linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to zspage
  20 *      page->index: links together all component pages of a zspage
  21 *              For the huge page, this is always 0, so we use this field
  22 *              to store handle.
  23 *      page->page_type: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *      PG_private: identifies the first component page
  27 *      PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33/*
  34 * lock ordering:
  35 *      page_lock
  36 *      pool->migrate_lock
  37 *      class->lock
  38 *      zspage->lock
  39 */
  40
  41#include <linux/module.h>
  42#include <linux/kernel.h>
  43#include <linux/sched.h>
  44#include <linux/magic.h>
  45#include <linux/bitops.h>
  46#include <linux/errno.h>
  47#include <linux/highmem.h>
  48#include <linux/string.h>
  49#include <linux/slab.h>
  50#include <linux/pgtable.h>
  51#include <asm/tlbflush.h>
  52#include <linux/cpumask.h>
  53#include <linux/cpu.h>
  54#include <linux/vmalloc.h>
  55#include <linux/preempt.h>
  56#include <linux/spinlock.h>
  57#include <linux/shrinker.h>
  58#include <linux/types.h>
  59#include <linux/debugfs.h>
  60#include <linux/zsmalloc.h>
  61#include <linux/zpool.h>
  62#include <linux/mount.h>
  63#include <linux/pseudo_fs.h>
  64#include <linux/migrate.h>
  65#include <linux/wait.h>
  66#include <linux/pagemap.h>
  67#include <linux/fs.h>
  68#include <linux/local_lock.h>
  69
  70#define ZSPAGE_MAGIC    0x58
  71
  72/*
  73 * This must be power of 2 and greater than or equal to sizeof(link_free).
  74 * These two conditions ensure that any 'struct link_free' itself doesn't
  75 * span more than 1 page which avoids complex case of mapping 2 pages simply
  76 * to restore link_free pointer values.
  77 */
  78#define ZS_ALIGN                8
  79
  80/*
  81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  83 */
  84#define ZS_MAX_ZSPAGE_ORDER 2
  85#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  86
  87#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  88
  89/*
  90 * Object location (<PFN>, <obj_idx>) is encoded as
  91 * a single (unsigned long) handle value.
  92 *
  93 * Note that object index <obj_idx> starts from 0.
  94 *
  95 * This is made more complicated by various memory models and PAE.
  96 */
  97
  98#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  99#ifdef MAX_PHYSMEM_BITS
 100#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
 101#else
 102/*
 103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 104 * be PAGE_SHIFT
 105 */
 106#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
 107#endif
 108#endif
 109
 110#define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 111
 112/*
 113 * Head in allocated object should have OBJ_ALLOCATED_TAG
 114 * to identify the object was allocated or not.
 115 * It's okay to add the status bit in the least bit because
 116 * header keeps handle which is 4byte-aligned address so we
 117 * have room for two bit at least.
 118 */
 119#define OBJ_ALLOCATED_TAG 1
 120#define OBJ_TAG_BITS 1
 121#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 122#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 123
 124#define HUGE_BITS       1
 125#define FULLNESS_BITS   2
 126#define CLASS_BITS      8
 127#define ISOLATED_BITS   3
 128#define MAGIC_VAL_BITS  8
 129
 130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 132#define ZS_MIN_ALLOC_SIZE \
 133        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 134/* each chunk includes extra space to keep handle */
 135#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 136
 137/*
 138 * On systems with 4K page size, this gives 255 size classes! There is a
 139 * trader-off here:
 140 *  - Large number of size classes is potentially wasteful as free page are
 141 *    spread across these classes
 142 *  - Small number of size classes causes large internal fragmentation
 143 *  - Probably its better to use specific size classes (empirically
 144 *    determined). NOTE: all those class sizes must be set as multiple of
 145 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 146 *
 147 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 148 *  (reason above)
 149 */
 150#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
 151#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 152                                      ZS_SIZE_CLASS_DELTA) + 1)
 153
 154enum fullness_group {
 155        ZS_EMPTY,
 156        ZS_ALMOST_EMPTY,
 157        ZS_ALMOST_FULL,
 158        ZS_FULL,
 159        NR_ZS_FULLNESS,
 160};
 161
 162enum class_stat_type {
 163        CLASS_EMPTY,
 164        CLASS_ALMOST_EMPTY,
 165        CLASS_ALMOST_FULL,
 166        CLASS_FULL,
 167        OBJ_ALLOCATED,
 168        OBJ_USED,
 169        NR_ZS_STAT_TYPE,
 170};
 171
 172struct zs_size_stat {
 173        unsigned long objs[NR_ZS_STAT_TYPE];
 174};
 175
 176#ifdef CONFIG_ZSMALLOC_STAT
 177static struct dentry *zs_stat_root;
 178#endif
 179
 180#ifdef CONFIG_COMPACTION
 181static struct vfsmount *zsmalloc_mnt;
 182#endif
 183
 184/*
 185 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 186 *      n <= N / f, where
 187 * n = number of allocated objects
 188 * N = total number of objects zspage can store
 189 * f = fullness_threshold_frac
 190 *
 191 * Similarly, we assign zspage to:
 192 *      ZS_ALMOST_FULL  when n > N / f
 193 *      ZS_EMPTY        when n == 0
 194 *      ZS_FULL         when n == N
 195 *
 196 * (see: fix_fullness_group())
 197 */
 198static const int fullness_threshold_frac = 4;
 199static size_t huge_class_size;
 200
 201struct size_class {
 202        spinlock_t lock;
 203        struct list_head fullness_list[NR_ZS_FULLNESS];
 204        /*
 205         * Size of objects stored in this class. Must be multiple
 206         * of ZS_ALIGN.
 207         */
 208        int size;
 209        int objs_per_zspage;
 210        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 211        int pages_per_zspage;
 212
 213        unsigned int index;
 214        struct zs_size_stat stats;
 215};
 216
 217/*
 218 * Placed within free objects to form a singly linked list.
 219 * For every zspage, zspage->freeobj gives head of this list.
 220 *
 221 * This must be power of 2 and less than or equal to ZS_ALIGN
 222 */
 223struct link_free {
 224        union {
 225                /*
 226                 * Free object index;
 227                 * It's valid for non-allocated object
 228                 */
 229                unsigned long next;
 230                /*
 231                 * Handle of allocated object.
 232                 */
 233                unsigned long handle;
 234        };
 235};
 236
 237struct zs_pool {
 238        const char *name;
 239
 240        struct size_class *size_class[ZS_SIZE_CLASSES];
 241        struct kmem_cache *handle_cachep;
 242        struct kmem_cache *zspage_cachep;
 243
 244        atomic_long_t pages_allocated;
 245
 246        struct zs_pool_stats stats;
 247
 248        /* Compact classes */
 249        struct shrinker shrinker;
 250
 251#ifdef CONFIG_ZSMALLOC_STAT
 252        struct dentry *stat_dentry;
 253#endif
 254#ifdef CONFIG_COMPACTION
 255        struct inode *inode;
 256        struct work_struct free_work;
 257#endif
 258        /* protect page/zspage migration */
 259        rwlock_t migrate_lock;
 260};
 261
 262struct zspage {
 263        struct {
 264                unsigned int huge:HUGE_BITS;
 265                unsigned int fullness:FULLNESS_BITS;
 266                unsigned int class:CLASS_BITS + 1;
 267                unsigned int isolated:ISOLATED_BITS;
 268                unsigned int magic:MAGIC_VAL_BITS;
 269        };
 270        unsigned int inuse;
 271        unsigned int freeobj;
 272        struct page *first_page;
 273        struct list_head list; /* fullness list */
 274#ifdef CONFIG_COMPACTION
 275        rwlock_t lock;
 276#endif
 277};
 278
 279struct mapping_area {
 280        local_lock_t lock;
 281        char *vm_buf; /* copy buffer for objects that span pages */
 282        char *vm_addr; /* address of kmap_atomic()'ed pages */
 283        enum zs_mapmode vm_mm; /* mapping mode */
 284};
 285
 286/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 287static void SetZsHugePage(struct zspage *zspage)
 288{
 289        zspage->huge = 1;
 290}
 291
 292static bool ZsHugePage(struct zspage *zspage)
 293{
 294        return zspage->huge;
 295}
 296
 297#ifdef CONFIG_COMPACTION
 298static int zs_register_migration(struct zs_pool *pool);
 299static void zs_unregister_migration(struct zs_pool *pool);
 300static void migrate_lock_init(struct zspage *zspage);
 301static void migrate_read_lock(struct zspage *zspage);
 302static void migrate_read_unlock(struct zspage *zspage);
 303static void migrate_write_lock(struct zspage *zspage);
 304static void migrate_write_lock_nested(struct zspage *zspage);
 305static void migrate_write_unlock(struct zspage *zspage);
 306static void kick_deferred_free(struct zs_pool *pool);
 307static void init_deferred_free(struct zs_pool *pool);
 308static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 309#else
 310static int zsmalloc_mount(void) { return 0; }
 311static void zsmalloc_unmount(void) {}
 312static int zs_register_migration(struct zs_pool *pool) { return 0; }
 313static void zs_unregister_migration(struct zs_pool *pool) {}
 314static void migrate_lock_init(struct zspage *zspage) {}
 315static void migrate_read_lock(struct zspage *zspage) {}
 316static void migrate_read_unlock(struct zspage *zspage) {}
 317static void migrate_write_lock(struct zspage *zspage) {}
 318static void migrate_write_lock_nested(struct zspage *zspage) {}
 319static void migrate_write_unlock(struct zspage *zspage) {}
 320static void kick_deferred_free(struct zs_pool *pool) {}
 321static void init_deferred_free(struct zs_pool *pool) {}
 322static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 323#endif
 324
 325static int create_cache(struct zs_pool *pool)
 326{
 327        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 328                                        0, 0, NULL);
 329        if (!pool->handle_cachep)
 330                return 1;
 331
 332        pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 333                                        0, 0, NULL);
 334        if (!pool->zspage_cachep) {
 335                kmem_cache_destroy(pool->handle_cachep);
 336                pool->handle_cachep = NULL;
 337                return 1;
 338        }
 339
 340        return 0;
 341}
 342
 343static void destroy_cache(struct zs_pool *pool)
 344{
 345        kmem_cache_destroy(pool->handle_cachep);
 346        kmem_cache_destroy(pool->zspage_cachep);
 347}
 348
 349static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 350{
 351        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 352                        gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 353}
 354
 355static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 356{
 357        kmem_cache_free(pool->handle_cachep, (void *)handle);
 358}
 359
 360static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 361{
 362        return kmem_cache_zalloc(pool->zspage_cachep,
 363                        flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 364}
 365
 366static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 367{
 368        kmem_cache_free(pool->zspage_cachep, zspage);
 369}
 370
 371/* class->lock(which owns the handle) synchronizes races */
 372static void record_obj(unsigned long handle, unsigned long obj)
 373{
 374        *(unsigned long *)handle = obj;
 375}
 376
 377/* zpool driver */
 378
 379#ifdef CONFIG_ZPOOL
 380
 381static void *zs_zpool_create(const char *name, gfp_t gfp,
 382                             const struct zpool_ops *zpool_ops,
 383                             struct zpool *zpool)
 384{
 385        /*
 386         * Ignore global gfp flags: zs_malloc() may be invoked from
 387         * different contexts and its caller must provide a valid
 388         * gfp mask.
