linux/mm/mmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/vmacache.h>
  18#include <linux/shm.h>
  19#include <linux/mman.h>
  20#include <linux/pagemap.h>
  21#include <linux/swap.h>
  22#include <linux/syscalls.h>
  23#include <linux/capability.h>
  24#include <linux/init.h>
  25#include <linux/file.h>
  26#include <linux/fs.h>
  27#include <linux/personality.h>
  28#include <linux/security.h>
  29#include <linux/hugetlb.h>
  30#include <linux/shmem_fs.h>
  31#include <linux/profile.h>
  32#include <linux/export.h>
  33#include <linux/mount.h>
  34#include <linux/mempolicy.h>
  35#include <linux/rmap.h>
  36#include <linux/mmu_notifier.h>
  37#include <linux/mmdebug.h>
  38#include <linux/perf_event.h>
  39#include <linux/audit.h>
  40#include <linux/khugepaged.h>
  41#include <linux/uprobes.h>
  42#include <linux/rbtree_augmented.h>
  43#include <linux/notifier.h>
  44#include <linux/memory.h>
  45#include <linux/printk.h>
  46#include <linux/userfaultfd_k.h>
  47#include <linux/moduleparam.h>
  48#include <linux/pkeys.h>
  49#include <linux/oom.h>
  50#include <linux/sched/mm.h>
  51
  52#include <linux/uaccess.h>
  53#include <asm/cacheflush.h>
  54#include <asm/tlb.h>
  55#include <asm/mmu_context.h>
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/mmap.h>
  59
  60#include "internal.h"
  61
  62#ifndef arch_mmap_check
  63#define arch_mmap_check(addr, len, flags)       (0)
  64#endif
  65
  66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  67const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  68const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  69int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  70#endif
  71#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  72const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  73const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  74int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  75#endif
  76
  77static bool ignore_rlimit_data;
  78core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  79
  80static void unmap_region(struct mm_struct *mm,
  81                struct vm_area_struct *vma, struct vm_area_struct *prev,
  82                unsigned long start, unsigned long end);
  83
  84/* description of effects of mapping type and prot in current implementation.
  85 * this is due to the limited x86 page protection hardware.  The expected
  86 * behavior is in parens:
  87 *
  88 * map_type     prot
  89 *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
  90 * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  91 *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
  92 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  93 *
  94 * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  95 *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
  96 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  97 *
  98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  99 * MAP_PRIVATE (with Enhanced PAN supported):
 100 *                                                              r: (no) no
 101 *                                                              w: (no) no
 102 *                                                              x: (yes) yes
 103 */
 104pgprot_t protection_map[16] __ro_after_init = {
 105        __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 106        __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 107};
 108
 109#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 110static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 111{
 112        return prot;
 113}
 114#endif
 115
 116pgprot_t vm_get_page_prot(unsigned long vm_flags)
 117{
 118        pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 119                                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 120                        pgprot_val(arch_vm_get_page_prot(vm_flags)));
 121
 122        return arch_filter_pgprot(ret);
 123}
 124EXPORT_SYMBOL(vm_get_page_prot);
 125
 126static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 127{
 128        return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 129}
 130
 131/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 132void vma_set_page_prot(struct vm_area_struct *vma)
 133{
 134        unsigned long vm_flags = vma->vm_flags;
 135        pgprot_t vm_page_prot;
 136
 137        vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 138        if (vma_wants_writenotify(vma, vm_page_prot)) {
 139                vm_flags &= ~VM_SHARED;
 140                vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 141        }
 142        /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 143        WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 144}
 145
 146/*
 147 * Requires inode->i_mapping->i_mmap_rwsem
 148 */
 149static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 150                struct file *file, struct address_space *mapping)
 151{
 152        if (vma->vm_flags & VM_SHARED)
 153                mapping_unmap_writable(mapping);
 154
 155        flush_dcache_mmap_lock(mapping);
 156        vma_interval_tree_remove(vma, &mapping->i_mmap);
 157        flush_dcache_mmap_unlock(mapping);
 158}
 159
 160/*
 161 * Unlink a file-based vm structure from its interval tree, to hide
 162 * vma from rmap and vmtruncate before freeing its page tables.
 163 */
 164void unlink_file_vma(struct vm_area_struct *vma)
 165{
 166        struct file *file = vma->vm_file;
 167
 168        if (file) {
 169                struct address_space *mapping = file->f_mapping;
 170                i_mmap_lock_write(mapping);
 171                __remove_shared_vm_struct(vma, file, mapping);
 172                i_mmap_unlock_write(mapping);
 173        }
 174}
 175
 176/*
 177 * Close a vm structure and free it, returning the next.
 178 */
 179static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 180{
 181        struct vm_area_struct *next = vma->vm_next;
 182
 183        might_sleep();
 184        if (vma->vm_ops && vma->vm_ops->close)
 185                vma->vm_ops->close(vma);
 186        if (vma->vm_file)
 187                fput(vma->vm_file);
 188        mpol_put(vma_policy(vma));
 189        vm_area_free(vma);
 190        return next;
 191}
 192
 193static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 194                struct list_head *uf);
 195SYSCALL_DEFINE1(brk, unsigned long, brk)
 196{
 197        unsigned long newbrk, oldbrk, origbrk;
 198        struct mm_struct *mm = current->mm;
 199        struct vm_area_struct *next;
 200        unsigned long min_brk;
 201        bool populate;
 202        bool downgraded = false;
 203        LIST_HEAD(uf);
 204
 205        if (mmap_write_lock_killable(mm))
 206                return -EINTR;
 207
 208        origbrk = mm->brk;
 209
 210#ifdef CONFIG_COMPAT_BRK
 211        /*
 212         * CONFIG_COMPAT_BRK can still be overridden by setting
 213         * randomize_va_space to 2, which will still cause mm->start_brk
 214         * to be arbitrarily shifted
 215         */
 216        if (current->brk_randomized)
 217                min_brk = mm->start_brk;
 218        else
 219                min_brk = mm->end_data;
 220#else
 221        min_brk = mm->start_brk;
 222#endif
 223        if (brk < min_brk)
 224                goto out;
 225
 226        /*
 227         * Check against rlimit here. If this check is done later after the test
 228         * of oldbrk with newbrk then it can escape the test and let the data
 229         * segment grow beyond its set limit the in case where the limit is
 230         * not page aligned -Ram Gupta
 231         */
 232        if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 233                              mm->end_data, mm->start_data))
 234                goto out;
 235
 236        newbrk = PAGE_ALIGN(brk);
 237        oldbrk = PAGE_ALIGN(mm->brk);
 238        if (oldbrk == newbrk) {
 239                mm->brk = brk;
 240                goto success;
 241        }
 242
 243        /*
 244         * Always allow shrinking brk.
 245         * __do_munmap() may downgrade mmap_lock to read.
 246         */
 247        if (brk <= mm->brk) {
 248                int ret;
 249
 250                /*
 251                 * mm->brk must to be protected by write mmap_lock so update it
 252                 * before downgrading mmap_lock. When __do_munmap() fails,
 253                 * mm->brk will be restored from origbrk.
 254                 */
 255                mm->brk = brk;
 256                ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 257                if (ret < 0) {
 258                        mm->brk = origbrk;
 259                        goto out;
 260                } else if (ret == 1) {
 261                        downgraded = true;
 262                }
 263                goto success;
 264        }
 265
 266        /* Check against existing mmap mappings. */
 267        next = find_vma(mm, oldbrk);
 268        if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 269                goto out;
 270
 271        /* Ok, looks good - let it rip. */
 272        if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 273                goto out;
 274        mm->brk = brk;
 275
 276success:
 277        populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 278        if (downgraded)
 279                mmap_read_unlock(mm);
 280        else
 281                mmap_write_unlock(mm);
 282        userfaultfd_unmap_complete(mm, &uf);
 283        if (populate)
 284                mm_populate(oldbrk, newbrk - oldbrk);
 285        return brk;
 286
 287out:
 288        mmap_write_unlock(mm);
 289        return origbrk;
 290}
 291
 292static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 293{
 294        unsigned long gap, prev_end;
 295
 296        /*
 297         * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 298         * allow two stack_guard_gaps between them here, and when choosing
 299         * an unmapped area; whereas when expanding we only require one.
 300         * That's a little inconsistent, but keeps the code here simpler.
 301         */
 302        gap = vm_start_gap(vma);
 303        if (vma->vm_prev) {
 304                prev_end = vm_end_gap(vma->vm_prev);
 305                if (gap > prev_end)
 306                        gap -= prev_end;
 307                else
 308                        gap = 0;
 309        }
 310        return gap;
 311}
 312
 313#ifdef CONFIG_DEBUG_VM_RB
 314static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 315{
 316        unsigned long max = vma_compute_gap(vma), subtree_gap;
 317        if (vma->vm_rb.rb_left) {
 318                subtree_gap = rb_entry(vma->vm_rb.rb_left,
 319                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 320                if (subtree_gap > max)
 321                        max = subtree_gap;
 322        }
 323        if (vma->vm_rb.rb_right) {
 324                subtree_gap = rb_entry(vma->vm_rb.rb_right,
 325                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 326                if (subtree_gap > max)
 327                        max = subtree_gap;
 328        }
 329        return max;
 330}
 331
 332static int browse_rb(struct mm_struct *mm)
 333{
 334        struct rb_root *root = &mm->mm_rb;
 335        int i = 0, j, bug = 0;
 336        struct rb_node *nd, *pn = NULL;
 337        unsigned long prev = 0, pend = 0;
 338
 339        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 340                struct vm_area_struct *vma;
 341                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 342                if (vma->vm_start < prev) {
 343                        pr_emerg("vm_start %lx < prev %lx\n",
 344                                  vma->vm_start, prev);
 345                        bug = 1;
 346                }
 347                if (vma->vm_start < pend) {
 348                        pr_emerg("vm_start %lx < pend %lx\n",
 349                                  vma->vm_start, pend);
 350                        bug = 1;
 351                }
 352                if (vma->vm_start > vma->vm_end) {
 353                        pr_emerg("vm_start %lx > vm_end %lx\n",
 354                                  vma->vm_start, vma->vm_end);
 355                        bug = 1;
 356                }
 357                spin_lock(&mm->page_table_lock);
 358                if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 359                        pr_emerg("free gap %lx, correct %lx\n",
 360                               vma->rb_subtree_gap,
 361                               vma_compute_subtree_gap(vma));
 362                        bug = 1;
 363                }
 364                spin_unlock(&mm->page_table_lock);
 365                i++;
 366                pn = nd;
 367                prev = vma->vm_start;
 368                pend = vma->vm_end;
 369        }
 370        j = 0;
 371        for (nd = pn; nd; nd = rb_prev(nd))
 372                j++;
 373        if (i != j) {
 374                pr_emerg("backwards %d, forwards %d\n", j, i);
 375                bug = 1;
 376        }
 377        return bug ? -1 : i;
 378}
 379
 380static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 381{
 382        struct rb_node *nd;
 383
 384        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 385                struct vm_area_struct *vma;
 386                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 387                VM_BUG_ON_VMA(vma != ignore &&
 388                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 389                        vma);
 390        }
 391}
 392
 393static void validate_mm(struct mm_struct *mm)
 394{
 395        int bug = 0;
 396        int i = 0;
 397        unsigned long highest_address = 0;
 398        struct vm_area_struct *vma = mm->mmap;
 399
 400        while (vma) {
 401                struct anon_vma *anon_vma = vma->anon_vma;
 402                struct anon_vma_chain *avc;
 403
 404                if (anon_vma) {
 405                        anon_vma_lock_read(anon_vma);
 406                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 407                                anon_vma_interval_tree_verify(avc);
 408                        anon_vma_unlock_read(anon_vma);
 409                }
 410
 411                highest_address = vm_end_gap(vma);
 412                vma = vma->vm_next;
 413                i++;
 414        }
 415        if (i != mm->map_count) {
 416                pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 417                bug = 1;
 418        }
 419        if (highest_address != mm->highest_vm_end) {
 420                pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 421                          mm->highest_vm_end, highest_address);
 422                bug = 1;
 423        }
 424        i = browse_rb(mm);
 425        if (i != mm->map_count) {
 426                if (i != -1)
 427                        pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 428                bug = 1;
 429        }
 430        VM_BUG_ON_MM(bug, mm);
 431}
 432#else
 433#define validate_mm_rb(root, ignore) do { } while (0)
 434#define validate_mm(mm) do { } while (0)
 435#endif
 436
 437RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 438                         struct vm_area_struct, vm_rb,
 439                         unsigned long, rb_subtree_gap, vma_compute_gap)
 440
 441/*
 442 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 443 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 444 * in the rbtree.
 445 */
 446static void vma_gap_update(struct vm_area_struct *vma)
 447{
 448        /*
 449         * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 450         * a callback function that does exactly what we want.
 451         */
 452        vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 453}
 454
 455static inline void vma_rb_insert(struct vm_area_struct *vma,
 456                                 struct rb_root *root)
 457{
 458        /* All rb_subtree_gap values must be consistent prior to insertion */
 459        validate_mm_rb(root, NULL);
 460
 461        rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 462}
 463
 464static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 465{
 466        /*
 467         * Note rb_erase_augmented is a fairly large inline function,
 468         * so make sure we instantiate it only once with our desired
 469         * augmented rbtree callbacks.
 470         */
 471        rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 472}
 473
 474static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 475                                                struct rb_root *root,
 476                                                struct vm_area_struct *ignore)
 477{
 478        /*
 479         * All rb_subtree_gap values must be consistent prior to erase,
 480         * with the possible exception of
 481         *
 482         * a. the "next" vma being erased if next->vm_start was reduced in
 483         *    __vma_adjust() -> __vma_unlink()
 484         * b. the vma being erased in detach_vmas_to_be_unmapped() ->
 485         *    vma_rb_erase()
 486         */
 487        validate_mm_rb(root, ignore);
 488
 489        __vma_rb_erase(vma, root);
 490}
 491
 492static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 493                                         struct rb_root *root)
 494{
 495        vma_rb_erase_ignore(vma, root, vma);
 496}
 497
 498/*
 499 * vma has some anon_vma assigned, and is already inserted on that
 500 * anon_vma's interval trees.
 501 *
 502 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 503 * vma must be removed from the anon_vma's interval trees using
 504 * anon_vma_interval_tree_pre_update_vma().
 505 *
 506 * After the update, the vma will be reinserted using
 507 * anon_vma_interval_tree_post_update_vma().
 508 *
 509 * The entire update must be protected by exclusive mmap_lock and by
 510 * the root anon_vma's mutex.
