l2: if (!r) goto n5;".
 362 *
 363 * This will have the second pass give us:
 364 * n1: r=a;       l1: if (!r) goto n5;
 365 * n2: r=b;       l2: if (!r) goto n5;
 366 * n3: r=c; r=!r; l3: if (r) goto T;
 367 * n4: r=g; r=!r; l4: if (r) goto T;
 368 * n5: r=d;       l5: if (r) goto T
 369 * n6: r=e;       l6: if (!r) goto F;
 370 * n7: r=f; r=!r; l7: if (!r) goto F
 371 * T: return TRUE
 372 * F: return FALSE
 373 *
 374 * Notice, all the "l#" labels are no longer used, and they can now
 375 * be discarded.
 376 *
 377 * ** THIRD PASS **
 378 *
 379 * For the third pass we deal with the inverts. As they simply just
 380 * make the "when_to_branch" get inverted, a simple loop over the
 381 * program to that does: "when_to_branch ^= invert;" will do the
 382 * job, leaving us with:
 383 * n1: r=a; if (!r) goto n5;
 384 * n2: r=b; if (!r) goto n5;
 385 * n3: r=c: if (!r) goto T;
 386 * n4: r=g; if (!r) goto T;
 387 * n5: r=d; if (r) goto T
 388 * n6: r=e; if (!r) goto F;
 389 * n7: r=f; if (r) goto F
 390 * T: return TRUE
 391 * F: return FALSE
 392 *
 393 * As "r = a; if (!r) goto n5;" is obviously the same as
 394 * "if (!a) goto n5;" without doing anything we can interpret the
 395 * program as:
 396 * n1: if (!a) goto n5;
 397 * n2: if (!b) goto n5;
 398 * n3: if (!c) goto T;
 399 * n4: if (!g) goto T;
 400 * n5: if (d) goto T
 401 * n6: if (!e) goto F;
 402 * n7: if (f) goto F
 403 * T: return TRUE
 404 * F: return FALSE
 405 *
 406 * Since the inverts are discarded at the end, there's no reason to store
 407 * them in the program array (and waste memory). A separate array to hold
 408 * the inverts is used and freed at the end.
 409 */
 410static struct prog_entry *
 411predicate_parse(const char *str, int nr_parens, int nr_preds,
 412                parse_pred_fn parse_pred, void *data,
 413                struct filter_parse_error *pe)
 414{
 415        struct prog_entry *prog_stack;
 416        struct prog_entry *prog;
 417        const char *ptr = str;
 418        char *inverts = NULL;
 419        int *op_stack;
 420        int *top;
 421        int invert = 0;
 422        int ret = -ENOMEM;
 423        int len;
 424        int N = 0;
 425        int i;
 426
 427        nr_preds += 2; /* For TRUE and FALSE */
 428
 429        op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
 430        if (!op_stack)
 431                return ERR_PTR(-ENOMEM);
 432        prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
 433        if (!prog_stack) {
 434                parse_error(pe, -ENOMEM, 0);
 435                goto out_free;
 436        }
 437        inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
 438        if (!inverts) {
 439                parse_error(pe, -ENOMEM, 0);
 440                goto out_free;
 441        }
 442
 443        top = op_stack;
 444        prog = prog_stack;
 445        *top = 0;
 446
 447        /* First pass */
 448        while (*ptr) {                                          /* #1 */
 449                const char *next = ptr++;
 450
 451                if (isspace(*next))
 452                        continue;
 453
 454                switch (*next) {
 455                case '(':                                       /* #2 */
 456                        if (top - op_stack > nr_parens) {
 457                                ret = -EINVAL;
 458                                goto out_free;
 459                        }
 460                        *(++top) = invert;
 461                        continue;
 462                case '!':                                       /* #3 */
 463                        if (!is_not(next))
 464                                break;
 465                        invert = !invert;
 466                        continue;
 467                }
 468
 469                if (N >= nr_preds) {
 470                        parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
 471                        goto out_free;
 472                }
 473
 474                inverts[N] = invert;                            /* #4 */
 475                prog[N].target = N-1;
 476
 477                len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
 478                if (len < 0) {
 479                        ret = len;
 480                        goto out_free;
 481                }
 482                ptr = next + len;
 483
 484                N++;
 485
 486                ret = -1;
 487                while (1) {                                     /* #5 */
 488                        next = ptr++;
 489                        if (isspace(*next))
 490                                continue;
 491
 492                        switch (*next) {
 493                        case ')':
 494                        case '\0':
 495                                break;
 496                        case '&':
 497                        case '|':
 498                                /* accepting only "&&" or "||" */
 499                                if (next[1] == next[0]) {
 500                                        ptr++;
 501                                        break;
 502                                }
 503                                fallthrough;
 504                        default:
 505                                parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
 506                                            next - str);
 507                                goto out_free;
 508                        }
 509
 510                        invert = *top & INVERT;
 511
 512                        if (*top & PROCESS_AND) {               /* #7 */
 513                                update_preds(prog, N - 1, invert);
 514                                *top &= ~PROCESS_AND;
 515                        }
 516                        if (*next == '&') {                     /* #8 */
 517                                *top |= PROCESS_AND;
 518                                break;
 519                        }
 520                        if (*top & PROCESS_OR) {                /* #9 */
 521                                update_preds(prog, N - 1, !invert);
 522                                *top &= ~PROCESS_OR;
 523                        }
 524                        if (*next == '|') {                     /* #10 */
 525                                *top |= PROCESS_OR;
 526                                break;
 527                        }
 528                        if (!*next)                             /* #11 */
 529                                goto out;
 530
 531                        if (top == op_stack) {
 532                                ret = -1;
 533                                /* Too few '(' */
 534                                parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
 535                                goto out_free;
 536                        }
 537                        top--;                                  /* #12 */
 538                }
 539        }
 540 out:
 541        if (top != op_stack) {
 542                /* Too many '(' */
 543                parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
 544                goto out_free;
 545        }
 546
 547        if (!N) {
 548                /* No program? */
 549                ret = -EINVAL;
 550                parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
 551                goto out_free;
 552        }
 553
 554        prog[N].pred = NULL;                                    /* #13 */
 555        prog[N].target = 1;             /* TRUE */
 556        prog[N+1].pred = NULL;
 557        prog[N+1].target = 0;           /* FALSE */
 558        prog[N-1].target = N;
 559        prog[N-1].when_to_branch = false;
 560
 561        /* Second Pass */
 562        for (i = N-1 ; i--; ) {
 563                int target = prog[i].target;
 564                if (prog[i].when_to_branch == prog[target].when_to_branch)
 565                        prog[i].target = prog[target].target;
 566        }
 567
 568        /* Third Pass */
 569        for (i = 0; i < N; i++) {
 570                invert = inverts[i] ^ prog[i].when_to_branch;
 571                prog[i].when_to_branch = invert;
 572                /* Make sure the program always moves forward */
 573                if (WARN_ON(prog[i].target <= i)) {
 574                        ret = -EINVAL;
 575                        goto out_free;