 389         */
 390        return zs_create_pool(name);
 391}
 392
 393static void zs_zpool_destroy(void *pool)
 394{
 395        zs_destroy_pool(pool);
 396}
 397
 398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 399                        unsigned long *handle)
 400{
 401        *handle = zs_malloc(pool, size, gfp);
 402        return *handle ? 0 : -1;
 403}
 404static void zs_zpool_free(void *pool, unsigned long handle)
 405{
 406        zs_free(pool, handle);
 407}
 408
 409static void *zs_zpool_map(void *pool, unsigned long handle,
 410                        enum zpool_mapmode mm)
 411{
 412        enum zs_mapmode zs_mm;
 413
 414        switch (mm) {
 415        case ZPOOL_MM_RO:
 416                zs_mm = ZS_MM_RO;
 417                break;
 418        case ZPOOL_MM_WO:
 419                zs_mm = ZS_MM_WO;
 420                break;
 421        case ZPOOL_MM_RW:
 422        default:
 423                zs_mm = ZS_MM_RW;
 424                break;
 425        }
 426
 427        return zs_map_object(pool, handle, zs_mm);
 428}
 429static void zs_zpool_unmap(void *pool, unsigned long handle)
 430{
 431        zs_unmap_object(pool, handle);
 432}
 433
 434static u64 zs_zpool_total_size(void *pool)
 435{
 436        return zs_get_total_pages(pool) << PAGE_SHIFT;
 437}
 438
 439static struct zpool_driver zs_zpool_driver = {
 440        .type =                   "zsmalloc",
 441        .owner =                  THIS_MODULE,
 442        .create =                 zs_zpool_create,
 443        .destroy =                zs_zpool_destroy,
 444        .malloc_support_movable = true,
 445        .malloc =                 zs_zpool_malloc,
 446        .free =                   zs_zpool_free,
 447        .map =                    zs_zpool_map,
 448        .unmap =                  zs_zpool_unmap,
 449        .total_size =             zs_zpool_total_size,
 450};
 451
 452MODULE_ALIAS("zpool-zsmalloc");
 453#endif /* CONFIG_ZPOOL */
 454
 455/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 456static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
 457        .lock   = INIT_LOCAL_LOCK(lock),
 458};
 459
 460static __maybe_unused int is_first_page(struct page *page)
 461{
 462        return PagePrivate(page);
 463}
 464
 465/* Protected by class->lock */
 466static inline int get_zspage_inuse(struct zspage *zspage)
 467{
 468        return zspage->inuse;
 469}
 470
 471
 472static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 473{
 474        zspage->inuse += val;
 475}
 476
 477static inline struct page *get_first_page(struct zspage *zspage)
 478{
 479        struct page *first_page = zspage->first_page;
 480
 481        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 482        return first_page;
 483}
 484
 485static inline int get_first_obj_offset(struct page *page)
 486{
 487        return page->page_type;
 488}
 489
 490static inline void set_first_obj_offset(struct page *page, int offset)
 491{
 492        page->page_type = offset;
 493}
 494
 495static inline unsigned int get_freeobj(struct zspage *zspage)
 496{
 497        return zspage->freeobj;
 498}
 499
 500static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 501{
 502        zspage->freeobj = obj;
 503}
 504
 505static void get_zspage_mapping(struct zspage *zspage,
 506                                unsigned int *class_idx,
 507                                enum fullness_group *fullness)
 508{
 509        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 510
 511        *fullness = zspage->fullness;
 512        *class_idx = zspage->class;
 513}
 514
 515static struct size_class *zspage_class(struct zs_pool *pool,
 516                                             struct zspage *zspage)
 517{
 518        return pool->size_class[zspage->class];
 519}
 520
 521static void set_zspage_mapping(struct zspage *zspage,
 522                                unsigned int class_idx,
 523                                enum fullness_group fullness)
 524{
 525        zspage->class = class_idx;
 526        zspage->fullness = fullness;
 527}
 528
 529/*
 530 * zsmalloc divides the pool into various size classes where each
 531 * class maintains a list of zspages where each zspage is divided
 532 * into equal sized chunks. Each allocation falls into one of these
 533 * classes depending on its size. This function returns index of the
 534 * size class which has chunk size big enough to hold the given size.
 535 */
 536static int get_size_class_index(int size)
 537{
 538        int idx = 0;
 539
 540        if (likely(size > ZS_MIN_ALLOC_SIZE))
 541                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 542                                ZS_SIZE_CLASS_DELTA);
 543
 544        return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 545}
 546
 547/* type can be of enum type class_stat_type or fullness_group */
 548static inline void class_stat_inc(struct size_class *class,
 549                                int type, unsigned long cnt)
 550{
 551        class->stats.objs[type] += cnt;
 552}
 553
 554/* type can be of enum type class_stat_type or fullness_group */
 555static inline void class_stat_dec(struct size_class *class,
 556                                int type, unsigned long cnt)
 557{
 558        class->stats.objs[type] -= cnt;
 559}
 560
 561/* type can be of enum type class_stat_type or fullness_group */
 562static inline unsigned long zs_stat_get(struct size_class *class,
 563                                int type)
 564{
 565        return class->stats.objs[type];
 566}
 567
 568#ifdef CONFIG_ZSMALLOC_STAT
 569
 570static void __init zs_stat_init(void)
 571{
 572        if (!debugfs_initialized()) {
 573                pr_warn("debugfs not available, stat dir not created\n");
 574                return;
 575        }
 576
 577        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 578}
 579
 580static void __exit zs_stat_exit(void)
 581{
 582        debugfs_remove_recursive(zs_stat_root);
 583}
 584
 585static unsigned long zs_can_compact(struct size_class *class);
 586
 587static int zs_stats_size_show(struct seq_file *s, void *v)
 588{
 589        int i;
 590        struct zs_pool *pool = s->private;
 591        struct size_class *class;
 592        int objs_per_zspage;
 593        unsigned long class_almost_full, class_almost_empty;
 594        unsigned long obj_allocated, obj_used, pages_used, freeable;
 595        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 596        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 597        unsigned long total_freeable = 0;
 598
 599        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 600                        "class", "size", "almost_full", "almost_empty",
 601                        "obj_allocated", "obj_used", "pages_used",
 602                        "pages_per_zspage", "freeable");
 603
 604        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 605                class = pool->size_class[i];
 606
 607                if (class->index != i)
 608                        continue;
 609
 610                spin_lock(&class->lock);
 611                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 612                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 613                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 614                obj_used = zs_stat_get(class, OBJ_USED);
 615                freeable = zs_can_compact(class);
 616                spin_unlock(&class->lock);
 617
 618                objs_per_zspage = class->objs_per_zspage;
 619                pages_used = obj_allocated / objs_per_zspage *
 620                                class->pages_per_zspage;
 621
 622                seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 623                                " %10lu %10lu %16d %8lu\n",
 624                        i, class->size, class_almost_full, class_almost_empty,
 625                        obj_allocated, obj_used, pages_used,
 626                        class->pages_per_zspage, freeable);
 627
 628                total_class_almost_full += class_almost_full;
 629                total_class_almost_empty += class_almost_empty;
 630                total_objs += obj_allocated;
 631                total_used_objs += obj_used;
 632                total_pages += pages_used;
 633                total_freeable += freeable;
 634        }
 635
 636        seq_puts(s, "\n");
 637        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 638                        "Total", "", total_class_almost_full,
 639                        total_class_almost_empty, total_objs,
 640                        total_used_objs, total_pages, "", total_freeable);
 641
 642        return 0;
 643}
 644DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 645
 646static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 647{
 648        if (!zs_stat_root) {
 649                pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 650                return;
 651        }
 652
 653        pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 654
 655        debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 656                            &zs_stats_size_fops);
 657}
 658
 659static void zs_pool_stat_destroy(struct zs_pool *pool)
 660{
 661        debugfs_remove_recursive(pool->stat_dentry);
 662}
 663
 664#else /* CONFIG_ZSMALLOC_STAT */
 665static void __init zs_stat_init(void)
 666{
 667}
 668
 669static void __exit zs_stat_exit(void)
 670{
 671}
 672
 673static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 674{
 675}
 676
 677static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 678{
 679}
 680#endif
 681
 682
 683/*
 684 * For each size class, zspages are divided into different groups
 685 * depending on how "full" they are. This was done so that we could
 686 * easily find empty or nearly empty zspages when we try to shrink
 687 * the pool (not yet implemented). This function returns fullness
 688 * status of the given page.
