linux/mm/memory_hotplug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ioport.h>
  26#include <linux/delay.h>
  27#include <linux/migrate.h>
  28#include <linux/page-isolation.h>
  29#include <linux/pfn.h>
  30#include <linux/suspend.h>
  31#include <linux/mm_inline.h>
  32#include <linux/firmware-map.h>
  33#include <linux/stop_machine.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memblock.h>
  36#include <linux/compaction.h>
  37#include <linux/rmap.h>
  38#include <linux/module.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
  50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  51module_param(memmap_on_memory, bool, 0444);
  52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
  53#endif
  54
  55enum {
  56        ONLINE_POLICY_CONTIG_ZONES = 0,
  57        ONLINE_POLICY_AUTO_MOVABLE,
  58};
  59
  60static const char * const online_policy_to_str[] = {
  61        [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
  62        [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
  63};
  64
  65static int set_online_policy(const char *val, const struct kernel_param *kp)
  66{
  67        int ret = sysfs_match_string(online_policy_to_str, val);
  68
  69        if (ret < 0)
  70                return ret;
  71        *((int *)kp->arg) = ret;
  72        return 0;
  73}
  74
  75static int get_online_policy(char *buffer, const struct kernel_param *kp)
  76{
  77        return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
  78}
  79
  80/*
  81 * memory_hotplug.online_policy: configure online behavior when onlining without
  82 * specifying a zone (MMOP_ONLINE)
  83 *
  84 * "contig-zones": keep zone contiguous
  85 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
  86 *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
  87 */
  88static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
  89static const struct kernel_param_ops online_policy_ops = {
  90        .set = set_online_policy,
  91        .get = get_online_policy,
  92};
  93module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
  94MODULE_PARM_DESC(online_policy,
  95                "Set the online policy (\"contig-zones\", \"auto-movable\") "
  96                "Default: \"contig-zones\"");
  97
  98/*
  99 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
 100 *
 101 * The ratio represent an upper limit and the kernel might decide to not
 102 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
 103 * doesn't allow for more MOVABLE memory.
 104 */
 105static unsigned int auto_movable_ratio __read_mostly = 301;
 106module_param(auto_movable_ratio, uint, 0644);
 107MODULE_PARM_DESC(auto_movable_ratio,
 108                "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
 109                "in percent for \"auto-movable\" online policy. Default: 301");
 110
 111/*
 112 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
 113 */
 114#ifdef CONFIG_NUMA
 115static bool auto_movable_numa_aware __read_mostly = true;
 116module_param(auto_movable_numa_aware, bool, 0644);
 117MODULE_PARM_DESC(auto_movable_numa_aware,
 118                "Consider numa node stats in addition to global stats in "
 119                "\"auto-movable\" online policy. Default: true");
 120#endif /* CONFIG_NUMA */
 121
 122/*
 123 * online_page_callback contains pointer to current page onlining function.
 124 * Initially it is generic_online_page(). If it is required it could be
 125 * changed by calling set_online_page_callback() for callback registration
 126 * and restore_online_page_callback() for generic callback restore.
 127 */
 128
 129static online_page_callback_t online_page_callback = generic_online_page;
 130static DEFINE_MUTEX(online_page_callback_lock);
 131
 132DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
 133
 134void get_online_mems(void)
 135{
 136        percpu_down_read(&mem_hotplug_lock);
 137}
 138
 139void put_online_mems(void)
 140{
 141        percpu_up_read(&mem_hotplug_lock);
 142}
 143
 144bool movable_node_enabled = false;
 145
 146#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
 147int mhp_default_online_type = MMOP_OFFLINE;
 148#else
 149int mhp_default_online_type = MMOP_ONLINE;
 150#endif
 151
 152static int __init setup_memhp_default_state(char *str)
 153{
 154        const int online_type = mhp_online_type_from_str(str);
 155
 156        if (online_type >= 0)
 157                mhp_default_online_type = online_type;
 158
 159        return 1;
 160}
 161__setup("memhp_default_state=", setup_memhp_default_state);
 162
 163void mem_hotplug_begin(void)
 164{
 165        cpus_read_lock();
 166        percpu_down_write(&mem_hotplug_lock);
 167}
 168
 169void mem_hotplug_done(void)
 170{
 171        percpu_up_write(&mem_hotplug_lock);
 172        cpus_read_unlock();
 173}
 174
 175u64 max_mem_size = U64_MAX;
 176
 177/* add this memory to iomem resource */
 178static struct resource *register_memory_resource(u64 start, u64 size,
 179                                                 const char *resource_name)
 180{
 181        struct resource *res;
 182        unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 183
 184        if (strcmp(resource_name, "System RAM"))
 185                flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 186
 187        if (!mhp_range_allowed(start, size, true))
 188                return ERR_PTR(-E2BIG);
 189
 190        /*
 191         * Make sure value parsed from 'mem=' only restricts memory adding
 192         * while booting, so that memory hotplug won't be impacted. Please
 193         * refer to document of 'mem=' in kernel-parameters.txt for more
 194         * details.
 195         */
 196        if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 197                return ERR_PTR(-E2BIG);
 198
 199        /*
 200         * Request ownership of the new memory range.  This might be
 201         * a child of an existing resource that was present but
 202         * not marked as busy.
 203         */
 204        res = __request_region(&iomem_resource, start, size,
 205                               resource_name, flags);
 206
 207        if (!res) {
 208                pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 209                                start, start + size);
 210                return ERR_PTR(-EEXIST);
 211        }
 212        return res;
 213}
 214
 215static void release_memory_resource(struct resource *res)
 216{
 217        if (!res)
 218                return;
 219        release_resource(res);
 220        kfree(res);
 221}
 222
 223static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
 224                const char *reason)
 225{
 226        /*
 227         * Disallow all operations smaller than a sub-section and only
 228         * allow operations smaller than a section for
 229         * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 230         * enforces a larger memory_block_size_bytes() granularity for
 231         * memory that will be marked online, so this check should only
 232         * fire for direct arch_{add,remove}_memory() users outside of
 233         * add_memory_resource().
 234         */
 235        unsigned long min_align;
 236
 237        if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 238                min_align = PAGES_PER_SUBSECTION;
 239        else
 240                min_align = PAGES_PER_SECTION;
 241        if (!IS_ALIGNED(pfn, min_align)
 242                        || !IS_ALIGNED(nr_pages, min_align)) {
 243                WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
 244                                reason, pfn, pfn + nr_pages - 1);
 245                return -EINVAL;
 246        }
 247        return 0;
 248}
 249
 250/*
 251 * Return page for the valid pfn only if the page is online. All pfn
 252 * walkers which rely on the fully initialized page->flags and others
 253 * should use this rather than pfn_valid && pfn_to_page
 254 */
 255struct page *pfn_to_online_page(unsigned long pfn)
 256{
 257        unsigned long nr = pfn_to_section_nr(pfn);
 258        struct dev_pagemap *pgmap;
 259        struct mem_section *ms;
 260
 261        if (nr >= NR_MEM_SECTIONS)
 262                return NULL;
 263
 264        ms = __nr_to_section(nr);
 265        if (!online_section(ms))
 266                return NULL;
 267
 268        /*
 269         * Save some code text when online_section() +
 270         * pfn_section_valid() are sufficient.
 271         */
 272        if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 273                return NULL;
 274
 275        if (!pfn_section_valid(ms, pfn))
 276                return NULL;
 277
 278        if (!online_device_section(ms))
 279                return pfn_to_page(pfn);
 280
 281        /*
 282         * Slowpath: when ZONE_DEVICE collides with
 283         * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 284         * the section may be 'offline' but 'valid'. Only
 285         * get_dev_pagemap() can determine sub-section online status.