 576                }
 577        }
 578
 579        kfree(op_stack);
 580        kfree(inverts);
 581        return prog;
 582out_free:
 583        kfree(op_stack);
 584        kfree(inverts);
 585        if (prog_stack) {
 586                for (i = 0; prog_stack[i].pred; i++)
 587                        kfree(prog_stack[i].pred);
 588                kfree(prog_stack);
 589        }
 590        return ERR_PTR(ret);
 591}
 592
 593#define DEFINE_COMPARISON_PRED(type)                                    \
 594static int filter_pred_LT_##type(struct filter_pred *pred, void *event) \
 595{                                                                       \
 596        type *addr = (type *)(event + pred->offset);                    \
 597        type val = (type)pred->val;                                     \
 598        return *addr < val;                                             \
 599}                                                                       \
 600static int filter_pred_LE_##type(struct filter_pred *pred, void *event) \
 601{                                                                       \
 602        type *addr = (type *)(event + pred->offset);                    \
 603        type val = (type)pred->val;                                     \
 604        return *addr <= val;                                            \
 605}                                                                       \
 606static int filter_pred_GT_##type(struct filter_pred *pred, void *event) \
 607{                                                                       \
 608        type *addr = (type *)(event + pred->offset);                    \
 609        type val = (type)pred->val;                                     \
 610        return *addr > val;                                     \
 611}                                                                       \
 612static int filter_pred_GE_##type(struct filter_pred *pred, void *event) \
 613{                                                                       \
 614        type *addr = (type *)(event + pred->offset);                    \
 615        type val = (type)pred->val;                                     \
 616        return *addr >= val;                                            \
 617}                                                                       \
 618static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
 619{                                                                       \
 620        type *addr = (type *)(event + pred->offset);                    \
 621        type val = (type)pred->val;                                     \
 622        return !!(*addr & val);                                         \
 623}                                                                       \
 624static const filter_pred_fn_t pred_funcs_##type[] = {                   \
 625        filter_pred_LE_##type,                                          \
 626        filter_pred_LT_##type,                                          \
 627        filter_pred_GE_##type,                                          \
 628        filter_pred_GT_##type,                                          \
 629        filter_pred_BAND_##type,                                        \
 630};
 631
 632#define DEFINE_EQUALITY_PRED(size)                                      \
 633static int filter_pred_##size(struct filter_pred *pred, void *event)    \
 634{                                                                       \
 635        u##size *addr = (u##size *)(event + pred->offset);              \
 636        u##size val = (u##size)pred->val;                               \
 637        int match;                                                      \
 638                                                                        \
 639        match = (val == *addr) ^ pred->not;                             \
 640                                                                        \
 641        return match;                                                   \
 642}
 643
 644DEFINE_COMPARISON_PRED(s64);
 645DEFINE_COMPARISON_PRED(u64);
 646DEFINE_COMPARISON_PRED(s32);
 647DEFINE_COMPARISON_PRED(u32);
 648DEFINE_COMPARISON_PRED(s16);
 649DEFINE_COMPARISON_PRED(u16);
 650DEFINE_COMPARISON_PRED(s8);
 651DEFINE_COMPARISON_PRED(u8);
 652
 653DEFINE_EQUALITY_PRED(64);
 654DEFINE_EQUALITY_PRED(32);
 655DEFINE_EQUALITY_PRED(16);
 656DEFINE_EQUALITY_PRED(8);
 657
 658/* user space strings temp buffer */
 659#define USTRING_BUF_SIZE        1024
 660
 661struct ustring_buffer {
 662        char            buffer[USTRING_BUF_SIZE];
 663};
 664
 665static __percpu struct ustring_buffer *ustring_per_cpu;
 666
 667static __always_inline char *test_string(char *str)
 668{
 669        struct ustring_buffer *ubuf;
 670        char *kstr;
 671
 672        if (!ustring_per_cpu)
 673                return NULL;
 674
 675        ubuf = this_cpu_ptr(ustring_per_cpu);
 676        kstr = ubuf->buffer;
 677
 678        /* For safety, do not trust the string pointer */
 679        if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
 680                return NULL;
 681        return kstr;
 682}
 683
 684static __always_inline char *test_ustring(char *str)
 685{
 686        struct ustring_buffer *ubuf;
 687        char __user *ustr;
 688        char *kstr;
 689
 690        if (!ustring_per_cpu)
 691                return NULL;
 692
 693        ubuf = this_cpu_ptr(ustring_per_cpu);
 694        kstr = ubuf->buffer;
 695
 696        /* user space address? */
 697        ustr = (char __user *)str;
 698        if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
 699                return NULL;
 700
 701        return kstr;
 702}
 703
 704/* Filter predicate for fixed sized arrays of characters */
 705static int filter_pred_string(struct filter_pred *pred, void *event)
 706{
 707        char *addr = (char *)(event + pred->offset);
 708        int cmp, match;
 709
 710        cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
 711
 712        match = cmp ^ pred->not;
 713
 714        return match;
 715}
 716
 717static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
 718{
 719        int cmp, match;
 720        int len;
 721
 722        len = strlen(str) + 1;  /* including tailing '\0' */
 723        cmp = pred->regex.match(str, &pred->regex, len);
 724
 725        match = cmp ^ pred->not;
 726
 727        return match;
 728}
 729/* Filter predicate for char * pointers */
 730static int filter_pred_pchar(struct filter_pred *pred, void *event)
 731{
 732        char **addr = (char **)(event + pred->offset);
 733        char *str;
 734
 735        str = test_string(*addr);
 736        if (!str)
 737                return 0;
 738
 739        return filter_pchar(pred, str);
 740}
 741
 742/* Filter predicate for char * pointers in user space*/
 743static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
 744{
 745        char **addr = (char **)(event + pred->offset);
 746        char *str;
 747
 748        str = test_ustring(*addr);
 749        if (!str)
 750                return 0;
 751
 752        return filter_pchar(pred, str);
 753}
 754
 755/*
 756 * Filter predicate for dynamic sized arrays of characters.
 757 * These are implemented through a list of strings at the end
 758 * of the entry.
 759 * Also each of these strings have a field in the entry which
 760 * contains its offset from the beginning of the entry.
 761 * We have then first to get this field, dereference it
 762 * and add it to the address of the entry, and at last we have
 763 * the address of the string.
 764 */
 765static int filter_pred_strloc(struct filter_pred *pred, void *event)
 766{
 767        u32 str_item = *(u32 *)(event + pred->offset);
 768        int str_loc = str_item & 0xffff;
 769        int str_len = str_item >> 16;
 770        char *addr = (char *)(event + str_loc);
 771        int cmp, match;
 772
 773        cmp = pred->regex.match(addr, &pred->regex, str_len);
 774
 775        match = cmp ^ pred->not;
 776
 777        return match;
 778}
 779
 780/*
 781 * Filter predicate for relative dynamic sized arrays of characters.
 782 * These are implemented through a list of strings at the end
 783 * of the entry as same as dynamic string.
 784 * The difference is that the relative one records the location offset
 785 * from the field itself, not the event entry.