 689 */
 690static enum fullness_group get_fullness_group(struct size_class *class,
 691                                                struct zspage *zspage)
 692{
 693        int inuse, objs_per_zspage;
 694        enum fullness_group fg;
 695
 696        inuse = get_zspage_inuse(zspage);
 697        objs_per_zspage = class->objs_per_zspage;
 698
 699        if (inuse == 0)
 700                fg = ZS_EMPTY;
 701        else if (inuse == objs_per_zspage)
 702                fg = ZS_FULL;
 703        else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 704                fg = ZS_ALMOST_EMPTY;
 705        else
 706                fg = ZS_ALMOST_FULL;
 707
 708        return fg;
 709}
 710
 711/*
 712 * Each size class maintains various freelists and zspages are assigned
 713 * to one of these freelists based on the number of live objects they
 714 * have. This functions inserts the given zspage into the freelist
 715 * identified by <class, fullness_group>.
 716 */
 717static void insert_zspage(struct size_class *class,
 718                                struct zspage *zspage,
 719                                enum fullness_group fullness)
 720{
 721        struct zspage *head;
 722
 723        class_stat_inc(class, fullness, 1);
 724        head = list_first_entry_or_null(&class->fullness_list[fullness],
 725                                        struct zspage, list);
 726        /*
 727         * We want to see more ZS_FULL pages and less almost empty/full.
 728         * Put pages with higher ->inuse first.
 729         */
 730        if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
 731                list_add(&zspage->list, &head->list);
 732        else
 733                list_add(&zspage->list, &class->fullness_list[fullness]);
 734}
 735
 736/*
 737 * This function removes the given zspage from the freelist identified
 738 * by <class, fullness_group>.
 739 */
 740static void remove_zspage(struct size_class *class,
 741                                struct zspage *zspage,
 742                                enum fullness_group fullness)
 743{
 744        VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 745
 746        list_del_init(&zspage->list);
 747        class_stat_dec(class, fullness, 1);
 748}
 749
 750/*
 751 * Each size class maintains zspages in different fullness groups depending
 752 * on the number of live objects they contain. When allocating or freeing
 753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 754 * to ALMOST_EMPTY when freeing an object. This function checks if such
 755 * a status change has occurred for the given page and accordingly moves the
 756 * page from the freelist of the old fullness group to that of the new
 757 * fullness group.
 758 */
 759static enum fullness_group fix_fullness_group(struct size_class *class,
 760                                                struct zspage *zspage)
 761{
 762        int class_idx;
 763        enum fullness_group currfg, newfg;
 764
 765        get_zspage_mapping(zspage, &class_idx, &currfg);
 766        newfg = get_fullness_group(class, zspage);
 767        if (newfg == currfg)
 768                goto out;
 769
 770        remove_zspage(class, zspage, currfg);
 771        insert_zspage(class, zspage, newfg);
 772        set_zspage_mapping(zspage, class_idx, newfg);
 773out:
 774        return newfg;
 775}
 776
 777/*
 778 * We have to decide on how many pages to link together
 779 * to form a zspage for each size class. This is important
 780 * to reduce wastage due to unusable space left at end of
 781 * each zspage which is given as:
 782 *     wastage = Zp % class_size
 783 *     usage = Zp - wastage
 784 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 785 *
 786 * For example, for size class of 3/8 * PAGE_SIZE, we should
 787 * link together 3 PAGE_SIZE sized pages to form a zspage
 788 * since then we can perfectly fit in 8 such objects.
 789 */
 790static int get_pages_per_zspage(int class_size)
 791{
 792        int i, max_usedpc = 0;
 793        /* zspage order which gives maximum used size per KB */
 794        int max_usedpc_order = 1;
 795
 796        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 797                int zspage_size;
 798                int waste, usedpc;
 799
 800                zspage_size = i * PAGE_SIZE;
 801                waste = zspage_size % class_size;
 802                usedpc = (zspage_size - waste) * 100 / zspage_size;
 803
 804                if (usedpc > max_usedpc) {
 805                        max_usedpc = usedpc;
 806                        max_usedpc_order = i;
 807                }
 808        }
 809
 810        return max_usedpc_order;
 811}
 812
 813static struct zspage *get_zspage(struct page *page)
 814{
 815        struct zspage *zspage = (struct zspage *)page_private(page);
 816
 817        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 818        return zspage;
 819}
 820
 821static struct page *get_next_page(struct page *page)
 822{
 823        struct zspage *zspage = get_zspage(page);
 824
 825        if (unlikely(ZsHugePage(zspage)))
 826                return NULL;
 827
 828        return (struct page *)page->index;
 829}
 830
 831/**
 832 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 833 * @obj: the encoded object value
 834 * @page: page object resides in zspage
 835 * @obj_idx: object index
 836 */
 837static void obj_to_location(unsigned long obj, struct page **page,
 838                                unsigned int *obj_idx)
 839{
 840        obj >>= OBJ_TAG_BITS;
 841        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 842        *obj_idx = (obj & OBJ_INDEX_MASK);
 843}
 844
 845static void obj_to_page(unsigned long obj, struct page **page)
 846{
 847        obj >>= OBJ_TAG_BITS;
 848        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 849}
 850
 851/**
 852 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 853 * @page: page object resides in zspage
 854 * @obj_idx: object index
 855 */
 856static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 857{
 858        unsigned long obj;
 859
 860        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 861        obj |= obj_idx & OBJ_INDEX_MASK;
 862        obj <<= OBJ_TAG_BITS;
 863
 864        return obj;
 865}
 866
 867static unsigned long handle_to_obj(unsigned long handle)
 868{
 869        return *(unsigned long *)handle;
 870}
 871
 872static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
 873{
 874        unsigned long handle;
 875        struct zspage *zspage = get_zspage(page);
 876
 877        if (unlikely(ZsHugePage(zspage))) {
 878                VM_BUG_ON_PAGE(!is_first_page(page), page);
 879                handle = page->index;
 880        } else
 881                handle = *(unsigned long *)obj;
 882
 883        if (!(handle & OBJ_ALLOCATED_TAG))
 884                return false;
 885
 886        *phandle = handle & ~OBJ_ALLOCATED_TAG;
 887        return true;
 888}
 889
 890static void reset_page(struct page *page)
 891{
 892        __ClearPageMovable(page);
 893        ClearPagePrivate(page);
 894        set_page_private(page, 0);
 895        page_mapcount_reset(page);
 896        page->index = 0;
 897}
 898
 899static int trylock_zspage(struct zspage *zspage)
 900{
 901        struct page *cursor, *fail;
 902
 903        for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 904                                        get_next_page(cursor)) {
 905                if (!trylock_page(cursor)) {
 906                        fail = cursor;
 907                        goto unlock;
 908                }
 909        }
 910
 911        return 1;
 912unlock:
 913        for (cursor = get_first_page(zspage); cursor != fail; cursor =
 914                                        get_next_page(cursor))
 915                unlock_page(cursor);
 916
 917        return 0;
 918}
 919
 920static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 921                                struct zspage *zspage)
 922{
 923        struct page *page, *next;
 924        enum fullness_group fg;
 925        unsigned int class_idx;
 926
 927        get_zspage_mapping(zspage, &class_idx, &fg);
 928
 929        assert_spin_locked(&class->lock);
 930
 931        VM_BUG_ON(get_zspage_inuse(zspage));
 932        VM_BUG_ON(fg != ZS_EMPTY);
 933
 934        next = page = get_first_page(zspage);
 935        do {
 936                VM_BUG_ON_PAGE(!PageLocked(page), page);
 937                next = get_next_page(page);
 938                reset_page(page);
 939                unlock_page(page);
 940                dec_zone_page_state(page, NR_ZSPAGES);
 941                put_page(page);
 942                page = next;
 943        } while (page != NULL);
 944
 945        cache_free_zspage(pool, zspage);
 946
 947        class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 948        atomic_long_sub(class->pages_per_zspage,
 949                                        &pool->pages_allocated);
 950}
 951
 952static void free_zspage(struct zs_pool *pool, struct size_class *class,
 953                                struct zspage *zspage)
 954{
 955        VM_BUG_ON(get_zspage_inuse(zspage));
 956        VM_BUG_ON(list_empty(&zspage->list));
 957
 958        /*
 959         * Since zs_free couldn't be sleepable, this function cannot call
 960         * lock_page. The page locks trylock_zspage got will be released
 961         * by __free_zspage.