 286         */
 287        pgmap = get_dev_pagemap(pfn, NULL);
 288        put_dev_pagemap(pgmap);
 289
 290        /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 291        if (pgmap)
 292                return NULL;
 293
 294        return pfn_to_page(pfn);
 295}
 296EXPORT_SYMBOL_GPL(pfn_to_online_page);
 297
 298int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 299                struct mhp_params *params)
 300{
 301        const unsigned long end_pfn = pfn + nr_pages;
 302        unsigned long cur_nr_pages;
 303        int err;
 304        struct vmem_altmap *altmap = params->altmap;
 305
 306        if (WARN_ON_ONCE(!params->pgprot.pgprot))
 307                return -EINVAL;
 308
 309        VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 310
 311        if (altmap) {
 312                /*
 313                 * Validate altmap is within bounds of the total request
 314                 */
 315                if (altmap->base_pfn != pfn
 316                                || vmem_altmap_offset(altmap) > nr_pages) {
 317                        pr_warn_once("memory add fail, invalid altmap\n");
 318                        return -EINVAL;
 319                }
 320                altmap->alloc = 0;
 321        }
 322
 323        err = check_pfn_span(pfn, nr_pages, "add");
 324        if (err)
 325                return err;
 326
 327        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 328                /* Select all remaining pages up to the next section boundary */
 329                cur_nr_pages = min(end_pfn - pfn,
 330                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 331                err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
 332                if (err)
 333                        break;
 334                cond_resched();
 335        }
 336        vmemmap_populate_print_last();
 337        return err;
 338}
 339
 340/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 341static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 342                                     unsigned long start_pfn,
 343                                     unsigned long end_pfn)
 344{
 345        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 346                if (unlikely(!pfn_to_online_page(start_pfn)))
 347                        continue;
 348
 349                if (unlikely(pfn_to_nid(start_pfn) != nid))
 350                        continue;
 351
 352                if (zone != page_zone(pfn_to_page(start_pfn)))
 353                        continue;
 354
 355                return start_pfn;
 356        }
 357
 358        return 0;
 359}
 360
 361/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 362static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 363                                    unsigned long start_pfn,
 364                                    unsigned long end_pfn)
 365{
 366        unsigned long pfn;
 367
 368        /* pfn is the end pfn of a memory section. */
 369        pfn = end_pfn - 1;
 370        for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 371                if (unlikely(!pfn_to_online_page(pfn)))
 372                        continue;
 373
 374                if (unlikely(pfn_to_nid(pfn) != nid))
 375                        continue;
 376
 377                if (zone != page_zone(pfn_to_page(pfn)))
 378                        continue;
 379
 380                return pfn;
 381        }
 382
 383        return 0;
 384}
 385
 386static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 387                             unsigned long end_pfn)
 388{
 389        unsigned long pfn;
 390        int nid = zone_to_nid(zone);
 391
 392        if (zone->zone_start_pfn == start_pfn) {
 393                /*
 394                 * If the section is smallest section in the zone, it need
 395                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 396                 * In this case, we find second smallest valid mem_section
 397                 * for shrinking zone.
 398                 */
 399                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 400                                                zone_end_pfn(zone));
 401                if (pfn) {
 402                        zone->spanned_pages = zone_end_pfn(zone) - pfn;
 403                        zone->zone_start_pfn = pfn;
 404                } else {
 405                        zone->zone_start_pfn = 0;
 406                        zone->spanned_pages = 0;
 407                }
 408        } else if (zone_end_pfn(zone) == end_pfn) {
 409                /*
 410                 * If the section is biggest section in the zone, it need
 411                 * shrink zone->spanned_pages.
 412                 * In this case, we find second biggest valid mem_section for
 413                 * shrinking zone.
 414                 */
 415                pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 416                                               start_pfn);
 417                if (pfn)
 418                        zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 419                else {
 420                        zone->zone_start_pfn = 0;
 421                        zone->spanned_pages = 0;
 422                }
 423        }
 424}
 425
 426static void update_pgdat_span(struct pglist_data *pgdat)
 427{
 428        unsigned long node_start_pfn = 0, node_end_pfn = 0;
 429        struct zone *zone;
 430
 431        for (zone = pgdat->node_zones;
 432             zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 433                unsigned long end_pfn = zone_end_pfn(zone);
 434
 435                /* No need to lock the zones, they can't change. */
 436                if (!zone->spanned_pages)
 437                        continue;
 438                if (!node_end_pfn) {
 439                        node_start_pfn = zone->zone_start_pfn;
 440                        node_end_pfn = end_pfn;
 441                        continue;
 442                }
 443
 444                if (end_pfn > node_end_pfn)
 445                        node_end_pfn = end_pfn;
 446                if (zone->zone_start_pfn < node_start_pfn)
 447                        node_start_pfn = zone->zone_start_pfn;
 448        }
 449
 450        pgdat->node_start_pfn = node_start_pfn;
 451        pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 452}
 453
 454void __ref remove_pfn_range_from_zone(struct zone *zone,
 455                                      unsigned long start_pfn,
 456                                      unsigned long nr_pages)
 457{
 458        const unsigned long end_pfn = start_pfn + nr_pages;
 459        struct pglist_data *pgdat = zone->zone_pgdat;
 460        unsigned long pfn, cur_nr_pages;
 461
 462        /* Poison struct pages because they are now uninitialized again. */
 463        for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 464                cond_resched();
 465
 466                /* Select all remaining pages up to the next section boundary */
 467                cur_nr_pages =
 468                        min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 469                page_init_poison(pfn_to_page(pfn),
 470                                 sizeof(struct page) * cur_nr_pages);
 471        }
 472
 473        /*
 474         * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 475         * we will not try to shrink the zones - which is okay as
 476         * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 477         */
 478        if (zone_is_zone_device(zone))
 479                return;
 480
 481        clear_zone_contiguous(zone);
 482
 483        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 484        update_pgdat_span(pgdat);
 485
 486        set_zone_contiguous(zone);
 487}
 488
 489static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 490                             unsigned long map_offset,
 491                             struct vmem_altmap *altmap)
 492{
 493        struct mem_section *ms = __pfn_to_section(pfn);
 494
 495        if (WARN_ON_ONCE(!valid_section(ms)))
 496                return;
 497
 498        sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 499}
 500
 501/**
 502 * __remove_pages() - remove sections of pages
 503 * @pfn: starting pageframe (must be aligned to start of a section)
 504 * @nr_pages: number of pages to remove (must be multiple of section size)
 505 * @altmap: alternative device page map or %NULL if default memmap is used
 506 *
 507 * Generic helper function to remove section mappings and sysfs entries
 508 * for the section of the memory we are removing. Caller needs to make
 509 * sure that pages are marked reserved and zones are adjust properly by
 510 * calling offline_pages().
 511 */
 512void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 513                    struct vmem_altmap *altmap)
 514{
 515        const unsigned long end_pfn = pfn + nr_pages;
 516        unsigned long cur_nr_pages;
 517        unsigned long map_offset = 0;
 518
 519        map_offset = vmem_altmap_offset(altmap);
 520
 521        if (check_pfn_span(pfn, nr_pages, "remove"))
 522                return;
 523
 524        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 525                cond_resched();
 526                /* Select all remaining pages up to the next section boundary */
 527                cur_nr_pages = min(end_pfn - pfn,
 528                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 529                __remove_section(pfn, cur_nr_pages, map_offset, altmap);
 530                map_offset = 0;
 531        }
 532}
 533
 534int set_online_page_callback(online_page_callback_t callback)
 535{
 536        int rc = -EINVAL;
 537
 538        get_online_mems();
 539        mutex_lock(&online_page_callback_lock);
 540
 541        if (online_page_callback == generic_online_page) {
 542                online_page_callback = callback;
 543                rc = 0;
 544        }
 545
 546        mutex_unlock(&online_page_callback_lock);
 547        put_online_mems();
 548
 549        return rc;
 550}
 551EXPORT_SYMBOL_GPL(set_online_page_callback);
 552
 553int restore_online_page_callback(online_page_callback_t callback)
 554{
 555        int rc = -EINVAL;
 556
 557        get_online_mems();
 558        mutex_lock(&online_page_callback_lock);
 559
 560        if (online_page_callback == callback) {
 561                online_page_callback = generic_online_page;
 562                rc = 0;
 563        }
 564
 565        mutex_unlock(&online_page_callback_lock);
 566        put_online_mems();
 567
 568        return rc;
 569}
 570EXPORT_SYMBOL_GPL(restore_online_page_callback);
 571
 572void generic_online_page(struct page *page, unsigned int order)
 573{
 574        /*
 575         * Freeing the page with debug_pagealloc enabled will try to unmap it,
 576         * so we should map it first. This is better than introducing a special
 577         * case in page freeing fast path.
 578         */
 579        debug_pagealloc_map_pages(page, 1 << order);
 580        __free_pages_core(page, order);
 581        totalram_pages_add(1UL << order);
 582}
 583EXPORT_SYMBOL_GPL(generic_online_page);
 584
 585static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 586{
 587        const unsigned long end_pfn = start_pfn + nr_pages;
 588        unsigned long pfn;
 589
 590        /*
 591         * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 592         * decide to not expose all pages to the buddy (e.g., expose them
 593         * later). We account all pages as being online and belonging to this
 594         * zone ("present").
 595         * When using memmap_on_memory, the range might not be aligned to
 596         * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 597         * this and the first chunk to online will be pageblock_nr_pages.
