1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33
34
35
36
37
38
39
40
41#include <linux/module.h>
42#include <linux/kernel.h>
43#include <linux/sched.h>
44#include <linux/magic.h>
45#include <linux/bitops.h>
46#include <linux/errno.h>
47#include <linux/highmem.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/pgtable.h>
51#include <asm/tlbflush.h>
52#include <linux/cpumask.h>
53#include <linux/cpu.h>
54#include <linux/vmalloc.h>
55#include <linux/preempt.h>
56#include <linux/spinlock.h>
57#include <linux/shrinker.h>
58#include <linux/types.h>
59#include <linux/debugfs.h>
60#include <linux/zsmalloc.h>
61#include <linux/zpool.h>
62#include <linux/mount.h>
63#include <linux/pseudo_fs.h>
64#include <linux/migrate.h>
65#include <linux/wait.h>
66#include <linux/pagemap.h>
67#include <linux/fs.h>
68#include <linux/local_lock.h>
69
70#define ZSPAGE_MAGIC 0x58
71
72
73
74
75
76
77
78#define ZS_ALIGN 8
79
80
81
82
83
84#define ZS_MAX_ZSPAGE_ORDER 2
85#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86
87#define ZS_HANDLE_SIZE (sizeof(unsigned long))
88
89
90
91
92
93
94
95
96
97
98#ifndef MAX_POSSIBLE_PHYSMEM_BITS
99#ifdef MAX_PHYSMEM_BITS
100#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
101#else
102
103
104
105
106#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
107#endif
108#endif
109
110#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
111
112
113
114
115
116
117
118
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124#define HUGE_BITS 1
125#define FULLNESS_BITS 2
126#define CLASS_BITS 8
127#define ISOLATED_BITS 3
128#define MAGIC_VAL_BITS 8
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134
135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
151#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152 ZS_SIZE_CLASS_DELTA) + 1)
153
154enum fullness_group {
155 ZS_EMPTY,
156 ZS_ALMOST_EMPTY,
157 ZS_ALMOST_FULL,
158 ZS_FULL,
159 NR_ZS_FULLNESS,
160};
161
162enum class_stat_type {
163 CLASS_EMPTY,
164 CLASS_ALMOST_EMPTY,
165 CLASS_ALMOST_FULL,
166 CLASS_FULL,
167 OBJ_ALLOCATED,
168 OBJ_USED,
169 NR_ZS_STAT_TYPE,
170};
171
172struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
174};
175
176#ifdef CONFIG_ZSMALLOC_STAT
177static struct dentry *zs_stat_root;
178#endif
179
180#ifdef CONFIG_COMPACTION
181static struct vfsmount *zsmalloc_mnt;
182#endif
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198static const int fullness_threshold_frac = 4;
199static size_t huge_class_size;
200
201struct size_class {
202 spinlock_t lock;
203 struct list_head fullness_list[NR_ZS_FULLNESS];
204
205
206
207
208 int size;
209 int objs_per_zspage;
210
211 int pages_per_zspage;
212
213 unsigned int index;
214 struct zs_size_stat stats;
215};
216
217
218
219
220
221
222
223struct link_free {
224 union {
225
226
227
228
229 unsigned long next;
230
231
232
233 unsigned long handle;
234 };
235};
236
237struct zs_pool {
238 const char *name;
239
240 struct size_class *size_class[ZS_SIZE_CLASSES];
241 struct kmem_cache *handle_cachep;
242 struct kmem_cache *zspage_cachep;
243
244 atomic_long_t pages_allocated;
245
246 struct zs_pool_stats stats;
247
248
249 struct shrinker shrinker;
250
251#ifdef CONFIG_ZSMALLOC_STAT
252 struct dentry *stat_dentry;
253#endif
254#ifdef CONFIG_COMPACTION
255 struct inode *inode;
256 struct work_struct free_work;
257#endif
258
259 rwlock_t migrate_lock;
260};
261
262struct zspage {
263 struct {
264 unsigned int huge:HUGE_BITS;
265 unsigned int fullness:FULLNESS_BITS;
266 unsigned int class:CLASS_BITS + 1;
267 unsigned int isolated:ISOLATED_BITS;
268 unsigned int magic:MAGIC_VAL_BITS;
269 };
270 unsigned int inuse;
271 unsigned int freeobj;
272 struct page *first_page;
273 struct list_head list;
274#ifdef CONFIG_COMPACTION
275 rwlock_t lock;
276#endif
277};
278
279struct mapping_area {
280 local_lock_t lock;
281 char *vm_buf;
282 char *vm_addr;
283 enum zs_mapmode vm_mm;
284};
285
286
287static void SetZsHugePage(struct zspage *zspage)
288{
289 zspage->huge = 1;
290}
291
292static bool ZsHugePage(struct zspage *zspage)
293{
294 return zspage->huge;
295}
296
297#ifdef CONFIG_COMPACTION
298static int zs_register_migration(struct zs_pool *pool);
299static void zs_unregister_migration(struct zs_pool *pool);
300static void migrate_lock_init(struct zspage *zspage);
301static void migrate_read_lock(struct zspage *zspage);
302static void migrate_read_unlock(struct zspage *zspage);
303static void migrate_write_lock(struct zspage *zspage);
304static void migrate_write_lock_nested(struct zspage *zspage);
305static void migrate_write_unlock(struct zspage *zspage);
306static void kick_deferred_free(struct zs_pool *pool);
307static void init_deferred_free(struct zs_pool *pool);
308static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309#else