 962         */
 963        if (!trylock_zspage(zspage)) {
 964                kick_deferred_free(pool);
 965                return;
 966        }
 967
 968        remove_zspage(class, zspage, ZS_EMPTY);
 969        __free_zspage(pool, class, zspage);
 970}
 971
 972/* Initialize a newly allocated zspage */
 973static void init_zspage(struct size_class *class, struct zspage *zspage)
 974{
 975        unsigned int freeobj = 1;
 976        unsigned long off = 0;
 977        struct page *page = get_first_page(zspage);
 978
 979        while (page) {
 980                struct page *next_page;
 981                struct link_free *link;
 982                void *vaddr;
 983
 984                set_first_obj_offset(page, off);
 985
 986                vaddr = kmap_atomic(page);
 987                link = (struct link_free *)vaddr + off / sizeof(*link);
 988
 989                while ((off += class->size) < PAGE_SIZE) {
 990                        link->next = freeobj++ << OBJ_TAG_BITS;
 991                        link += class->size / sizeof(*link);
 992                }
 993
 994                /*
 995                 * We now come to the last (full or partial) object on this
 996                 * page, which must point to the first object on the next
 997                 * page (if present)
 998                 */
 999                next_page = get_next_page(page);
1000                if (next_page) {
1001                        link->next = freeobj++ << OBJ_TAG_BITS;
1002                } else {
1003                        /*
1004                         * Reset OBJ_TAG_BITS bit to last link to tell
1005                         * whether it's allocated object or not.
1006                         */
1007                        link->next = -1UL << OBJ_TAG_BITS;
1008                }
1009                kunmap_atomic(vaddr);
1010                page = next_page;
1011                off %= PAGE_SIZE;
1012        }
1013
1014        set_freeobj(zspage, 0);
1015}
1016
1017static void create_page_chain(struct size_class *class, struct zspage *zspage,
1018                                struct page *pages[])
1019{
1020        int i;
1021        struct page *page;
1022        struct page *prev_page = NULL;
1023        int nr_pages = class->pages_per_zspage;
1024
1025        /*
1026         * Allocate individual pages and link them together as:
1027         * 1. all pages are linked together using page->index
1028         * 2. each sub-page point to zspage using page->private
1029         *
1030         * we set PG_private to identify the first page (i.e. no other sub-page
1031         * has this flag set).
1032         */
1033        for (i = 0; i < nr_pages; i++) {
1034                page = pages[i];
1035                set_page_private(page, (unsigned long)zspage);
1036                page->index = 0;
1037                if (i == 0) {
1038                        zspage->first_page = page;
1039                        SetPagePrivate(page);
1040                        if (unlikely(class->objs_per_zspage == 1 &&
1041                                        class->pages_per_zspage == 1))
1042                                SetZsHugePage(zspage);
1043                } else {
1044                        prev_page->index = (unsigned long)page;
1045                }
1046                prev_page = page;
1047        }
1048}
1049
1050/*
1051 * Allocate a zspage for the given size class
1052 */
1053static struct zspage *alloc_zspage(struct zs_pool *pool,
1054                                        struct size_class *class,
1055                                        gfp_t gfp)
1056{
1057        int i;
1058        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1059        struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1060
1061        if (!zspage)
1062                return NULL;
1063
1064        zspage->magic = ZSPAGE_MAGIC;
1065        migrate_lock_init(zspage);
1066
1067        for (i = 0; i < class->pages_per_zspage; i++) {
1068                struct page *page;
1069
1070                page = alloc_page(gfp);
1071                if (!page) {
1072                        while (--i >= 0) {
1073                                dec_zone_page_state(pages[i], NR_ZSPAGES);
1074                                __free_page(pages[i]);
1075                        }
1076                        cache_free_zspage(pool, zspage);
1077                        return NULL;
1078                }
1079
1080                inc_zone_page_state(page, NR_ZSPAGES);
1081                pages[i] = page;
1082        }
1083
1084        create_page_chain(class, zspage, pages);
1085        init_zspage(class, zspage);
1086
1087        return zspage;
1088}
1089
1090static struct zspage *find_get_zspage(struct size_class *class)
1091{
1092        int i;
1093        struct zspage *zspage;
1094
1095        for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1096                zspage = list_first_entry_or_null(&class->fullness_list[i],
1097                                struct zspage, list);
1098                if (zspage)
1099                        break;
1100        }
1101
1102        return zspage;
1103}
1104
1105static inline int __zs_cpu_up(struct mapping_area *area)
1106{
1107        /*
1108         * Make sure we don't leak memory if a cpu UP notification
1109         * and zs_init() race and both call zs_cpu_up() on the same cpu
1110         */
1111        if (area->vm_buf)
1112                return 0;
1113        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1114        if (!area->vm_buf)
1115                return -ENOMEM;
1116        return 0;
1117}
1118
1119static inline void __zs_cpu_down(struct mapping_area *area)
1120{
1121        kfree(area->vm_buf);
1122        area->vm_buf = NULL;
1123}
1124
1125static void *__zs_map_object(struct mapping_area *area,
1126                        struct page *pages[2], int off, int size)
1127{
1128        int sizes[2];
1129        void *addr;
1130        char *buf = area->vm_buf;
1131
1132        /* disable page faults to match kmap_atomic() return conditions */
1133        pagefault_disable();
1134
1135        /* no read fastpath */
1136        if (area->vm_mm == ZS_MM_WO)
1137                goto out;
1138
1139        sizes[0] = PAGE_SIZE - off;
1140        sizes[1] = size - sizes[0];
1141
1142        /* copy object to per-cpu buffer */
1143        addr = kmap_atomic(pages[0]);
1144        memcpy(buf, addr + off, sizes[0]);
1145        kunmap_atomic(addr);
1146        addr = kmap_atomic(pages[1]);
1147        memcpy(buf + sizes[0], addr, sizes[1]);
1148        kunmap_atomic(addr);
1149out:
1150        return area->vm_buf;
1151}
1152
1153static void __zs_unmap_object(struct mapping_area *area,
1154                        struct page *pages[2], int off, int size)
1155{
1156        int sizes[2];
1157        void *addr;
1158        char *buf;
1159
1160        /* no write fastpath */
1161        if (area->vm_mm == ZS_MM_RO)
1162                goto out;
1163
1164        buf = area->vm_buf;
1165        buf = buf + ZS_HANDLE_SIZE;
1166        size -= ZS_HANDLE_SIZE;
1167        off += ZS_HANDLE_SIZE;
1168
1169        sizes[0] = PAGE_SIZE - off;
1170        sizes[1] = size - sizes[0];
1171
1172        /* copy per-cpu buffer to object */
1173        addr = kmap_atomic(pages[0]);
1174        memcpy(addr + off, buf, sizes[0]);
1175        kunmap_atomic(addr);
1176        addr = kmap_atomic(pages[1]);
1177        memcpy(addr, buf + sizes[0], sizes[1]);
1178        kunmap_atomic(addr);
1179
1180out:
1181        /* enable page faults to match kunmap_atomic() return conditions */
1182        pagefault_enable();
1183}
1184
1185static int zs_cpu_prepare(unsigned int cpu)
1186{
1187        struct mapping_area *area;
1188
1189        area = &per_cpu(zs_map_area, cpu);
1190        return __zs_cpu_up(area);
1191}
1192
1193static int zs_cpu_dead(unsigned int cpu)
1194{
1195        struct mapping_area *area;
1196
1197        area = &per_cpu(zs_map_area, cpu);
1198        __zs_cpu_down(area);
1199        return 0;
1200}
1201
1202static bool can_merge(struct size_class *prev, int pages_per_zspage,
1203                                        int objs_per_zspage)
1204{
1205        if (prev->pages_per_zspage == pages_per_zspage &&
1206                prev->objs_per_zspage == objs_per_zspage)
1207                return true;
1208
1209        return false;
1210}
1211
1212static bool zspage_full(struct size_class *class, struct zspage *zspage)
1213{
1214        return get_zspage_inuse(zspage) == class->objs_per_zspage;
1215}
1216
1217unsigned long zs_get_total_pages(struct zs_pool *pool)
1218{
1219        return atomic_long_read(&pool->pages_allocated);
1220}
1221EXPORT_SYMBOL_GPL(zs_get_total_pages);
1222
1223/**
1224 * zs_map_object - get address of allocated object from handle.