 511 */
 512static inline void
 513anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 514{
 515        struct anon_vma_chain *avc;
 516
 517        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 518                anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 519}
 520
 521static inline void
 522anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 523{
 524        struct anon_vma_chain *avc;
 525
 526        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 527                anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 528}
 529
 530static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 531                unsigned long end, struct vm_area_struct **pprev,
 532                struct rb_node ***rb_link, struct rb_node **rb_parent)
 533{
 534        struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 535
 536        mmap_assert_locked(mm);
 537        __rb_link = &mm->mm_rb.rb_node;
 538        rb_prev = __rb_parent = NULL;
 539
 540        while (*__rb_link) {
 541                struct vm_area_struct *vma_tmp;
 542
 543                __rb_parent = *__rb_link;
 544                vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 545
 546                if (vma_tmp->vm_end > addr) {
 547                        /* Fail if an existing vma overlaps the area */
 548                        if (vma_tmp->vm_start < end)
 549                                return -ENOMEM;
 550                        __rb_link = &__rb_parent->rb_left;
 551                } else {
 552                        rb_prev = __rb_parent;
 553                        __rb_link = &__rb_parent->rb_right;
 554                }
 555        }
 556
 557        *pprev = NULL;
 558        if (rb_prev)
 559                *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 560        *rb_link = __rb_link;
 561        *rb_parent = __rb_parent;
 562        return 0;
 563}
 564
 565/*
 566 * vma_next() - Get the next VMA.
 567 * @mm: The mm_struct.
 568 * @vma: The current vma.
 569 *
 570 * If @vma is NULL, return the first vma in the mm.
 571 *
 572 * Returns: The next VMA after @vma.
 573 */
 574static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
 575                                         struct vm_area_struct *vma)
 576{
 577        if (!vma)
 578                return mm->mmap;
 579
 580        return vma->vm_next;
 581}
 582
 583/*
 584 * munmap_vma_range() - munmap VMAs that overlap a range.
 585 * @mm: The mm struct
 586 * @start: The start of the range.
 587 * @len: The length of the range.
 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
 589 * @rb_link: the rb_node
 590 * @rb_parent: the parent rb_node
 591 *
 592 * Find all the vm_area_struct that overlap from @start to
 593 * @end and munmap them.  Set @pprev to the previous vm_area_struct.
 594 *
 595 * Returns: -ENOMEM on munmap failure or 0 on success.
 596 */
 597static inline int
 598munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
 599                 struct vm_area_struct **pprev, struct rb_node ***link,
 600                 struct rb_node **parent, struct list_head *uf)
 601{
 602
 603        while (find_vma_links(mm, start, start + len, pprev, link, parent))
 604                if (do_munmap(mm, start, len, uf))
 605                        return -ENOMEM;
 606
 607        return 0;
 608}
 609static unsigned long count_vma_pages_range(struct mm_struct *mm,
 610                unsigned long addr, unsigned long end)
 611{
 612        unsigned long nr_pages = 0;
 613        struct vm_area_struct *vma;
 614
 615        /* Find first overlapping mapping */
 616        vma = find_vma_intersection(mm, addr, end);
 617        if (!vma)
 618                return 0;
 619
 620        nr_pages = (min(end, vma->vm_end) -
 621                max(addr, vma->vm_start)) >> PAGE_SHIFT;
 622
 623        /* Iterate over the rest of the overlaps */
 624        for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 625                unsigned long overlap_len;
 626
 627                if (vma->vm_start > end)
 628                        break;
 629
 630                overlap_len = min(end, vma->vm_end) - vma->vm_start;
 631                nr_pages += overlap_len >> PAGE_SHIFT;
 632        }
 633
 634        return nr_pages;
 635}
 636
 637void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 638                struct rb_node **rb_link, struct rb_node *rb_parent)
 639{
 640        /* Update tracking information for the gap following the new vma. */
 641        if (vma->vm_next)
 642                vma_gap_update(vma->vm_next);
 643        else
 644                mm->highest_vm_end = vm_end_gap(vma);
 645
 646        /*
 647         * vma->vm_prev wasn't known when we followed the rbtree to find the
 648         * correct insertion point for that vma. As a result, we could not
 649         * update the vma vm_rb parents rb_subtree_gap values on the way down.
 650         * So, we first insert the vma with a zero rb_subtree_gap value
 651         * (to be consistent with what we did on the way down), and then
 652         * immediately update the gap to the correct value. Finally we
 653         * rebalance the rbtree after all augmented values have been set.
 654         */
 655        rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 656        vma->rb_subtree_gap = 0;
 657        vma_gap_update(vma);
 658        vma_rb_insert(vma, &mm->mm_rb);
 659}
 660
 661static void __vma_link_file(struct vm_area_struct *vma)
 662{
 663        struct file *file;
 664
 665        file = vma->vm_file;
 666        if (file) {
 667                struct address_space *mapping = file->f_mapping;
 668
 669                if (vma->vm_flags & VM_SHARED)
 670                        mapping_allow_writable(mapping);
 671
 672                flush_dcache_mmap_lock(mapping);
 673                vma_interval_tree_insert(vma, &mapping->i_mmap);
 674                flush_dcache_mmap_unlock(mapping);
 675        }
 676}
 677
 678static void
 679__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 680        struct vm_area_struct *prev, struct rb_node **rb_link,
 681        struct rb_node *rb_parent)
 682{
 683        __vma_link_list(mm, vma, prev);
 684        __vma_link_rb(mm, vma, rb_link, rb_parent);
 685}
 686
 687static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 688                        struct vm_area_struct *prev, struct rb_node **rb_link,
 689                        struct rb_node *rb_parent)
 690{
 691        struct address_space *mapping = NULL;
 692
 693        if (vma->vm_file) {
 694                mapping = vma->vm_file->f_mapping;
 695                i_mmap_lock_write(mapping);
 696        }
 697
 698        __vma_link(mm, vma, prev, rb_link, rb_parent);
 699        __vma_link_file(vma);
 700
 701        if (mapping)
 702                i_mmap_unlock_write(mapping);
 703
 704        mm->map_count++;
 705        validate_mm(mm);
 706}
 707
 708/*
 709 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 710 * mm's list and rbtree.  It has already been inserted into the interval tree.
 711 */
 712static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 713{
 714        struct vm_area_struct *prev;
 715        struct rb_node **rb_link, *rb_parent;
 716
 717        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 718                           &prev, &rb_link, &rb_parent))
 719                BUG();
 720        __vma_link(mm, vma, prev, rb_link, rb_parent);
 721        mm->map_count++;
 722}
 723
 724static __always_inline void __vma_unlink(struct mm_struct *mm,
 725                                                struct vm_area_struct *vma,
 726                                                struct vm_area_struct *ignore)
 727{
 728        vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 729        __vma_unlink_list(mm, vma);
 730        /* Kill the cache */
 731        vmacache_invalidate(mm);
 732}
 733
 734/*
 735 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 736 * is already present in an i_mmap tree without adjusting the tree.
 737 * The following helper function should be used when such adjustments
 738 * are necessary.  The "insert" vma (if any) is to be inserted
 739 * before we drop the necessary locks.
 740 */
 741int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 742        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 743        struct vm_area_struct *expand)
 744{
 745        struct mm_struct *mm = vma->vm_mm;
 746        struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 747        struct address_space *mapping = NULL;
 748        struct rb_root_cached *root = NULL;
 749        struct anon_vma *anon_vma = NULL;
 750        struct file *file = vma->vm_file;
 751        bool start_changed = false, end_changed = false;
 752        long adjust_next = 0;
 753        int remove_next = 0;
 754
 755        if (next && !insert) {
 756                struct vm_area_struct *exporter = NULL, *importer = NULL;
 757
 758                if (end >= next->vm_end) {
 759                        /*
 760                         * vma expands, overlapping all the next, and
 761                         * perhaps the one after too (mprotect case 6).
 762                         * The only other cases that gets here are
 763                         * case 1, case 7 and case 8.
 764                         */
 765                        if (next == expand) {
 766                                /*
 767                                 * The only case where we don't expand "vma"
 768                                 * and we expand "next" instead is case 8.
 769                                 */
 770                                VM_WARN_ON(end != next->vm_end);
 771                                /*
 772                                 * remove_next == 3 means we're
 773                                 * removing "vma" and that to do so we
 774                                 * swapped "vma" and "next".
 775                                 */
 776                                remove_next = 3;
 777                                VM_WARN_ON(file != next->vm_file);
 778                                swap(vma, next);
 779                        } else {
 780                                VM_WARN_ON(expand != vma);
 781                                /*
 782                                 * case 1, 6, 7, remove_next == 2 is case 6,
 783                                 * remove_next == 1 is case 1 or 7.
 784                                 */
 785                                remove_next = 1 + (end > next->vm_end);
 786                                VM_WARN_ON(remove_next == 2 &&
 787                                           end != next->vm_next->vm_end);
 788                                /* trim end to next, for case 6 first pass */
 789                                end = next->vm_end;
 790                        }
 791
 792                        exporter = next;
 793                        importer = vma;
 794
 795                        /*
 796                         * If next doesn't have anon_vma, import from vma after
 797                         * next, if the vma overlaps with it.
 798                         */
 799                        if (remove_next == 2 && !next->anon_vma)
 800                                exporter = next->vm_next;
 801
 802                } else if (end > next->vm_start) {
 803                        /*
 804                         * vma expands, overlapping part of the next:
 805                         * mprotect case 5 shifting the boundary up.
 806                         */
 807                        adjust_next = (end - next->vm_start);
 808                        exporter = next;
 809                        importer = vma;
 810                        VM_WARN_ON(expand != importer);
 811                } else if (end < vma->vm_end) {
 812                        /*
 813                         * vma shrinks, and !insert tells it's not
 814                         * split_vma inserting another: so it must be
 815                         * mprotect case 4 shifting the boundary down.
 816                         */
 817                        adjust_next = -(vma->vm_end - end);
 818                        exporter = vma;
 819                        importer = next;
 820                        VM_WARN_ON(expand != importer);
 821                }
 822
 823                /*
 824                 * Easily overlooked: when mprotect shifts the boundary,
 825                 * make sure the expanding vma has anon_vma set if the
 826                 * shrinking vma had, to cover any anon pages imported.
 827                 */
 828                if (exporter && exporter->anon_vma && !importer->anon_vma) {
 829                        int error;
 830
 831                        importer->anon_vma = exporter->anon_vma;
 832                        error = anon_vma_clone(importer, exporter);
 833                        if (error)
 834                                return error;
 835                }
 836        }
 837again:
 838        vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 839
 840        if (file) {
 841                mapping = file->f_mapping;
 842                root = &mapping->i_mmap;
 843                uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 844
 845                if (adjust_next)
 846                        uprobe_munmap(next, next->vm_start, next->vm_end);
 847
 848                i_mmap_lock_write(mapping);
 849                if (insert) {
 850                        /*
 851                         * Put into interval tree now, so instantiated pages
 852                         * are visible to arm/parisc __flush_dcache_page
 853                         * throughout; but we cannot insert into address
 854                         * space until vma start or end is updated.
 855                         */
 856                        __vma_link_file(insert);
 857                }
 858        }
 859
 860        anon_vma = vma->anon_vma;
 861        if (!anon_vma && adjust_next)
 862                anon_vma = next->anon_vma;
 863        if (anon_vma) {
 864                VM_WARN_ON(adjust_next && next->anon_vma &&
 865                           anon_vma != next->anon_vma);
 866                anon_vma_lock_write(anon_vma);
 867                anon_vma_interval_tree_pre_update_vma(vma);
 868                if (adjust_next)
 869                        anon_vma_interval_tree_pre_update_vma(next);
 870        }
 871
 872        if (file) {
 873                flush_dcache_mmap_lock(mapping);
 874                vma_interval_tree_remove(vma, root);
 875                if (adjust_next)
 876                        vma_interval_tree_remove(next, root);
 877        }
 878
 879        if (start != vma->vm_start) {
 880                vma->vm_start = start;
 881                start_changed = true;
 882        }
 883        if (end != vma->vm_end) {
 884                vma->vm_end = end;
 885                end_changed = true;
 886        }
 887        vma->vm_pgoff = pgoff;
 888        if (adjust_next) {
 889                next->vm_start += adjust_next;
 890                next->vm_pgoff += adjust_next >> PAGE_SHIFT;
 891        }
 892
 893        if (file) {
 894                if (adjust_next)
 895                        vma_interval_tree_insert(next, root);
 896                vma_interval_tree_insert(vma, root);
 897                flush_dcache_mmap_unlock(mapping);
 898        }
 899
 900        if (remove_next) {
 901                /*
 902                 * vma_merge has merged next into vma, and needs
 903                 * us to remove next before dropping the locks.
 904                 */
 905                if (remove_next != 3)
 906                        __vma_unlink(mm, next, next);
 907                else
 908                        /*
 909                         * vma is not before next if they've been
 910                         * swapped.
 911                         *
 912                         * pre-swap() next->vm_start was reduced so
 913                         * tell validate_mm_rb to ignore pre-swap()
 914                         * "next" (which is stored in post-swap()
 915                         * "vma").
 916                         */
 917                        __vma_unlink(mm, next, vma);
 918                if (file)
 919                        __remove_shared_vm_struct(next, file, mapping);
 920        } else if (insert) {
 921                /*
 922                 * split_vma has split insert from vma, and needs
 923                 * us to insert it before dropping the locks
 924                 * (it may either follow vma or precede it).
 925                 */
 926                __insert_vm_struct(mm, insert);
 927        } else {
 928                if (start_changed)
 929                        vma_gap_update(vma);
 930                if (end_changed) {
 931                        if (!next)
 932                                mm->highest_vm_end = vm_end_gap(vma);
 933                        else if (!adjust_next)
 934                                vma_gap_update(next);
 935                }
 936        }
 937
 938        if (anon_vma) {
 939                anon_vma_interval_tree_post_update_vma(vma);
 940                if (adjust_next)
 941                        anon_vma_interval_tree_post_update_vma(next);
 942                anon_vma_unlock_write(anon_vma);
 943        }
 944
 945        if (file) {
 946                i_mmap_unlock_write(mapping);
 947                uprobe_mmap(vma);
 948
 949                if (adjust_next)
 950                        uprobe_mmap(next);
 951        }
 952
 953        if (remove_next) {
 954                if (file) {
 955                        uprobe_munmap(next, next->vm_start, next->vm_end);
 956                        fput(file);
 957                }
 958                if (next->anon_vma)
 959                        anon_vma_merge(vma, next);
 960                mm->map_count--;
 961                mpol_put(vma_policy(next));
 962                vm_area_free(next);
 963                /*
 964                 * In mprotect's case 6 (see comments on vma_merge),
 965                 * we must remove another next too. It would clutter
 966                 * up the code too much to do both in one go.
 967                 */
 968                if (remove_next != 3) {
 969                        /*
 970                         * If "next" was removed and vma->vm_end was
 971                         * expanded (up) over it, in turn
 972                         * "next->vm_prev->vm_end" changed and the
 973                         * "vma->vm_next" gap must be updated.
 974                         */
 975                        next = vma->vm_next;
 976                } else {
 977                        /*
 978                         * For the scope of the comment "next" and
 979                         * "vma" considered pre-swap(): if "vma" was
 980                         * removed, next->vm_start was expanded (down)
 981                         * over it and the "next" gap must be updated.