310static int zsmalloc_mount(void) { return 0; }
311static void zsmalloc_unmount(void) {}
312static int zs_register_migration(struct zs_pool *pool) { return 0; }
313static void zs_unregister_migration(struct zs_pool *pool) {}
314static void migrate_lock_init(struct zspage *zspage) {}
315static void migrate_read_lock(struct zspage *zspage) {}
316static void migrate_read_unlock(struct zspage *zspage) {}
317static void migrate_write_lock(struct zspage *zspage) {}
318static void migrate_write_lock_nested(struct zspage *zspage) {}
319static void migrate_write_unlock(struct zspage *zspage) {}
320static void kick_deferred_free(struct zs_pool *pool) {}
321static void init_deferred_free(struct zs_pool *pool) {}
322static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
323#endif
324
325static int create_cache(struct zs_pool *pool)
326{
327 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
328 0, 0, NULL);
329 if (!pool->handle_cachep)
330 return 1;
331
332 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
333 0, 0, NULL);
334 if (!pool->zspage_cachep) {
335 kmem_cache_destroy(pool->handle_cachep);
336 pool->handle_cachep = NULL;
337 return 1;
338 }
339
340 return 0;
341}
342
343static void destroy_cache(struct zs_pool *pool)
344{
345 kmem_cache_destroy(pool->handle_cachep);
346 kmem_cache_destroy(pool->zspage_cachep);
347}
348
349static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
350{
351 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
352 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
353}
354
355static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
356{
357 kmem_cache_free(pool->handle_cachep, (void *)handle);
358}
359
360static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
361{
362 return kmem_cache_zalloc(pool->zspage_cachep,
363 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
364}
365
366static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
367{
368 kmem_cache_free(pool->zspage_cachep, zspage);
369}
370
371
372static void record_obj(unsigned long handle, unsigned long obj)
373{
374 *(unsigned long *)handle = obj;
375}
376
377
378
379#ifdef CONFIG_ZPOOL
380
381static void *zs_zpool_create(const char *name, gfp_t gfp,
382 const struct zpool_ops *zpool_ops,
383 struct zpool *zpool)
384{
385
386
387
388
389
390 return zs_create_pool(name);
391}
392
393static void zs_zpool_destroy(void *pool)
394{
395 zs_destroy_pool(pool);
396}
397
398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
400{
401 *handle = zs_malloc(pool, size, gfp);
402 return *handle ? 0 : -1;
403}
404static void zs_zpool_free(void *pool, unsigned long handle)
405{
406 zs_free(pool, handle);
407}
408
409static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
411{
412 enum zs_mapmode zs_mm;
413
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
421 case ZPOOL_MM_RW:
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
425 }
426
427 return zs_map_object(pool, handle, zs_mm);
428}
429static void zs_zpool_unmap(void *pool, unsigned long handle)
430{
431 zs_unmap_object(pool, handle);
432}
433
434static u64 zs_zpool_total_size(void *pool)
435{
436 return zs_get_total_pages(pool) << PAGE_SHIFT;
437}
438
439static struct zpool_driver zs_zpool_driver = {
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc_support_movable = true,
445 .malloc = zs_zpool_malloc,
446 .free = zs_zpool_free,
447 .map = zs_zpool_map,
448 .unmap = zs_zpool_unmap,
449 .total_size = zs_zpool_total_size,
450};
451
452MODULE_ALIAS("zpool-zsmalloc");
453#endif
454
455
456static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
457 .lock = INIT_LOCAL_LOCK(lock),
458};
459
460static __maybe_unused int is_first_page(struct page *page)
461{
462 return PagePrivate(page);
463}
464
465
466static inline int get_zspage_inuse(struct zspage *zspage)
467{
468 return zspage->inuse;
469}
470
471
472static inline void mod_zspage_inuse(struct zspage *zspage, int val)
473{
474 zspage->inuse += val;
475}
476
477static inline struct page *get_first_page(struct zspage *zspage)
478{
479 struct page *first_page = zspage->first_page;
480
481 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
482 return first_page;
483}
484
485static inline int get_first_obj_offset(struct page *page)
486{
487 return page->page_type;
488}
489
490static inline void set_first_obj_offset(struct page *page, int offset)
491{
492 page->page_type = offset;
493}
494
495static inline unsigned int get_freeobj(struct zspage *zspage)
496{
497 return zspage->freeobj;
498}
499
500static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
501{
502 zspage->freeobj = obj;
503}
504
505static void get_zspage_mapping(struct zspage *zspage,
506 unsigned int *class_idx,
507 enum fullness_group *fullness)
508{
509 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