 598         */
 599        for (pfn = start_pfn; pfn < end_pfn;) {
 600                int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 601
 602                (*online_page_callback)(pfn_to_page(pfn), order);
 603                pfn += (1UL << order);
 604        }
 605
 606        /* mark all involved sections as online */
 607        online_mem_sections(start_pfn, end_pfn);
 608}
 609
 610/* check which state of node_states will be changed when online memory */
 611static void node_states_check_changes_online(unsigned long nr_pages,
 612        struct zone *zone, struct memory_notify *arg)
 613{
 614        int nid = zone_to_nid(zone);
 615
 616        arg->status_change_nid = NUMA_NO_NODE;
 617        arg->status_change_nid_normal = NUMA_NO_NODE;
 618
 619        if (!node_state(nid, N_MEMORY))
 620                arg->status_change_nid = nid;
 621        if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 622                arg->status_change_nid_normal = nid;
 623}
 624
 625static void node_states_set_node(int node, struct memory_notify *arg)
 626{
 627        if (arg->status_change_nid_normal >= 0)
 628                node_set_state(node, N_NORMAL_MEMORY);
 629
 630        if (arg->status_change_nid >= 0)
 631                node_set_state(node, N_MEMORY);
 632}
 633
 634static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 635                unsigned long nr_pages)
 636{
 637        unsigned long old_end_pfn = zone_end_pfn(zone);
 638
 639        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 640                zone->zone_start_pfn = start_pfn;
 641
 642        zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 643}
 644
 645static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 646                                     unsigned long nr_pages)
 647{
 648        unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 649
 650        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 651                pgdat->node_start_pfn = start_pfn;
 652
 653        pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 654
 655}
 656
 657static void section_taint_zone_device(unsigned long pfn)
 658{
 659        struct mem_section *ms = __pfn_to_section(pfn);
 660
 661        ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 662}
 663
 664/*
 665 * Associate the pfn range with the given zone, initializing the memmaps
 666 * and resizing the pgdat/zone data to span the added pages. After this
 667 * call, all affected pages are PG_reserved.
 668 *
 669 * All aligned pageblocks are initialized to the specified migratetype
 670 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 671 * zone stats (e.g., nr_isolate_pageblock) are touched.
 672 */
 673void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 674                                  unsigned long nr_pages,
 675                                  struct vmem_altmap *altmap, int migratetype)
 676{
 677        struct pglist_data *pgdat = zone->zone_pgdat;
 678        int nid = pgdat->node_id;
 679
 680        clear_zone_contiguous(zone);
 681
 682        if (zone_is_empty(zone))
 683                init_currently_empty_zone(zone, start_pfn, nr_pages);
 684        resize_zone_range(zone, start_pfn, nr_pages);
 685        resize_pgdat_range(pgdat, start_pfn, nr_pages);
 686
 687        /*
 688         * Subsection population requires care in pfn_to_online_page().
 689         * Set the taint to enable the slow path detection of
 690         * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 691         * section.
 692         */
 693        if (zone_is_zone_device(zone)) {
 694                if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 695                        section_taint_zone_device(start_pfn);
 696                if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 697                        section_taint_zone_device(start_pfn + nr_pages);
 698        }
 699
 700        /*
 701         * TODO now we have a visible range of pages which are not associated
 702         * with their zone properly. Not nice but set_pfnblock_flags_mask
 703         * expects the zone spans the pfn range. All the pages in the range
 704         * are reserved so nobody should be touching them so we should be safe
 705         */
 706        memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 707                         MEMINIT_HOTPLUG, altmap, migratetype);
 708
 709        set_zone_contiguous(zone);
 710}
 711
 712struct auto_movable_stats {
 713        unsigned long kernel_early_pages;
 714        unsigned long movable_pages;
 715};
 716
 717static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
 718                                            struct zone *zone)
 719{
 720        if (zone_idx(zone) == ZONE_MOVABLE) {
 721                stats->movable_pages += zone->present_pages;
 722        } else {
 723                stats->kernel_early_pages += zone->present_early_pages;
 724#ifdef CONFIG_CMA
 725                /*
 726                 * CMA pages (never on hotplugged memory) behave like
 727                 * ZONE_MOVABLE.
 728                 */
 729                stats->movable_pages += zone->cma_pages;
 730                stats->kernel_early_pages -= zone->cma_pages;
 731#endif /* CONFIG_CMA */
 732        }
 733}
 734struct auto_movable_group_stats {
 735        unsigned long movable_pages;
 736        unsigned long req_kernel_early_pages;
 737};
 738
 739static int auto_movable_stats_account_group(struct memory_group *group,
 740                                           void *arg)
 741{
 742        const int ratio = READ_ONCE(auto_movable_ratio);
 743        struct auto_movable_group_stats *stats = arg;
 744        long pages;
 745
 746        /*
 747         * We don't support modifying the config while the auto-movable online
 748         * policy is already enabled. Just avoid the division by zero below.
 749         */
 750        if (!ratio)
 751                return 0;
 752
 753        /*
 754         * Calculate how many early kernel pages this group requires to
 755         * satisfy the configured zone ratio.
 756         */
 757        pages = group->present_movable_pages * 100 / ratio;
 758        pages -= group->present_kernel_pages;
 759
 760        if (pages > 0)
 761                stats->req_kernel_early_pages += pages;
 762        stats->movable_pages += group->present_movable_pages;
 763        return 0;
 764}
 765
 766static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
 767                                            unsigned long nr_pages)
 768{
 769        unsigned long kernel_early_pages, movable_pages;
 770        struct auto_movable_group_stats group_stats = {};
 771        struct auto_movable_stats stats = {};
 772        pg_data_t *pgdat = NODE_DATA(nid);
 773        struct zone *zone;
 774        int i;
 775
 776        /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
 777        if (nid == NUMA_NO_NODE) {
 778                /* TODO: cache values */
 779                for_each_populated_zone(zone)
 780                        auto_movable_stats_account_zone(&stats, zone);
 781        } else {
 782                for (i = 0; i < MAX_NR_ZONES; i++) {
 783                        zone = pgdat->node_zones + i;
 784                        if (populated_zone(zone))
 785                                auto_movable_stats_account_zone(&stats, zone);
 786                }
 787        }
 788
 789        kernel_early_pages = stats.kernel_early_pages;
 790        movable_pages = stats.movable_pages;
 791
 792        /*
 793         * Kernel memory inside dynamic memory group allows for more MOVABLE
 794         * memory within the same group. Remove the effect of all but the
 795         * current group from the stats.
 796         */
 797        walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
 798                                   group, &group_stats);
 799        if (kernel_early_pages <= group_stats.req_kernel_early_pages)
 800                return false;
 801        kernel_early_pages -= group_stats.req_kernel_early_pages;
 802        movable_pages -= group_stats.movable_pages;
 803
 804        if (group && group->is_dynamic)
 805                kernel_early_pages += group->present_kernel_pages;
 806
 807        /*
 808         * Test if we could online the given number of pages to ZONE_MOVABLE
 809         * and still stay in the configured ratio.
 810         */
 811        movable_pages += nr_pages;
 812        return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
 813}
 814
 815/*
 816 * Returns a default kernel memory zone for the given pfn range.
 817 * If no kernel zone covers this pfn range it will automatically go
 818 * to the ZONE_NORMAL.
 819 */
 820static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 821                unsigned long nr_pages)
 822{
 823        struct pglist_data *pgdat = NODE_DATA(nid);
 824        int zid;
 825
 826        for (zid = 0; zid < ZONE_NORMAL; zid++) {
 827                struct zone *zone = &pgdat->node_zones[zid];
 828
 829                if (zone_intersects(zone, start_pfn, nr_pages))
 830                        return zone;
 831        }
 832
 833        return &pgdat->node_zones[ZONE_NORMAL];
 834}
 835
 836/*
 837 * Determine to which zone to online memory dynamically based on user
 838 * configuration and system stats. We care about the following ratio:
 839 *
 840 *   MOVABLE : KERNEL
 841 *
 842 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
 843 * one of the kernel zones. CMA pages inside one of the kernel zones really
 844 * behaves like ZONE_MOVABLE, so we treat them accordingly.
 845 *
 846 * We don't allow for hotplugged memory in a KERNEL zone to increase the
 847 * amount of MOVABLE memory we can have, so we end up with:
 848 *
 849 *   MOVABLE : KERNEL_EARLY
 850 *
 851 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
 852 * boot. We base our calculation on KERNEL_EARLY internally, because:
 853 *
 854 * a) Hotplugged memory in one of the kernel zones can sometimes still get
 855 *    hotunplugged, especially when hot(un)plugging individual memory blocks.
 856 *    There is no coordination across memory devices, therefore "automatic"
 857 *    hotunplugging, as implemented in hypervisors, could result in zone
 858 *    imbalances.
 859 * b) Early/boot memory in one of the kernel zones can usually not get
 860 *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
 861 *    with unmovable allocations). While there are corner cases where it might
 862 *    still work, it is barely relevant in practice.
 863 *
 864 * Exceptions are dynamic memory groups, which allow for more MOVABLE
 865 * memory within the same memory group -- because in that case, there is
 866 * coordination within the single memory device managed by a single driver.