 982                         * Because of the swap() the post-swap() "vma"
 983                         * actually points to pre-swap() "next"
 984                         * (post-swap() "next" as opposed is now a
 985                         * dangling pointer).
 986                         */
 987                        next = vma;
 988                }
 989                if (remove_next == 2) {
 990                        remove_next = 1;
 991                        end = next->vm_end;
 992                        goto again;
 993                }
 994                else if (next)
 995                        vma_gap_update(next);
 996                else {
 997                        /*
 998                         * If remove_next == 2 we obviously can't
 999                         * reach this path.
1000                         *
1001                         * If remove_next == 3 we can't reach this
1002                         * path because pre-swap() next is always not
1003                         * NULL. pre-swap() "next" is not being
1004                         * removed and its next->vm_end is not altered
1005                         * (and furthermore "end" already matches
1006                         * next->vm_end in remove_next == 3).
1007                         *
1008                         * We reach this only in the remove_next == 1
1009                         * case if the "next" vma that was removed was
1010                         * the highest vma of the mm. However in such
1011                         * case next->vm_end == "end" and the extended
1012                         * "vma" has vma->vm_end == next->vm_end so
1013                         * mm->highest_vm_end doesn't need any update
1014                         * in remove_next == 1 case.
1015                         */
1016                        VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1017                }
1018        }
1019        if (insert && file)
1020                uprobe_mmap(insert);
1021
1022        validate_mm(mm);
1023
1024        return 0;
1025}
1026
1027/*
1028 * If the vma has a ->close operation then the driver probably needs to release
1029 * per-vma resources, so we don't attempt to merge those.
1030 */
1031static inline int is_mergeable_vma(struct vm_area_struct *vma,
1032                                struct file *file, unsigned long vm_flags,
1033                                struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1034                                struct anon_vma_name *anon_name)
1035{
1036        /*
1037         * VM_SOFTDIRTY should not prevent from VMA merging, if we
1038         * match the flags but dirty bit -- the caller should mark
1039         * merged VMA as dirty. If dirty bit won't be excluded from
1040         * comparison, we increase pressure on the memory system forcing
1041         * the kernel to generate new VMAs when old one could be
1042         * extended instead.
1043         */
1044        if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1045                return 0;
1046        if (vma->vm_file != file)
1047                return 0;
1048        if (vma->vm_ops && vma->vm_ops->close)
1049                return 0;
1050        if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1051                return 0;
1052        if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1053                return 0;
1054        return 1;
1055}
1056
1057static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1058                                        struct anon_vma *anon_vma2,
1059                                        struct vm_area_struct *vma)
1060{
1061        /*
1062         * The list_is_singular() test is to avoid merging VMA cloned from
1063         * parents. This can improve scalability caused by anon_vma lock.
1064         */
1065        if ((!anon_vma1 || !anon_vma2) && (!vma ||
1066                list_is_singular(&vma->anon_vma_chain)))
1067                return 1;
1068        return anon_vma1 == anon_vma2;
1069}
1070
1071/*
1072 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073 * in front of (at a lower virtual address and file offset than) the vma.
1074 *
1075 * We cannot merge two vmas if they have differently assigned (non-NULL)
1076 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1077 *
1078 * We don't check here for the merged mmap wrapping around the end of pagecache
1079 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1080 * wrap, nor mmaps which cover the final page at index -1UL.
1081 */
1082static int
1083can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1084                     struct anon_vma *anon_vma, struct file *file,
1085                     pgoff_t vm_pgoff,
1086                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1087                     struct anon_vma_name *anon_name)
1088{
1089        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1090            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1091                if (vma->vm_pgoff == vm_pgoff)
1092                        return 1;
1093        }
1094        return 0;
1095}
1096
1097/*
1098 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1099 * beyond (at a higher virtual address and file offset than) the vma.
1100 *
1101 * We cannot merge two vmas if they have differently assigned (non-NULL)
1102 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1103 */
1104static int
1105can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1106                    struct anon_vma *anon_vma, struct file *file,
1107                    pgoff_t vm_pgoff,
1108                    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1109                    struct anon_vma_name *anon_name)
1110{
1111        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1112            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1113                pgoff_t vm_pglen;
1114                vm_pglen = vma_pages(vma);
1115                if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1116                        return 1;
1117        }
1118        return 0;
1119}
1120
1121/*
1122 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1123 * figure out whether that can be merged with its predecessor or its
1124 * successor.  Or both (it neatly fills a hole).
1125 *
1126 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1127 * certain not to be mapped by the time vma_merge is called; but when
1128 * called for mprotect, it is certain to be already mapped (either at
1129 * an offset within prev, or at the start of next), and the flags of
1130 * this area are about to be changed to vm_flags - and the no-change
1131 * case has already been eliminated.
1132 *
1133 * The following mprotect cases have to be considered, where AAAA is
1134 * the area passed down from mprotect_fixup, never extending beyond one
1135 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1136 *
1137 *     AAAA             AAAA                   AAAA
1138 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1139 *    cannot merge    might become       might become
1140 *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1141 *    mmap, brk or    case 4 below       case 5 below
1142 *    mremap move:
1143 *                        AAAA               AAAA
1144 *                    PPPP    NNNN       PPPPNNNNXXXX
1145 *                    might become       might become
1146 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1147 *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1148 *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1149 *
1150 * It is important for case 8 that the vma NNNN overlapping the
1151 * region AAAA is never going to extended over XXXX. Instead XXXX must
1152 * be extended in region AAAA and NNNN must be removed. This way in
1153 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1154 * rmap_locks, the properties of the merged vma will be already
1155 * correct for the whole merged range. Some of those properties like
1156 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1157 * be correct for the whole merged range immediately after the
1158 * rmap_locks are released. Otherwise if XXXX would be removed and
1159 * NNNN would be extended over the XXXX range, remove_migration_ptes
1160 * or other rmap walkers (if working on addresses beyond the "end"
1161 * parameter) may establish ptes with the wrong permissions of NNNN
1162 * instead of the right permissions of XXXX.
1163 */
1164struct vm_area_struct *vma_merge(struct mm_struct *mm,
1165                        struct vm_area_struct *prev, unsigned long addr,
1166                        unsigned long end, unsigned long vm_flags,
1167                        struct anon_vma *anon_vma, struct file *file,
1168                        pgoff_t pgoff, struct mempolicy *policy,
1169                        struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1170                        struct anon_vma_name *anon_name)
1171{
1172        pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1173        struct vm_area_struct *area, *next;
1174        int err;
1175
1176        /*
1177         * We later require that vma->vm_flags == vm_flags,
1178         * so this tests vma->vm_flags & VM_SPECIAL, too.
1179         */
1180        if (vm_flags & VM_SPECIAL)
1181                return NULL;
1182
1183        next = vma_next(mm, prev);
1184        area = next;
1185        if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1186                next = next->vm_next;
1187
1188        /* verify some invariant that must be enforced by the caller */
1189        VM_WARN_ON(prev && addr <= prev->vm_start);
1190        VM_WARN_ON(area && end > area->vm_end);
1191        VM_WARN_ON(addr >= end);
1192
1193        /*
1194         * Can it merge with the predecessor?
1195         */
1196        if (prev && prev->vm_end == addr &&
1197                        mpol_equal(vma_policy(prev), policy) &&
1198                        can_vma_merge_after(prev, vm_flags,
1199                                            anon_vma, file, pgoff,
1200                                            vm_userfaultfd_ctx, anon_name)) {
1201                /*
1202                 * OK, it can.  Can we now merge in the successor as well?
1203                 */
1204                if (next && end == next->vm_start &&
1205                                mpol_equal(policy, vma_policy(next)) &&
1206                                can_vma_merge_before(next, vm_flags,
1207                                                     anon_vma, file,
1208                                                     pgoff+pglen,
1209                                                     vm_userfaultfd_ctx, anon_name) &&
1210                                is_mergeable_anon_vma(prev->anon_vma,
1211                                                      next->anon_vma, NULL)) {
1212                                                        /* cases 1, 6 */
1213                        err = __vma_adjust(prev, prev->vm_start,
1214                                         next->vm_end, prev->vm_pgoff, NULL,
1215                                         prev);
1216                } else                                  /* cases 2, 5, 7 */
1217                        err = __vma_adjust(prev, prev->vm_start,
1218                                         end, prev->vm_pgoff, NULL, prev);
1219                if (err)
1220                        return NULL;
1221                khugepaged_enter_vma_merge(prev, vm_flags);
1222                return prev;
1223        }
1224
1225        /*
1226         * Can this new request be merged in front of next?
1227         */
1228        if (next && end == next->vm_start &&
1229                        mpol_equal(policy, vma_policy(next)) &&
1230                        can_vma_merge_before(next, vm_flags,
1231                                             anon_vma, file, pgoff+pglen,
1232                                             vm_userfaultfd_ctx, anon_name)) {
1233                if (prev && addr < prev->vm_end)        /* case 4 */
1234                        err = __vma_adjust(prev, prev->vm_start,
1235                                         addr, prev->vm_pgoff, NULL, next);
1236                else {                                  /* cases 3, 8 */
1237                        err = __vma_adjust(area, addr, next->vm_end,
1238                                         next->vm_pgoff - pglen, NULL, next);
1239                        /*
1240                         * In case 3 area is already equal to next and
1241                         * this is a noop, but in case 8 "area" has
1242                         * been removed and next was expanded over it.
1243                         */
1244                        area = next;
1245                }
1246                if (err)
1247                        return NULL;
1248                khugepaged_enter_vma_merge(area, vm_flags);
1249                return area;
1250        }
1251
1252        return NULL;
1253}
1254
1255/*
1256 * Rough compatibility check to quickly see if it's even worth looking
1257 * at sharing an anon_vma.
1258 *
1259 * They need to have the same vm_file, and the flags can only differ
1260 * in things that mprotect may change.
1261 *
1262 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1263 * we can merge the two vma's. For example, we refuse to merge a vma if
1264 * there is a vm_ops->close() function, because that indicates that the
1265 * driver is doing some kind of reference counting. But that doesn't
1266 * really matter for the anon_vma sharing case.
1267 */
1268static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1269{
1270        return a->vm_end == b->vm_start &&
1271                mpol_equal(vma_policy(a), vma_policy(b)) &&
1272                a->vm_file == b->vm_file &&
1273                !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1274                b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1275}
1276
1277/*
1278 * Do some basic sanity checking to see if we can re-use the anon_vma
1279 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1280 * the same as 'old', the other will be the new one that is trying
1281 * to share the anon_vma.
1282 *
1283 * NOTE! This runs with mm_sem held for reading, so it is possible that
1284 * the anon_vma of 'old' is concurrently in the process of being set up
1285 * by another page fault trying to merge _that_. But that's ok: if it
1286 * is being set up, that automatically means that it will be a singleton
1287 * acceptable for merging, so we can do all of this optimistically. But
1288 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1289 *
1290 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1291 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1292 * is to return an anon_vma that is "complex" due to having gone through
1293 * a fork).
1294 *
1295 * We also make sure that the two vma's are compatible (adjacent,
1296 * and with the same memory policies). That's all stable, even with just
1297 * a read lock on the mm_sem.
1298 */
1299static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1300{
1301        if (anon_vma_compatible(a, b)) {
1302                struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1303
1304                if (anon_vma && list_is_singular(&old->anon_vma_chain))
1305                        return anon_vma;
1306        }
1307        return NULL;
1308}
1309
1310/*
1311 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1312 * neighbouring vmas for a suitable anon_vma, before it goes off
1313 * to allocate a new anon_vma.  It checks because a repetitive
1314 * sequence of mprotects and faults may otherwise lead to distinct
1315 * anon_vmas being allocated, preventing vma merge in subsequent
1316 * mprotect.
1317 */
1318struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1319{
1320        struct anon_vma *anon_vma = NULL;
1321
1322        /* Try next first. */
1323        if (vma->vm_next) {
1324                anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1325                if (anon_vma)
1326                        return anon_vma;
1327        }
1328
1329        /* Try prev next. */
1330        if (vma->vm_prev)
1331                anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1332
1333        /*
1334         * We might reach here with anon_vma == NULL if we can't find
1335         * any reusable anon_vma.
1336         * There's no absolute need to look only at touching neighbours:
1337         * we could search further afield for "compatible" anon_vmas.
1338         * But it would probably just be a waste of time searching,
1339         * or lead to too many vmas hanging off the same anon_vma.
1340         * We're trying to allow mprotect remerging later on,
1341         * not trying to minimize memory used for anon_vmas.
1342         */
1343        return anon_vma;
1344}
1345
1346/*
1347 * If a hint addr is less than mmap_min_addr change hint to be as
1348 * low as possible but still greater than mmap_min_addr
1349 */
1350static inline unsigned long round_hint_to_min(unsigned long hint)
1351{
1352        hint &= PAGE_MASK;
1353        if (((void *)hint != NULL) &&
1354            (hint < mmap_min_addr))
1355                return PAGE_ALIGN(mmap_min_addr);
1356        return hint;
1357}
1358
1359int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1360                       unsigned long len)
1361{
1362        unsigned long locked, lock_limit;
1363
1364        /*  mlock MCL_FUTURE? */
1365        if (flags & VM_LOCKED) {
1366                locked = len >> PAGE_SHIFT;
1367                locked += mm->locked_vm;
1368                lock_limit = rlimit(RLIMIT_MEMLOCK);
1369                lock_limit >>= PAGE_SHIFT;
1370                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1371                        return -EAGAIN;
1372        }
1373        return 0;
1374}
1375
1376static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1377{
1378        if (S_ISREG(inode->i_mode))
1379                return MAX_LFS_FILESIZE;
1380
1381        if (S_ISBLK(inode->i_mode))
1382                return MAX_LFS_FILESIZE;
1383
1384        if (S_ISSOCK(inode->i_mode))
1385                return MAX_LFS_FILESIZE;
1386
1387        /* Special "we do even unsigned file positions" case */
1388        if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1389                return 0;
1390
1391        /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1392        return ULONG_MAX;
1393}
1394
1395static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1396                                unsigned long pgoff, unsigned long len)
1397{
1398        u64 maxsize = file_mmap_size_max(file, inode);
1399
1400        if (maxsize && len > maxsize)
1401                return false;
1402        maxsize -= len;
1403        if (pgoff > maxsize >> PAGE_SHIFT)
1404                return false;
1405        return true;
1406}
1407
1408/*
1409 * The caller must write-lock current->mm->mmap_lock.
1410 */
1411unsigned long do_mmap(struct file *file, unsigned long addr,
1412                        unsigned long len, unsigned long prot,
1413                        unsigned long flags, unsigned long pgoff,
1414                        unsigned long *populate, struct list_head *uf)
1415{
1416        struct mm_struct *mm = current->mm;
1417        vm_flags_t vm_flags;
1418        int pkey = 0;
1419
1420        *populate = 0;
1421
1422        if (!len)
1423                return -EINVAL;
1424
1425        /*
1426         * Does the application expect PROT_READ to imply PROT_EXEC?