510
511 *fullness = zspage->fullness;
512 *class_idx = zspage->class;
513}
514
515static struct size_class *zspage_class(struct zs_pool *pool,
516 struct zspage *zspage)
517{
518 return pool->size_class[zspage->class];
519}
520
521static void set_zspage_mapping(struct zspage *zspage,
522 unsigned int class_idx,
523 enum fullness_group fullness)
524{
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
527}
528
529
530
531
532
533
534
535
536static int get_size_class_index(int size)
537{
538 int idx = 0;
539
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
543
544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545}
546
547
548static inline void class_stat_inc(struct size_class *class,
549 int type, unsigned long cnt)
550{
551 class->stats.objs[type] += cnt;
552}
553
554
555static inline void class_stat_dec(struct size_class *class,
556 int type, unsigned long cnt)
557{
558 class->stats.objs[type] -= cnt;
559}
560
561
562static inline unsigned long zs_stat_get(struct size_class *class,
563 int type)
564{
565 return class->stats.objs[type];
566}
567
568#ifdef CONFIG_ZSMALLOC_STAT
569
570static void __init zs_stat_init(void)
571{
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
575 }
576
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578}
579
580static void __exit zs_stat_exit(void)
581{
582 debugfs_remove_recursive(zs_stat_root);
583}
584
585static unsigned long zs_can_compact(struct size_class *class);
586
587static int zs_stats_size_show(struct seq_file *s, void *v)
588{
589 int i;
590 struct zs_pool *pool = s->private;
591 struct size_class *class;
592 int objs_per_zspage;
593 unsigned long class_almost_full, class_almost_empty;
594 unsigned long obj_allocated, obj_used, pages_used, freeable;
595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 unsigned long total_freeable = 0;
598
599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 "class", "size", "almost_full", "almost_empty",
601 "obj_allocated", "obj_used", "pages_used",
602 "pages_per_zspage", "freeable");
603
604 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 class = pool->size_class[i];
606
607 if (class->index != i)
608 continue;
609
610 spin_lock(&class->lock);
611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 obj_used = zs_stat_get(class, OBJ_USED);
615 freeable = zs_can_compact(class);
616 spin_unlock(&class->lock);
617
618 objs_per_zspage = class->objs_per_zspage;
619 pages_used = obj_allocated / objs_per_zspage *
620 class->pages_per_zspage;
621
622 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 " %10lu %10lu %16d %8lu\n",
624 i, class->size, class_almost_full, class_almost_empty,
625 obj_allocated, obj_used, pages_used,
626 class->pages_per_zspage, freeable);
627
628 total_class_almost_full += class_almost_full;
629 total_class_almost_empty += class_almost_empty;
630 total_objs += obj_allocated;
631 total_used_objs += obj_used;
632 total_pages += pages_used;
633 total_freeable += freeable;
634 }
635
636 seq_puts(s, "\n");
637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 "Total", "", total_class_almost_full,
639 total_class_almost_empty, total_objs,
640 total_used_objs, total_pages, "", total_freeable);
641
642 return 0;
643}
644DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
645
646static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647{
648 if (!zs_stat_root) {
649 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
650 return;
651 }
652
653 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
654
655 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
656 &zs_stats_size_fops);
657}
658
659static void zs_pool_stat_destroy(struct zs_pool *pool)
660{
661 debugfs_remove_recursive(pool->stat_dentry);
662}
663
664#else
665static void __init zs_stat_init(void)
666{
667}
668
669static void __exit zs_stat_exit(void)
670{
671}
672
673static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
674{
675}
676
677static inline void zs_pool_stat_destroy(struct zs_pool *pool)
678{
679}
680#endif
681
682
683
684
685
686
687
688
689
690static enum fullness_group get_fullness_group(struct size_class *class,
691 struct zspage *zspage)
692{
693 int inuse, objs_per_zspage;
694 enum fullness_group fg;
695
696 inuse = get_zspage_inuse(zspage);
697 objs_per_zspage = class->objs_per_zspage;
698
699 if (inuse == 0)
700 fg = ZS_EMPTY;
701 else if (inuse == objs_per_zspage)
702 fg = ZS_FULL;
703 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
704 fg = ZS_ALMOST_EMPTY;
705 else
706 fg = ZS_ALMOST_FULL;
707
708 return fg;
709}
710
711
712
713
714
715
716
717static void insert_zspage(struct size_class *class,
718 struct zspage *zspage,
719 enum fullness_group fullness)
720{
721 struct zspage *head;
722
723 class_stat_inc(class, fullness, 1);
724 head = list_first_entry_or_null(&class->fullness_list[fullness],