 786 */
 787static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
 788{
 789        u32 *item = (u32 *)(event + pred->offset);
 790        u32 str_item = *item;
 791        int str_loc = str_item & 0xffff;
 792        int str_len = str_item >> 16;
 793        char *addr = (char *)(&item[1]) + str_loc;
 794        int cmp, match;
 795
 796        cmp = pred->regex.match(addr, &pred->regex, str_len);
 797
 798        match = cmp ^ pred->not;
 799
 800        return match;
 801}
 802
 803/* Filter predicate for CPUs. */
 804static int filter_pred_cpu(struct filter_pred *pred, void *event)
 805{
 806        int cpu, cmp;
 807
 808        cpu = raw_smp_processor_id();
 809        cmp = pred->val;
 810
 811        switch (pred->op) {
 812        case OP_EQ:
 813                return cpu == cmp;
 814        case OP_NE:
 815                return cpu != cmp;
 816        case OP_LT:
 817                return cpu < cmp;
 818        case OP_LE:
 819                return cpu <= cmp;
 820        case OP_GT:
 821                return cpu > cmp;
 822        case OP_GE:
 823                return cpu >= cmp;
 824        default:
 825                return 0;
 826        }
 827}
 828
 829/* Filter predicate for COMM. */
 830static int filter_pred_comm(struct filter_pred *pred, void *event)
 831{
 832        int cmp;
 833
 834        cmp = pred->regex.match(current->comm, &pred->regex,
 835                                TASK_COMM_LEN);
 836        return cmp ^ pred->not;
 837}
 838
 839static int filter_pred_none(struct filter_pred *pred, void *event)
 840{
 841        return 0;
 842}
 843
 844/*
 845 * regex_match_foo - Basic regex callbacks
 846 *
 847 * @str: the string to be searched
 848 * @r:   the regex structure containing the pattern string
 849 * @len: the length of the string to be searched (including '\0')
 850 *
 851 * Note:
 852 * - @str might not be NULL-terminated if it's of type DYN_STRING
 853 *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
 854 */
 855
 856static int regex_match_full(char *str, struct regex *r, int len)
 857{
 858        /* len of zero means str is dynamic and ends with '\0' */
 859        if (!len)
 860                return strcmp(str, r->pattern) == 0;
 861
 862        return strncmp(str, r->pattern, len) == 0;
 863}
 864
 865static int regex_match_front(char *str, struct regex *r, int len)
 866{
 867        if (len && len < r->len)
 868                return 0;
 869
 870        return strncmp(str, r->pattern, r->len) == 0;
 871}
 872
 873static int regex_match_middle(char *str, struct regex *r, int len)
 874{
 875        if (!len)
 876                return strstr(str, r->pattern) != NULL;
 877
 878        return strnstr(str, r->pattern, len) != NULL;
 879}
 880
 881static int regex_match_end(char *str, struct regex *r, int len)
 882{
 883        int strlen = len - 1;
 884
 885        if (strlen >= r->len &&
 886            memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
 887                return 1;
 888        return 0;
 889}
 890
 891static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
 892{
 893        if (glob_match(r->pattern, str))
 894                return 1;
 895        return 0;
 896}
 897
 898/**
 899 * filter_parse_regex - parse a basic regex
 900 * @buff:   the raw regex
 901 * @len:    length of the regex
 902 * @search: will point to the beginning of the string to compare
 903 * @not:    tell whether the match will have to be inverted
 904 *
 905 * This passes in a buffer containing a regex and this function will
 906 * set search to point to the search part of the buffer and
 907 * return the type of search it is (see enum above).
 908 * This does modify buff.
 909 *
 910 * Returns enum type.
 911 *  search returns the pointer to use for comparison.
 912 *  not returns 1 if buff started with a '!'
 913 *     0 otherwise.
 914 */
 915enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
 916{
 917        int type = MATCH_FULL;
 918        int i;
 919
 920        if (buff[0] == '!') {
 921                *not = 1;
 922                buff++;
 923                len--;
 924        } else
 925                *not = 0;
 926
 927        *search = buff;
 928
 929        if (isdigit(buff[0]))
 930                return MATCH_INDEX;
 931
 932        for (i = 0; i < len; i++) {
 933                if (buff[i] == '*') {
 934                        if (!i) {
 935                                type = MATCH_END_ONLY;
 936                        } else if (i == len - 1) {
 937                                if (type == MATCH_END_ONLY)
 938                                        type = MATCH_MIDDLE_ONLY;
 939                                else
 940                                        type = MATCH_FRONT_ONLY;
 941                                buff[i] = 0;
 942                                break;
 943                        } else {        /* pattern continues, use full glob */
 944                                return MATCH_GLOB;
 945                        }
 946                } else if (strchr("[?\\", buff[i])) {
 947                        return MATCH_GLOB;
 948                }
 949        }
 950        if (buff[0] == '*')
 951                *search = buff + 1;
 952
 953        return type;
 954}
 955
 956static void filter_build_regex(struct filter_pred *pred)
 957{
 958        struct regex *r = &pred->regex;
 959        char *search;
 960        enum regex_type type = MATCH_FULL;
 961
 962        if (pred->op == OP_GLOB) {
 963                type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
 964                r->len = strlen(search);
 965                memmove(r->pattern, search, r->len+1);
 966        }
 967
 968        switch (type) {
 969        /* MATCH_INDEX should not happen, but if it does, match full */
 970        case MATCH_INDEX:
 971        case MATCH_FULL:
 972                r->match = regex_match_full;
 973                break;
 974        case MATCH_FRONT_ONLY:
 975                r->match = regex_match_front;
 976                break;
 977        case MATCH_MIDDLE_ONLY:
 978                r->match = regex_match_middle;
 979                break;
 980        case MATCH_END_ONLY:
 981                r->match = regex_match_end;
 982                break;
 983        case MATCH_GLOB:
 984                r->match = regex_match_glob;
 985                break;
 986        }
 987}
 988
 989/* return 1 if event matches, 0 otherwise (discard) */
 990int filter_match_preds(struct event_filter *filter, void *rec)
 991{
 992        struct prog_entry *prog;
 993        int i;
 994
 995        /* no filter is considered a match */
 996        if (!filter)
 997                return 1;
 998
 999        /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1000        prog = rcu_dereference_raw(filter->prog);
1001        if (!prog)
1002                return 1;
1003
1004        for (i = 0; prog[i].pred; i++) {
1005                struct filter_pred *pred = prog[i].pred;
1006                int match = pred->fn(pred, rec);
1007                if (match == prog[i].when_to_branch)
1008                        i = prog[i].target;
1009        }
1010        return prog[i].target;
1011}
1012EXPORT_SYMBOL_GPL(filter_match_preds);
1013
1014static void remove_filter_string(struct event_filter *filter)
1015{
1016        if (!filter)
1017                return;
1018
1019        kfree(filter->filter_string);
1020        filter->filter_string = NULL;
1021}
1022
1023static void append_filter_err(struct trace_array *tr,
1024                              struct filter_parse_error *pe,
1025                              struct event_filter *filter)
1026{
1027        struct trace_seq *s;
1028        int pos = pe->lasterr_pos;
1029        char *buf;
1030        int len;
1031
1032        if (WARN_ON(!filter->filter_string))
1033                return;
1034
1035        s = kmalloc(sizeof(*s), GFP_KERNEL);
1036        if (!s)
1037                return;
1038        trace_seq_init(s);
1039
1040        len = strlen(filter->filter_string);
1041        if (pos > len)
1042                pos = len;
1043
1044        /* indexing is off by one */
1045        if (pos)
1046                pos++;
1047
1048        trace_seq_puts(s, filter->filter_string);
1049        if (pe->lasterr > 0) {
1050                trace_seq_printf(s, "\n%*s", pos, "^");
1051                trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1052                tracing_log_err(tr, "event filter parse error",
1053                                filter->filter_string, err_text,
1054                                pe->lasterr, pe->lasterr_pos);
1055        } else {
1056                trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1057                tracing_log_err(tr, "event filter parse error",
1058                                filter->filter_string, err_text,