1427         *
1428         * (the exception is when the underlying filesystem is noexec
1429         *  mounted, in which case we dont add PROT_EXEC.)
1430         */
1431        if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1432                if (!(file && path_noexec(&file->f_path)))
1433                        prot |= PROT_EXEC;
1434
1435        /* force arch specific MAP_FIXED handling in get_unmapped_area */
1436        if (flags & MAP_FIXED_NOREPLACE)
1437                flags |= MAP_FIXED;
1438
1439        if (!(flags & MAP_FIXED))
1440                addr = round_hint_to_min(addr);
1441
1442        /* Careful about overflows.. */
1443        len = PAGE_ALIGN(len);
1444        if (!len)
1445                return -ENOMEM;
1446
1447        /* offset overflow? */
1448        if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1449                return -EOVERFLOW;
1450
1451        /* Too many mappings? */
1452        if (mm->map_count > sysctl_max_map_count)
1453                return -ENOMEM;
1454
1455        /* Obtain the address to map to. we verify (or select) it and ensure
1456         * that it represents a valid section of the address space.
1457         */
1458        addr = get_unmapped_area(file, addr, len, pgoff, flags);
1459        if (IS_ERR_VALUE(addr))
1460                return addr;
1461
1462        if (flags & MAP_FIXED_NOREPLACE) {
1463                if (find_vma_intersection(mm, addr, addr + len))
1464                        return -EEXIST;
1465        }
1466
1467        if (prot == PROT_EXEC) {
1468                pkey = execute_only_pkey(mm);
1469                if (pkey < 0)
1470                        pkey = 0;
1471        }
1472
1473        /* Do simple checking here so the lower-level routines won't have
1474         * to. we assume access permissions have been handled by the open
1475         * of the memory object, so we don't do any here.
1476         */
1477        vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1478                        mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1479
1480        if (flags & MAP_LOCKED)
1481                if (!can_do_mlock())
1482                        return -EPERM;
1483
1484        if (mlock_future_check(mm, vm_flags, len))
1485                return -EAGAIN;
1486
1487        if (file) {
1488                struct inode *inode = file_inode(file);
1489                unsigned long flags_mask;
1490
1491                if (!file_mmap_ok(file, inode, pgoff, len))
1492                        return -EOVERFLOW;
1493
1494                flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1495
1496                switch (flags & MAP_TYPE) {
1497                case MAP_SHARED:
1498                        /*
1499                         * Force use of MAP_SHARED_VALIDATE with non-legacy
1500                         * flags. E.g. MAP_SYNC is dangerous to use with
1501                         * MAP_SHARED as you don't know which consistency model
1502                         * you will get. We silently ignore unsupported flags
1503                         * with MAP_SHARED to preserve backward compatibility.
1504                         */
1505                        flags &= LEGACY_MAP_MASK;
1506                        fallthrough;
1507                case MAP_SHARED_VALIDATE:
1508                        if (flags & ~flags_mask)
1509                                return -EOPNOTSUPP;
1510                        if (prot & PROT_WRITE) {
1511                                if (!(file->f_mode & FMODE_WRITE))
1512                                        return -EACCES;
1513                                if (IS_SWAPFILE(file->f_mapping->host))
1514                                        return -ETXTBSY;
1515                        }
1516
1517                        /*
1518                         * Make sure we don't allow writing to an append-only
1519                         * file..
1520                         */
1521                        if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1522                                return -EACCES;
1523
1524                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1525                        if (!(file->f_mode & FMODE_WRITE))
1526                                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1527                        fallthrough;
1528                case MAP_PRIVATE:
1529                        if (!(file->f_mode & FMODE_READ))
1530                                return -EACCES;
1531                        if (path_noexec(&file->f_path)) {
1532                                if (vm_flags & VM_EXEC)
1533                                        return -EPERM;
1534                                vm_flags &= ~VM_MAYEXEC;
1535                        }
1536
1537                        if (!file->f_op->mmap)
1538                                return -ENODEV;
1539                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1540                                return -EINVAL;
1541                        break;
1542
1543                default:
1544                        return -EINVAL;
1545                }
1546        } else {
1547                switch (flags & MAP_TYPE) {
1548                case MAP_SHARED:
1549                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1550                                return -EINVAL;
1551                        /*
1552                         * Ignore pgoff.
1553                         */
1554                        pgoff = 0;
1555                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1556                        break;
1557                case MAP_PRIVATE:
1558                        /*
1559                         * Set pgoff according to addr for anon_vma.
1560                         */
1561                        pgoff = addr >> PAGE_SHIFT;
1562                        break;
1563                default:
1564                        return -EINVAL;
1565                }
1566        }
1567
1568        /*
1569         * Set 'VM_NORESERVE' if we should not account for the
1570         * memory use of this mapping.
1571         */
1572        if (flags & MAP_NORESERVE) {
1573                /* We honor MAP_NORESERVE if allowed to overcommit */
1574                if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1575                        vm_flags |= VM_NORESERVE;
1576
1577                /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1578                if (file && is_file_hugepages(file))
1579                        vm_flags |= VM_NORESERVE;
1580        }
1581
1582        addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1583        if (!IS_ERR_VALUE(addr) &&
1584            ((vm_flags & VM_LOCKED) ||
1585             (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1586                *populate = len;
1587        return addr;
1588}
1589
1590unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1591                              unsigned long prot, unsigned long flags,
1592                              unsigned long fd, unsigned long pgoff)
1593{
1594        struct file *file = NULL;
1595        unsigned long retval;
1596
1597        if (!(flags & MAP_ANONYMOUS)) {
1598                audit_mmap_fd(fd, flags);
1599                file = fget(fd);
1600                if (!file)
1601                        return -EBADF;
1602                if (is_file_hugepages(file)) {
1603                        len = ALIGN(len, huge_page_size(hstate_file(file)));
1604                } else if (unlikely(flags & MAP_HUGETLB)) {
1605                        retval = -EINVAL;
1606                        goto out_fput;
1607                }
1608        } else if (flags & MAP_HUGETLB) {
1609                struct hstate *hs;
1610
1611                hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1612                if (!hs)
1613                        return -EINVAL;
1614
1615                len = ALIGN(len, huge_page_size(hs));
1616                /*
1617                 * VM_NORESERVE is used because the reservations will be
1618                 * taken when vm_ops->mmap() is called
1619                 */
1620                file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1621                                VM_NORESERVE,
1622                                HUGETLB_ANONHUGE_INODE,
1623                                (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1624                if (IS_ERR(file))
1625                        return PTR_ERR(file);
1626        }
1627
1628        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1629out_fput:
1630        if (file)
1631                fput(file);
1632        return retval;
1633}
1634
1635SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1636                unsigned long, prot, unsigned long, flags,
1637                unsigned long, fd, unsigned long, pgoff)
1638{
1639        return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1640}
1641
1642#ifdef __ARCH_WANT_SYS_OLD_MMAP
1643struct mmap_arg_struct {
1644        unsigned long addr;
1645        unsigned long len;
1646        unsigned long prot;
1647        unsigned long flags;
1648        unsigned long fd;
1649        unsigned long offset;
1650};
1651
1652SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1653{
1654        struct mmap_arg_struct a;
1655
1656        if (copy_from_user(&a, arg, sizeof(a)))
1657                return -EFAULT;
1658        if (offset_in_page(a.offset))
1659                return -EINVAL;
1660
1661        return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1662                               a.offset >> PAGE_SHIFT);
1663}
1664#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1665
1666/*
1667 * Some shared mappings will want the pages marked read-only
1668 * to track write events. If so, we'll downgrade vm_page_prot
1669 * to the private version (using protection_map[] without the
1670 * VM_SHARED bit).
1671 */
1672int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1673{
1674        vm_flags_t vm_flags = vma->vm_flags;
1675        const struct vm_operations_struct *vm_ops = vma->vm_ops;
1676
1677        /* If it was private or non-writable, the write bit is already clear */
1678        if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1679                return 0;
1680
1681        /* The backer wishes to know when pages are first written to? */
1682        if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1683                return 1;
1684
1685        /* The open routine did something to the protections that pgprot_modify
1686         * won't preserve? */
1687        if (pgprot_val(vm_page_prot) !=
1688            pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1689                return 0;
1690
1691        /* Do we need to track softdirty? */
1692        if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1693                return 1;
1694
1695        /* Specialty mapping? */
1696        if (vm_flags & VM_PFNMAP)
1697                return 0;
1698
1699        /* Can the mapping track the dirty pages? */
1700        return vma->vm_file && vma->vm_file->f_mapping &&
1701                mapping_can_writeback(vma->vm_file->f_mapping);
1702}
1703
1704/*
1705 * We account for memory if it's a private writeable mapping,
1706 * not hugepages and VM_NORESERVE wasn't set.
1707 */
1708static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1709{
1710        /*
1711         * hugetlb has its own accounting separate from the core VM
1712         * VM_HUGETLB may not be set yet so we cannot check for that flag.
1713         */
1714        if (file && is_file_hugepages(file))
1715                return 0;
1716
1717        return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1718}
1719
1720unsigned long mmap_region(struct file *file, unsigned long addr,
1721                unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1722                struct list_head *uf)
1723{
1724        struct mm_struct *mm = current->mm;
1725        struct vm_area_struct *vma, *prev, *merge;
1726        int error;
1727        struct rb_node **rb_link, *rb_parent;
1728        unsigned long charged = 0;
1729
1730        /* Check against address space limit. */
1731        if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1732                unsigned long nr_pages;
1733
1734                /*
1735                 * MAP_FIXED may remove pages of mappings that intersects with
1736                 * requested mapping. Account for the pages it would unmap.
1737                 */
1738                nr_pages = count_vma_pages_range(mm, addr, addr + len);
1739
1740                if (!may_expand_vm(mm, vm_flags,
1741                                        (len >> PAGE_SHIFT) - nr_pages))
1742                        return -ENOMEM;
1743        }
1744
1745        /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1746        if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1747                return -ENOMEM;
1748        /*
1749         * Private writable mapping: check memory availability
1750         */
1751        if (accountable_mapping(file, vm_flags)) {
1752                charged = len >> PAGE_SHIFT;
1753                if (security_vm_enough_memory_mm(mm, charged))
1754                        return -ENOMEM;
1755                vm_flags |= VM_ACCOUNT;
1756        }
1757
1758        /*
1759         * Can we just expand an old mapping?
1760         */
1761        vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1762                        NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1763        if (vma)
1764                goto out;
1765
1766        /*
1767         * Determine the object being mapped and call the appropriate
1768         * specific mapper. the address has already been validated, but
1769         * not unmapped, but the maps are removed from the list.
1770         */
1771        vma = vm_area_alloc(mm);
1772        if (!vma) {
1773                error = -ENOMEM;
1774                goto unacct_error;
1775        }
1776
1777        vma->vm_start = addr;
1778        vma->vm_end = addr + len;
1779        vma->vm_flags = vm_flags;
1780        vma->vm_page_prot = vm_get_page_prot(vm_flags);
1781        vma->vm_pgoff = pgoff;
1782
1783        if (file) {
1784                if (vm_flags & VM_SHARED) {
1785                        error = mapping_map_writable(file->f_mapping);
1786                        if (error)
1787                                goto free_vma;
1788                }
1789
1790                vma->vm_file = get_file(file);
1791                error = call_mmap(file, vma);
1792                if (error)
1793                        goto unmap_and_free_vma;
1794
1795                /* Can addr have changed??
1796                 *
1797                 * Answer: Yes, several device drivers can do it in their
1798                 *         f_op->mmap method. -DaveM
1799                 * Bug: If addr is changed, prev, rb_link, rb_parent should
1800                 *      be updated for vma_link()
1801                 */
1802                WARN_ON_ONCE(addr != vma->vm_start);
1803
1804                addr = vma->vm_start;
1805
1806                /* If vm_flags changed after call_mmap(), we should try merge vma again
1807                 * as we may succeed this time.
1808                 */
1809                if (unlikely(vm_flags != vma->vm_flags && prev)) {
1810                        merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1811                                NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1812                        if (merge) {
1813                                /* ->mmap() can change vma->vm_file and fput the original file. So
1814                                 * fput the vma->vm_file here or we would add an extra fput for file
1815                                 * and cause general protection fault ultimately.
1816                                 */
1817                                fput(vma->vm_file);
1818                                vm_area_free(vma);
1819                                vma = merge;
1820                                /* Update vm_flags to pick up the change. */
1821                                vm_flags = vma->vm_flags;
1822                                goto unmap_writable;
1823                        }
1824                }
1825
1826                vm_flags = vma->vm_flags;
1827        } else if (vm_flags & VM_SHARED) {
1828                error = shmem_zero_setup(vma);
1829                if (error)
1830                        goto free_vma;
1831        } else {
1832                vma_set_anonymous(vma);
1833        }
1834
1835        /* Allow architectures to sanity-check the vm_flags */
1836        if (!arch_validate_flags(vma->vm_flags)) {
1837                error = -EINVAL;
1838                if (file)
1839                        goto unmap_and_free_vma;
1840                else
1841                        goto free_vma;
1842        }
1843
1844        vma_link(mm, vma, prev, rb_link, rb_parent);
1845        /* Once vma denies write, undo our temporary denial count */
1846unmap_writable:
1847        if (file && vm_flags & VM_SHARED)
1848                mapping_unmap_writable(file->f_mapping);
1849        file = vma->vm_file;
1850out:
1851        perf_event_mmap(vma);
1852
1853        vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1854        if (vm_flags & VM_LOCKED) {
1855                if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1856                                        is_vm_hugetlb_page(vma) ||
1857                                        vma == get_gate_vma(current->mm))
1858                        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1859                else
1860                        mm->locked_vm += (len >> PAGE_SHIFT);
1861        }
1862
1863        if (file)
1864                uprobe_mmap(vma);
1865
1866        /*
1867         * New (or expanded) vma always get soft dirty status.
1868         * Otherwise user-space soft-dirty page tracker won't
1869         * be able to distinguish situation when vma area unmapped,
1870         * then new mapped in-place (which must be aimed as
1871         * a completely new data area).