725 struct zspage, list);
726
727
728
729
730 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
731 list_add(&zspage->list, &head->list);
732 else
733 list_add(&zspage->list, &class->fullness_list[fullness]);
734}
735
736
737
738
739
740static void remove_zspage(struct size_class *class,
741 struct zspage *zspage,
742 enum fullness_group fullness)
743{
744 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
745
746 list_del_init(&zspage->list);
747 class_stat_dec(class, fullness, 1);
748}
749
750
751
752
753
754
755
756
757
758
759static enum fullness_group fix_fullness_group(struct size_class *class,
760 struct zspage *zspage)
761{
762 int class_idx;
763 enum fullness_group currfg, newfg;
764
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
767 if (newfg == currfg)
768 goto out;
769
770 remove_zspage(class, zspage, currfg);
771 insert_zspage(class, zspage, newfg);
772 set_zspage_mapping(zspage, class_idx, newfg);
773out:
774 return newfg;
775}
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790static int get_pages_per_zspage(int class_size)
791{
792 int i, max_usedpc = 0;
793
794 int max_usedpc_order = 1;
795
796 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
797 int zspage_size;
798 int waste, usedpc;
799
800 zspage_size = i * PAGE_SIZE;
801 waste = zspage_size % class_size;
802 usedpc = (zspage_size - waste) * 100 / zspage_size;
803
804 if (usedpc > max_usedpc) {
805 max_usedpc = usedpc;
806 max_usedpc_order = i;
807 }
808 }
809
810 return max_usedpc_order;
811}
812
813static struct zspage *get_zspage(struct page *page)
814{
815 struct zspage *zspage = (struct zspage *)page_private(page);
816
817 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
818 return zspage;
819}
820
821static struct page *get_next_page(struct page *page)
822{
823 struct zspage *zspage = get_zspage(page);
824
825 if (unlikely(ZsHugePage(zspage)))
826 return NULL;
827
828 return (struct page *)page->index;
829}
830
831
832
833
834
835
836
837static void obj_to_location(unsigned long obj, struct page **page,
838 unsigned int *obj_idx)
839{
840 obj >>= OBJ_TAG_BITS;
841 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 *obj_idx = (obj & OBJ_INDEX_MASK);
843}
844
845static void obj_to_page(unsigned long obj, struct page **page)
846{
847 obj >>= OBJ_TAG_BITS;
848 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
849}
850
851
852
853
854
855
856static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
857{
858 unsigned long obj;
859
860 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
861 obj |= obj_idx & OBJ_INDEX_MASK;
862 obj <<= OBJ_TAG_BITS;
863
864 return obj;
865}
866
867static unsigned long handle_to_obj(unsigned long handle)
868{
869 return *(unsigned long *)handle;
870}
871
872static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
873{
874 unsigned long handle;
875 struct zspage *zspage = get_zspage(page);
876
877 if (unlikely(ZsHugePage(zspage))) {
878 VM_BUG_ON_PAGE(!is_first_page(page), page);
879 handle = page->index;
880 } else
881 handle = *(unsigned long *)obj;
882
883 if (!(handle & OBJ_ALLOCATED_TAG))
884 return false;
885
886 *phandle = handle & ~OBJ_ALLOCATED_TAG;
887 return true;
888}
889
890static void reset_page(struct page *page)
891{
892 __ClearPageMovable(page);
893 ClearPagePrivate(page);
894 set_page_private(page, 0);
895 page_mapcount_reset(page);
896 page->index = 0;
897}
898
899static int trylock_zspage(struct zspage *zspage)
900{
901 struct page *cursor, *fail;
902
903 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
904 get_next_page(cursor)) {
905 if (!trylock_page(cursor)) {
906 fail = cursor;
907 goto unlock;
908 }
909 }
910
911 return 1;
912unlock:
913 for (cursor = get_first_page(zspage); cursor != fail; cursor =
914 get_next_page(cursor))
915 unlock_page(cursor);
916
917 return 0;
918}
919
920static void __free_zspage(struct zs_pool *pool, struct size_class *class,
921 struct zspage *zspage)
922{
923 struct page *page, *next;
924 enum fullness_group fg;
925 unsigned int class_idx;
926
927 get_zspage_mapping(zspage, &class_idx, &fg);
928
929 assert_spin_locked(&class->lock);
930
931 VM_BUG_ON(get_zspage_inuse(zspage));
932 VM_BUG_ON(fg != ZS_EMPTY);
933
934 next = page = get_first_page(zspage);
935 do {
936 VM_BUG_ON_PAGE(!PageLocked(page), page);
937 next = get_next_page(page);
938 reset_page(page);
939 unlock_page(page);
940 dec_zone_page_state(page, NR_ZSPAGES);
941 put_page(page);
942 page = next;
943 } while (page != NULL);
944
945 cache_free_zspage(pool, zspage);
946
947 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
948 atomic_long_sub(class->pages_per_zspage,
949 &pool->pages_allocated);
950}
951
952static void free_zspage(struct zs_pool *pool, struct size_class *class,
953 struct zspage *zspage)