 867 *
 868 * We rely on "present pages" instead of "managed pages", as the latter is
 869 * highly unreliable and dynamic in virtualized environments, and does not
 870 * consider boot time allocations. For example, memory ballooning adjusts the
 871 * managed pages when inflating/deflating the balloon, and balloon compaction
 872 * can even migrate inflated pages between zones.
 873 *
 874 * Using "present pages" is better but some things to keep in mind are:
 875 *
 876 * a) Some memblock allocations, such as for the crashkernel area, are
 877 *    effectively unused by the kernel, yet they account to "present pages".
 878 *    Fortunately, these allocations are comparatively small in relevant setups
 879 *    (e.g., fraction of system memory).
 880 * b) Some hotplugged memory blocks in virtualized environments, esecially
 881 *    hotplugged by virtio-mem, look like they are completely present, however,
 882 *    only parts of the memory block are actually currently usable.
 883 *    "present pages" is an upper limit that can get reached at runtime. As
 884 *    we base our calculations on KERNEL_EARLY, this is not an issue.
 885 */
 886static struct zone *auto_movable_zone_for_pfn(int nid,
 887                                              struct memory_group *group,
 888                                              unsigned long pfn,
 889                                              unsigned long nr_pages)
 890{
 891        unsigned long online_pages = 0, max_pages, end_pfn;
 892        struct page *page;
 893
 894        if (!auto_movable_ratio)
 895                goto kernel_zone;
 896
 897        if (group && !group->is_dynamic) {
 898                max_pages = group->s.max_pages;
 899                online_pages = group->present_movable_pages;
 900
 901                /* If anything is !MOVABLE online the rest !MOVABLE. */
 902                if (group->present_kernel_pages)
 903                        goto kernel_zone;
 904        } else if (!group || group->d.unit_pages == nr_pages) {
 905                max_pages = nr_pages;
 906        } else {
 907                max_pages = group->d.unit_pages;
 908                /*
 909                 * Take a look at all online sections in the current unit.
 910                 * We can safely assume that all pages within a section belong
 911                 * to the same zone, because dynamic memory groups only deal
 912                 * with hotplugged memory.
 913                 */
 914                pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
 915                end_pfn = pfn + group->d.unit_pages;
 916                for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 917                        page = pfn_to_online_page(pfn);
 918                        if (!page)
 919                                continue;
 920                        /* If anything is !MOVABLE online the rest !MOVABLE. */
 921                        if (page_zonenum(page) != ZONE_MOVABLE)
 922                                goto kernel_zone;
 923                        online_pages += PAGES_PER_SECTION;
 924                }
 925        }
 926
 927        /*
 928         * Online MOVABLE if we could *currently* online all remaining parts
 929         * MOVABLE. We expect to (add+) online them immediately next, so if
 930         * nobody interferes, all will be MOVABLE if possible.
 931         */
 932        nr_pages = max_pages - online_pages;
 933        if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
 934                goto kernel_zone;
 935
 936#ifdef CONFIG_NUMA
 937        if (auto_movable_numa_aware &&
 938            !auto_movable_can_online_movable(nid, group, nr_pages))
 939                goto kernel_zone;
 940#endif /* CONFIG_NUMA */
 941
 942        return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 943kernel_zone:
 944        return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
 945}
 946
 947static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 948                unsigned long nr_pages)
 949{
 950        struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 951                        nr_pages);
 952        struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 953        bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 954        bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 955
 956        /*
 957         * We inherit the existing zone in a simple case where zones do not
 958         * overlap in the given range
 959         */
 960        if (in_kernel ^ in_movable)
 961                return (in_kernel) ? kernel_zone : movable_zone;
 962
 963        /*
 964         * If the range doesn't belong to any zone or two zones overlap in the
 965         * given range then we use movable zone only if movable_node is
 966         * enabled because we always online to a kernel zone by default.
 967         */
 968        return movable_node_enabled ? movable_zone : kernel_zone;
 969}
 970
 971struct zone *zone_for_pfn_range(int online_type, int nid,
 972                struct memory_group *group, unsigned long start_pfn,
 973                unsigned long nr_pages)
 974{
 975        if (online_type == MMOP_ONLINE_KERNEL)
 976                return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 977
 978        if (online_type == MMOP_ONLINE_MOVABLE)
 979                return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 980
 981        if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
 982                return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
 983
 984        return default_zone_for_pfn(nid, start_pfn, nr_pages);
 985}
 986
 987/*
 988 * This function should only be called by memory_block_{online,offline},
 989 * and {online,offline}_pages.
 990 */
 991void adjust_present_page_count(struct page *page, struct memory_group *group,
 992                               long nr_pages)
 993{
 994        struct zone *zone = page_zone(page);
 995        const bool movable = zone_idx(zone) == ZONE_MOVABLE;
 996
 997        /*
 998         * We only support onlining/offlining/adding/removing of complete
 999         * memory blocks; therefore, either all is either early or hotplugged.
1000         */
1001        if (early_section(__pfn_to_section(page_to_pfn(page))))
1002                zone->present_early_pages += nr_pages;
1003        zone->present_pages += nr_pages;
1004        zone->zone_pgdat->node_present_pages += nr_pages;
1005
1006        if (group && movable)
1007                group->present_movable_pages += nr_pages;
1008        else if (group && !movable)
1009                group->present_kernel_pages += nr_pages;
1010}
1011
1012int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1013                              struct zone *zone)
1014{
1015        unsigned long end_pfn = pfn + nr_pages;
1016        int ret;
1017
1018        ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1019        if (ret)
1020                return ret;
1021
1022        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1023
1024        /*
1025         * It might be that the vmemmap_pages fully span sections. If that is
1026         * the case, mark those sections online here as otherwise they will be
1027         * left offline.
1028         */
1029        if (nr_pages >= PAGES_PER_SECTION)
1030                online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1031
1032        return ret;
1033}
1034
1035void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1036{
1037        unsigned long end_pfn = pfn + nr_pages;
1038
1039        /*
1040         * It might be that the vmemmap_pages fully span sections. If that is
1041         * the case, mark those sections offline here as otherwise they will be
1042         * left online.
1043         */
1044        if (nr_pages >= PAGES_PER_SECTION)
1045                offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1046
1047        /*
1048         * The pages associated with this vmemmap have been offlined, so
1049         * we can reset its state here.
1050         */
1051        remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1052        kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1053}
1054
1055int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1056                       struct zone *zone, struct memory_group *group)
1057{
1058        unsigned long flags;
1059        int need_zonelists_rebuild = 0;
1060        const int nid = zone_to_nid(zone);
1061        int ret;
1062        struct memory_notify arg;
1063
1064        /*
1065         * {on,off}lining is constrained to full memory sections (or more
1066         * precisely to memory blocks from the user space POV).
1067         * memmap_on_memory is an exception because it reserves initial part
1068         * of the physical memory space for vmemmaps. That space is pageblock
1069         * aligned.
1070         */
1071        if (WARN_ON_ONCE(!nr_pages ||
1072                         !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1073                         !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1074                return -EINVAL;
1075
1076        mem_hotplug_begin();
1077
1078        /* associate pfn range with the zone */
1079        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1080
1081        arg.start_pfn = pfn;
1082        arg.nr_pages = nr_pages;
1083        node_states_check_changes_online(nr_pages, zone, &arg);
1084
1085        ret = memory_notify(MEM_GOING_ONLINE, &arg);
1086        ret = notifier_to_errno(ret);
1087        if (ret)
1088                goto failed_addition;
1089
1090        /*
1091         * Fixup the number of isolated pageblocks before marking the sections
1092         * onlining, such that undo_isolate_page_range() works correctly.
1093         */
1094        spin_lock_irqsave(&zone->lock, flags);
1095        zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1096        spin_unlock_irqrestore(&zone->lock, flags);
1097
1098        /*
1099         * If this zone is not populated, then it is not in zonelist.
1100         * This means the page allocator ignores this zone.
1101         * So, zonelist must be updated after online.
1102         */
1103        if (!populated_zone(zone)) {
1104                need_zonelists_rebuild = 1;
1105                setup_zone_pageset(zone);
1106        }
1107
1108        online_pages_range(pfn, nr_pages);
1109        adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1110
1111        node_states_set_node(nid, &arg);
1112        if (need_zonelists_rebuild)
1113                build_all_zonelists(NULL);
1114
1115        /* Basic onlining is complete, allow allocation of onlined pages. */
1116        undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1117
1118        /*
1119         * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1120         * the tail of the freelist when undoing isolation). Shuffle the whole
1121         * zone to make sure the just onlined pages are properly distributed
1122         * across the whole freelist - to create an initial shuffle.