1872         */
1873        vma->vm_flags |= VM_SOFTDIRTY;
1874
1875        vma_set_page_prot(vma);
1876
1877        return addr;
1878
1879unmap_and_free_vma:
1880        fput(vma->vm_file);
1881        vma->vm_file = NULL;
1882
1883        /* Undo any partial mapping done by a device driver. */
1884        unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1885        charged = 0;
1886        if (vm_flags & VM_SHARED)
1887                mapping_unmap_writable(file->f_mapping);
1888free_vma:
1889        vm_area_free(vma);
1890unacct_error:
1891        if (charged)
1892                vm_unacct_memory(charged);
1893        return error;
1894}
1895
1896static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1897{
1898        /*
1899         * We implement the search by looking for an rbtree node that
1900         * immediately follows a suitable gap. That is,
1901         * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1902         * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1903         * - gap_end - gap_start >= length
1904         */
1905
1906        struct mm_struct *mm = current->mm;
1907        struct vm_area_struct *vma;
1908        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1909
1910        /* Adjust search length to account for worst case alignment overhead */
1911        length = info->length + info->align_mask;
1912        if (length < info->length)
1913                return -ENOMEM;
1914
1915        /* Adjust search limits by the desired length */
1916        if (info->high_limit < length)
1917                return -ENOMEM;
1918        high_limit = info->high_limit - length;
1919
1920        if (info->low_limit > high_limit)
1921                return -ENOMEM;
1922        low_limit = info->low_limit + length;
1923
1924        /* Check if rbtree root looks promising */
1925        if (RB_EMPTY_ROOT(&mm->mm_rb))
1926                goto check_highest;
1927        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1928        if (vma->rb_subtree_gap < length)
1929                goto check_highest;
1930
1931        while (true) {
1932                /* Visit left subtree if it looks promising */
1933                gap_end = vm_start_gap(vma);
1934                if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1935                        struct vm_area_struct *left =
1936                                rb_entry(vma->vm_rb.rb_left,
1937                                         struct vm_area_struct, vm_rb);
1938                        if (left->rb_subtree_gap >= length) {
1939                                vma = left;
1940                                continue;
1941                        }
1942                }
1943
1944                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1945check_current:
1946                /* Check if current node has a suitable gap */
1947                if (gap_start > high_limit)
1948                        return -ENOMEM;
1949                if (gap_end >= low_limit &&
1950                    gap_end > gap_start && gap_end - gap_start >= length)
1951                        goto found;
1952
1953                /* Visit right subtree if it looks promising */
1954                if (vma->vm_rb.rb_right) {
1955                        struct vm_area_struct *right =
1956                                rb_entry(vma->vm_rb.rb_right,
1957                                         struct vm_area_struct, vm_rb);
1958                        if (right->rb_subtree_gap >= length) {
1959                                vma = right;
1960                                continue;
1961                        }
1962                }
1963
1964                /* Go back up the rbtree to find next candidate node */
1965                while (true) {
1966                        struct rb_node *prev = &vma->vm_rb;
1967                        if (!rb_parent(prev))
1968                                goto check_highest;
1969                        vma = rb_entry(rb_parent(prev),
1970                                       struct vm_area_struct, vm_rb);
1971                        if (prev == vma->vm_rb.rb_left) {
1972                                gap_start = vm_end_gap(vma->vm_prev);
1973                                gap_end = vm_start_gap(vma);
1974                                goto check_current;
1975                        }
1976                }
1977        }
1978
1979check_highest:
1980        /* Check highest gap, which does not precede any rbtree node */
1981        gap_start = mm->highest_vm_end;
1982        gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1983        if (gap_start > high_limit)
1984                return -ENOMEM;
1985
1986found:
1987        /* We found a suitable gap. Clip it with the original low_limit. */
1988        if (gap_start < info->low_limit)
1989                gap_start = info->low_limit;
1990
1991        /* Adjust gap address to the desired alignment */
1992        gap_start += (info->align_offset - gap_start) & info->align_mask;
1993
1994        VM_BUG_ON(gap_start + info->length > info->high_limit);
1995        VM_BUG_ON(gap_start + info->length > gap_end);
1996        return gap_start;
1997}
1998
1999static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2000{
2001        struct mm_struct *mm = current->mm;
2002        struct vm_area_struct *vma;
2003        unsigned long length, low_limit, high_limit, gap_start, gap_end;
2004
2005        /* Adjust search length to account for worst case alignment overhead */
2006        length = info->length + info->align_mask;
2007        if (length < info->length)
2008                return -ENOMEM;
2009
2010        /*
2011         * Adjust search limits by the desired length.
2012         * See implementation comment at top of unmapped_area().
2013         */
2014        gap_end = info->high_limit;
2015        if (gap_end < length)
2016                return -ENOMEM;
2017        high_limit = gap_end - length;
2018
2019        if (info->low_limit > high_limit)
2020                return -ENOMEM;
2021        low_limit = info->low_limit + length;
2022
2023        /* Check highest gap, which does not precede any rbtree node */
2024        gap_start = mm->highest_vm_end;
2025        if (gap_start <= high_limit)
2026                goto found_highest;
2027
2028        /* Check if rbtree root looks promising */
2029        if (RB_EMPTY_ROOT(&mm->mm_rb))
2030                return -ENOMEM;
2031        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2032        if (vma->rb_subtree_gap < length)
2033                return -ENOMEM;
2034
2035        while (true) {
2036                /* Visit right subtree if it looks promising */
2037                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2038                if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2039                        struct vm_area_struct *right =
2040                                rb_entry(vma->vm_rb.rb_right,
2041                                         struct vm_area_struct, vm_rb);
2042                        if (right->rb_subtree_gap >= length) {
2043                                vma = right;
2044                                continue;
2045                        }
2046                }
2047
2048check_current:
2049                /* Check if current node has a suitable gap */
2050                gap_end = vm_start_gap(vma);
2051                if (gap_end < low_limit)
2052                        return -ENOMEM;
2053                if (gap_start <= high_limit &&
2054                    gap_end > gap_start && gap_end - gap_start >= length)
2055                        goto found;
2056
2057                /* Visit left subtree if it looks promising */
2058                if (vma->vm_rb.rb_left) {
2059                        struct vm_area_struct *left =
2060                                rb_entry(vma->vm_rb.rb_left,
2061                                         struct vm_area_struct, vm_rb);
2062                        if (left->rb_subtree_gap >= length) {
2063                                vma = left;
2064                                continue;
2065                        }
2066                }
2067
2068                /* Go back up the rbtree to find next candidate node */
2069                while (true) {
2070                        struct rb_node *prev = &vma->vm_rb;
2071                        if (!rb_parent(prev))
2072                                return -ENOMEM;
2073                        vma = rb_entry(rb_parent(prev),
2074                                       struct vm_area_struct, vm_rb);
2075                        if (prev == vma->vm_rb.rb_right) {
2076                                gap_start = vma->vm_prev ?
2077                                        vm_end_gap(vma->vm_prev) : 0;
2078                                goto check_current;
2079                        }
2080                }
2081        }
2082
2083found:
2084        /* We found a suitable gap. Clip it with the original high_limit. */
2085        if (gap_end > info->high_limit)
2086                gap_end = info->high_limit;
2087
2088found_highest:
2089        /* Compute highest gap address at the desired alignment */
2090        gap_end -= info->length;
2091        gap_end -= (gap_end - info->align_offset) & info->align_mask;
2092
2093        VM_BUG_ON(gap_end < info->low_limit);
2094        VM_BUG_ON(gap_end < gap_start);
2095        return gap_end;
2096}
2097
2098/*
2099 * Search for an unmapped address range.
2100 *
2101 * We are looking for a range that:
2102 * - does not intersect with any VMA;
2103 * - is contained within the [low_limit, high_limit) interval;
2104 * - is at least the desired size.
2105 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2106 */
2107unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2108{
2109        unsigned long addr;
2110
2111        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2112                addr = unmapped_area_topdown(info);
2113        else
2114                addr = unmapped_area(info);
2115
2116        trace_vm_unmapped_area(addr, info);
2117        return addr;
2118}
2119
2120/* Get an address range which is currently unmapped.
2121 * For shmat() with addr=0.
2122 *
2123 * Ugly calling convention alert:
2124 * Return value with the low bits set means error value,
2125 * ie
2126 *      if (ret & ~PAGE_MASK)
2127 *              error = ret;
2128 *
2129 * This function "knows" that -ENOMEM has the bits set.
2130 */
2131#ifndef HAVE_ARCH_UNMAPPED_AREA
2132unsigned long
2133arch_get_unmapped_area(struct file *filp, unsigned long addr,
2134                unsigned long len, unsigned long pgoff, unsigned long flags)
2135{
2136        struct mm_struct *mm = current->mm;
2137        struct vm_area_struct *vma, *prev;
2138        struct vm_unmapped_area_info info;
2139        const unsigned long mmap_end = arch_get_mmap_end(addr);
2140
2141        if (len > mmap_end - mmap_min_addr)
2142                return -ENOMEM;
2143
2144        if (flags & MAP_FIXED)
2145                return addr;
2146
2147        if (addr) {
2148                addr = PAGE_ALIGN(addr);
2149                vma = find_vma_prev(mm, addr, &prev);
2150                if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2151                    (!vma || addr + len <= vm_start_gap(vma)) &&
2152                    (!prev || addr >= vm_end_gap(prev)))
2153                        return addr;
2154        }
2155
2156        info.flags = 0;
2157        info.length = len;
2158        info.low_limit = mm->mmap_base;
2159        info.high_limit = mmap_end;
2160        info.align_mask = 0;
2161        info.align_offset = 0;
2162        return vm_unmapped_area(&info);
2163}
2164#endif
2165
2166/*
2167 * This mmap-allocator allocates new areas top-down from below the
2168 * stack's low limit (the base):
2169 */
2170#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2171unsigned long
2172arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2173                          unsigned long len, unsigned long pgoff,
2174                          unsigned long flags)
2175{
2176        struct vm_area_struct *vma, *prev;
2177        struct mm_struct *mm = current->mm;
2178        struct vm_unmapped_area_info info;
2179        const unsigned long mmap_end = arch_get_mmap_end(addr);
2180
2181        /* requested length too big for entire address space */
2182        if (len > mmap_end - mmap_min_addr)
2183                return -ENOMEM;
2184
2185        if (flags & MAP_FIXED)
2186                return addr;
2187
2188        /* requesting a specific address */
2189        if (addr) {
2190                addr = PAGE_ALIGN(addr);
2191                vma = find_vma_prev(mm, addr, &prev);
2192                if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2193                                (!vma || addr + len <= vm_start_gap(vma)) &&
2194                                (!prev || addr >= vm_end_gap(prev)))
2195                        return addr;
2196        }
2197
2198        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2199        info.length = len;
2200        info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2201        info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2202        info.align_mask = 0;
2203        info.align_offset = 0;
2204        addr = vm_unmapped_area(&info);
2205
2206        /*
2207         * A failed mmap() very likely causes application failure,
2208         * so fall back to the bottom-up function here. This scenario
2209         * can happen with large stack limits and large mmap()
2210         * allocations.
2211         */
2212        if (offset_in_page(addr)) {
2213                VM_BUG_ON(addr != -ENOMEM);
2214                info.flags = 0;
2215                info.low_limit = TASK_UNMAPPED_BASE;
2216                info.high_limit = mmap_end;
2217                addr = vm_unmapped_area(&info);
2218        }
2219
2220        return addr;
2221}
2222#endif
2223
2224unsigned long
2225get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2226                unsigned long pgoff, unsigned long flags)
2227{
2228        unsigned long (*get_area)(struct file *, unsigned long,
2229                                  unsigned long, unsigned long, unsigned long);
2230
2231        unsigned long error = arch_mmap_check(addr, len, flags);
2232        if (error)
2233                return error;
2234
2235        /* Careful about overflows.. */
2236        if (len > TASK_SIZE)
2237                return -ENOMEM;
2238
2239        get_area = current->mm->get_unmapped_area;
2240        if (file) {
2241                if (file->f_op->get_unmapped_area)
2242                        get_area = file->f_op->get_unmapped_area;
2243        } else if (flags & MAP_SHARED) {
2244                /*
2245                 * mmap_region() will call shmem_zero_setup() to create a file,
2246                 * so use shmem's get_unmapped_area in case it can be huge.
2247                 * do_mmap() will clear pgoff, so match alignment.
2248                 */
2249                pgoff = 0;
2250                get_area = shmem_get_unmapped_area;
2251        }
2252
2253        addr = get_area(file, addr, len, pgoff, flags);
2254        if (IS_ERR_VALUE(addr))
2255                return addr;
2256
2257        if (addr > TASK_SIZE - len)
2258                return -ENOMEM;
2259        if (offset_in_page(addr))
2260                return -EINVAL;
2261
2262        error = security_mmap_addr(addr);
2263        return error ? error : addr;
2264}
2265
2266EXPORT_SYMBOL(get_unmapped_area);
2267
2268/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2269struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2270{
2271        struct rb_node *rb_node;
2272        struct vm_area_struct *vma;
2273
2274        mmap_assert_locked(mm);
2275        /* Check the cache first. */
2276        vma = vmacache_find(mm, addr);
2277        if (likely(vma))
2278                return vma;
2279
2280        rb_node = mm->mm_rb.rb_node;
2281
2282        while (rb_node) {
2283                struct vm_area_struct *tmp;
2284
2285                tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2286
2287                if (tmp->vm_end > addr) {
2288                        vma = tmp;
2289                        if (tmp->vm_start <= addr)
2290                                break;
2291                        rb_node = rb_node->rb_left;
2292                } else
2293                        rb_node = rb_node->rb_right;
2294        }
2295
2296        if (vma)
2297                vmacache_update(addr, vma);
2298        return vma;
2299}
2300
2301EXPORT_SYMBOL(find_vma);
2302
2303/*
2304 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2305 */
2306struct vm_area_struct *
2307find_vma_prev(struct mm_struct *mm, unsigned long addr,
2308                        struct vm_area_struct **pprev)
2309{
2310        struct vm_area_struct *vma;
2311
2312        vma = find_vma(mm, addr);
2313        if (vma) {
2314                *pprev = vma->vm_prev;
2315        } else {
2316                struct rb_node *rb_node = rb_last(&mm->mm_rb);
2317
2318                *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2319        }
2320        return vma;
2321}
2322
2323/*
2324 * Verify that the stack growth is acceptable and
2325 * update accounting. This is shared with both the
2326 * grow-up and grow-down cases.
2327 */
2328static int acct_stack_growth(struct vm_area_struct *vma,
2329                             unsigned long size, unsigned long grow)
2330{
2331        struct mm_struct *mm = vma->vm_mm;
2332        unsigned long new_start;
2333
2334        /* address space limit tests */
2335        if (!may_expand_vm(mm, vma->vm_flags, grow))
2336                return -ENOMEM;
2337
2338        /* Stack limit test */
2339        if (size > rlimit(RLIMIT_STACK))
2340                return -ENOMEM;
2341
2342        /* mlock limit tests */
2343        if (vma->vm_flags & VM_LOCKED) {
2344                unsigned long locked;
2345                unsigned long limit;
2346                locked = mm->locked_vm + grow;
2347                limit = rlimit(RLIMIT_MEMLOCK);
2348                limit >>= PAGE_SHIFT;
2349                if (locked > limit && !capable(CAP_IPC_LOCK))
2350                        return -ENOMEM;
2351        }
2352
2353        /* Check to ensure the stack will not grow into a hugetlb-only region */
2354        new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2355                        vma->vm_end - size;
2356        if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2357                return -EFAULT;
2358
2359        /*
2360         * Overcommit..  This must be the final test, as it will
2361         * update security statistics.