1059                                FILT_ERR_ERRNO, 0);
1060        }
1061        trace_seq_putc(s, 0);
1062        buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1063        if (buf) {
1064                kfree(filter->filter_string);
1065                filter->filter_string = buf;
1066        }
1067        kfree(s);
1068}
1069
1070static inline struct event_filter *event_filter(struct trace_event_file *file)
1071{
1072        return file->filter;
1073}
1074
1075/* caller must hold event_mutex */
1076void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1077{
1078        struct event_filter *filter = event_filter(file);
1079
1080        if (filter && filter->filter_string)
1081                trace_seq_printf(s, "%s\n", filter->filter_string);
1082        else
1083                trace_seq_puts(s, "none\n");
1084}
1085
1086void print_subsystem_event_filter(struct event_subsystem *system,
1087                                  struct trace_seq *s)
1088{
1089        struct event_filter *filter;
1090
1091        mutex_lock(&event_mutex);
1092        filter = system->filter;
1093        if (filter && filter->filter_string)
1094                trace_seq_printf(s, "%s\n", filter->filter_string);
1095        else
1096                trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1097        mutex_unlock(&event_mutex);
1098}
1099
1100static void free_prog(struct event_filter *filter)
1101{
1102        struct prog_entry *prog;
1103        int i;
1104
1105        prog = rcu_access_pointer(filter->prog);
1106        if (!prog)
1107                return;
1108
1109        for (i = 0; prog[i].pred; i++)
1110                kfree(prog[i].pred);
1111        kfree(prog);
1112}
1113
1114static void filter_disable(struct trace_event_file *file)
1115{
1116        unsigned long old_flags = file->flags;
1117
1118        file->flags &= ~EVENT_FILE_FL_FILTERED;
1119
1120        if (old_flags != file->flags)
1121                trace_buffered_event_disable();
1122}
1123
1124static void __free_filter(struct event_filter *filter)
1125{
1126        if (!filter)
1127                return;
1128
1129        free_prog(filter);
1130        kfree(filter->filter_string);
1131        kfree(filter);
1132}
1133
1134void free_event_filter(struct event_filter *filter)
1135{
1136        __free_filter(filter);
1137}
1138
1139static inline void __remove_filter(struct trace_event_file *file)
1140{
1141        filter_disable(file);
1142        remove_filter_string(file->filter);
1143}
1144
1145static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1146                                        struct trace_array *tr)
1147{
1148        struct trace_event_file *file;
1149
1150        list_for_each_entry(file, &tr->events, list) {
1151                if (file->system != dir)
1152                        continue;
1153                __remove_filter(file);
1154        }
1155}
1156
1157static inline void __free_subsystem_filter(struct trace_event_file *file)
1158{
1159        __free_filter(file->filter);
1160        file->filter = NULL;
1161}
1162
1163static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1164                                          struct trace_array *tr)
1165{
1166        struct trace_event_file *file;
1167
1168        list_for_each_entry(file, &tr->events, list) {
1169                if (file->system != dir)
1170                        continue;
1171                __free_subsystem_filter(file);
1172        }
1173}
1174
1175int filter_assign_type(const char *type)
1176{
1177        if (strstr(type, "__data_loc") && strstr(type, "char"))
1178                return FILTER_DYN_STRING;
1179
1180        if (strstr(type, "__rel_loc") && strstr(type, "char"))
1181                return FILTER_RDYN_STRING;
1182
1183        if (strchr(type, '[') && strstr(type, "char"))
1184                return FILTER_STATIC_STRING;
1185
1186        if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1187                return FILTER_PTR_STRING;
1188
1189        return FILTER_OTHER;
1190}
1191
1192static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1193                                            int field_size, int field_is_signed)
1194{
1195        filter_pred_fn_t fn = NULL;
1196        int pred_func_index = -1;
1197
1198        switch (op) {
1199        case OP_EQ:
1200        case OP_NE:
1201                break;
1202        default:
1203                if (WARN_ON_ONCE(op < PRED_FUNC_START))
1204                        return NULL;
1205                pred_func_index = op - PRED_FUNC_START;
1206                if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1207                        return NULL;
1208        }
1209
1210        switch (field_size) {
1211        case 8:
1212                if (pred_func_index < 0)
1213                        fn = filter_pred_64;
1214                else if (field_is_signed)
1215                        fn = pred_funcs_s64[pred_func_index];
1216                else
1217                        fn = pred_funcs_u64[pred_func_index];
1218                break;
1219        case 4:
1220                if (pred_func_index < 0)
1221                        fn = filter_pred_32;
1222                else if (field_is_signed)
1223                        fn = pred_funcs_s32[pred_func_index];
1224                else
1225                        fn = pred_funcs_u32[pred_func_index];
1226                break;
1227        case 2:
1228                if (pred_func_index < 0)
1229                        fn = filter_pred_16;
1230                else if (field_is_signed)
1231                        fn = pred_funcs_s16[pred_func_index];
1232                else
1233                        fn = pred_funcs_u16[pred_func_index];
1234                break;
1235        case 1:
1236                if (pred_func_index < 0)
1237                        fn = filter_pred_8;
1238                else if (field_is_signed)
1239                        fn = pred_funcs_s8[pred_func_index];
1240                else
1241                        fn = pred_funcs_u8[pred_func_index];
1242                break;
1243        }
1244
1245        return fn;
1246}
1247
1248/* Called when a predicate is encountered by predicate_parse() */
1249static int parse_pred(const char *str, void *data,
1250                      int pos, struct filter_parse_error *pe,
1251                      struct filter_pred **pred_ptr)
1252{
1253        struct trace_event_call *call = data;
1254        struct ftrace_event_field *field;
1255        struct filter_pred *pred = NULL;
1256        char num_buf[24];       /* Big enough to hold an address */
1257        char *field_name;
1258        bool ustring = false;
1259        char q;
1260        u64 val;
1261        int len;
1262        int ret;
1263        int op;
1264        int s;
1265        int i = 0;
1266
1267        /* First find the field to associate to */
1268        while (isspace(str[i]))
1269                i++;
1270        s = i;
1271
1272        while (isalnum(str[i]) || str[i] == '_')
1273                i++;
1274
1275        len = i - s;
1276
1277        if (!len)
1278                return -1;
1279
1280        field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1281        if (!field_name)
1282                return -ENOMEM;
1283
1284        /* Make sure that the field exists */
1285
1286        field = trace_find_event_field(call, field_name);
1287        kfree(field_name);
1288        if (!field) {
1289                parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1290                return -EINVAL;
1291        }
1292
1293        /* See if the field is a user space string */
1294        if ((len = str_has_prefix(str + i, ".ustring"))) {
1295                ustring = true;
1296                i += len;
1297        }
1298
1299        while (isspace(str[i]))
1300                i++;
1301
1302        /* Make sure this op is supported */
1303        for (op = 0; ops[op]; op++) {
1304                /* This is why '<=' must come before '<' in ops[] */
1305                if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1306                        break;
1307        }
1308
1309        if (!ops[op]) {
1310                parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1311                goto err_free;
1312        }
1313
1314        i += strlen(ops[op]);
1315
1316        while (isspace(str[i]))
1317                i++;
1318
1319        s = i;
1320
1321        pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1322        if (!pred)
1323                return -ENOMEM;
1324
1325        pred->field = field;
1326        pred->offset = field->offset;
1327        pred->op = op;
1328
1329        if (ftrace_event_is_function(call)) {
1330                /*
1331                 * Perf does things different with function events.