1123         */
1124        shuffle_zone(zone);
1125
1126        /* reinitialise watermarks and update pcp limits */
1127        init_per_zone_wmark_min();
1128
1129        kswapd_run(nid);
1130        kcompactd_run(nid);
1131
1132        writeback_set_ratelimit();
1133
1134        memory_notify(MEM_ONLINE, &arg);
1135        mem_hotplug_done();
1136        return 0;
1137
1138failed_addition:
1139        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1140                 (unsigned long long) pfn << PAGE_SHIFT,
1141                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1142        memory_notify(MEM_CANCEL_ONLINE, &arg);
1143        remove_pfn_range_from_zone(zone, pfn, nr_pages);
1144        mem_hotplug_done();
1145        return ret;
1146}
1147
1148static void reset_node_present_pages(pg_data_t *pgdat)
1149{
1150        struct zone *z;
1151
1152        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1153                z->present_pages = 0;
1154
1155        pgdat->node_present_pages = 0;
1156}
1157
1158/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1159static pg_data_t __ref *hotadd_init_pgdat(int nid)
1160{
1161        struct pglist_data *pgdat;
1162
1163        /*
1164         * NODE_DATA is preallocated (free_area_init) but its internal
1165         * state is not allocated completely. Add missing pieces.
1166         * Completely offline nodes stay around and they just need
1167         * reintialization.
1168         */
1169        pgdat = NODE_DATA(nid);
1170
1171        /* init node's zones as empty zones, we don't have any present pages.*/
1172        free_area_init_core_hotplug(pgdat);
1173
1174        /*
1175         * The node we allocated has no zone fallback lists. For avoiding
1176         * to access not-initialized zonelist, build here.
1177         */
1178        build_all_zonelists(pgdat);
1179
1180        /*
1181         * When memory is hot-added, all the memory is in offline state. So
1182         * clear all zones' present_pages because they will be updated in
1183         * online_pages() and offline_pages().
1184         * TODO: should be in free_area_init_core_hotplug?
1185         */
1186        reset_node_managed_pages(pgdat);
1187        reset_node_present_pages(pgdat);
1188
1189        return pgdat;
1190}
1191
1192/*
1193 * __try_online_node - online a node if offlined
1194 * @nid: the node ID
1195 * @set_node_online: Whether we want to online the node
1196 * called by cpu_up() to online a node without onlined memory.
1197 *
1198 * Returns:
1199 * 1 -> a new node has been allocated
1200 * 0 -> the node is already online
1201 * -ENOMEM -> the node could not be allocated
1202 */
1203static int __try_online_node(int nid, bool set_node_online)
1204{
1205        pg_data_t *pgdat;
1206        int ret = 1;
1207
1208        if (node_online(nid))
1209                return 0;
1210
1211        pgdat = hotadd_init_pgdat(nid);
1212        if (!pgdat) {
1213                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1214                ret = -ENOMEM;
1215                goto out;
1216        }
1217
1218        if (set_node_online) {
1219                node_set_online(nid);
1220                ret = register_one_node(nid);
1221                BUG_ON(ret);
1222        }
1223out:
1224        return ret;
1225}
1226
1227/*
1228 * Users of this function always want to online/register the node
1229 */
1230int try_online_node(int nid)
1231{
1232        int ret;
1233
1234        mem_hotplug_begin();
1235        ret =  __try_online_node(nid, true);
1236        mem_hotplug_done();
1237        return ret;
1238}
1239
1240static int check_hotplug_memory_range(u64 start, u64 size)
1241{
1242        /* memory range must be block size aligned */
1243        if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1244            !IS_ALIGNED(size, memory_block_size_bytes())) {
1245                pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1246                       memory_block_size_bytes(), start, size);
1247                return -EINVAL;
1248        }
1249
1250        return 0;
1251}
1252
1253static int online_memory_block(struct memory_block *mem, void *arg)
1254{
1255        mem->online_type = mhp_default_online_type;
1256        return device_online(&mem->dev);
1257}
1258
1259bool mhp_supports_memmap_on_memory(unsigned long size)
1260{
1261        unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1262        unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1263        unsigned long remaining_size = size - vmemmap_size;
1264
1265        /*
1266         * Besides having arch support and the feature enabled at runtime, we
1267         * need a few more assumptions to hold true:
1268         *
1269         * a) We span a single memory block: memory onlining/offlinin;g happens
1270         *    in memory block granularity. We don't want the vmemmap of online
1271         *    memory blocks to reside on offline memory blocks. In the future,
1272         *    we might want to support variable-sized memory blocks to make the
1273         *    feature more versatile.
1274         *
1275         * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1276         *    to populate memory from the altmap for unrelated parts (i.e.,
1277         *    other memory blocks)
1278         *
1279         * c) The vmemmap pages (and thereby the pages that will be exposed to
1280         *    the buddy) have to cover full pageblocks: memory onlining/offlining
1281         *    code requires applicable ranges to be page-aligned, for example, to
1282         *    set the migratetypes properly.
1283         *
1284         * TODO: Although we have a check here to make sure that vmemmap pages
1285         *       fully populate a PMD, it is not the right place to check for
1286         *       this. A much better solution involves improving vmemmap code
1287         *       to fallback to base pages when trying to populate vmemmap using
1288         *       altmap as an alternative source of memory, and we do not exactly
1289         *       populate a single PMD.
1290         */
1291        return memmap_on_memory &&
1292               !hugetlb_free_vmemmap_enabled() &&
1293               IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1294               size == memory_block_size_bytes() &&
1295               IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1296               IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1297}
1298
1299/*
1300 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1301 * and online/offline operations (triggered e.g. by sysfs).
1302 *
1303 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1304 */
1305int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1306{
1307        struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1308        enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1309        struct vmem_altmap mhp_altmap = {};
1310        struct memory_group *group = NULL;
1311        u64 start, size;
1312        bool new_node = false;
1313        int ret;
1314
1315        start = res->start;
1316        size = resource_size(res);
1317
1318        ret = check_hotplug_memory_range(start, size);
1319        if (ret)
1320                return ret;
1321
1322        if (mhp_flags & MHP_NID_IS_MGID) {
1323                group = memory_group_find_by_id(nid);
1324                if (!group)
1325                        return -EINVAL;
1326                nid = group->nid;
1327        }
1328
1329        if (!node_possible(nid)) {
1330                WARN(1, "node %d was absent from the node_possible_map\n", nid);
1331                return -EINVAL;
1332        }
1333
1334        mem_hotplug_begin();
1335
1336        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1337                if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1338                        memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1339                ret = memblock_add_node(start, size, nid, memblock_flags);
1340                if (ret)
1341                        goto error_mem_hotplug_end;
1342        }
1343
1344        ret = __try_online_node(nid, false);
1345        if (ret < 0)
1346                goto error;
1347        new_node = ret;
1348
1349        /*
1350         * Self hosted memmap array
1351         */
1352        if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1353                if (!mhp_supports_memmap_on_memory(size)) {
1354                        ret = -EINVAL;
1355                        goto error;
1356                }
1357                mhp_altmap.free = PHYS_PFN(size);
1358                mhp_altmap.base_pfn = PHYS_PFN(start);
1359                params.altmap = &mhp_altmap;
1360        }
1361
1362        /* call arch's memory hotadd */
1363        ret = arch_add_memory(nid, start, size, &params);
1364        if (ret < 0)
1365                goto error;
1366
1367        /* create memory block devices after memory was added */
1368        ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1369                                          group);
1370        if (ret) {
1371                arch_remove_memory(start, size, NULL);
1372                goto error;
1373        }
1374
1375        if (new_node) {
1376                /* If sysfs file of new node can't be created, cpu on the node
1377                 * can't be hot-added. There is no rollback way now.
1378                 * So, check by BUG_ON() to catch it reluctantly..
1379                 * We online node here. We can't roll back from here.
1380                 */
1381                node_set_online(nid);
1382                ret = __register_one_node(nid);
1383                BUG_ON(ret);
1384        }
1385
1386        register_memory_blocks_under_node(nid, PFN_DOWN(start),
1387                                          PFN_UP(start + size - 1),
1388                                          MEMINIT_HOTPLUG);
1389
1390        /* create new memmap entry */
1391        if (!strcmp(res->name, "System RAM"))
1392                firmware_map_add_hotplug(start, start + size, "System RAM");
1393
1394        /* device_online() will take the lock when calling online_pages() */
1395        mem_hotplug_done();
1396
1397        /*
1398         * In case we're allowed to merge the resource, flag it and trigger
1399         * merging now that adding succeeded.