2362         */
2363        if (security_vm_enough_memory_mm(mm, grow))
2364                return -ENOMEM;
2365
2366        return 0;
2367}
2368
2369#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2370/*
2371 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2372 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2373 */
2374int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2375{
2376        struct mm_struct *mm = vma->vm_mm;
2377        struct vm_area_struct *next;
2378        unsigned long gap_addr;
2379        int error = 0;
2380
2381        if (!(vma->vm_flags & VM_GROWSUP))
2382                return -EFAULT;
2383
2384        /* Guard against exceeding limits of the address space. */
2385        address &= PAGE_MASK;
2386        if (address >= (TASK_SIZE & PAGE_MASK))
2387                return -ENOMEM;
2388        address += PAGE_SIZE;
2389
2390        /* Enforce stack_guard_gap */
2391        gap_addr = address + stack_guard_gap;
2392
2393        /* Guard against overflow */
2394        if (gap_addr < address || gap_addr > TASK_SIZE)
2395                gap_addr = TASK_SIZE;
2396
2397        next = vma->vm_next;
2398        if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2399                if (!(next->vm_flags & VM_GROWSUP))
2400                        return -ENOMEM;
2401                /* Check that both stack segments have the same anon_vma? */
2402        }
2403
2404        /* We must make sure the anon_vma is allocated. */
2405        if (unlikely(anon_vma_prepare(vma)))
2406                return -ENOMEM;
2407
2408        /*
2409         * vma->vm_start/vm_end cannot change under us because the caller
2410         * is required to hold the mmap_lock in read mode.  We need the
2411         * anon_vma lock to serialize against concurrent expand_stacks.
2412         */
2413        anon_vma_lock_write(vma->anon_vma);
2414
2415        /* Somebody else might have raced and expanded it already */
2416        if (address > vma->vm_end) {
2417                unsigned long size, grow;
2418
2419                size = address - vma->vm_start;
2420                grow = (address - vma->vm_end) >> PAGE_SHIFT;
2421
2422                error = -ENOMEM;
2423                if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2424                        error = acct_stack_growth(vma, size, grow);
2425                        if (!error) {
2426                                /*
2427                                 * vma_gap_update() doesn't support concurrent
2428                                 * updates, but we only hold a shared mmap_lock
2429                                 * lock here, so we need to protect against
2430                                 * concurrent vma expansions.
2431                                 * anon_vma_lock_write() doesn't help here, as
2432                                 * we don't guarantee that all growable vmas
2433                                 * in a mm share the same root anon vma.
2434                                 * So, we reuse mm->page_table_lock to guard
2435                                 * against concurrent vma expansions.
2436                                 */
2437                                spin_lock(&mm->page_table_lock);
2438                                if (vma->vm_flags & VM_LOCKED)
2439                                        mm->locked_vm += grow;
2440                                vm_stat_account(mm, vma->vm_flags, grow);
2441                                anon_vma_interval_tree_pre_update_vma(vma);
2442                                vma->vm_end = address;
2443                                anon_vma_interval_tree_post_update_vma(vma);
2444                                if (vma->vm_next)
2445                                        vma_gap_update(vma->vm_next);
2446                                else
2447                                        mm->highest_vm_end = vm_end_gap(vma);
2448                                spin_unlock(&mm->page_table_lock);
2449
2450                                perf_event_mmap(vma);
2451                        }
2452                }
2453        }
2454        anon_vma_unlock_write(vma->anon_vma);
2455        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2456        validate_mm(mm);
2457        return error;
2458}
2459#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2460
2461/*
2462 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2463 */
2464int expand_downwards(struct vm_area_struct *vma,
2465                                   unsigned long address)
2466{
2467        struct mm_struct *mm = vma->vm_mm;
2468        struct vm_area_struct *prev;
2469        int error = 0;
2470
2471        address &= PAGE_MASK;
2472        if (address < mmap_min_addr)
2473                return -EPERM;
2474
2475        /* Enforce stack_guard_gap */
2476        prev = vma->vm_prev;
2477        /* Check that both stack segments have the same anon_vma? */
2478        if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2479                        vma_is_accessible(prev)) {
2480                if (address - prev->vm_end < stack_guard_gap)
2481                        return -ENOMEM;
2482        }
2483
2484        /* We must make sure the anon_vma is allocated. */
2485        if (unlikely(anon_vma_prepare(vma)))
2486                return -ENOMEM;
2487
2488        /*
2489         * vma->vm_start/vm_end cannot change under us because the caller
2490         * is required to hold the mmap_lock in read mode.  We need the
2491         * anon_vma lock to serialize against concurrent expand_stacks.
2492         */
2493        anon_vma_lock_write(vma->anon_vma);
2494
2495        /* Somebody else might have raced and expanded it already */
2496        if (address < vma->vm_start) {
2497                unsigned long size, grow;
2498
2499                size = vma->vm_end - address;
2500                grow = (vma->vm_start - address) >> PAGE_SHIFT;
2501
2502                error = -ENOMEM;
2503                if (grow <= vma->vm_pgoff) {
2504                        error = acct_stack_growth(vma, size, grow);
2505                        if (!error) {
2506                                /*
2507                                 * vma_gap_update() doesn't support concurrent
2508                                 * updates, but we only hold a shared mmap_lock
2509                                 * lock here, so we need to protect against
2510                                 * concurrent vma expansions.
2511                                 * anon_vma_lock_write() doesn't help here, as
2512                                 * we don't guarantee that all growable vmas
2513                                 * in a mm share the same root anon vma.
2514                                 * So, we reuse mm->page_table_lock to guard
2515                                 * against concurrent vma expansions.
2516                                 */
2517                                spin_lock(&mm->page_table_lock);
2518                                if (vma->vm_flags & VM_LOCKED)
2519                                        mm->locked_vm += grow;
2520                                vm_stat_account(mm, vma->vm_flags, grow);
2521                                anon_vma_interval_tree_pre_update_vma(vma);
2522                                vma->vm_start = address;
2523                                vma->vm_pgoff -= grow;
2524                                anon_vma_interval_tree_post_update_vma(vma);
2525                                vma_gap_update(vma);
2526                                spin_unlock(&mm->page_table_lock);
2527
2528                                perf_event_mmap(vma);
2529                        }
2530                }
2531        }
2532        anon_vma_unlock_write(vma->anon_vma);
2533        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2534        validate_mm(mm);
2535        return error;
2536}
2537
2538/* enforced gap between the expanding stack and other mappings. */
2539unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2540
2541static int __init cmdline_parse_stack_guard_gap(char *p)
2542{
2543        unsigned long val;
2544        char *endptr;
2545
2546        val = simple_strtoul(p, &endptr, 10);
2547        if (!*endptr)
2548                stack_guard_gap = val << PAGE_SHIFT;
2549
2550        return 1;
2551}
2552__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2553
2554#ifdef CONFIG_STACK_GROWSUP
2555int expand_stack(struct vm_area_struct *vma, unsigned long address)
2556{
2557        return expand_upwards(vma, address);
2558}
2559
2560struct vm_area_struct *
2561find_extend_vma(struct mm_struct *mm, unsigned long addr)
2562{
2563        struct vm_area_struct *vma, *prev;
2564
2565        addr &= PAGE_MASK;
2566        vma = find_vma_prev(mm, addr, &prev);
2567        if (vma && (vma->vm_start <= addr))
2568                return vma;
2569        /* don't alter vm_end if the coredump is running */
2570        if (!prev || expand_stack(prev, addr))
2571                return NULL;
2572        if (prev->vm_flags & VM_LOCKED)
2573                populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2574        return prev;
2575}
2576#else
2577int expand_stack(struct vm_area_struct *vma, unsigned long address)
2578{
2579        return expand_downwards(vma, address);
2580}
2581
2582struct vm_area_struct *
2583find_extend_vma(struct mm_struct *mm, unsigned long addr)
2584{
2585        struct vm_area_struct *vma;
2586        unsigned long start;
2587
2588        addr &= PAGE_MASK;
2589        vma = find_vma(mm, addr);
2590        if (!vma)
2591                return NULL;
2592        if (vma->vm_start <= addr)
2593                return vma;
2594        if (!(vma->vm_flags & VM_GROWSDOWN))
2595                return NULL;
2596        start = vma->vm_start;
2597        if (expand_stack(vma, addr))
2598                return NULL;
2599        if (vma->vm_flags & VM_LOCKED)
2600                populate_vma_page_range(vma, addr, start, NULL);
2601        return vma;
2602}
2603#endif
2604
2605EXPORT_SYMBOL_GPL(find_extend_vma);
2606
2607/*
2608 * Ok - we have the memory areas we should free on the vma list,
2609 * so release them, and do the vma updates.
2610 *
2611 * Called with the mm semaphore held.
2612 */
2613static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2614{
2615        unsigned long nr_accounted = 0;
2616
2617        /* Update high watermark before we lower total_vm */
2618        update_hiwater_vm(mm);
2619        do {
2620                long nrpages = vma_pages(vma);
2621
2622                if (vma->vm_flags & VM_ACCOUNT)
2623                        nr_accounted += nrpages;
2624                vm_stat_account(mm, vma->vm_flags, -nrpages);
2625                vma = remove_vma(vma);
2626        } while (vma);
2627        vm_unacct_memory(nr_accounted);
2628        validate_mm(mm);
2629}
2630
2631/*
2632 * Get rid of page table information in the indicated region.
2633 *
2634 * Called with the mm semaphore held.
2635 */
2636static void unmap_region(struct mm_struct *mm,
2637                struct vm_area_struct *vma, struct vm_area_struct *prev,
2638                unsigned long start, unsigned long end)
2639{
2640        struct vm_area_struct *next = vma_next(mm, prev);
2641        struct mmu_gather tlb;
2642
2643        lru_add_drain();
2644        tlb_gather_mmu(&tlb, mm);
2645        update_hiwater_rss(mm);
2646        unmap_vmas(&tlb, vma, start, end);
2647        free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2648                                 next ? next->vm_start : USER_PGTABLES_CEILING);
2649        tlb_finish_mmu(&tlb);
2650}
2651
2652/*
2653 * Create a list of vma's touched by the unmap, removing them from the mm's
2654 * vma list as we go..
2655 */
2656static bool
2657detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2658        struct vm_area_struct *prev, unsigned long end)
2659{
2660        struct vm_area_struct **insertion_point;
2661        struct vm_area_struct *tail_vma = NULL;
2662
2663        insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2664        vma->vm_prev = NULL;
2665        do {
2666                vma_rb_erase(vma, &mm->mm_rb);
2667                if (vma->vm_flags & VM_LOCKED)
2668                        mm->locked_vm -= vma_pages(vma);
2669                mm->map_count--;
2670                tail_vma = vma;
2671                vma = vma->vm_next;
2672        } while (vma && vma->vm_start < end);
2673        *insertion_point = vma;
2674        if (vma) {
2675                vma->vm_prev = prev;
2676                vma_gap_update(vma);
2677        } else
2678                mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2679        tail_vma->vm_next = NULL;
2680
2681        /* Kill the cache */
2682        vmacache_invalidate(mm);
2683
2684        /*
2685         * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2686         * VM_GROWSUP VMA. Such VMAs can change their size under
2687         * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2688         */
2689        if (vma && (vma->vm_flags & VM_GROWSDOWN))
2690                return false;
2691        if (prev && (prev->vm_flags & VM_GROWSUP))
2692                return false;
2693        return true;
2694}
2695
2696/*
2697 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2698 * has already been checked or doesn't make sense to fail.
2699 */
2700int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2701                unsigned long addr, int new_below)
2702{
2703        struct vm_area_struct *new;
2704        int err;
2705
2706        if (vma->vm_ops && vma->vm_ops->may_split) {
2707                err = vma->vm_ops->may_split(vma, addr);
2708                if (err)
2709                        return err;
2710        }
2711
2712        new = vm_area_dup(vma);
2713        if (!new)
2714                return -ENOMEM;
2715
2716        if (new_below)
2717                new->vm_end = addr;
2718        else {
2719                new->vm_start = addr;
2720                new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2721        }
2722
2723        err = vma_dup_policy(vma, new);
2724        if (err)
2725                goto out_free_vma;
2726
2727        err = anon_vma_clone(new, vma);
2728        if (err)
2729                goto out_free_mpol;
2730
2731        if (new->vm_file)
2732                get_file(new->vm_file);
2733
2734        if (new->vm_ops && new->vm_ops->open)
2735                new->vm_ops->open(new);
2736
2737        if (new_below)
2738                err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2739                        ((addr - new->vm_start) >> PAGE_SHIFT), new);
2740        else
2741                err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2742
2743        /* Success. */
2744        if (!err)
2745                return 0;
2746
2747        /* Clean everything up if vma_adjust failed. */
2748        if (new->vm_ops && new->vm_ops->close)
2749                new->vm_ops->close(new);
2750        if (new->vm_file)
2751                fput(new->vm_file);
2752        unlink_anon_vmas(new);
2753 out_free_mpol:
2754        mpol_put(vma_policy(new));
2755 out_free_vma:
2756        vm_area_free(new);
2757        return err;
2758}
2759
2760/*
2761 * Split a vma into two pieces at address 'addr', a new vma is allocated
2762 * either for the first part or the tail.
2763 */
2764int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2765              unsigned long addr, int new_below)
2766{
2767        if (mm->map_count >= sysctl_max_map_count)
2768                return -ENOMEM;
2769
2770        return __split_vma(mm, vma, addr, new_below);
2771}
2772
2773/* Munmap is split into 2 main parts -- this part which finds
2774 * what needs doing, and the areas themselves, which do the
2775 * work.  This now handles partial unmappings.
2776 * Jeremy Fitzhardinge <jeremy@goop.org>
2777 */
2778int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2779                struct list_head *uf, bool downgrade)
2780{
2781        unsigned long end;
2782        struct vm_area_struct *vma, *prev, *last;
2783
2784        if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2785                return -EINVAL;
2786
2787        len = PAGE_ALIGN(len);
2788        end = start + len;
2789        if (len == 0)
2790                return -EINVAL;
2791
2792        /*
2793         * arch_unmap() might do unmaps itself.  It must be called
2794         * and finish any rbtree manipulation before this code
2795         * runs and also starts to manipulate the rbtree.
2796         */
2797        arch_unmap(mm, start, end);
2798
2799        /* Find the first overlapping VMA where start < vma->vm_end */
2800        vma = find_vma_intersection(mm, start, end);
2801        if (!vma)
2802                return 0;
2803        prev = vma->vm_prev;
2804
2805        /*
2806         * If we need to split any vma, do it now to save pain later.
2807         *
2808         * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2809         * unmapped vm_area_struct will remain in use: so lower split_vma
2810         * places tmp vma above, and higher split_vma places tmp vma below.