1225 * @pool: pool from which the object was allocated
1226 * @handle: handle returned from zs_malloc
1227 * @mm: mapping mode to use
1228 *
1229 * Before using an object allocated from zs_malloc, it must be mapped using
1230 * this function. When done with the object, it must be unmapped using
1231 * zs_unmap_object.
1232 *
1233 * Only one object can be mapped per cpu at a time. There is no protection
1234 * against nested mappings.
1235 *
1236 * This function returns with preemption and page faults disabled.
1237 */
1238void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1239                        enum zs_mapmode mm)
1240{
1241        struct zspage *zspage;
1242        struct page *page;
1243        unsigned long obj, off;
1244        unsigned int obj_idx;
1245
1246        struct size_class *class;
1247        struct mapping_area *area;
1248        struct page *pages[2];
1249        void *ret;
1250
1251        /*
1252         * Because we use per-cpu mapping areas shared among the
1253         * pools/users, we can't allow mapping in interrupt context
1254         * because it can corrupt another users mappings.
1255         */
1256        BUG_ON(in_interrupt());
1257
1258        /* It guarantees it can get zspage from handle safely */
1259        read_lock(&pool->migrate_lock);
1260        obj = handle_to_obj(handle);
1261        obj_to_location(obj, &page, &obj_idx);
1262        zspage = get_zspage(page);
1263
1264        /*
1265         * migration cannot move any zpages in this zspage. Here, class->lock
1266         * is too heavy since callers would take some time until they calls
1267         * zs_unmap_object API so delegate the locking from class to zspage
1268         * which is smaller granularity.
1269         */
1270        migrate_read_lock(zspage);
1271        read_unlock(&pool->migrate_lock);
1272
1273        class = zspage_class(pool, zspage);
1274        off = (class->size * obj_idx) & ~PAGE_MASK;
1275
1276        local_lock(&zs_map_area.lock);
1277        area = this_cpu_ptr(&zs_map_area);
1278        area->vm_mm = mm;
1279        if (off + class->size <= PAGE_SIZE) {
1280                /* this object is contained entirely within a page */
1281                area->vm_addr = kmap_atomic(page);
1282                ret = area->vm_addr + off;
1283                goto out;
1284        }
1285
1286        /* this object spans two pages */
1287        pages[0] = page;
1288        pages[1] = get_next_page(page);
1289        BUG_ON(!pages[1]);
1290
1291        ret = __zs_map_object(area, pages, off, class->size);
1292out:
1293        if (likely(!ZsHugePage(zspage)))
1294                ret += ZS_HANDLE_SIZE;
1295
1296        return ret;
1297}
1298EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301{
1302        struct zspage *zspage;
1303        struct page *page;
1304        unsigned long obj, off;
1305        unsigned int obj_idx;
1306
1307        struct size_class *class;
1308        struct mapping_area *area;
1309
1310        obj = handle_to_obj(handle);
1311        obj_to_location(obj, &page, &obj_idx);
1312        zspage = get_zspage(page);
1313        class = zspage_class(pool, zspage);
1314        off = (class->size * obj_idx) & ~PAGE_MASK;
1315
1316        area = this_cpu_ptr(&zs_map_area);
1317        if (off + class->size <= PAGE_SIZE)
1318                kunmap_atomic(area->vm_addr);
1319        else {
1320                struct page *pages[2];
1321
1322                pages[0] = page;
1323                pages[1] = get_next_page(page);
1324                BUG_ON(!pages[1]);
1325
1326                __zs_unmap_object(area, pages, off, class->size);
1327        }
1328        local_unlock(&zs_map_area.lock);
1329
1330        migrate_read_unlock(zspage);
1331}
1332EXPORT_SYMBOL_GPL(zs_unmap_object);
1333
1334/**
1335 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1336 *                        zsmalloc &size_class.
1337 * @pool: zsmalloc pool to use
1338 *
1339 * The function returns the size of the first huge class - any object of equal
1340 * or bigger size will be stored in zspage consisting of a single physical
1341 * page.
1342 *
1343 * Context: Any context.
1344 *
1345 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1346 */
1347size_t zs_huge_class_size(struct zs_pool *pool)
1348{
1349        return huge_class_size;
1350}
1351EXPORT_SYMBOL_GPL(zs_huge_class_size);
1352
1353static unsigned long obj_malloc(struct zs_pool *pool,
1354                                struct zspage *zspage, unsigned long handle)
1355{
1356        int i, nr_page, offset;
1357        unsigned long obj;
1358        struct link_free *link;
1359        struct size_class *class;
1360
1361        struct page *m_page;
1362        unsigned long m_offset;
1363        void *vaddr;
1364
1365        class = pool->size_class[zspage->class];
1366        handle |= OBJ_ALLOCATED_TAG;
1367        obj = get_freeobj(zspage);
1368
1369        offset = obj * class->size;
1370        nr_page = offset >> PAGE_SHIFT;
1371        m_offset = offset & ~PAGE_MASK;
1372        m_page = get_first_page(zspage);
1373
1374        for (i = 0; i < nr_page; i++)
1375                m_page = get_next_page(m_page);
1376
1377        vaddr = kmap_atomic(m_page);
1378        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1379        set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1380        if (likely(!ZsHugePage(zspage)))
1381                /* record handle in the header of allocated chunk */
1382                link->handle = handle;
1383        else
1384                /* record handle to page->index */
1385                zspage->first_page->index = handle;
1386
1387        kunmap_atomic(vaddr);
1388        mod_zspage_inuse(zspage, 1);
1389
1390        obj = location_to_obj(m_page, obj);
1391
1392        return obj;
1393}
1394
1395
1396/**
1397 * zs_malloc - Allocate block of given size from pool.
1398 * @pool: pool to allocate from
1399 * @size: size of block to allocate
1400 * @gfp: gfp flags when allocating object
1401 *
1402 * On success, handle to the allocated object is returned,
1403 * otherwise 0.
1404 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1405 */
1406unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1407{
1408        unsigned long handle, obj;
1409        struct size_class *class;
1410        enum fullness_group newfg;
1411        struct zspage *zspage;
1412
1413        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1414                return 0;
1415
1416        handle = cache_alloc_handle(pool, gfp);
1417        if (!handle)
1418                return 0;
1419
1420        /* extra space in chunk to keep the handle */
1421        size += ZS_HANDLE_SIZE;
1422        class = pool->size_class[get_size_class_index(size)];
1423
1424        /* class->lock effectively protects the zpage migration */
1425        spin_lock(&class->lock);
1426        zspage = find_get_zspage(class);
1427        if (likely(zspage)) {
1428                obj = obj_malloc(pool, zspage, handle);
1429                /* Now move the zspage to another fullness group, if required */
1430                fix_fullness_group(class, zspage);
1431                record_obj(handle, obj);
1432                class_stat_inc(class, OBJ_USED, 1);
1433                spin_unlock(&class->lock);
1434
1435                return handle;
1436        }
1437
1438        spin_unlock(&class->lock);
1439
1440        zspage = alloc_zspage(pool, class, gfp);
1441        if (!zspage) {
1442                cache_free_handle(pool, handle);
1443                return 0;
1444        }
1445
1446        spin_lock(&class->lock);
1447        obj = obj_malloc(pool, zspage, handle);
1448        newfg = get_fullness_group(class, zspage);
1449        insert_zspage(class, zspage, newfg);
1450        set_zspage_mapping(zspage, class->index, newfg);
1451        record_obj(handle, obj);
1452        atomic_long_add(class->pages_per_zspage,
1453                                &pool->pages_allocated);
1454        class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1455        class_stat_inc(class, OBJ_USED, 1);
1456
1457        /* We completely set up zspage so mark them as movable */
1458        SetZsPageMovable(pool, zspage);
1459        spin_unlock(&class->lock);
1460
1461        return handle;
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465static void obj_free(int class_size, unsigned long obj)
1466{
1467        struct link_free *link;
1468        struct zspage *zspage;
1469        struct page *f_page;
1470        unsigned long f_offset;
1471        unsigned int f_objidx;
1472        void *vaddr;
1473
1474        obj_to_location(obj, &f_page, &f_objidx);
1475        f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1476        zspage = get_zspage(f_page);
1477
1478        vaddr = kmap_atomic(f_page);
1479
1480        /* Insert this object in containing zspage's freelist */
1481        link = (struct link_free *)(vaddr + f_offset);
1482        if (likely(!ZsHugePage(zspage)))
1483                link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1484        else
1485                f_page->index = 0;
1486        kunmap_atomic(vaddr);
1487        set_freeobj(zspage, f_objidx);
1488        mod_zspage_inuse(zspage, -1);
1489}
1490
1491void zs_free(struct zs_pool *pool, unsigned long handle)
1492{
1493        struct zspage *zspage;
1494        struct page *f_page;
1495        unsigned long obj;
1496        struct size_class *class;
1497        enum fullness_group fullness;
1498
1499        if (unlikely(!handle))
1500                return;
1501
1502        /*
1503         * The pool->migrate_lock protects the race with zpage's migration
1504         * so it's safe to get the page from handle.