1400         */
1401        if (mhp_flags & MHP_MERGE_RESOURCE)
1402                merge_system_ram_resource(res);
1403
1404        /* online pages if requested */
1405        if (mhp_default_online_type != MMOP_OFFLINE)
1406                walk_memory_blocks(start, size, NULL, online_memory_block);
1407
1408        return ret;
1409error:
1410        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1411                memblock_remove(start, size);
1412error_mem_hotplug_end:
1413        mem_hotplug_done();
1414        return ret;
1415}
1416
1417/* requires device_hotplug_lock, see add_memory_resource() */
1418int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1419{
1420        struct resource *res;
1421        int ret;
1422
1423        res = register_memory_resource(start, size, "System RAM");
1424        if (IS_ERR(res))
1425                return PTR_ERR(res);
1426
1427        ret = add_memory_resource(nid, res, mhp_flags);
1428        if (ret < 0)
1429                release_memory_resource(res);
1430        return ret;
1431}
1432
1433int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1434{
1435        int rc;
1436
1437        lock_device_hotplug();
1438        rc = __add_memory(nid, start, size, mhp_flags);
1439        unlock_device_hotplug();
1440
1441        return rc;
1442}
1443EXPORT_SYMBOL_GPL(add_memory);
1444
1445/*
1446 * Add special, driver-managed memory to the system as system RAM. Such
1447 * memory is not exposed via the raw firmware-provided memmap as system
1448 * RAM, instead, it is detected and added by a driver - during cold boot,
1449 * after a reboot, and after kexec.
1450 *
1451 * Reasons why this memory should not be used for the initial memmap of a
1452 * kexec kernel or for placing kexec images:
1453 * - The booting kernel is in charge of determining how this memory will be
1454 *   used (e.g., use persistent memory as system RAM)
1455 * - Coordination with a hypervisor is required before this memory
1456 *   can be used (e.g., inaccessible parts).
1457 *
1458 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1459 * memory map") are created. Also, the created memory resource is flagged
1460 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1461 * this memory as well (esp., not place kexec images onto it).
1462 *
1463 * The resource_name (visible via /proc/iomem) has to have the format
1464 * "System RAM ($DRIVER)".
1465 */
1466int add_memory_driver_managed(int nid, u64 start, u64 size,
1467                              const char *resource_name, mhp_t mhp_flags)
1468{
1469        struct resource *res;
1470        int rc;
1471
1472        if (!resource_name ||
1473            strstr(resource_name, "System RAM (") != resource_name ||
1474            resource_name[strlen(resource_name) - 1] != ')')
1475                return -EINVAL;
1476
1477        lock_device_hotplug();
1478
1479        res = register_memory_resource(start, size, resource_name);
1480        if (IS_ERR(res)) {
1481                rc = PTR_ERR(res);
1482                goto out_unlock;
1483        }
1484
1485        rc = add_memory_resource(nid, res, mhp_flags);
1486        if (rc < 0)
1487                release_memory_resource(res);
1488
1489out_unlock:
1490        unlock_device_hotplug();
1491        return rc;
1492}
1493EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1494
1495/*
1496 * Platforms should define arch_get_mappable_range() that provides
1497 * maximum possible addressable physical memory range for which the
1498 * linear mapping could be created. The platform returned address
1499 * range must adhere to these following semantics.
1500 *
1501 * - range.start <= range.end
1502 * - Range includes both end points [range.start..range.end]
1503 *
1504 * There is also a fallback definition provided here, allowing the
1505 * entire possible physical address range in case any platform does
1506 * not define arch_get_mappable_range().
1507 */
1508struct range __weak arch_get_mappable_range(void)
1509{
1510        struct range mhp_range = {
1511                .start = 0UL,
1512                .end = -1ULL,
1513        };
1514        return mhp_range;
1515}
1516
1517struct range mhp_get_pluggable_range(bool need_mapping)
1518{
1519        const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1520        struct range mhp_range;
1521
1522        if (need_mapping) {
1523                mhp_range = arch_get_mappable_range();
1524                if (mhp_range.start > max_phys) {
1525                        mhp_range.start = 0;
1526                        mhp_range.end = 0;
1527                }
1528                mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1529        } else {
1530                mhp_range.start = 0;
1531                mhp_range.end = max_phys;
1532        }
1533        return mhp_range;
1534}
1535EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1536
1537bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1538{
1539        struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1540        u64 end = start + size;
1541
1542        if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1543                return true;
1544
1545        pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1546                start, end, mhp_range.start, mhp_range.end);
1547        return false;
1548}
1549
1550#ifdef CONFIG_MEMORY_HOTREMOVE
1551/*
1552 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1553 * non-lru movable pages and hugepages). Will skip over most unmovable
1554 * pages (esp., pages that can be skipped when offlining), but bail out on
1555 * definitely unmovable pages.
1556 *
1557 * Returns:
1558 *      0 in case a movable page is found and movable_pfn was updated.
1559 *      -ENOENT in case no movable page was found.
1560 *      -EBUSY in case a definitely unmovable page was found.
1561 */
1562static int scan_movable_pages(unsigned long start, unsigned long end,
1563                              unsigned long *movable_pfn)
1564{
1565        unsigned long pfn;
1566
1567        for (pfn = start; pfn < end; pfn++) {
1568                struct page *page, *head;
1569                unsigned long skip;
1570
1571                if (!pfn_valid(pfn))
1572                        continue;
1573                page = pfn_to_page(pfn);
1574                if (PageLRU(page))
1575                        goto found;
1576                if (__PageMovable(page))
1577                        goto found;
1578
1579                /*
1580                 * PageOffline() pages that are not marked __PageMovable() and
1581                 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1582                 * definitely unmovable. If their reference count would be 0,
1583                 * they could at least be skipped when offlining memory.
1584                 */
1585                if (PageOffline(page) && page_count(page))
1586                        return -EBUSY;
1587
1588                if (!PageHuge(page))
1589                        continue;
1590                head = compound_head(page);
1591                /*
1592                 * This test is racy as we hold no reference or lock.  The
1593                 * hugetlb page could have been free'ed and head is no longer
1594                 * a hugetlb page before the following check.  In such unlikely
1595                 * cases false positives and negatives are possible.  Calling
1596                 * code must deal with these scenarios.
1597                 */
1598                if (HPageMigratable(head))
1599                        goto found;
1600                skip = compound_nr(head) - (page - head);
1601                pfn += skip - 1;
1602        }
1603        return -ENOENT;
1604found:
1605        *movable_pfn = pfn;
1606        return 0;
1607}
1608
1609static int
1610do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1611{
1612        unsigned long pfn;
1613        struct page *page, *head;
1614        int ret = 0;
1615        LIST_HEAD(source);
1616        static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1617                                      DEFAULT_RATELIMIT_BURST);
1618
1619        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1620                struct folio *folio;
1621
1622                if (!pfn_valid(pfn))
1623                        continue;
1624                page = pfn_to_page(pfn);
1625                folio = page_folio(page);
1626                head = &folio->page;
1627
1628                if (PageHuge(page)) {
1629                        pfn = page_to_pfn(head) + compound_nr(head) - 1;
1630                        isolate_huge_page(head, &source);
1631                        continue;
1632                } else if (PageTransHuge(page))
1633                        pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1634
1635                /*
1636                 * HWPoison pages have elevated reference counts so the migration would
1637                 * fail on them. It also doesn't make any sense to migrate them in the
1638                 * first place. Still try to unmap such a page in case it is still mapped
1639                 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1640                 * the unmap as the catch all safety net).
1641                 */
1642                if (PageHWPoison(page)) {
1643                        if (WARN_ON(folio_test_lru(folio)))
1644                                folio_isolate_lru(folio);
1645                        if (folio_mapped(folio))
1646                                try_to_unmap(folio, TTU_IGNORE_MLOCK);
1647                        continue;
1648                }
1649
1650                if (!get_page_unless_zero(page))
1651                        continue;
1652                /*
1653                 * We can skip free pages. And we can deal with pages on
1654                 * LRU and non-lru movable pages.
1655                 */
1656                if (PageLRU(page))
1657                        ret = isolate_lru_page(page);
1658                else
1659                        ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1660                if (!ret) { /* Success */
1661                        list_add_tail(&page->lru, &source);
1662                        if (!__PageMovable(page))
1663                                inc_node_page_state(page, NR_ISOLATED_ANON +
1664                                                    page_is_file_lru(page));
1665
1666                } else {
1667                        if (__ratelimit(&migrate_rs)) {
1668                                pr_warn("failed to isolate pfn %lx\n", pfn);
1669                                dump_page(page, "isolation failed");
1670                        }
1671                }
1672                put_page(page);
1673        }
1674        if (!list_empty(&source)) {
1675                nodemask_t nmask = node_states[N_MEMORY];
1676                struct migration_target_control mtc = {
1677                        .nmask = &nmask,
1678                        .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1679                };
1680
1681                /*
1682                 * We have checked that migration range is on a single zone so
1683                 * we can use the nid of the first page to all the others.