1332                 * It only allows an "ip" field, and expects a string.
1333                 * But the string does not need to be surrounded by quotes.
1334                 * If it is a string, the assigned function as a nop,
1335                 * (perf doesn't use it) and grab everything.
1336                 */
1337                if (strcmp(field->name, "ip") != 0) {
1338                        parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1339                        goto err_free;
1340                }
1341                pred->fn = filter_pred_none;
1342
1343                /*
1344                 * Quotes are not required, but if they exist then we need
1345                 * to read them till we hit a matching one.
1346                 */
1347                if (str[i] == '\'' || str[i] == '"')
1348                        q = str[i];
1349                else
1350                        q = 0;
1351
1352                for (i++; str[i]; i++) {
1353                        if (q && str[i] == q)
1354                                break;
1355                        if (!q && (str[i] == ')' || str[i] == '&' ||
1356                                   str[i] == '|'))
1357                                break;
1358                }
1359                /* Skip quotes */
1360                if (q)
1361                        s++;
1362                len = i - s;
1363                if (len >= MAX_FILTER_STR_VAL) {
1364                        parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1365                        goto err_free;
1366                }
1367
1368                pred->regex.len = len;
1369                strncpy(pred->regex.pattern, str + s, len);
1370                pred->regex.pattern[len] = 0;
1371
1372        /* This is either a string, or an integer */
1373        } else if (str[i] == '\'' || str[i] == '"') {
1374                char q = str[i];
1375
1376                /* Make sure the op is OK for strings */
1377                switch (op) {
1378                case OP_NE:
1379                        pred->not = 1;
1380                        fallthrough;
1381                case OP_GLOB:
1382                case OP_EQ:
1383                        break;
1384                default:
1385                        parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1386                        goto err_free;
1387                }
1388
1389                /* Make sure the field is OK for strings */
1390                if (!is_string_field(field)) {
1391                        parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1392                        goto err_free;
1393                }
1394
1395                for (i++; str[i]; i++) {
1396                        if (str[i] == q)
1397                                break;
1398                }
1399                if (!str[i]) {
1400                        parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1401                        goto err_free;
1402                }
1403
1404                /* Skip quotes */
1405                s++;
1406                len = i - s;
1407                if (len >= MAX_FILTER_STR_VAL) {
1408                        parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1409                        goto err_free;
1410                }
1411
1412                pred->regex.len = len;
1413                strncpy(pred->regex.pattern, str + s, len);
1414                pred->regex.pattern[len] = 0;
1415
1416                filter_build_regex(pred);
1417
1418                if (field->filter_type == FILTER_COMM) {
1419                        pred->fn = filter_pred_comm;
1420
1421                } else if (field->filter_type == FILTER_STATIC_STRING) {
1422                        pred->fn = filter_pred_string;
1423                        pred->regex.field_len = field->size;
1424
1425                } else if (field->filter_type == FILTER_DYN_STRING) {
1426                        pred->fn = filter_pred_strloc;
1427                } else if (field->filter_type == FILTER_RDYN_STRING)
1428                        pred->fn = filter_pred_strrelloc;
1429                else {
1430
1431                        if (!ustring_per_cpu) {
1432                                /* Once allocated, keep it around for good */
1433                                ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1434                                if (!ustring_per_cpu)
1435                                        goto err_mem;
1436                        }
1437
1438                        if (ustring)
1439                                pred->fn = filter_pred_pchar_user;
1440                        else
1441                                pred->fn = filter_pred_pchar;
1442                }
1443                /* go past the last quote */
1444                i++;
1445
1446        } else if (isdigit(str[i]) || str[i] == '-') {
1447
1448                /* Make sure the field is not a string */
1449                if (is_string_field(field)) {
1450                        parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1451                        goto err_free;
1452                }
1453
1454                if (op == OP_GLOB) {
1455                        parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1456                        goto err_free;
1457                }
1458
1459                if (str[i] == '-')
1460                        i++;
1461
1462                /* We allow 0xDEADBEEF */
1463                while (isalnum(str[i]))
1464                        i++;
1465
1466                len = i - s;
1467                /* 0xfeedfacedeadbeef is 18 chars max */
1468                if (len >= sizeof(num_buf)) {
1469                        parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1470                        goto err_free;
1471                }
1472
1473                strncpy(num_buf, str + s, len);
1474                num_buf[len] = 0;
1475
1476                /* Make sure it is a value */
1477                if (field->is_signed)
1478                        ret = kstrtoll(num_buf, 0, &val);
1479                else
1480                        ret = kstrtoull(num_buf, 0, &val);
1481                if (ret) {
1482                        parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1483                        goto err_free;
1484                }
1485
1486                pred->val = val;
1487
1488                if (field->filter_type == FILTER_CPU)
1489                        pred->fn = filter_pred_cpu;
1490                else {
1491                        pred->fn = select_comparison_fn(pred->op, field->size,
1492                                                        field->is_signed);
1493                        if (pred->op == OP_NE)
1494                                pred->not = 1;
1495                }
1496
1497        } else {
1498                parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1499                goto err_free;
1500        }
1501
1502        *pred_ptr = pred;
1503        return i;
1504
1505err_free:
1506        kfree(pred);
1507        return -EINVAL;
1508err_mem:
1509        kfree(pred);
1510        return -ENOMEM;
1511}
1512
1513enum {
1514        TOO_MANY_CLOSE          = -1,
1515        TOO_MANY_OPEN           = -2,
1516        MISSING_QUOTE           = -3,
1517};
1518
1519/*
1520 * Read the filter string once to calculate the number of predicates
1521 * as well as how deep the parentheses go.