954{
955 VM_BUG_ON(get_zspage_inuse(zspage));
956 VM_BUG_ON(list_empty(&zspage->list));
957
958
959
960
961
962
963 if (!trylock_zspage(zspage)) {
964 kick_deferred_free(pool);
965 return;
966 }
967
968 remove_zspage(class, zspage, ZS_EMPTY);
969 __free_zspage(pool, class, zspage);
970}
971
972
973static void init_zspage(struct size_class *class, struct zspage *zspage)
974{
975 unsigned int freeobj = 1;
976 unsigned long off = 0;
977 struct page *page = get_first_page(zspage);
978
979 while (page) {
980 struct page *next_page;
981 struct link_free *link;
982 void *vaddr;
983
984 set_first_obj_offset(page, off);
985
986 vaddr = kmap_atomic(page);
987 link = (struct link_free *)vaddr + off / sizeof(*link);
988
989 while ((off += class->size) < PAGE_SIZE) {
990 link->next = freeobj++ << OBJ_TAG_BITS;
991 link += class->size / sizeof(*link);
992 }
993
994
995
996
997
998
999 next_page = get_next_page(page);
1000 if (next_page) {
1001 link->next = freeobj++ << OBJ_TAG_BITS;
1002 } else {
1003
1004
1005
1006
1007 link->next = -1UL << OBJ_TAG_BITS;
1008 }
1009 kunmap_atomic(vaddr);
1010 page = next_page;
1011 off %= PAGE_SIZE;
1012 }
1013
1014 set_freeobj(zspage, 0);
1015}
1016
1017static void create_page_chain(struct size_class *class, struct zspage *zspage,
1018 struct page *pages[])
1019{
1020 int i;
1021 struct page *page;
1022 struct page *prev_page = NULL;
1023 int nr_pages = class->pages_per_zspage;
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033 for (i = 0; i < nr_pages; i++) {
1034 page = pages[i];
1035 set_page_private(page, (unsigned long)zspage);
1036 page->index = 0;
1037 if (i == 0) {
1038 zspage->first_page = page;
1039 SetPagePrivate(page);
1040 if (unlikely(class->objs_per_zspage == 1 &&
1041 class->pages_per_zspage == 1))
1042 SetZsHugePage(zspage);
1043 } else {
1044 prev_page->index = (unsigned long)page;
1045 }
1046 prev_page = page;
1047 }
1048}
1049
1050
1051
1052
1053static struct zspage *alloc_zspage(struct zs_pool *pool,
1054 struct size_class *class,
1055 gfp_t gfp)
1056{
1057 int i;
1058 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1059 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1060
1061 if (!zspage)
1062 return NULL;
1063
1064 zspage->magic = ZSPAGE_MAGIC;
1065 migrate_lock_init(zspage);
1066
1067 for (i = 0; i < class->pages_per_zspage; i++) {
1068 struct page *page;
1069
1070 page = alloc_page(gfp);
1071 if (!page) {
1072 while (--i >= 0) {
1073 dec_zone_page_state(pages[i], NR_ZSPAGES);
1074 __free_page(pages[i]);
1075 }
1076 cache_free_zspage(pool, zspage);
1077 return NULL;
1078 }
1079
1080 inc_zone_page_state(page, NR_ZSPAGES);
1081 pages[i] = page;
1082 }
1083
1084 create_page_chain(class, zspage, pages);
1085 init_zspage(class, zspage);
1086
1087 return zspage;
1088}
1089
1090static struct zspage *find_get_zspage(struct size_class *class)
1091{
1092 int i;
1093 struct zspage *zspage;
1094
1095 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1096 zspage = list_first_entry_or_null(&class->fullness_list[i],
1097 struct zspage, list);
1098 if (zspage)
1099 break;
1100 }
1101
1102 return zspage;
1103}
1104
1105static inline int __zs_cpu_up(struct mapping_area *area)
1106{
1107
1108
1109
1110
1111 if (area->vm_buf)
1112 return 0;
1113 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1114 if (!area->vm_buf)
1115 return -ENOMEM;
1116 return 0;
1117}
1118
1119static inline void __zs_cpu_down(struct mapping_area *area)
1120{
1121 kfree(area->vm_buf);
1122 area->vm_buf = NULL;
1123}
1124
1125static void *__zs_map_object(struct mapping_area *area,
1126 struct page *pages[2], int off, int size)
1127{
1128 int sizes[2];
1129 void *addr;
1130 char *buf = area->vm_buf;
1131
1132
1133 pagefault_disable();
1134
1135
1136 if (area->vm_mm == ZS_MM_WO)
1137 goto out;
1138
1139 sizes[0] = PAGE_SIZE - off;
1140 sizes[1] = size - sizes[0];
1141
1142
1143 addr = kmap_atomic(pages[0]);
1144 memcpy(buf, addr + off, sizes[0]);
1145 kunmap_atomic(addr);
1146 addr = kmap_atomic(pages[1]);
1147 memcpy(buf + sizes[0], addr, sizes[1]);
1148 kunmap_atomic(addr);
1149out:
1150 return area->vm_buf;
1151}
1152
1153static void __zs_unmap_object(struct mapping_area *area,
1154 struct page *pages[2], int off, int size)
1155{
1156 int sizes[2];
1157 void *addr;
1158 char *buf;
1159
1160
1161 if (area->vm_mm == ZS_MM_RO)
1162 goto out;
1163
1164 buf = area->vm_buf;
1165 buf = buf + ZS_HANDLE_SIZE;
1166 size -= ZS_HANDLE_SIZE;
1167 off += ZS_HANDLE_SIZE;
1168
1169 sizes[0] = PAGE_SIZE - off;
1170 sizes[1] = size - sizes[0];
1171
1172
1173 addr = kmap_atomic(pages[0]);
1174 memcpy(addr + off, buf, sizes[0]);
1175 kunmap_atomic(addr);
1176 addr = kmap_atomic(pages[1]);
1177 memcpy(addr, buf + sizes[0], sizes[1]);
1178 kunmap_atomic(addr);
1179
1180out:
1181