1684                 */
1685                mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1686
1687                /*
1688                 * try to allocate from a different node but reuse this node
1689                 * if there are no other online nodes to be used (e.g. we are
1690                 * offlining a part of the only existing node)
1691                 */
1692                node_clear(mtc.nid, nmask);
1693                if (nodes_empty(nmask))
1694                        node_set(mtc.nid, nmask);
1695                ret = migrate_pages(&source, alloc_migration_target, NULL,
1696                        (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1697                if (ret) {
1698                        list_for_each_entry(page, &source, lru) {
1699                                if (__ratelimit(&migrate_rs)) {
1700                                        pr_warn("migrating pfn %lx failed ret:%d\n",
1701                                                page_to_pfn(page), ret);
1702                                        dump_page(page, "migration failure");
1703                                }
1704                        }
1705                        putback_movable_pages(&source);
1706                }
1707        }
1708
1709        return ret;
1710}
1711
1712static int __init cmdline_parse_movable_node(char *p)
1713{
1714        movable_node_enabled = true;
1715        return 0;
1716}
1717early_param("movable_node", cmdline_parse_movable_node);
1718
1719/* check which state of node_states will be changed when offline memory */
1720static void node_states_check_changes_offline(unsigned long nr_pages,
1721                struct zone *zone, struct memory_notify *arg)
1722{
1723        struct pglist_data *pgdat = zone->zone_pgdat;
1724        unsigned long present_pages = 0;
1725        enum zone_type zt;
1726
1727        arg->status_change_nid = NUMA_NO_NODE;
1728        arg->status_change_nid_normal = NUMA_NO_NODE;
1729
1730        /*
1731         * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1732         * If the memory to be offline is within the range
1733         * [0..ZONE_NORMAL], and it is the last present memory there,
1734         * the zones in that range will become empty after the offlining,
1735         * thus we can determine that we need to clear the node from
1736         * node_states[N_NORMAL_MEMORY].
1737         */
1738        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1739                present_pages += pgdat->node_zones[zt].present_pages;
1740        if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1741                arg->status_change_nid_normal = zone_to_nid(zone);
1742
1743        /*
1744         * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1745         * does not apply as we don't support 32bit.
1746         * Here we count the possible pages from ZONE_MOVABLE.
1747         * If after having accounted all the pages, we see that the nr_pages
1748         * to be offlined is over or equal to the accounted pages,
1749         * we know that the node will become empty, and so, we can clear
1750         * it for N_MEMORY as well.
1751         */
1752        present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1753
1754        if (nr_pages >= present_pages)
1755                arg->status_change_nid = zone_to_nid(zone);
1756}
1757
1758static void node_states_clear_node(int node, struct memory_notify *arg)
1759{
1760        if (arg->status_change_nid_normal >= 0)
1761                node_clear_state(node, N_NORMAL_MEMORY);
1762
1763        if (arg->status_change_nid >= 0)
1764                node_clear_state(node, N_MEMORY);
1765}
1766
1767static int count_system_ram_pages_cb(unsigned long start_pfn,
1768                                     unsigned long nr_pages, void *data)
1769{
1770        unsigned long *nr_system_ram_pages = data;
1771
1772        *nr_system_ram_pages += nr_pages;
1773        return 0;
1774}
1775
1776int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1777                        struct zone *zone, struct memory_group *group)
1778{
1779        const unsigned long end_pfn = start_pfn + nr_pages;
1780        unsigned long pfn, system_ram_pages = 0;
1781        const int node = zone_to_nid(zone);
1782        unsigned long flags;
1783        struct memory_notify arg;
1784        char *reason;
1785        int ret;
1786
1787        /*
1788         * {on,off}lining is constrained to full memory sections (or more
1789         * precisely to memory blocks from the user space POV).
1790         * memmap_on_memory is an exception because it reserves initial part
1791         * of the physical memory space for vmemmaps. That space is pageblock
1792         * aligned.
1793         */
1794        if (WARN_ON_ONCE(!nr_pages ||
1795                         !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1796                         !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1797                return -EINVAL;
1798
1799        mem_hotplug_begin();
1800
1801        /*
1802         * Don't allow to offline memory blocks that contain holes.
1803         * Consequently, memory blocks with holes can never get onlined
1804         * via the hotplug path - online_pages() - as hotplugged memory has
1805         * no holes. This way, we e.g., don't have to worry about marking
1806         * memory holes PG_reserved, don't need pfn_valid() checks, and can
1807         * avoid using walk_system_ram_range() later.
1808         */
1809        walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1810                              count_system_ram_pages_cb);
1811        if (system_ram_pages != nr_pages) {
1812                ret = -EINVAL;
1813                reason = "memory holes";
1814                goto failed_removal;
1815        }
1816
1817        /*
1818         * We only support offlining of memory blocks managed by a single zone,
1819         * checked by calling code. This is just a sanity check that we might
1820         * want to remove in the future.
1821         */
1822        if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1823                         page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1824                ret = -EINVAL;
1825                reason = "multizone range";
1826                goto failed_removal;
1827        }
1828
1829        /*
1830         * Disable pcplists so that page isolation cannot race with freeing
1831         * in a way that pages from isolated pageblock are left on pcplists.
1832         */
1833        zone_pcp_disable(zone);
1834        lru_cache_disable();
1835
1836        /* set above range as isolated */
1837        ret = start_isolate_page_range(start_pfn, end_pfn,
1838                                       MIGRATE_MOVABLE,
1839                                       MEMORY_OFFLINE | REPORT_FAILURE);
1840        if (ret) {
1841                reason = "failure to isolate range";
1842                goto failed_removal_pcplists_disabled;
1843        }
1844
1845        arg.start_pfn = start_pfn;
1846        arg.nr_pages = nr_pages;
1847        node_states_check_changes_offline(nr_pages, zone, &arg);
1848
1849        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1850        ret = notifier_to_errno(ret);
1851        if (ret) {
1852                reason = "notifier failure";
1853                goto failed_removal_isolated;
1854        }
1855
1856        do {
1857                pfn = start_pfn;
1858                do {
1859                        if (signal_pending(current)) {
1860                                ret = -EINTR;
1861                                reason = "signal backoff";
1862                                goto failed_removal_isolated;
1863                        }
1864
1865                        cond_resched();
1866
1867                        ret = scan_movable_pages(pfn, end_pfn, &pfn);
1868                        if (!ret) {
1869                                /*
1870                                 * TODO: fatal migration failures should bail
1871                                 * out
1872                                 */
1873                                do_migrate_range(pfn, end_pfn);
1874                        }
1875                } while (!ret);
1876
1877                if (ret != -ENOENT) {
1878                        reason = "unmovable page";
1879                        goto failed_removal_isolated;
1880                }
1881
1882                /*
1883                 * Dissolve free hugepages in the memory block before doing
1884                 * offlining actually in order to make hugetlbfs's object
1885                 * counting consistent.
1886                 */
1887                ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1888                if (ret) {
1889                        reason = "failure to dissolve huge pages";
1890                        goto failed_removal_isolated;
1891                }
1892
1893                ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1894
1895        } while (ret);
1896
1897        /* Mark all sections offline and remove free pages from the buddy. */
1898        __offline_isolated_pages(start_pfn, end_pfn);
1899        pr_debug("Offlined Pages %ld\n", nr_pages);
1900
1901        /*
1902         * The memory sections are marked offline, and the pageblock flags
1903         * effectively stale; nobody should be touching them. Fixup the number
1904         * of isolated pageblocks, memory onlining will properly revert this.
1905         */
1906        spin_lock_irqsave(&zone->lock, flags);
1907        zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1908        spin_unlock_irqrestore(&zone->lock, flags);
1909
1910        lru_cache_enable();
1911        zone_pcp_enable(zone);
1912
1913        /* removal success */
1914        adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1915        adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1916
1917        /* reinitialise watermarks and update pcp limits */
1918        init_per_zone_wmark_min();
1919
1920        if (!populated_zone(zone)) {
1921                zone_pcp_reset(zone);
1922                build_all_zonelists(NULL);
1923        }
1924
1925        node_states_clear_node(node, &arg);
1926        if (arg.status_change_nid >= 0) {
1927                kswapd_stop(node);
1928                kcompactd_stop(node);
1929        }
1930
1931        writeback_set_ratelimit();
1932
1933        memory_notify(MEM_OFFLINE, &arg);
1934        remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1935        mem_hotplug_done();
1936        return 0;
1937
1938failed_removal_isolated:
1939        /* pushback to free area */
1940        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1941        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1942failed_removal_pcplists_disabled:
1943        lru_cache_enable();
1944        zone_pcp_enable(zone);
1945failed_removal:
1946        pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1947                 (unsigned long long) start_pfn << PAGE_SHIFT,
1948                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1949                 reason);
1950        mem_hotplug_done();
1951        return ret;
1952}
1953
1954static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1955{
1956        int ret = !is_memblock_offlined(mem);
1957        int *nid = arg;
1958
1959        *nid = mem->nid;
1960        if (unlikely(ret)) {
1961                phys_addr_t beginpa, endpa;
1962
1963                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1964                endpa = beginpa + memory_block_size_bytes() - 1;
1965                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1966                        &beginpa, &endpa);
1967
1968                return -EBUSY;
1969        }
1970        return 0;
1971}
1972
1973static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1974{
1975        /*
1976         * If not set, continue with the next block.