1522 *
1523 * Returns:
1524 *   0 - everything is fine (err is undefined)
1525 *  -1 - too many ')'
1526 *  -2 - too many '('
1527 *  -3 - No matching quote
1528 */
1529static int calc_stack(const char *str, int *parens, int *preds, int *err)
1530{
1531        bool is_pred = false;
1532        int nr_preds = 0;
1533        int open = 1; /* Count the expression as "(E)" */
1534        int last_quote = 0;
1535        int max_open = 1;
1536        int quote = 0;
1537        int i;
1538
1539        *err = 0;
1540
1541        for (i = 0; str[i]; i++) {
1542                if (isspace(str[i]))
1543                        continue;
1544                if (quote) {
1545                        if (str[i] == quote)
1546                               quote = 0;
1547                        continue;
1548                }
1549
1550                switch (str[i]) {
1551                case '\'':
1552                case '"':
1553                        quote = str[i];
1554                        last_quote = i;
1555                        break;
1556                case '|':
1557                case '&':
1558                        if (str[i+1] != str[i])
1559                                break;
1560                        is_pred = false;
1561                        continue;
1562                case '(':
1563                        is_pred = false;
1564                        open++;
1565                        if (open > max_open)
1566                                max_open = open;
1567                        continue;
1568                case ')':
1569                        is_pred = false;
1570                        if (open == 1) {
1571                                *err = i;
1572                                return TOO_MANY_CLOSE;
1573                        }
1574                        open--;
1575                        continue;
1576                }
1577                if (!is_pred) {
1578                        nr_preds++;
1579                        is_pred = true;
1580                }
1581        }
1582
1583        if (quote) {
1584                *err = last_quote;
1585                return MISSING_QUOTE;
1586        }
1587
1588        if (open != 1) {
1589                int level = open;
1590
1591                /* find the bad open */
1592                for (i--; i; i--) {
1593                        if (quote) {
1594                                if (str[i] == quote)
1595                                        quote = 0;
1596                                continue;
1597                        }
1598                        switch (str[i]) {
1599                        case '(':
1600                                if (level == open) {
1601                                        *err = i;
1602                                        return TOO_MANY_OPEN;
1603                                }
1604                                level--;
1605                                break;
1606                        case ')':
1607                                level++;
1608                                break;
1609                        case '\'':
1610                        case '"':
1611                                quote = str[i];
1612                                break;
1613                        }
1614                }
1615                /* First character is the '(' with missing ')' */
1616                *err = 0;
1617                return TOO_MANY_OPEN;
1618        }
1619
1620        /* Set the size of the required stacks */
1621        *parens = max_open;
1622        *preds = nr_preds;
1623        return 0;
1624}
1625
1626static int process_preds(struct trace_event_call *call,
1627                         const char *filter_string,
1628                         struct event_filter *filter,
1629                         struct filter_parse_error *pe)
1630{
1631        struct prog_entry *prog;
1632        int nr_parens;
1633        int nr_preds;
1634        int index;
1635        int ret;
1636
1637        ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1638        if (ret < 0) {
1639                switch (ret) {
1640                case MISSING_QUOTE:
1641                        parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1642                        break;
1643                case TOO_MANY_OPEN:
1644                        parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1645                        break;
1646                default:
1647                        parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1648                }
1649                return ret;
1650        }
1651
1652        if (!nr_preds)
1653                return -EINVAL;
1654
1655        prog = predicate_parse(filter_string, nr_parens, nr_preds,
1656                               parse_pred, call, pe);
1657        if (IS_ERR(prog))
1658                return PTR_ERR(prog);
1659
1660        rcu_assign_pointer(filter->prog, prog);
1661        return 0;
1662}
1663
1664static inline void event_set_filtered_flag(struct trace_event_file *file)
1665{
1666        unsigned long old_flags = file->flags;
1667
1668        file->flags |= EVENT_FILE_FL_FILTERED;
1669
1670        if (old_flags != file->flags)
1671                trace_buffered_event_enable();
1672}
1673
1674static inline void event_set_filter(struct trace_event_file *file,
1675                                    struct event_filter *filter)
1676{
1677        rcu_assign_pointer(file->filter, filter);
1678}
1679
1680static inline void event_clear_filter(struct trace_event_file *file)
1681{
1682        RCU_INIT_POINTER(file->filter, NULL);
1683}
1684
1685struct filter_list {
1686        struct list_head        list;
1687        struct event_filter     *filter;
1688};
1689
1690static int process_system_preds(struct trace_subsystem_dir *dir,
1691                                struct trace_array *tr,
1692                                struct filter_parse_error *pe,
1693                                char *filter_string)
1694{
1695        struct trace_event_file *file;
1696        struct filter_list *filter_item;
1697        struct event_filter *filter = NULL;
1698        struct filter_list *tmp;
1699        LIST_HEAD(filter_list);
1700        bool fail = true;
1701        int err;
1702
1703        list_for_each_entry(file, &tr->events, list) {
1704
1705                if (file->system != dir)
1706                        continue;
1707
1708                filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1709                if (!filter)
1710                        goto fail_mem;
1711
1712                filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1713                if (!filter->filter_string)
1714                        goto fail_mem;
1715
1716                err = process_preds(file->event_call, filter_string, filter, pe);
1717                if (err) {
1718                        filter_disable(file);
1719                        parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1720                        append_filter_err(tr, pe, filter);
1721                } else
1722                        event_set_filtered_flag(file);
1723
1724
1725                filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1726                if (!filter_item)
1727                        goto fail_mem;
1728
1729                list_add_tail(&filter_item->list, &filter_list);
1730                /*
1731                 * Regardless of if this returned an error, we still
1732                 * replace the filter for the call.
1733                 */
1734                filter_item->filter = event_filter(file);
1735                event_set_filter(file, filter);
1736                filter = NULL;
1737
1738                fail = false;
1739        }
1740
1741        if (fail)
1742                goto fail;
1743
1744        /*
1745         * The calls can still be using the old filters.
1746         * Do a synchronize_rcu() and to ensure all calls are
1747         * done with them before we free them.
1748         */
1749        tracepoint_synchronize_unregister();
1750        list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1751                __free_filter(filter_item->filter);
1752                list_del(&filter_item->list);
1753                kfree(filter_item);
1754        }
1755        return 0;
1756 fail:
1757        /* No call succeeded */
1758        list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1759                list_del(&filter_item->list);
1760                kfree(filter_item);
1761        }
1762        parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1763        return -EINVAL;
1764 fail_mem:
1765        __free_filter(filter);
1766        /* If any call succeeded, we still need to sync */
1767        if (!fail)
1768                tracepoint_synchronize_unregister();
1769        list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1770                __free_filter(filter_item->filter);
1771                list_del(&filter_item->list);
1772                kfree(filter_item);
1773        }
1774        return -ENOMEM;
1775}
1776
1777static int create_filter_start(char *filter_string, bool set_str,
1778                               struct filter_parse_error **pse,
1779                               struct event_filter **filterp)
1780{
1781        struct event_filter *filter;
1782        struct filter_parse_error *pe = NULL;
1783        int err = 0;
1784
1785        if (WARN_ON_ONCE(*pse || *filterp))
1786                return -EINVAL;
1787
1788        filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1789        if (filter && set_str) {
1790                filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1791                if (!filter->filter_string)
1792                        err = -ENOMEM;
1793        }
1794
1795        pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1796
1797        if (!filter || !pe || err) {
1798                kfree(pe);
1799                __free_filter(filter);
1800                return -ENOMEM;
1801        }
1802
1803        /* we're committed to creating a new filter */
1804        *filterp = filter;
1805        *pse = pe;
1806
1807        return 0;
1808}
1809
1810static void create_filter_finish(struct filter_parse_error *pe)
1811{
1812        kfree(pe);
1813}
1814
1815/**
1816 * create_filter - create a filter for a trace_event_call
1817 * @tr: the trace array associated with these events
1818 * @call: trace_event_call to create a filter for
1819 * @filter_str: filter string
1820 * @set_str: remember @filter_str and enable detailed error in filter
1821 * @filterp: out param for created filter (always updated on return)
1822 *           Must be a pointer that references a NULL pointer.
1823 *
1824 * Creates a filter for @call with @filter_str.  If @set_str is %true,
1825 * @filter_str is copied and recorded in the new filter.
1826 *
1827 * On success, returns 0 and *@filterp points to the new filter.  On
1828 * failure, returns -errno and *@filterp may point to %NULL or to a new
1829 * filter.  In the latter case, the returned filter contains error
1830 * information if @set_str is %true and the caller is responsible for
1831 * freeing it.