1182 pagefault_enable();
1183}
1184
1185static int zs_cpu_prepare(unsigned int cpu)
1186{
1187 struct mapping_area *area;
1188
1189 area = &per_cpu(zs_map_area, cpu);
1190 return __zs_cpu_up(area);
1191}
1192
1193static int zs_cpu_dead(unsigned int cpu)
1194{
1195 struct mapping_area *area;
1196
1197 area = &per_cpu(zs_map_area, cpu);
1198 __zs_cpu_down(area);
1199 return 0;
1200}
1201
1202static bool can_merge(struct size_class *prev, int pages_per_zspage,
1203 int objs_per_zspage)
1204{
1205 if (prev->pages_per_zspage == pages_per_zspage &&
1206 prev->objs_per_zspage == objs_per_zspage)
1207 return true;
1208
1209 return false;
1210}
1211
1212static bool zspage_full(struct size_class *class, struct zspage *zspage)
1213{
1214 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1215}
1216
1217unsigned long zs_get_total_pages(struct zs_pool *pool)
1218{
1219 return atomic_long_read(&pool->pages_allocated);
1220}
1221EXPORT_SYMBOL_GPL(zs_get_total_pages);
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1239 enum zs_mapmode mm)
1240{
1241 struct zspage *zspage;
1242 struct page *page;
1243 unsigned long obj, off;
1244 unsigned int obj_idx;
1245
1246 struct size_class *class;
1247 struct mapping_area *area;
1248 struct page *pages[2];
1249 void *ret;
1250
1251
1252
1253
1254
1255
1256 BUG_ON(in_interrupt());
1257
1258
1259 read_lock(&pool->migrate_lock);
1260 obj = handle_to_obj(handle);
1261 obj_to_location(obj, &page, &obj_idx);
1262 zspage = get_zspage(page);
1263
1264
1265
1266
1267
1268
1269
1270 migrate_read_lock(zspage);
1271 read_unlock(&pool->migrate_lock);
1272
1273 class = zspage_class(pool, zspage);
1274 off = (class->size * obj_idx) & ~PAGE_MASK;
1275
1276 local_lock(&zs_map_area.lock);
1277 area = this_cpu_ptr(&zs_map_area);
1278 area->vm_mm = mm;
1279 if (off + class->size <= PAGE_SIZE) {
1280
1281 area->vm_addr = kmap_atomic(page);
1282 ret = area->vm_addr + off;
1283 goto out;
1284 }
1285
1286
1287 pages[0] = page;
1288 pages[1] = get_next_page(page);
1289 BUG_ON(!pages[1]);
1290
1291 ret = __zs_map_object(area, pages, off, class->size);
1292out:
1293 if (likely(!ZsHugePage(zspage)))
1294 ret += ZS_HANDLE_SIZE;
1295
1296 return ret;
1297}
1298EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301{
1302 struct zspage *zspage;
1303 struct page *page;
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
1306
1307 struct size_class *class;
1308 struct mapping_area *area;
1309
1310 obj = handle_to_obj(handle);
1311 obj_to_location(obj, &page, &obj_idx);
1312 zspage = get_zspage(page);
1313 class = zspage_class(pool, zspage);
1314 off = (class->size * obj_idx) & ~PAGE_MASK;
1315
1316 area = this_cpu_ptr(&zs_map_area);
1317 if (off + class->size <= PAGE_SIZE)
1318 kunmap_atomic(area->vm_addr);
1319 else {
1320 struct page *pages[2];
1321
1322 pages[0] = page;
1323 pages[1] = get_next_page(page);
1324 BUG_ON(!pages[1]);
1325
1326 __zs_unmap_object(area, pages, off, class->size);
1327 }
1328 local_unlock(&zs_map_area.lock);
1329
1330 migrate_read_unlock(zspage);
1331}
1332EXPORT_SYMBOL_GPL(zs_unmap_object);
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347size_t zs_huge_class_size(struct zs_pool *pool)
1348{
1349 return huge_class_size;
1350}
1351EXPORT_SYMBOL_GPL(zs_huge_class_size);
1352
1353static unsigned long obj_malloc(struct zs_pool *pool,
1354 struct zspage *zspage, unsigned long handle)
1355{
1356 int i, nr_page, offset;
1357 unsigned long obj;
1358 struct link_free *link;
1359 struct size_class *class;
1360
1361 struct page *m_page;
1362 unsigned long m_offset;
1363 void *vaddr;
1364
1365 class = pool->size_class[zspage->class];
1366 handle |= OBJ_ALLOCATED_TAG;
1367 obj = get_freeobj(zspage);
1368
1369 offset = obj * class->size;
1370 nr_page = offset >> PAGE_SHIFT;
1371 m_offset = offset & ~PAGE_MASK;
1372 m_page = get_first_page(zspage);
1373
1374 for (i = 0; i < nr_page; i++)
1375 m_page = get_next_page(m_page);
1376
1377 vaddr = kmap_atomic(m_page);
1378 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1379 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1380 if (likely(!ZsHugePage(zspage)))
1381
1382 link->handle = handle;
1383 else
1384
1385 zspage->first_page->index = handle;
1386
1387 kunmap_atomic(vaddr);
1388 mod_zspage_inuse(zspage, 1);
1389
1390 obj = location_to_obj(m_page, obj);
1391
1392 return obj;
1393}
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1407{
1408 unsigned long handle, obj;
1409 struct size_class *class;
1410 enum fullness_group newfg;
1411 struct zspage *zspage;
1412
1413 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1414 return 0;
1415
1416 handle = cache_alloc_handle(pool, gfp);
1417 if (!handle)
1418 return 0;
1419
1420
1421 size += ZS_HANDLE_SIZE;
1422 class = pool->size_class[get_size_class_index(size)];
1423
1424