1505         */
1506        read_lock(&pool->migrate_lock);
1507        obj = handle_to_obj(handle);
1508        obj_to_page(obj, &f_page);
1509        zspage = get_zspage(f_page);
1510        class = zspage_class(pool, zspage);
1511        spin_lock(&class->lock);
1512        read_unlock(&pool->migrate_lock);
1513
1514        obj_free(class->size, obj);
1515        class_stat_dec(class, OBJ_USED, 1);
1516        fullness = fix_fullness_group(class, zspage);
1517        if (fullness != ZS_EMPTY)
1518                goto out;
1519
1520        free_zspage(pool, class, zspage);
1521out:
1522        spin_unlock(&class->lock);
1523        cache_free_handle(pool, handle);
1524}
1525EXPORT_SYMBOL_GPL(zs_free);
1526
1527static void zs_object_copy(struct size_class *class, unsigned long dst,
1528                                unsigned long src)
1529{
1530        struct page *s_page, *d_page;
1531        unsigned int s_objidx, d_objidx;
1532        unsigned long s_off, d_off;
1533        void *s_addr, *d_addr;
1534        int s_size, d_size, size;
1535        int written = 0;
1536
1537        s_size = d_size = class->size;
1538
1539        obj_to_location(src, &s_page, &s_objidx);
1540        obj_to_location(dst, &d_page, &d_objidx);
1541
1542        s_off = (class->size * s_objidx) & ~PAGE_MASK;
1543        d_off = (class->size * d_objidx) & ~PAGE_MASK;
1544
1545        if (s_off + class->size > PAGE_SIZE)
1546                s_size = PAGE_SIZE - s_off;
1547
1548        if (d_off + class->size > PAGE_SIZE)
1549                d_size = PAGE_SIZE - d_off;
1550
1551        s_addr = kmap_atomic(s_page);
1552        d_addr = kmap_atomic(d_page);
1553
1554        while (1) {
1555                size = min(s_size, d_size);
1556                memcpy(d_addr + d_off, s_addr + s_off, size);
1557                written += size;
1558
1559                if (written == class->size)
1560                        break;
1561
1562                s_off += size;
1563                s_size -= size;
1564                d_off += size;
1565                d_size -= size;
1566
1567                if (s_off >= PAGE_SIZE) {
1568                        kunmap_atomic(d_addr);
1569                        kunmap_atomic(s_addr);
1570                        s_page = get_next_page(s_page);
1571                        s_addr = kmap_atomic(s_page);
1572                        d_addr = kmap_atomic(d_page);
1573                        s_size = class->size - written;
1574                        s_off = 0;
1575                }
1576
1577                if (d_off >= PAGE_SIZE) {
1578                        kunmap_atomic(d_addr);
1579                        d_page = get_next_page(d_page);
1580                        d_addr = kmap_atomic(d_page);
1581                        d_size = class->size - written;
1582                        d_off = 0;
1583                }
1584        }
1585
1586        kunmap_atomic(d_addr);
1587        kunmap_atomic(s_addr);
1588}
1589
1590/*
1591 * Find alloced object in zspage from index object and
1592 * return handle.
1593 */
1594static unsigned long find_alloced_obj(struct size_class *class,
1595                                        struct page *page, int *obj_idx)
1596{
1597        int offset = 0;
1598        int index = *obj_idx;
1599        unsigned long handle = 0;
1600        void *addr = kmap_atomic(page);
1601
1602        offset = get_first_obj_offset(page);
1603        offset += class->size * index;
1604
1605        while (offset < PAGE_SIZE) {
1606                if (obj_allocated(page, addr + offset, &handle))
1607                        break;
1608
1609                offset += class->size;
1610                index++;
1611        }
1612
1613        kunmap_atomic(addr);
1614
1615        *obj_idx = index;
1616
1617        return handle;
1618}
1619
1620struct zs_compact_control {
1621        /* Source spage for migration which could be a subpage of zspage */
1622        struct page *s_page;
1623        /* Destination page for migration which should be a first page
1624         * of zspage. */
1625        struct page *d_page;
1626         /* Starting object index within @s_page which used for live object
1627          * in the subpage. */
1628        int obj_idx;
1629};
1630
1631static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1632                                struct zs_compact_control *cc)
1633{
1634        unsigned long used_obj, free_obj;
1635        unsigned long handle;
1636        struct page *s_page = cc->s_page;
1637        struct page *d_page = cc->d_page;
1638        int obj_idx = cc->obj_idx;
1639        int ret = 0;
1640
1641        while (1) {
1642                handle = find_alloced_obj(class, s_page, &obj_idx);
1643                if (!handle) {
1644                        s_page = get_next_page(s_page);
1645                        if (!s_page)
1646                                break;
1647                        obj_idx = 0;
1648                        continue;
1649                }
1650
1651                /* Stop if there is no more space */
1652                if (zspage_full(class, get_zspage(d_page))) {
1653                        ret = -ENOMEM;
1654                        break;
1655                }
1656
1657                used_obj = handle_to_obj(handle);
1658                free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1659                zs_object_copy(class, free_obj, used_obj);
1660                obj_idx++;
1661                record_obj(handle, free_obj);
1662                obj_free(class->size, used_obj);
1663        }
1664
1665        /* Remember last position in this iteration */
1666        cc->s_page = s_page;
1667        cc->obj_idx = obj_idx;
1668
1669        return ret;
1670}
1671
1672static struct zspage *isolate_zspage(struct size_class *class, bool source)
1673{
1674        int i;
1675        struct zspage *zspage;
1676        enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1677
1678        if (!source) {
1679                fg[0] = ZS_ALMOST_FULL;
1680                fg[1] = ZS_ALMOST_EMPTY;
1681        }
1682
1683        for (i = 0; i < 2; i++) {
1684                zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1685                                                        struct zspage, list);
1686                if (zspage) {
1687                        remove_zspage(class, zspage, fg[i]);
1688                        return zspage;
1689                }
1690        }
1691
1692        return zspage;
1693}
1694
1695/*
1696 * putback_zspage - add @zspage into right class's fullness list
1697 * @class: destination class
1698 * @zspage: target page
1699 *
1700 * Return @zspage's fullness_group
1701 */
1702static enum fullness_group putback_zspage(struct size_class *class,
1703                        struct zspage *zspage)
1704{
1705        enum fullness_group fullness;
1706
1707        fullness = get_fullness_group(class, zspage);
1708        insert_zspage(class, zspage, fullness);
1709        set_zspage_mapping(zspage, class->index, fullness);
1710
1711        return fullness;
1712}
1713
1714#ifdef CONFIG_COMPACTION
1715/*
1716 * To prevent zspage destroy during migration, zspage freeing should
1717 * hold locks of all pages in the zspage.
1718 */
1719static void lock_zspage(struct zspage *zspage)
1720{
1721        struct page *page = get_first_page(zspage);
1722
1723        do {
1724                lock_page(page);
1725        } while ((page = get_next_page(page)) != NULL);
1726}
1727
1728static int zs_init_fs_context(struct fs_context *fc)
1729{
1730        return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1731}
1732
1733static struct file_system_type zsmalloc_fs = {
1734        .name           = "zsmalloc",
1735        .init_fs_context = zs_init_fs_context,
1736        .kill_sb        = kill_anon_super,
1737};
1738
1739static int zsmalloc_mount(void)
1740{
1741        int ret = 0;
1742
1743        zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1744        if (IS_ERR(zsmalloc_mnt))
1745                ret = PTR_ERR(zsmalloc_mnt);
1746
1747        return ret;
1748}
1749
1750static void zsmalloc_unmount(void)
1751{
1752        kern_unmount(zsmalloc_mnt);
1753}
1754
1755static void migrate_lock_init(struct zspage *zspage)
1756{
1757        rwlock_init(&zspage->lock);
1758}
1759
1760static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1761{
1762        read_lock(&zspage->lock);
1763}
1764
1765static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1766{
1767        read_unlock(&zspage->lock);
1768}
1769
1770static void migrate_write_lock(struct zspage *zspage)
1771{
1772        write_lock(&zspage->lock);
1773}
1774
1775static void migrate_write_lock_nested(struct zspage *zspage)
1776{
1777        write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1778}
1779
1780static void migrate_write_unlock(struct zspage *zspage)
1781{
1782        write_unlock(&zspage->lock);
1783}
1784
1785/* Number of isolated subpage for *page migration* in this zspage */
1786static void inc_zspage_isolation(struct zspage *zspage)
1787{
1788        zspage->isolated++;
1789}
1790
1791static void dec_zspage_isolation(struct zspage *zspage)
1792{
1793        VM_BUG_ON(zspage->isolated == 0);
1794        zspage->isolated--;
1795}
1796
1797static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1798                                struct page *newpage, struct page *oldpage)
1799{
1800        struct page *page;
1801        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1802        int idx = 0;
1803
1804        page = get_first_page(zspage);
1805        do {
1806                if (page == oldpage)
1807                        pages[idx] = newpage;
1808                else
1809                        pages[idx] = page;
1810                idx++;
1811        } while ((page = get_next_page(page)) != NULL);
1812
1813        create_page_chain(class, zspage, pages);
1814        set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1815        if (unlikely(ZsHugePage(zspage)))
1816                newpage->index = oldpage->index;
1817        __SetPageMovable(newpage, page_mapping(oldpage));
1818}
1819
1820static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1821{
1822        struct zspage *zspage;
1823
1824        /*
1825         * Page is locked so zspage couldn't be destroyed. For detail, look at
1826         * lock_zspage in free_zspage.