1832 */
1833static int create_filter(struct trace_array *tr,
1834                         struct trace_event_call *call,
1835                         char *filter_string, bool set_str,
1836                         struct event_filter **filterp)
1837{
1838        struct filter_parse_error *pe = NULL;
1839        int err;
1840
1841        /* filterp must point to NULL */
1842        if (WARN_ON(*filterp))
1843                *filterp = NULL;
1844
1845        err = create_filter_start(filter_string, set_str, &pe, filterp);
1846        if (err)
1847                return err;
1848
1849        err = process_preds(call, filter_string, *filterp, pe);
1850        if (err && set_str)
1851                append_filter_err(tr, pe, *filterp);
1852        create_filter_finish(pe);
1853
1854        return err;
1855}
1856
1857int create_event_filter(struct trace_array *tr,
1858                        struct trace_event_call *call,
1859                        char *filter_str, bool set_str,
1860                        struct event_filter **filterp)
1861{
1862        return create_filter(tr, call, filter_str, set_str, filterp);
1863}
1864
1865/**
1866 * create_system_filter - create a filter for an event subsystem
1867 * @dir: the descriptor for the subsystem directory
1868 * @filter_str: filter string
1869 * @filterp: out param for created filter (always updated on return)
1870 *
1871 * Identical to create_filter() except that it creates a subsystem filter
1872 * and always remembers @filter_str.
1873 */
1874static int create_system_filter(struct trace_subsystem_dir *dir,
1875                                char *filter_str, struct event_filter **filterp)
1876{
1877        struct filter_parse_error *pe = NULL;
1878        int err;
1879
1880        err = create_filter_start(filter_str, true, &pe, filterp);
1881        if (!err) {
1882                err = process_system_preds(dir, dir->tr, pe, filter_str);
1883                if (!err) {
1884                        /* System filters just show a default message */
1885                        kfree((*filterp)->filter_string);
1886                        (*filterp)->filter_string = NULL;
1887                } else {
1888                        append_filter_err(dir->tr, pe, *filterp);
1889                }
1890        }
1891        create_filter_finish(pe);
1892
1893        return err;
1894}
1895
1896/* caller must hold event_mutex */
1897int apply_event_filter(struct trace_event_file *file, char *filter_string)
1898{
1899        struct trace_event_call *call = file->event_call;
1900        struct event_filter *filter = NULL;
1901        int err;
1902
1903        if (!strcmp(strstrip(filter_string), "0")) {
1904                filter_disable(file);
1905                filter = event_filter(file);
1906
1907                if (!filter)
1908                        return 0;
1909
1910                event_clear_filter(file);
1911
1912                /* Make sure the filter is not being used */
1913                tracepoint_synchronize_unregister();
1914                __free_filter(filter);
1915
1916                return 0;
1917        }
1918
1919        err = create_filter(file->tr, call, filter_string, true, &filter);
1920
1921        /*
1922         * Always swap the call filter with the new filter
1923         * even if there was an error. If there was an error
1924         * in the filter, we disable the filter and show the error
1925         * string
1926         */
1927        if (filter) {
1928                struct event_filter *tmp;
1929
1930                tmp = event_filter(file);
1931                if (!err)
1932                        event_set_filtered_flag(file);
1933                else
1934                        filter_disable(file);
1935
1936                event_set_filter(file, filter);
1937
1938                if (tmp) {
1939                        /* Make sure the call is done with the filter */
1940                        tracepoint_synchronize_unregister();
1941                        __free_filter(tmp);
1942                }
1943        }
1944
1945        return err;
1946}
1947
1948int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1949                                 char *filter_string)
1950{
1951        struct event_subsystem *system = dir->subsystem;
1952        struct trace_array *tr = dir->tr;
1953        struct event_filter *filter = NULL;
1954        int err = 0;
1955
1956        mutex_lock(&event_mutex);
1957
1958        /* Make sure the system still has events */
1959        if (!dir->nr_events) {
1960                err = -ENODEV;
1961                goto out_unlock;
1962        }
1963
1964        if (!strcmp(strstrip(filter_string), "0")) {
1965                filter_free_subsystem_preds(dir, tr);
1966                remove_filter_string(system->filter);
1967                filter = system->filter;
1968                system->filter = NULL;
1969                /* Ensure all filters are no longer used */
1970                tracepoint_synchronize_unregister();
1971                filter_free_subsystem_filters(dir, tr);
1972                __free_filter(filter);
1973                goto out_unlock;
1974        }
1975
1976        err = create_system_filter(dir, filter_string, &filter);
1977        if (filter) {
1978                /*
1979                 * No event actually uses the system filter
1980                 * we can free it without synchronize_rcu().
1981                 */
1982                __free_filter(system->filter);
1983                system->filter = filter;
1984        }
1985out_unlock:
1986        mutex_unlock(&event_mutex);
1987
1988        return err;
1989}
1990
1991#ifdef CONFIG_PERF_EVENTS
1992
1993void ftrace_profile_free_filter(struct perf_event *event)
1994{
1995        struct event_filter *filter = event->filter;
1996
1997        event->filter = NULL;
1998        __free_filter(filter);
1999}
2000
2001struct function_filter_data {
2002        struct ftrace_ops *ops;
2003        int first_filter;
2004        int first_notrace;
2005};
2006
2007#ifdef CONFIG_FUNCTION_TRACER
2008static char **
2009ftrace_function_filter_re(char *buf, int len, int *count)
2010{
2011        char *str, **re;
2012
2013        str = kstrndup(buf, len, GFP_KERNEL);
2014        if (!str)
2015                return NULL;
2016
2017        /*
2018         * The argv_split function takes white space
2019         * as a separator, so convert ',' into spaces.
2020         */
2021        strreplace(str, ',', ' ');
2022
2023        re = argv_split(GFP_KERNEL, str, count);
2024        kfree(str);
2025        return re;
2026}
2027
2028static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2029                                      int reset, char *re, int len)
2030{
2031        int ret;
2032
2033        if (filter)
2034                ret = ftrace_set_filter(ops, re, len, reset);
2035        else
2036                ret = ftrace_set_notrace(ops, re, len, reset);
2037
2038        return ret;
2039}
2040
2041static int __ftrace_function_set_filter(int filter, char *buf, int len,
2042                                        struct function_filter_data *data)
2043{
2044        int i, re_cnt, ret = -EINVAL;
2045        int *reset;
2046        char **re;
2047
2048        reset = filter ? &data->first_filter : &data->first_notrace;
2049
2050        /*
2051         * The 'ip' field could have multiple filters set, separated
2052         * either by space or comma. We first cut the filter and apply
2053         * all pieces separately.
2054         */
2055        re = ftrace_function_filter_re(buf, len, &re_cnt);
2056        if (!re)
2057                return -EINVAL;
2058
2059        for (i = 0; i < re_cnt; i++) {
2060                ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2061                                                 re[i], strlen(re[i]));
2062                if (ret)
2063                        break;
2064
2065                if (*reset)
2066                        *reset = 0;
2067        }
2068
2069        argv_free(re);
2070        return ret;
2071}
2072
2073static int ftrace_function_check_pred(struct filter_pred *pred)
2074{
2075        struct ftrace_event_field *field = pred->field;
2076
2077        /*
2078         * Check the predicate for function trace, verify:
2079         *  - only '==' and '!=' is used
2080         *  - the 'ip' field is used
2081         */
2082        if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2083                return -EINVAL;
2084
2085        if (strcmp(field->name, "ip"))
2086                return -EINVAL;
2087
2088        return 0;
2089}
2090
2091static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2092                                           struct function_filter_data *data)
2093{
2094        int ret;
2095
2096        /* Checking the node is valid for function trace. */
2097        ret = ftrace_function_check_pred(pred);
2098        if (ret)
2099                return ret;
2100
2101        return __ftrace_function_set_filter(pred->op == OP_EQ,
2102                                            pred->regex.pattern,
2103                                            pred->regex.len,
2104                                            data);
2105}
2106
2107static bool is_or(struct prog_entry *prog, int i)
2108{
2109        int target;
2110
2111        /*
2112         * Only "||" is allowed for function events, thus,
2113         * all true branches should jump to true, and any
2114         * false branch should jump to false.