1425 spin_lock(&class->lock);
1426 zspage = find_get_zspage(class);
1427 if (likely(zspage)) {
1428 obj = obj_malloc(pool, zspage, handle);
1429
1430 fix_fullness_group(class, zspage);
1431 record_obj(handle, obj);
1432 class_stat_inc(class, OBJ_USED, 1);
1433 spin_unlock(&class->lock);
1434
1435 return handle;
1436 }
1437
1438 spin_unlock(&class->lock);
1439
1440 zspage = alloc_zspage(pool, class, gfp);
1441 if (!zspage) {
1442 cache_free_handle(pool, handle);
1443 return 0;
1444 }
1445
1446 spin_lock(&class->lock);
1447 obj = obj_malloc(pool, zspage, handle);
1448 newfg = get_fullness_group(class, zspage);
1449 insert_zspage(class, zspage, newfg);
1450 set_zspage_mapping(zspage, class->index, newfg);
1451 record_obj(handle, obj);
1452 atomic_long_add(class->pages_per_zspage,
1453 &pool->pages_allocated);
1454 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1455 class_stat_inc(class, OBJ_USED, 1);
1456
1457
1458 SetZsPageMovable(pool, zspage);
1459 spin_unlock(&class->lock);
1460
1461 return handle;
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465static void obj_free(int class_size, unsigned long obj)
1466{
1467 struct link_free *link;
1468 struct zspage *zspage;
1469 struct page *f_page;
1470 unsigned long f_offset;
1471 unsigned int f_objidx;
1472 void *vaddr;
1473
1474 obj_to_location(obj, &f_page, &f_objidx);
1475 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1476 zspage = get_zspage(f_page);
1477
1478 vaddr = kmap_atomic(f_page);
1479
1480
1481 link = (struct link_free *)(vaddr + f_offset);
1482 if (likely(!ZsHugePage(zspage)))
1483 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1484 else
1485 f_page->index = 0;
1486 kunmap_atomic(vaddr);
1487 set_freeobj(zspage, f_objidx);
1488 mod_zspage_inuse(zspage, -1);
1489}
1490
1491void zs_free(struct zs_pool *pool, unsigned long handle)
1492{
1493 struct zspage *zspage;
1494 struct page *f_page;
1495 unsigned long obj;
1496 struct size_class *class;
1497 enum fullness_group fullness;
1498
1499 if (unlikely(!handle))
1500 return;
1501
1502
1503
1504
1505
1506 read_lock(&pool->migrate_lock);
1507 obj = handle_to_obj(handle);
1508 obj_to_page(obj, &f_page);
1509 zspage = get_zspage(f_page);
1510 class = zspage_class(pool, zspage);
1511 spin_lock(&class->lock);
1512 read_unlock(&pool->migrate_lock);
1513
1514 obj_free(class->size, obj);
1515 class_stat_dec(class, OBJ_USED, 1);
1516 fullness = fix_fullness_group(class, zspage);
1517 if (fullness != ZS_EMPTY)
1518 goto out;
1519
1520 free_zspage(pool, class, zspage);
1521out:
1522 spin_unlock(&class->lock);
1523 cache_free_handle(pool, handle);
1524}
1525EXPORT_SYMBOL_GPL(zs_free);
1526
1527static void zs_object_copy(struct size_class *class, unsigned long dst,
1528 unsigned long src)
1529{
1530 struct page *s_page, *d_page;
1531 unsigned int s_objidx, d_objidx;
1532 unsigned long s_off, d_off;
1533 void *s_addr, *d_addr;
1534 int s_size, d_size, size;
1535 int written = 0;
1536
1537 s_size = d_size = class->size;
1538
1539 obj_to_location(src, &s_page, &s_objidx);
1540 obj_to_location(dst, &d_page, &d_objidx);
1541
1542 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1543 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1544
1545 if (s_off + class->size > PAGE_SIZE)
1546 s_size = PAGE_SIZE - s_off;
1547
1548 if (d_off + class->size > PAGE_SIZE)
1549 d_size = PAGE_SIZE - d_off;
1550
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1553
1554 while (1) {
1555 size = min(s_size, d_size);
1556 memcpy(d_addr + d_off, s_addr + s_off, size);
1557 written += size;
1558
1559 if (written == class->size)
1560 break;
1561
1562 s_off += size;
1563 s_size -= size;
1564 d_off += size;
1565 d_size -= size;
1566
1567 if (s_off >= PAGE_SIZE) {
1568 kunmap_atomic(d_addr);
1569 kunmap_atomic(s_addr);
1570 s_page = get_next_page(s_page);
1571 s_addr = kmap_atomic(s_page);
1572 d_addr = kmap_atomic(d_page);
1573 s_size = class->size - written;
1574 s_off = 0;
1575 }
1576
1577 if (d_off >= PAGE_SIZE) {
1578 kunmap_atomic(d_addr);
1579 d_page = get_next_page(d_page);
1580 d_addr = kmap_atomic(d_page);
1581 d_size = class->size - written;
1582 d_off = 0;
1583 }
1584 }
1585
1586 kunmap_atomic(d_addr);
1587 kunmap_atomic(s_addr);
1588}
1589
1590
1591
1592
1593
1594static unsigned long find_alloced_obj(struct size_class *class,
1595 struct page *page, int *obj_idx)
1596{
1597 int offset = 0;
1598 int index = *obj_idx;
1599 unsigned long handle = 0;
1600 void *addr = kmap_atomic(page);
1601
1602 offset = get_first_obj_offset(page);
1603 offset += class->size * index;
1604
1605 while (offset < PAGE_SIZE) {
1606 if (obj_allocated(page, addr + offset, &handle))
1607 break;
1608
1609 offset += class->size;
1610 index++;
1611 }
1612
1613 kunmap_atomic(addr);
1614
1615 *obj_idx = index;
1616
1617 return handle;