1827         */
1828        VM_BUG_ON_PAGE(!PageMovable(page), page);
1829        VM_BUG_ON_PAGE(PageIsolated(page), page);
1830
1831        zspage = get_zspage(page);
1832        migrate_write_lock(zspage);
1833        inc_zspage_isolation(zspage);
1834        migrate_write_unlock(zspage);
1835
1836        return true;
1837}
1838
1839static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1840                struct page *page, enum migrate_mode mode)
1841{
1842        struct zs_pool *pool;
1843        struct size_class *class;
1844        struct zspage *zspage;
1845        struct page *dummy;
1846        void *s_addr, *d_addr, *addr;
1847        int offset;
1848        unsigned long handle;
1849        unsigned long old_obj, new_obj;
1850        unsigned int obj_idx;
1851
1852        /*
1853         * We cannot support the _NO_COPY case here, because copy needs to
1854         * happen under the zs lock, which does not work with
1855         * MIGRATE_SYNC_NO_COPY workflow.
1856         */
1857        if (mode == MIGRATE_SYNC_NO_COPY)
1858                return -EINVAL;
1859
1860        VM_BUG_ON_PAGE(!PageMovable(page), page);
1861        VM_BUG_ON_PAGE(!PageIsolated(page), page);
1862
1863        pool = mapping->private_data;
1864
1865        /*
1866         * The pool migrate_lock protects the race between zpage migration
1867         * and zs_free.
1868         */
1869        write_lock(&pool->migrate_lock);
1870        zspage = get_zspage(page);
1871        class = zspage_class(pool, zspage);
1872
1873        /*
1874         * the class lock protects zpage alloc/free in the zspage.
1875         */
1876        spin_lock(&class->lock);
1877        /* the migrate_write_lock protects zpage access via zs_map_object */
1878        migrate_write_lock(zspage);
1879
1880        offset = get_first_obj_offset(page);
1881        s_addr = kmap_atomic(page);
1882
1883        /*
1884         * Here, any user cannot access all objects in the zspage so let's move.
1885         */
1886        d_addr = kmap_atomic(newpage);
1887        memcpy(d_addr, s_addr, PAGE_SIZE);
1888        kunmap_atomic(d_addr);
1889
1890        for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1891                                        addr += class->size) {
1892                if (obj_allocated(page, addr, &handle)) {
1893
1894                        old_obj = handle_to_obj(handle);
1895                        obj_to_location(old_obj, &dummy, &obj_idx);
1896                        new_obj = (unsigned long)location_to_obj(newpage,
1897                                                                obj_idx);
1898                        record_obj(handle, new_obj);
1899                }
1900        }
1901        kunmap_atomic(s_addr);
1902
1903        replace_sub_page(class, zspage, newpage, page);
1904        /*
1905         * Since we complete the data copy and set up new zspage structure,
1906         * it's okay to release migration_lock.
1907         */
1908        write_unlock(&pool->migrate_lock);
1909        spin_unlock(&class->lock);
1910        dec_zspage_isolation(zspage);
1911        migrate_write_unlock(zspage);
1912
1913        get_page(newpage);
1914        if (page_zone(newpage) != page_zone(page)) {
1915                dec_zone_page_state(page, NR_ZSPAGES);
1916                inc_zone_page_state(newpage, NR_ZSPAGES);
1917        }
1918
1919        reset_page(page);
1920        put_page(page);
1921
1922        return MIGRATEPAGE_SUCCESS;
1923}
1924
1925static void zs_page_putback(struct page *page)
1926{
1927        struct zspage *zspage;
1928
1929        VM_BUG_ON_PAGE(!PageMovable(page), page);
1930        VM_BUG_ON_PAGE(!PageIsolated(page), page);
1931
1932        zspage = get_zspage(page);
1933        migrate_write_lock(zspage);
1934        dec_zspage_isolation(zspage);
1935        migrate_write_unlock(zspage);
1936}
1937
1938static const struct address_space_operations zsmalloc_aops = {
1939        .isolate_page = zs_page_isolate,
1940        .migratepage = zs_page_migrate,
1941        .putback_page = zs_page_putback,
1942};
1943
1944static int zs_register_migration(struct zs_pool *pool)
1945{
1946        pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1947        if (IS_ERR(pool->inode)) {
1948                pool->inode = NULL;
1949                return 1;
1950        }
1951
1952        pool->inode->i_mapping->private_data = pool;
1953        pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1954        return 0;
1955}
1956
1957static void zs_unregister_migration(struct zs_pool *pool)
1958{
1959        flush_work(&pool->free_work);
1960        iput(pool->inode);
1961}
1962
1963/*
1964 * Caller should hold page_lock of all pages in the zspage
1965 * In here, we cannot use zspage meta data.
1966 */
1967static void async_free_zspage(struct work_struct *work)
1968{
1969        int i;
1970        struct size_class *class;
1971        unsigned int class_idx;
1972        enum fullness_group fullness;
1973        struct zspage *zspage, *tmp;
1974        LIST_HEAD(free_pages);
1975        struct zs_pool *pool = container_of(work, struct zs_pool,
1976                                        free_work);
1977
1978        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1979                class = pool->size_class[i];
1980                if (class->index != i)
1981                        continue;
1982
1983                spin_lock(&class->lock);
1984                list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1985                spin_unlock(&class->lock);
1986        }
1987
1988        list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1989                list_del(&zspage->list);
1990                lock_zspage(zspage);
1991
1992                get_zspage_mapping(zspage, &class_idx, &fullness);
1993                VM_BUG_ON(fullness != ZS_EMPTY);
1994                class = pool->size_class[class_idx];
1995                spin_lock(&class->lock);
1996                __free_zspage(pool, class, zspage);
1997                spin_unlock(&class->lock);
1998        }
1999};
2000
2001static void kick_deferred_free(struct zs_pool *pool)
2002{
2003        schedule_work(&pool->free_work);
2004}
2005
2006static void init_deferred_free(struct zs_pool *pool)
2007{
2008        INIT_WORK(&pool->free_work, async_free_zspage);
2009}
2010
2011static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2012{
2013        struct page *page = get_first_page(zspage);
2014
2015        do {
2016                WARN_ON(!trylock_page(page));
2017                __SetPageMovable(page, pool->inode->i_mapping);
2018                unlock_page(page);
2019        } while ((page = get_next_page(page)) != NULL);
2020}
2021#endif
2022
2023/*
2024 *
2025 * Based on the number of unused allocated objects calculate
2026 * and return the number of pages that we can free.
2027 */
2028static unsigned long zs_can_compact(struct size_class *class)
2029{
2030        unsigned long obj_wasted;
2031        unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2032        unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2033
2034        if (obj_allocated <= obj_used)
2035                return 0;
2036
2037        obj_wasted = obj_allocated - obj_used;
2038        obj_wasted /= class->objs_per_zspage;
2039
2040        return obj_wasted * class->pages_per_zspage;
2041}
2042
2043static unsigned long __zs_compact(struct zs_pool *pool,
2044                                  struct size_class *class)
2045{
2046        struct zs_compact_control cc;
2047        struct zspage *src_zspage;
2048        struct zspage *dst_zspage = NULL;
2049        unsigned long pages_freed = 0;
2050
2051        /* protect the race between zpage migration and zs_free */
2052        write_lock(&pool->migrate_lock);
2053        /* protect zpage allocation/free */
2054        spin_lock(&class->lock);
2055        while ((src_zspage = isolate_zspage(class, true))) {
2056                /* protect someone accessing the zspage(i.e., zs_map_object) */
2057                migrate_write_lock(src_zspage);
2058
2059                if (!zs_can_compact(class))
2060                        break;
2061
2062                cc.obj_idx = 0;
2063                cc.s_page = get_first_page(src_zspage);
2064
2065                while ((dst_zspage = isolate_zspage(class, false))) {
2066                        migrate_write_lock_nested(dst_zspage);
2067
2068                        cc.d_page = get_first_page(dst_zspage);
2069                        /*
2070                         * If there is no more space in dst_page, resched
2071                         * and see if anyone had allocated another zspage.