2811         */
2812        if (start > vma->vm_start) {
2813                int error;
2814
2815                /*
2816                 * Make sure that map_count on return from munmap() will
2817                 * not exceed its limit; but let map_count go just above
2818                 * its limit temporarily, to help free resources as expected.
2819                 */
2820                if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2821                        return -ENOMEM;
2822
2823                error = __split_vma(mm, vma, start, 0);
2824                if (error)
2825                        return error;
2826                prev = vma;
2827        }
2828
2829        /* Does it split the last one? */
2830        last = find_vma(mm, end);
2831        if (last && end > last->vm_start) {
2832                int error = __split_vma(mm, last, end, 1);
2833                if (error)
2834                        return error;
2835        }
2836        vma = vma_next(mm, prev);
2837
2838        if (unlikely(uf)) {
2839                /*
2840                 * If userfaultfd_unmap_prep returns an error the vmas
2841                 * will remain split, but userland will get a
2842                 * highly unexpected error anyway. This is no
2843                 * different than the case where the first of the two
2844                 * __split_vma fails, but we don't undo the first
2845                 * split, despite we could. This is unlikely enough
2846                 * failure that it's not worth optimizing it for.
2847                 */
2848                int error = userfaultfd_unmap_prep(vma, start, end, uf);
2849                if (error)
2850                        return error;
2851        }
2852
2853        /* Detach vmas from rbtree */
2854        if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2855                downgrade = false;
2856
2857        if (downgrade)
2858                mmap_write_downgrade(mm);
2859
2860        unmap_region(mm, vma, prev, start, end);
2861
2862        /* Fix up all other VM information */
2863        remove_vma_list(mm, vma);
2864
2865        return downgrade ? 1 : 0;
2866}
2867
2868int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2869              struct list_head *uf)
2870{
2871        return __do_munmap(mm, start, len, uf, false);
2872}
2873
2874static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2875{
2876        int ret;
2877        struct mm_struct *mm = current->mm;
2878        LIST_HEAD(uf);
2879
2880        if (mmap_write_lock_killable(mm))
2881                return -EINTR;
2882
2883        ret = __do_munmap(mm, start, len, &uf, downgrade);
2884        /*
2885         * Returning 1 indicates mmap_lock is downgraded.
2886         * But 1 is not legal return value of vm_munmap() and munmap(), reset
2887         * it to 0 before return.
2888         */
2889        if (ret == 1) {
2890                mmap_read_unlock(mm);
2891                ret = 0;
2892        } else
2893                mmap_write_unlock(mm);
2894
2895        userfaultfd_unmap_complete(mm, &uf);
2896        return ret;
2897}
2898
2899int vm_munmap(unsigned long start, size_t len)
2900{
2901        return __vm_munmap(start, len, false);
2902}
2903EXPORT_SYMBOL(vm_munmap);
2904
2905SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2906{
2907        addr = untagged_addr(addr);
2908        return __vm_munmap(addr, len, true);
2909}
2910
2911
2912/*
2913 * Emulation of deprecated remap_file_pages() syscall.
2914 */
2915SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2916                unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2917{
2918
2919        struct mm_struct *mm = current->mm;
2920        struct vm_area_struct *vma;
2921        unsigned long populate = 0;
2922        unsigned long ret = -EINVAL;
2923        struct file *file;
2924
2925        pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2926                     current->comm, current->pid);
2927
2928        if (prot)
2929                return ret;
2930        start = start & PAGE_MASK;
2931        size = size & PAGE_MASK;
2932
2933        if (start + size <= start)
2934                return ret;
2935
2936        /* Does pgoff wrap? */
2937        if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2938                return ret;
2939
2940        if (mmap_write_lock_killable(mm))
2941                return -EINTR;
2942
2943        vma = vma_lookup(mm, start);
2944
2945        if (!vma || !(vma->vm_flags & VM_SHARED))
2946                goto out;
2947
2948        if (start + size > vma->vm_end) {
2949                struct vm_area_struct *next;
2950
2951                for (next = vma->vm_next; next; next = next->vm_next) {
2952                        /* hole between vmas ? */
2953                        if (next->vm_start != next->vm_prev->vm_end)
2954                                goto out;
2955
2956                        if (next->vm_file != vma->vm_file)
2957                                goto out;
2958
2959                        if (next->vm_flags != vma->vm_flags)
2960                                goto out;
2961
2962                        if (start + size <= next->vm_end)
2963                                break;
2964                }
2965
2966                if (!next)
2967                        goto out;
2968        }
2969
2970        prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2971        prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2972        prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2973
2974        flags &= MAP_NONBLOCK;
2975        flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2976        if (vma->vm_flags & VM_LOCKED)
2977                flags |= MAP_LOCKED;
2978
2979        file = get_file(vma->vm_file);
2980        ret = do_mmap(vma->vm_file, start, size,
2981                        prot, flags, pgoff, &populate, NULL);
2982        fput(file);
2983out:
2984        mmap_write_unlock(mm);
2985        if (populate)
2986                mm_populate(ret, populate);
2987        if (!IS_ERR_VALUE(ret))
2988                ret = 0;
2989        return ret;
2990}
2991
2992/*
2993 *  this is really a simplified "do_mmap".  it only handles
2994 *  anonymous maps.  eventually we may be able to do some
2995 *  brk-specific accounting here.
2996 */
2997static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2998{
2999        struct mm_struct *mm = current->mm;
3000        struct vm_area_struct *vma, *prev;
3001        struct rb_node **rb_link, *rb_parent;
3002        pgoff_t pgoff = addr >> PAGE_SHIFT;
3003        int error;
3004        unsigned long mapped_addr;
3005
3006        /* Until we need other flags, refuse anything except VM_EXEC. */
3007        if ((flags & (~VM_EXEC)) != 0)
3008                return -EINVAL;
3009        flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3010
3011        mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3012        if (IS_ERR_VALUE(mapped_addr))
3013                return mapped_addr;
3014
3015        error = mlock_future_check(mm, mm->def_flags, len);
3016        if (error)
3017                return error;
3018
3019        /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3020        if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3021                return -ENOMEM;
3022
3023        /* Check against address space limits *after* clearing old maps... */
3024        if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3025                return -ENOMEM;
3026
3027        if (mm->map_count > sysctl_max_map_count)
3028                return -ENOMEM;
3029
3030        if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3031                return -ENOMEM;
3032
3033        /* Can we just expand an old private anonymous mapping? */
3034        vma = vma_merge(mm, prev, addr, addr + len, flags,
3035                        NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3036        if (vma)
3037                goto out;
3038
3039        /*
3040         * create a vma struct for an anonymous mapping
3041         */
3042        vma = vm_area_alloc(mm);
3043        if (!vma) {
3044                vm_unacct_memory(len >> PAGE_SHIFT);
3045                return -ENOMEM;
3046        }
3047
3048        vma_set_anonymous(vma);
3049        vma->vm_start = addr;
3050        vma->vm_end = addr + len;
3051        vma->vm_pgoff = pgoff;
3052        vma->vm_flags = flags;
3053        vma->vm_page_prot = vm_get_page_prot(flags);
3054        vma_link(mm, vma, prev, rb_link, rb_parent);
3055out:
3056        perf_event_mmap(vma);
3057        mm->total_vm += len >> PAGE_SHIFT;
3058        mm->data_vm += len >> PAGE_SHIFT;
3059        if (flags & VM_LOCKED)
3060                mm->locked_vm += (len >> PAGE_SHIFT);
3061        vma->vm_flags |= VM_SOFTDIRTY;
3062        return 0;
3063}
3064
3065int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3066{
3067        struct mm_struct *mm = current->mm;
3068        unsigned long len;
3069        int ret;
3070        bool populate;
3071        LIST_HEAD(uf);
3072
3073        len = PAGE_ALIGN(request);
3074        if (len < request)
3075                return -ENOMEM;
3076        if (!len)
3077                return 0;
3078
3079        if (mmap_write_lock_killable(mm))
3080                return -EINTR;
3081
3082        ret = do_brk_flags(addr, len, flags, &uf);
3083        populate = ((mm->def_flags & VM_LOCKED) != 0);
3084        mmap_write_unlock(mm);
3085        userfaultfd_unmap_complete(mm, &uf);
3086        if (populate && !ret)
3087                mm_populate(addr, len);
3088        return ret;
3089}
3090EXPORT_SYMBOL(vm_brk_flags);
3091
3092int vm_brk(unsigned long addr, unsigned long len)
3093{
3094        return vm_brk_flags(addr, len, 0);
3095}
3096EXPORT_SYMBOL(vm_brk);
3097
3098/* Release all mmaps. */
3099void exit_mmap(struct mm_struct *mm)
3100{
3101        struct mmu_gather tlb;
3102        struct vm_area_struct *vma;
3103        unsigned long nr_accounted = 0;
3104
3105        /* mm's last user has gone, and its about to be pulled down */
3106        mmu_notifier_release(mm);
3107
3108        if (unlikely(mm_is_oom_victim(mm))) {
3109                /*
3110                 * Manually reap the mm to free as much memory as possible.
3111                 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3112                 * this mm from further consideration.  Taking mm->mmap_lock for
3113                 * write after setting MMF_OOM_SKIP will guarantee that the oom
3114                 * reaper will not run on this mm again after mmap_lock is
3115                 * dropped.
3116                 *
3117                 * Nothing can be holding mm->mmap_lock here and the above call
3118                 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3119                 * __oom_reap_task_mm() will not block.
3120                 */
3121                (void)__oom_reap_task_mm(mm);
3122                set_bit(MMF_OOM_SKIP, &mm->flags);
3123        }
3124
3125        mmap_write_lock(mm);
3126        arch_exit_mmap(mm);
3127
3128        vma = mm->mmap;
3129        if (!vma) {
3130                /* Can happen if dup_mmap() received an OOM */
3131                mmap_write_unlock(mm);
3132                return;
3133        }
3134
3135        lru_add_drain();
3136        flush_cache_mm(mm);
3137        tlb_gather_mmu_fullmm(&tlb, mm);
3138        /* update_hiwater_rss(mm) here? but nobody should be looking */
3139        /* Use -1 here to ensure all VMAs in the mm are unmapped */
3140        unmap_vmas(&tlb, vma, 0, -1);
3141        free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3142        tlb_finish_mmu(&tlb);
3143
3144        /* Walk the list again, actually closing and freeing it. */
3145        while (vma) {
3146                if (vma->vm_flags & VM_ACCOUNT)
3147                        nr_accounted += vma_pages(vma);
3148                vma = remove_vma(vma);
3149                cond_resched();
3150        }
3151        mm->mmap = NULL;
3152        mmap_write_unlock(mm);
3153        vm_unacct_memory(nr_accounted);
3154}
3155
3156/* Insert vm structure into process list sorted by address
3157 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3158 * then i_mmap_rwsem is taken here.
3159 */
3160int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3161{
3162        struct vm_area_struct *prev;
3163        struct rb_node **rb_link, *rb_parent;
3164
3165        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3166                           &prev, &rb_link, &rb_parent))
3167                return -ENOMEM;
3168        if ((vma->vm_flags & VM_ACCOUNT) &&
3169             security_vm_enough_memory_mm(mm, vma_pages(vma)))
3170                return -ENOMEM;
3171
3172        /*
3173         * The vm_pgoff of a purely anonymous vma should be irrelevant
3174         * until its first write fault, when page's anon_vma and index
3175         * are set.  But now set the vm_pgoff it will almost certainly
3176         * end up with (unless mremap moves it elsewhere before that
3177         * first wfault), so /proc/pid/maps tells a consistent story.
3178         *
3179         * By setting it to reflect the virtual start address of the
3180         * vma, merges and splits can happen in a seamless way, just
3181         * using the existing file pgoff checks and manipulations.
3182         * Similarly in do_mmap and in do_brk_flags.
3183         */
3184        if (vma_is_anonymous(vma)) {
3185                BUG_ON(vma->anon_vma);
3186                vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3187        }
3188
3189        vma_link(mm, vma, prev, rb_link, rb_parent);
3190        return 0;
3191}
3192
3193/*
3194 * Copy the vma structure to a new location in the same mm,
3195 * prior to moving page table entries, to effect an mremap move.
3196 */
3197struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3198        unsigned long addr, unsigned long len, pgoff_t pgoff,
3199        bool *need_rmap_locks)
3200{
3201        struct vm_area_struct *vma = *vmap;
3202        unsigned long vma_start = vma->vm_start;
3203        struct mm_struct *mm = vma->vm_mm;
3204        struct vm_area_struct *new_vma, *prev;
3205        struct rb_node **rb_link, *rb_parent;
3206        bool faulted_in_anon_vma = true;
3207
3208        /*
3209         * If anonymous vma has not yet been faulted, update new pgoff
3210         * to match new location, to increase its chance of merging.
3211         */
3212        if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3213                pgoff = addr >> PAGE_SHIFT;
3214                faulted_in_anon_vma = false;
3215        }
3216
3217        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3218                return NULL;    /* should never get here */
3219        new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3220                            vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3221                            vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3222        if (new_vma) {
3223                /*
3224                 * Source vma may have been merged into new_vma
3225                 */
3226                if (unlikely(vma_start >= new_vma->vm_start &&
3227                             vma_start < new_vma->vm_end)) {
3228                        /*
3229                         * The only way we can get a vma_merge with
3230                         * self during an mremap is if the vma hasn't
3231                         * been faulted in yet and we were allowed to
3232                         * reset the dst vma->vm_pgoff to the
3233                         * destination address of the mremap to allow
3234                         * the merge to happen. mremap must change the
3235                         * vm_pgoff linearity between src and dst vmas
3236                         * (in turn preventing a vma_merge) to be
3237                         * safe. It is only safe to keep the vm_pgoff
3238                         * linear if there are no pages mapped yet.
3239                         */
3240                        VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3241                        *vmap = vma = new_vma;
3242                }
3243                *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3244        } else {
3245                new_vma = vm_area_dup(vma);
3246                if (!new_vma)
3247                        goto out;
3248                new_vma->vm_start = addr;
3249                new_vma->vm_end = addr + len;
3250                new_vma->vm_pgoff = pgoff;
3251                if (vma_dup_policy(vma, new_vma))
3252                        goto out_free_vma;
3253                if (anon_vma_clone(new_vma, vma))
3254                        goto out_free_mempol;
3255                if (new_vma->vm_file)
3256                        get_file(new_vma->vm_file);
3257                if (new_vma->vm_ops && new_vma->vm_ops->open)
3258                        new_vma->vm_ops->open(new_vma);
3259                vma_link(mm, new_vma, prev, rb_link, rb_parent);
3260                *need_rmap_locks = false;
3261        }
3262        return new_vma;
3263
3264out_free_mempol:
3265        mpol_put(vma_policy(new_vma));
3266out_free_vma:
3267        vm_area_free(new_vma);
3268out:
3269        return NULL;
3270}
3271
3272/*
3273 * Return true if the calling process may expand its vm space by the passed
3274 * number of pages
3275 */
3276bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3277{
3278        if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3279                return false;
3280
3281        if (is_data_mapping(flags) &&
3282            mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3283                /* Workaround for Valgrind */
3284                if (rlimit(RLIMIT_DATA) == 0 &&
3285                    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3286                        return true;
3287
3288                pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3289                             current->comm, current->pid,
3290                             (mm->data_vm + npages) << PAGE_SHIFT,
3291                             rlimit(RLIMIT_DATA),
3292                             ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3293
3294                if (!ignore_rlimit_data)
3295                        return false;
3296        }
3297
3298        return true;
3299}
3300
3301void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3302{
3303        WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3304
3305        if (is_exec_mapping(flags))
3306                mm->exec_vm += npages;
3307        else if (is_stack_mapping(flags))
3308                mm->stack_vm += npages;
3309        else if (is_data_mapping(flags))
3310                mm->data_vm += npages;
3311}
3312
3313static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3314
3315/*
3316 * Having a close hook prevents vma merging regardless of flags.