2115         */
2116        target = prog[i].target + 1;
2117        /* True and false have NULL preds (all prog entries should jump to one */
2118        if (prog[target].pred)
2119                return false;
2120
2121        /* prog[target].target is 1 for TRUE, 0 for FALSE */
2122        return prog[i].when_to_branch == prog[target].target;
2123}
2124
2125static int ftrace_function_set_filter(struct perf_event *event,
2126                                      struct event_filter *filter)
2127{
2128        struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2129                                                lockdep_is_held(&event_mutex));
2130        struct function_filter_data data = {
2131                .first_filter  = 1,
2132                .first_notrace = 1,
2133                .ops           = &event->ftrace_ops,
2134        };
2135        int i;
2136
2137        for (i = 0; prog[i].pred; i++) {
2138                struct filter_pred *pred = prog[i].pred;
2139
2140                if (!is_or(prog, i))
2141                        return -EINVAL;
2142
2143                if (ftrace_function_set_filter_pred(pred, &data) < 0)
2144                        return -EINVAL;
2145        }
2146        return 0;
2147}
2148#else
2149static int ftrace_function_set_filter(struct perf_event *event,
2150                                      struct event_filter *filter)
2151{
2152        return -ENODEV;
2153}
2154#endif /* CONFIG_FUNCTION_TRACER */
2155
2156int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2157                              char *filter_str)
2158{
2159        int err;
2160        struct event_filter *filter = NULL;
2161        struct trace_event_call *call;
2162
2163        mutex_lock(&event_mutex);
2164
2165        call = event->tp_event;
2166
2167        err = -EINVAL;
2168        if (!call)
2169                goto out_unlock;
2170
2171        err = -EEXIST;
2172        if (event->filter)
2173                goto out_unlock;
2174
2175        err = create_filter(NULL, call, filter_str, false, &filter);
2176        if (err)
2177                goto free_filter;
2178
2179        if (ftrace_event_is_function(call))
2180                err = ftrace_function_set_filter(event, filter);
2181        else
2182                event->filter = filter;
2183
2184free_filter:
2185        if (err || ftrace_event_is_function(call))
2186                __free_filter(filter);
2187
2188out_unlock:
2189        mutex_unlock(&event_mutex);
2190
2191        return err;
2192}
2193
2194#endif /* CONFIG_PERF_EVENTS */
2195
2196#ifdef CONFIG_FTRACE_STARTUP_TEST
2197
2198#include <linux/types.h>
2199#include <linux/tracepoint.h>
2200
2201#define CREATE_TRACE_POINTS
2202#include "trace_events_filter_test.h"
2203
2204#define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2205{ \
2206        .filter = FILTER, \
2207        .rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2208                    .e = ve, .f = vf, .g = vg, .h = vh }, \
2209        .match  = m, \
2210        .not_visited = nvisit, \
2211}
2212#define YES 1
2213#define NO  0
2214
2215static struct test_filter_data_t {
2216        char *filter;
2217        struct trace_event_raw_ftrace_test_filter rec;
2218        int match;
2219        char *not_visited;
2220} test_filter_data[] = {
2221#define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2222               "e == 1 && f == 1 && g == 1 && h == 1"
2223        DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2224        DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2225        DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2226#undef FILTER
2227#define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2228               "e == 1 || f == 1 || g == 1 || h == 1"
2229        DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2230        DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2231        DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2232#undef FILTER
2233#define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2234               "(e == 1 || f == 1) && (g == 1 || h == 1)"
2235        DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2236        DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2237        DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2238        DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2239#undef FILTER
2240#define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2241               "(e == 1 && f == 1) || (g == 1 && h == 1)"
2242        DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2243        DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2244        DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2245#undef FILTER
2246#define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2247               "(e == 1 && f == 1) || (g == 1 && h == 1)"
2248        DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2249        DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2250        DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2251#undef FILTER
2252#define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2253               "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2254        DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2255        DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2256        DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2257#undef FILTER
2258#define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2259               "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2260        DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2261        DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2262        DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2263#undef FILTER
2264#define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2265               "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2266        DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2267        DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2268        DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2269};
2270
2271#undef DATA_REC
2272#undef FILTER
2273#undef YES
2274#undef NO
2275
2276#define DATA_CNT ARRAY_SIZE(test_filter_data)
2277
2278static int test_pred_visited;
2279
2280static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2281{
2282        struct ftrace_event_field *field = pred->field;
2283
2284        test_pred_visited = 1;
2285        printk(KERN_INFO "\npred visited %s\n", field->name);
2286        return 1;
2287}
2288
2289static void update_pred_fn(struct event_filter *filter, char *fields)
2290{
2291        struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2292                                                lockdep_is_held(&event_mutex));
2293        int i;
2294
2295        for (i = 0; prog[i].pred; i++) {
2296                struct filter_pred *pred = prog[i].pred;
2297                struct ftrace_event_field *field = pred->field;
2298
2299                WARN_ON_ONCE(!pred->fn);
2300
2301                if (!field) {
2302                        WARN_ONCE(1, "all leafs should have field defined %d", i);
2303                        continue;
2304                }
2305
2306                if (!strchr(fields, *field->name))
2307                        continue;
2308
2309                pred->fn = test_pred_visited_fn;
2310        }
2311}
2312
2313static __init int ftrace_test_event_filter(void)
2314{
2315        int i;
2316
2317        printk(KERN_INFO "Testing ftrace filter: ");
2318
2319        for (i = 0; i < DATA_CNT; i++) {
2320                struct event_filter *filter = NULL;
2321                struct test_filter_data_t *d = &test_filter_data[i];
2322                int err;
2323
2324                err = create_filter(NULL, &event_ftrace_test_filter,
2325                                    d->filter, false, &filter);
2326                if (err) {
2327                        printk(KERN_INFO
2328                               "Failed to get filter for '%s', err %d\n",
2329                               d->filter, err);
2330                        __free_filter(filter);
2331                        break;
2332                }
2333
2334                /* Needed to dereference filter->prog */
2335                mutex_lock(&event_mutex);
2336                /*
2337                 * The preemption disabling is not really needed for self
2338                 * tests, but the rcu dereference will complain without it.
2339                 */
2340                preempt_disable();
2341                if (*d->not_visited)
2342                        update_pred_fn(filter, d->not_visited);
2343
2344                test_pred_visited = 0;
2345                err = filter_match_preds(filter, &d->rec);
2346                preempt_enable();
2347
2348                mutex_unlock(&event_mutex);
2349
2350                __free_filter(filter);
2351
2352                if (test_pred_visited) {
2353                        printk(KERN_INFO
2354                               "Failed, unwanted pred visited for filter %s\n",
2355                               d->filter);
2356                        break;
2357                }
2358
2359                if (err != d->match) {
2360                        printk(KERN_INFO
2361                               "Failed to match filter '%s', expected %d\n",
2362                               d->filter, d->match);
2363                        break;
2364                }
2365        }
2366
2367        if (i == DATA_CNT)
2368                printk(KERN_CONT "OK\n");
2369
2370        return 0;
2371}
2372
2373late_initcall(ftrace_test_event_filter);
2374
2375#endif /* CONFIG_FTRACE_STARTUP_TEST */
2376