1977         */
1978        return mem->nr_vmemmap_pages;
1979}
1980
1981static int check_cpu_on_node(int nid)
1982{
1983        int cpu;
1984
1985        for_each_present_cpu(cpu) {
1986                if (cpu_to_node(cpu) == nid)
1987                        /*
1988                         * the cpu on this node isn't removed, and we can't
1989                         * offline this node.
1990                         */
1991                        return -EBUSY;
1992        }
1993
1994        return 0;
1995}
1996
1997static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1998{
1999        int nid = *(int *)arg;
2000
2001        /*
2002         * If a memory block belongs to multiple nodes, the stored nid is not
2003         * reliable. However, such blocks are always online (e.g., cannot get
2004         * offlined) and, therefore, are still spanned by the node.
2005         */
2006        return mem->nid == nid ? -EEXIST : 0;
2007}
2008
2009/**
2010 * try_offline_node
2011 * @nid: the node ID
2012 *
2013 * Offline a node if all memory sections and cpus of the node are removed.
2014 *
2015 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2016 * and online/offline operations before this call.
2017 */
2018void try_offline_node(int nid)
2019{
2020        int rc;
2021
2022        /*
2023         * If the node still spans pages (especially ZONE_DEVICE), don't
2024         * offline it. A node spans memory after move_pfn_range_to_zone(),
2025         * e.g., after the memory block was onlined.
2026         */
2027        if (node_spanned_pages(nid))
2028                return;
2029
2030        /*
2031         * Especially offline memory blocks might not be spanned by the
2032         * node. They will get spanned by the node once they get onlined.
2033         * However, they link to the node in sysfs and can get onlined later.
2034         */
2035        rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2036        if (rc)
2037                return;
2038
2039        if (check_cpu_on_node(nid))
2040                return;
2041
2042        /*
2043         * all memory/cpu of this node are removed, we can offline this
2044         * node now.
2045         */
2046        node_set_offline(nid);
2047        unregister_one_node(nid);
2048}
2049EXPORT_SYMBOL(try_offline_node);
2050
2051static int __ref try_remove_memory(u64 start, u64 size)
2052{
2053        struct vmem_altmap mhp_altmap = {};
2054        struct vmem_altmap *altmap = NULL;
2055        unsigned long nr_vmemmap_pages;
2056        int rc = 0, nid = NUMA_NO_NODE;
2057
2058        BUG_ON(check_hotplug_memory_range(start, size));
2059
2060        /*
2061         * All memory blocks must be offlined before removing memory.  Check
2062         * whether all memory blocks in question are offline and return error
2063         * if this is not the case.
2064         *
2065         * While at it, determine the nid. Note that if we'd have mixed nodes,
2066         * we'd only try to offline the last determined one -- which is good
2067         * enough for the cases we care about.
2068         */
2069        rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2070        if (rc)
2071                return rc;
2072
2073        /*
2074         * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2075         * the same granularity it was added - a single memory block.
2076         */
2077        if (memmap_on_memory) {
2078                nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2079                                                      get_nr_vmemmap_pages_cb);
2080                if (nr_vmemmap_pages) {
2081                        if (size != memory_block_size_bytes()) {
2082                                pr_warn("Refuse to remove %#llx - %#llx,"
2083                                        "wrong granularity\n",
2084                                        start, start + size);
2085                                return -EINVAL;
2086                        }
2087
2088                        /*
2089                         * Let remove_pmd_table->free_hugepage_table do the
2090                         * right thing if we used vmem_altmap when hot-adding
2091                         * the range.
2092                         */
2093                        mhp_altmap.alloc = nr_vmemmap_pages;
2094                        altmap = &mhp_altmap;
2095                }
2096        }
2097
2098        /* remove memmap entry */
2099        firmware_map_remove(start, start + size, "System RAM");
2100
2101        /*
2102         * Memory block device removal under the device_hotplug_lock is
2103         * a barrier against racing online attempts.
2104         */
2105        remove_memory_block_devices(start, size);
2106
2107        mem_hotplug_begin();
2108
2109        arch_remove_memory(start, size, altmap);
2110
2111        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2112                memblock_phys_free(start, size);
2113                memblock_remove(start, size);
2114        }
2115
2116        release_mem_region_adjustable(start, size);
2117
2118        if (nid != NUMA_NO_NODE)
2119                try_offline_node(nid);
2120
2121        mem_hotplug_done();
2122        return 0;
2123}
2124
2125/**
2126 * __remove_memory - Remove memory if every memory block is offline
2127 * @start: physical address of the region to remove
2128 * @size: size of the region to remove
2129 *
2130 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2131 * and online/offline operations before this call, as required by
2132 * try_offline_node().
2133 */
2134void __remove_memory(u64 start, u64 size)
2135{
2136
2137        /*
2138         * trigger BUG() if some memory is not offlined prior to calling this
2139         * function
2140         */
2141        if (try_remove_memory(start, size))
2142                BUG();
2143}
2144
2145/*
2146 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2147 * some memory is not offline
2148 */
2149int remove_memory(u64 start, u64 size)
2150{
2151        int rc;
2152
2153        lock_device_hotplug();
2154        rc = try_remove_memory(start, size);
2155        unlock_device_hotplug();
2156
2157        return rc;
2158}
2159EXPORT_SYMBOL_GPL(remove_memory);
2160
2161static int try_offline_memory_block(struct memory_block *mem, void *arg)
2162{
2163        uint8_t online_type = MMOP_ONLINE_KERNEL;
2164        uint8_t **online_types = arg;
2165        struct page *page;
2166        int rc;
2167
2168        /*
2169         * Sense the online_type via the zone of the memory block. Offlining
2170         * with multiple zones within one memory block will be rejected
2171         * by offlining code ... so we don't care about that.
2172         */
2173        page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2174        if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2175                online_type = MMOP_ONLINE_MOVABLE;
2176
2177        rc = device_offline(&mem->dev);
2178        /*
2179         * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2180         * so try_reonline_memory_block() can do the right thing.
2181         */
2182        if (!rc)
2183                **online_types = online_type;
2184
2185        (*online_types)++;
2186        /* Ignore if already offline. */
2187        return rc < 0 ? rc : 0;
2188}
2189
2190static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2191{
2192        uint8_t **online_types = arg;
2193        int rc;
2194
2195        if (**online_types != MMOP_OFFLINE) {
2196                mem->online_type = **online_types;
2197                rc = device_online(&mem->dev);
2198                if (rc < 0)
2199                        pr_warn("%s: Failed to re-online memory: %d",
2200                                __func__, rc);
2201        }
2202
2203        /* Continue processing all remaining memory blocks. */
2204        (*online_types)++;
2205        return 0;
2206}
2207
2208/*
2209 * Try to offline and remove memory. Might take a long time to finish in case
2210 * memory is still in use. Primarily useful for memory devices that logically
2211 * unplugged all memory (so it's no longer in use) and want to offline + remove
2212 * that memory.
2213 */
2214int offline_and_remove_memory(u64 start, u64 size)
2215{
2216        const unsigned long mb_count = size / memory_block_size_bytes();
2217        uint8_t *online_types, *tmp;
2218        int rc;
2219
2220        if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2221            !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2222                return -EINVAL;
2223
2224        /*
2225         * We'll remember the old online type of each memory block, so we can
2226         * try to revert whatever we did when offlining one memory block fails
2227         * after offlining some others succeeded.
2228         */
2229        online_types = kmalloc_array(mb_count, sizeof(*online_types),
2230                                     GFP_KERNEL);
2231        if (!online_types)
2232                return -ENOMEM;
2233        /*
2234         * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2235         * try_offline_memory_block(), we'll skip all unprocessed blocks in
2236         * try_reonline_memory_block().
2237         */
2238        memset(online_types, MMOP_OFFLINE, mb_count);
2239
2240        lock_device_hotplug();
2241
2242        tmp = online_types;
2243        rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2244
2245        /*
2246         * In case we succeeded to offline all memory, remove it.
2247         * This cannot fail as it cannot get onlined in the meantime.
2248         */
2249        if (!rc) {
2250                rc = try_remove_memory(start, size);
2251                if (rc)
2252                        pr_err("%s: Failed to remove memory: %d", __func__, rc);
2253        }
2254
2255        /*
2256         * Rollback what we did. While memory onlining might theoretically fail
2257         * (nacked by a notifier), it barely ever happens.
2258         */
2259        if (rc) {
2260                tmp = online_types;
2261                walk_memory_blocks(start, size, &tmp,
2262                                   try_reonline_memory_block);
2263        }
2264        unlock_device_hotplug();
2265
2266        kfree(online_types);
2267        return rc;
2268}
2269EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2270#endif /* CONFIG_MEMORY_HOTREMOVE */
2271