3317 */
3318static void special_mapping_close(struct vm_area_struct *vma)
3319{
3320}
3321
3322static const char *special_mapping_name(struct vm_area_struct *vma)
3323{
3324        return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3325}
3326
3327static int special_mapping_mremap(struct vm_area_struct *new_vma)
3328{
3329        struct vm_special_mapping *sm = new_vma->vm_private_data;
3330
3331        if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3332                return -EFAULT;
3333
3334        if (sm->mremap)
3335                return sm->mremap(sm, new_vma);
3336
3337        return 0;
3338}
3339
3340static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3341{
3342        /*
3343         * Forbid splitting special mappings - kernel has expectations over
3344         * the number of pages in mapping. Together with VM_DONTEXPAND
3345         * the size of vma should stay the same over the special mapping's
3346         * lifetime.
3347         */
3348        return -EINVAL;
3349}
3350
3351static const struct vm_operations_struct special_mapping_vmops = {
3352        .close = special_mapping_close,
3353        .fault = special_mapping_fault,
3354        .mremap = special_mapping_mremap,
3355        .name = special_mapping_name,
3356        /* vDSO code relies that VVAR can't be accessed remotely */
3357        .access = NULL,
3358        .may_split = special_mapping_split,
3359};
3360
3361static const struct vm_operations_struct legacy_special_mapping_vmops = {
3362        .close = special_mapping_close,
3363        .fault = special_mapping_fault,
3364};
3365
3366static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3367{
3368        struct vm_area_struct *vma = vmf->vma;
3369        pgoff_t pgoff;
3370        struct page **pages;
3371
3372        if (vma->vm_ops == &legacy_special_mapping_vmops) {
3373                pages = vma->vm_private_data;
3374        } else {
3375                struct vm_special_mapping *sm = vma->vm_private_data;
3376
3377                if (sm->fault)
3378                        return sm->fault(sm, vmf->vma, vmf);
3379
3380                pages = sm->pages;
3381        }
3382
3383        for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3384                pgoff--;
3385
3386        if (*pages) {
3387                struct page *page = *pages;
3388                get_page(page);
3389                vmf->page = page;
3390                return 0;
3391        }
3392
3393        return VM_FAULT_SIGBUS;
3394}
3395
3396static struct vm_area_struct *__install_special_mapping(
3397        struct mm_struct *mm,
3398        unsigned long addr, unsigned long len,
3399        unsigned long vm_flags, void *priv,
3400        const struct vm_operations_struct *ops)
3401{
3402        int ret;
3403        struct vm_area_struct *vma;
3404
3405        vma = vm_area_alloc(mm);
3406        if (unlikely(vma == NULL))
3407                return ERR_PTR(-ENOMEM);
3408
3409        vma->vm_start = addr;
3410        vma->vm_end = addr + len;
3411
3412        vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3413        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3414        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3415
3416        vma->vm_ops = ops;
3417        vma->vm_private_data = priv;
3418
3419        ret = insert_vm_struct(mm, vma);
3420        if (ret)
3421                goto out;
3422
3423        vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3424
3425        perf_event_mmap(vma);
3426
3427        return vma;
3428
3429out:
3430        vm_area_free(vma);
3431        return ERR_PTR(ret);
3432}
3433
3434bool vma_is_special_mapping(const struct vm_area_struct *vma,
3435        const struct vm_special_mapping *sm)
3436{
3437        return vma->vm_private_data == sm &&
3438                (vma->vm_ops == &special_mapping_vmops ||
3439                 vma->vm_ops == &legacy_special_mapping_vmops);
3440}
3441
3442/*
3443 * Called with mm->mmap_lock held for writing.
3444 * Insert a new vma covering the given region, with the given flags.
3445 * Its pages are supplied by the given array of struct page *.
3446 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3447 * The region past the last page supplied will always produce SIGBUS.
3448 * The array pointer and the pages it points to are assumed to stay alive
3449 * for as long as this mapping might exist.
3450 */
3451struct vm_area_struct *_install_special_mapping(
3452        struct mm_struct *mm,
3453        unsigned long addr, unsigned long len,
3454        unsigned long vm_flags, const struct vm_special_mapping *spec)
3455{
3456        return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3457                                        &special_mapping_vmops);
3458}
3459
3460int install_special_mapping(struct mm_struct *mm,
3461                            unsigned long addr, unsigned long len,
3462                            unsigned long vm_flags, struct page **pages)
3463{
3464        struct vm_area_struct *vma = __install_special_mapping(
3465                mm, addr, len, vm_flags, (void *)pages,
3466                &legacy_special_mapping_vmops);
3467
3468        return PTR_ERR_OR_ZERO(vma);
3469}
3470
3471static DEFINE_MUTEX(mm_all_locks_mutex);
3472
3473static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3474{
3475        if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3476                /*
3477                 * The LSB of head.next can't change from under us
3478                 * because we hold the mm_all_locks_mutex.
3479                 */
3480                down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3481                /*
3482                 * We can safely modify head.next after taking the
3483                 * anon_vma->root->rwsem. If some other vma in this mm shares
3484                 * the same anon_vma we won't take it again.
3485                 *
3486                 * No need of atomic instructions here, head.next
3487                 * can't change from under us thanks to the
3488                 * anon_vma->root->rwsem.
3489                 */
3490                if (__test_and_set_bit(0, (unsigned long *)
3491                                       &anon_vma->root->rb_root.rb_root.rb_node))
3492                        BUG();
3493        }
3494}
3495
3496static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3497{
3498        if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3499                /*
3500                 * AS_MM_ALL_LOCKS can't change from under us because
3501                 * we hold the mm_all_locks_mutex.
3502                 *
3503                 * Operations on ->flags have to be atomic because
3504                 * even if AS_MM_ALL_LOCKS is stable thanks to the
3505                 * mm_all_locks_mutex, there may be other cpus
3506                 * changing other bitflags in parallel to us.
3507                 */
3508                if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3509                        BUG();
3510                down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3511        }
3512}
3513
3514/*
3515 * This operation locks against the VM for all pte/vma/mm related
3516 * operations that could ever happen on a certain mm. This includes
3517 * vmtruncate, try_to_unmap, and all page faults.
3518 *
3519 * The caller must take the mmap_lock in write mode before calling
3520 * mm_take_all_locks(). The caller isn't allowed to release the
3521 * mmap_lock until mm_drop_all_locks() returns.
3522 *
3523 * mmap_lock in write mode is required in order to block all operations
3524 * that could modify pagetables and free pages without need of
3525 * altering the vma layout. It's also needed in write mode to avoid new
3526 * anon_vmas to be associated with existing vmas.
3527 *
3528 * A single task can't take more than one mm_take_all_locks() in a row
3529 * or it would deadlock.
3530 *
3531 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3532 * mapping->flags avoid to take the same lock twice, if more than one
3533 * vma in this mm is backed by the same anon_vma or address_space.
3534 *
3535 * We take locks in following order, accordingly to comment at beginning
3536 * of mm/rmap.c:
3537 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3538 *     hugetlb mapping);
3539 *   - all i_mmap_rwsem locks;
3540 *   - all anon_vma->rwseml
3541 *
3542 * We can take all locks within these types randomly because the VM code
3543 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3544 * mm_all_locks_mutex.
3545 *
3546 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3547 * that may have to take thousand of locks.
3548 *
3549 * mm_take_all_locks() can fail if it's interrupted by signals.
3550 */
3551int mm_take_all_locks(struct mm_struct *mm)
3552{
3553        struct vm_area_struct *vma;
3554        struct anon_vma_chain *avc;
3555
3556        BUG_ON(mmap_read_trylock(mm));
3557
3558        mutex_lock(&mm_all_locks_mutex);
3559
3560        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3561                if (signal_pending(current))
3562                        goto out_unlock;
3563                if (vma->vm_file && vma->vm_file->f_mapping &&
3564                                is_vm_hugetlb_page(vma))
3565                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3566        }
3567
3568        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3569                if (signal_pending(current))
3570                        goto out_unlock;
3571                if (vma->vm_file && vma->vm_file->f_mapping &&
3572                                !is_vm_hugetlb_page(vma))
3573                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3574        }
3575
3576        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3577                if (signal_pending(current))
3578                        goto out_unlock;
3579                if (vma->anon_vma)
3580                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3581                                vm_lock_anon_vma(mm, avc->anon_vma);
3582        }
3583
3584        return 0;
3585
3586out_unlock:
3587        mm_drop_all_locks(mm);
3588        return -EINTR;
3589}
3590
3591static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3592{
3593        if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3594                /*
3595                 * The LSB of head.next can't change to 0 from under
3596                 * us because we hold the mm_all_locks_mutex.
3597                 *
3598                 * We must however clear the bitflag before unlocking
3599                 * the vma so the users using the anon_vma->rb_root will
3600                 * never see our bitflag.
3601                 *
3602                 * No need of atomic instructions here, head.next
3603                 * can't change from under us until we release the
3604                 * anon_vma->root->rwsem.
3605                 */
3606                if (!__test_and_clear_bit(0, (unsigned long *)
3607                                          &anon_vma->root->rb_root.rb_root.rb_node))
3608                        BUG();
3609                anon_vma_unlock_write(anon_vma);
3610        }
3611}
3612
3613static void vm_unlock_mapping(struct address_space *mapping)
3614{
3615        if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3616                /*
3617                 * AS_MM_ALL_LOCKS can't change to 0 from under us
3618                 * because we hold the mm_all_locks_mutex.
3619                 */
3620                i_mmap_unlock_write(mapping);
3621                if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3622                                        &mapping->flags))
3623                        BUG();
3624        }
3625}
3626
3627/*
3628 * The mmap_lock cannot be released by the caller until
3629 * mm_drop_all_locks() returns.
3630 */
3631void mm_drop_all_locks(struct mm_struct *mm)
3632{
3633        struct vm_area_struct *vma;
3634        struct anon_vma_chain *avc;
3635
3636        BUG_ON(mmap_read_trylock(mm));
3637        BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3638
3639        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3640                if (vma->anon_vma)
3641                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3642                                vm_unlock_anon_vma(avc->anon_vma);
3643                if (vma->vm_file && vma->vm_file->f_mapping)
3644                        vm_unlock_mapping(vma->vm_file->f_mapping);
3645        }
3646
3647        mutex_unlock(&mm_all_locks_mutex);
3648}
3649
3650/*
3651 * initialise the percpu counter for VM
3652 */
3653void __init mmap_init(void)
3654{
3655        int ret;
3656
3657        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3658        VM_BUG_ON(ret);
3659}
3660
3661/*
3662 * Initialise sysctl_user_reserve_kbytes.
3663 *
3664 * This is intended to prevent a user from starting a single memory hogging
3665 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3666 * mode.
3667 *
3668 * The default value is min(3% of free memory, 128MB)
3669 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3670 */
3671static int init_user_reserve(void)
3672{
3673        unsigned long free_kbytes;
3674
3675        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3676
3677        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3678        return 0;
3679}
3680subsys_initcall(init_user_reserve);
3681
3682/*
3683 * Initialise sysctl_admin_reserve_kbytes.
3684 *
3685 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3686 * to log in and kill a memory hogging process.
3687 *
3688 * Systems with more than 256MB will reserve 8MB, enough to recover
3689 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3690 * only reserve 3% of free pages by default.
3691 */
3692static int init_admin_reserve(void)
3693{
3694        unsigned long free_kbytes;
3695
3696        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3697
3698        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3699        return 0;
3700}
3701subsys_initcall(init_admin_reserve);
3702
3703/*
3704 * Reinititalise user and admin reserves if memory is added or removed.
3705 *
3706 * The default user reserve max is 128MB, and the default max for the
3707 * admin reserve is 8MB. These are usually, but not always, enough to
3708 * enable recovery from a memory hogging process using login/sshd, a shell,
3709 * and tools like top. It may make sense to increase or even disable the
3710 * reserve depending on the existence of swap or variations in the recovery
3711 * tools. So, the admin may have changed them.
3712 *
3713 * If memory is added and the reserves have been eliminated or increased above
3714 * the default max, then we'll trust the admin.
3715 *
3716 * If memory is removed and there isn't enough free memory, then we
3717 * need to reset the reserves.
3718 *
3719 * Otherwise keep the reserve set by the admin.
3720 */
3721static int reserve_mem_notifier(struct notifier_block *nb,
3722                             unsigned long action, void *data)
3723{
3724        unsigned long tmp, free_kbytes;
3725
3726        switch (action) {
3727        case MEM_ONLINE:
3728                /* Default max is 128MB. Leave alone if modified by operator. */
3729                tmp = sysctl_user_reserve_kbytes;
3730                if (0 < tmp && tmp < (1UL << 17))
3731                        init_user_reserve();
3732
3733                /* Default max is 8MB.  Leave alone if modified by operator. */
3734                tmp = sysctl_admin_reserve_kbytes;
3735                if (0 < tmp && tmp < (1UL << 13))
3736                        init_admin_reserve();
3737
3738                break;
3739        case MEM_OFFLINE:
3740                free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3741
3742                if (sysctl_user_reserve_kbytes > free_kbytes) {
3743                        init_user_reserve();
3744                        pr_info("vm.user_reserve_kbytes reset to %lu\n",
3745                                sysctl_user_reserve_kbytes);
3746                }
3747
3748                if (sysctl_admin_reserve_kbytes > free_kbytes) {
3749                        init_admin_reserve();
3750                        pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3751                                sysctl_admin_reserve_kbytes);
3752                }
3753                break;
3754        default:
3755                break;
3756        }
3757        return NOTIFY_OK;
3758}
3759
3760static struct notifier_block reserve_mem_nb = {
3761        .notifier_call = reserve_mem_notifier,
3762};
3763
3764static int __meminit init_reserve_notifier(void)
3765{
3766        if (register_hotmemory_notifier(&reserve_mem_nb))
3767                pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3768
3769        return 0;
3770}
3771subsys_initcall(init_reserve_notifier);
3772