2072                         */
2073                        if (!migrate_zspage(pool, class, &cc))
2074                                break;
2075
2076                        putback_zspage(class, dst_zspage);
2077                        migrate_write_unlock(dst_zspage);
2078                        dst_zspage = NULL;
2079                        if (rwlock_is_contended(&pool->migrate_lock))
2080                                break;
2081                }
2082
2083                /* Stop if we couldn't find slot */
2084                if (dst_zspage == NULL)
2085                        break;
2086
2087                putback_zspage(class, dst_zspage);
2088                migrate_write_unlock(dst_zspage);
2089
2090                if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2091                        migrate_write_unlock(src_zspage);
2092                        free_zspage(pool, class, src_zspage);
2093                        pages_freed += class->pages_per_zspage;
2094                } else
2095                        migrate_write_unlock(src_zspage);
2096                spin_unlock(&class->lock);
2097                write_unlock(&pool->migrate_lock);
2098                cond_resched();
2099                write_lock(&pool->migrate_lock);
2100                spin_lock(&class->lock);
2101        }
2102
2103        if (src_zspage) {
2104                putback_zspage(class, src_zspage);
2105                migrate_write_unlock(src_zspage);
2106        }
2107
2108        spin_unlock(&class->lock);
2109        write_unlock(&pool->migrate_lock);
2110
2111        return pages_freed;
2112}
2113
2114unsigned long zs_compact(struct zs_pool *pool)
2115{
2116        int i;
2117        struct size_class *class;
2118        unsigned long pages_freed = 0;
2119
2120        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2121                class = pool->size_class[i];
2122                if (!class)
2123                        continue;
2124                if (class->index != i)
2125                        continue;
2126                pages_freed += __zs_compact(pool, class);
2127        }
2128        atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2129
2130        return pages_freed;
2131}
2132EXPORT_SYMBOL_GPL(zs_compact);
2133
2134void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2135{
2136        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2137}
2138EXPORT_SYMBOL_GPL(zs_pool_stats);
2139
2140static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2141                struct shrink_control *sc)
2142{
2143        unsigned long pages_freed;
2144        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2145                        shrinker);
2146
2147        /*
2148         * Compact classes and calculate compaction delta.
2149         * Can run concurrently with a manually triggered
2150         * (by user) compaction.
2151         */
2152        pages_freed = zs_compact(pool);
2153
2154        return pages_freed ? pages_freed : SHRINK_STOP;
2155}
2156
2157static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2158                struct shrink_control *sc)
2159{
2160        int i;
2161        struct size_class *class;
2162        unsigned long pages_to_free = 0;
2163        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2164                        shrinker);
2165
2166        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2167                class = pool->size_class[i];
2168                if (!class)
2169                        continue;
2170                if (class->index != i)
2171                        continue;
2172
2173                pages_to_free += zs_can_compact(class);
2174        }
2175
2176        return pages_to_free;
2177}
2178
2179static void zs_unregister_shrinker(struct zs_pool *pool)
2180{
2181        unregister_shrinker(&pool->shrinker);
2182}
2183
2184static int zs_register_shrinker(struct zs_pool *pool)
2185{
2186        pool->shrinker.scan_objects = zs_shrinker_scan;
2187        pool->shrinker.count_objects = zs_shrinker_count;
2188        pool->shrinker.batch = 0;
2189        pool->shrinker.seeks = DEFAULT_SEEKS;
2190
2191        return register_shrinker(&pool->shrinker);
2192}
2193
2194/**
2195 * zs_create_pool - Creates an allocation pool to work from.
2196 * @name: pool name to be created
2197 *
2198 * This function must be called before anything when using
2199 * the zsmalloc allocator.
2200 *
2201 * On success, a pointer to the newly created pool is returned,
2202 * otherwise NULL.
2203 */
2204struct zs_pool *zs_create_pool(const char *name)
2205{
2206        int i;
2207        struct zs_pool *pool;
2208        struct size_class *prev_class = NULL;
2209
2210        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2211        if (!pool)
2212                return NULL;
2213
2214        init_deferred_free(pool);
2215        rwlock_init(&pool->migrate_lock);
2216
2217        pool->name = kstrdup(name, GFP_KERNEL);
2218        if (!pool->name)
2219                goto err;
2220
2221        if (create_cache(pool))
2222                goto err;
2223
2224        /*
2225         * Iterate reversely, because, size of size_class that we want to use
2226         * for merging should be larger or equal to current size.
2227         */
2228        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2229                int size;
2230                int pages_per_zspage;
2231                int objs_per_zspage;
2232                struct size_class *class;
2233                int fullness = 0;
2234
2235                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2236                if (size > ZS_MAX_ALLOC_SIZE)
2237                        size = ZS_MAX_ALLOC_SIZE;
2238                pages_per_zspage = get_pages_per_zspage(size);
2239                objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2240
2241                /*
2242                 * We iterate from biggest down to smallest classes,
2243                 * so huge_class_size holds the size of the first huge
2244                 * class. Any object bigger than or equal to that will
2245                 * endup in the huge class.
2246                 */
2247                if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2248                                !huge_class_size) {
2249                        huge_class_size = size;
2250                        /*
2251                         * The object uses ZS_HANDLE_SIZE bytes to store the
2252                         * handle. We need to subtract it, because zs_malloc()
2253                         * unconditionally adds handle size before it performs
2254                         * size class search - so object may be smaller than
2255                         * huge class size, yet it still can end up in the huge
2256                         * class because it grows by ZS_HANDLE_SIZE extra bytes
2257                         * right before class lookup.
2258                         */
2259                        huge_class_size -= (ZS_HANDLE_SIZE - 1);
2260                }
2261
2262                /*
2263                 * size_class is used for normal zsmalloc operation such
2264                 * as alloc/free for that size. Although it is natural that we
2265                 * have one size_class for each size, there is a chance that we
2266                 * can get more memory utilization if we use one size_class for
2267                 * many different sizes whose size_class have same
2268                 * characteristics. So, we makes size_class point to
2269                 * previous size_class if possible.
2270                 */
2271                if (prev_class) {
2272                        if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2273                                pool->size_class[i] = prev_class;
2274                                continue;
2275                        }
2276                }
2277
2278                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2279                if (!class)
2280                        goto err;
2281
2282                class->size = size;
2283                class->index = i;
2284                class->pages_per_zspage = pages_per_zspage;
2285                class->objs_per_zspage = objs_per_zspage;
2286                spin_lock_init(&class->lock);
2287                pool->size_class[i] = class;
2288                for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2289                                                        fullness++)
2290                        INIT_LIST_HEAD(&class->fullness_list[fullness]);
2291
2292                prev_class = class;
2293        }
2294
2295        /* debug only, don't abort if it fails */
2296        zs_pool_stat_create(pool, name);
2297
2298        if (zs_register_migration(pool))
2299                goto err;
2300
2301        /*
2302         * Not critical since shrinker is only used to trigger internal
2303         * defragmentation of the pool which is pretty optional thing.  If
2304         * registration fails we still can use the pool normally and user can
2305         * trigger compaction manually. Thus, ignore return code.
2306         */
2307        zs_register_shrinker(pool);
2308
2309        return pool;
2310
2311err:
2312        zs_destroy_pool(pool);
2313        return NULL;
2314}
2315EXPORT_SYMBOL_GPL(zs_create_pool);
2316
2317void zs_destroy_pool(struct zs_pool *pool)
2318{
2319        int i;
2320
2321        zs_unregister_shrinker(pool);
2322        zs_unregister_migration(pool);
2323        zs_pool_stat_destroy(pool);
2324
2325        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2326                int fg;
2327                struct size_class *class = pool->size_class[i];
2328
2329                if (!class)
2330                        continue;
2331
2332                if (class->index != i)
2333                        continue;
2334
2335                for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2336                        if (!list_empty(&class->fullness_list[fg])) {
2337                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2338                                        class->size, fg);
2339                        }
2340                }
2341                kfree(class);
2342        }
2343
2344        destroy_cache(pool);
2345        kfree(pool->name);
2346        kfree(pool);
2347}
2348EXPORT_SYMBOL_GPL(zs_destroy_pool);
2349
2350static int __init zs_init(void)
2351{
2352        int ret;
2353
2354        ret = zsmalloc_mount();
2355        if (ret)
2356                goto out;
2357
2358        ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2359                                zs_cpu_prepare, zs_cpu_dead);
2360        if (ret)
2361                goto hp_setup_fail;
2362
2363#ifdef CONFIG_ZPOOL
2364        zpool_register_driver(&zs_zpool_driver);
2365#endif
2366
2367        zs_stat_init();
2368
2369        return 0;
2370
2371hp_setup_fail:
2372        zsmalloc_unmount();
2373out:
2374        return ret;
2375}
2376
2377static void __exit zs_exit(void)
2378{
2379#ifdef CONFIG_ZPOOL
2380        zpool_unregister_driver(&zs_zpool_driver);
2381#endif
2382        zsmalloc_unmount();
2383        cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2384
2385        zs_stat_exit();
2386}
2387
2388module_init(zs_init);
2389module_exit(zs_exit);
2390
2391MODULE_LICENSE("Dual BSD/GPL");
2392MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2393