1618}
1619
1620struct zs_compact_control {
1621
1622 struct page *s_page;
1623
1624
1625 struct page *d_page;
1626
1627
1628 int obj_idx;
1629};
1630
1631static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1632 struct zs_compact_control *cc)
1633{
1634 unsigned long used_obj, free_obj;
1635 unsigned long handle;
1636 struct page *s_page = cc->s_page;
1637 struct page *d_page = cc->d_page;
1638 int obj_idx = cc->obj_idx;
1639 int ret = 0;
1640
1641 while (1) {
1642 handle = find_alloced_obj(class, s_page, &obj_idx);
1643 if (!handle) {
1644 s_page = get_next_page(s_page);
1645 if (!s_page)
1646 break;
1647 obj_idx = 0;
1648 continue;
1649 }
1650
1651
1652 if (zspage_full(class, get_zspage(d_page))) {
1653 ret = -ENOMEM;
1654 break;
1655 }
1656
1657 used_obj = handle_to_obj(handle);
1658 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1659 zs_object_copy(class, free_obj, used_obj);
1660 obj_idx++;
1661 record_obj(handle, free_obj);
1662 obj_free(class->size, used_obj);
1663 }
1664
1665
1666 cc->s_page = s_page;
1667 cc->obj_idx = obj_idx;
1668
1669 return ret;
1670}
1671
1672static struct zspage *isolate_zspage(struct size_class *class, bool source)
1673{
1674 int i;
1675 struct zspage *zspage;
1676 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1677
1678 if (!source) {
1679 fg[0] = ZS_ALMOST_FULL;
1680 fg[1] = ZS_ALMOST_EMPTY;
1681 }
1682
1683 for (i = 0; i < 2; i++) {
1684 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1685 struct zspage, list);
1686 if (zspage) {
1687 remove_zspage(class, zspage, fg[i]);
1688 return zspage;
1689 }
1690 }
1691
1692 return zspage;
1693}
1694
1695
1696
1697
1698
1699
1700
1701
1702static enum fullness_group putback_zspage(struct size_class *class,
1703 struct zspage *zspage)
1704{
1705 enum fullness_group fullness;
1706
1707 fullness = get_fullness_group(class, zspage);
1708 insert_zspage(class, zspage, fullness);
1709 set_zspage_mapping(zspage, class->index, fullness);
1710
1711 return fullness;
1712}
1713
1714#ifdef CONFIG_COMPACTION
1715
1716
1717
1718
1719static void lock_zspage(struct zspage *zspage)
1720{
1721 struct page *page = get_first_page(zspage);
1722
1723 do {
1724 lock_page(page);
1725 } while ((page = get_next_page(page)) != NULL);
1726}
1727
1728static int zs_init_fs_context(struct fs_context *fc)
1729{
1730 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1731}
1732
1733static struct file_system_type zsmalloc_fs = {
1734 .name = "zsmalloc",
1735 .init_fs_context = zs_init_fs_context,
1736 .kill_sb = kill_anon_super,
1737};
1738
1739static int zsmalloc_mount(void)
1740{
1741 int ret = 0;
1742
1743 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1744 if (IS_ERR(zsmalloc_mnt))
1745 ret = PTR_ERR(zsmalloc_mnt);
1746
1747 return ret;
1748}
1749
1750static void zsmalloc_unmount(void)
1751{
1752 kern_unmount(zsmalloc_mnt);
1753}
1754
1755static void migrate_lock_init(struct zspage *zspage)
1756{
1757 rwlock_init(&zspage->lock);
1758}
1759
1760static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1761{
1762 read_lock(&zspage->lock);
1763}
1764
1765static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1766{
1767 read_unlock(&zspage->lock);
1768}
1769
1770static void migrate_write_lock(struct zspage *zspage)
1771{
1772 write_lock(&zspage->lock);
1773}
1774
1775static void migrate_write_lock_nested(struct zspage *zspage)
1776{
1777 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1778}
1779
1780static void migrate_write_unlock(struct zspage *zspage)
1781{
1782 write_unlock(&zspage->lock);
1783}
1784
1785
1786static void inc_zspage_isolation(struct zspage *zspage)
1787{
1788 zspage->isolated++;
1789}
1790
1791static void dec_zspage_isolation(struct zspage *zspage)
1792{
1793 VM_BUG_ON(zspage->isolated == 0);
1794 zspage->isolated--;
1795}
1796
1797static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1798 struct page *newpage, struct page *oldpage)
1799{
1800 struct page *page;
1801 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1802 int idx = 0;
1803
1804 page = get_first_page(zspage);
1805 do {
1806 if (page == oldpage)
1807 pages[idx] = newpage;
1808 else
1809 pages[idx] = page;
1810 idx++;
1811 } while ((page = get_next_page(page)) != NULL);
1812
1813 create_page_chain(class, zspage, pages);
1814 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1815 if (unlikely(ZsHugePage(zspage)))
1816 newpage->index = oldpage->index;
1817 __SetPageMovable(newpage, page_mapping(oldpage));
1818}
1819
1820static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1821{
1822 struct zspage *zspage;
1823
1824
1825
1826
1827
1828 VM_BUG_ON_PAGE(!PageMovable(page), page);
1829 VM_BUG_ON_PAGE(PageIsolated(page), page);
1830
1831 zspage = get_zspage(page);
1832 migrate_write_lock(zspage);
1833 inc_zspage_isolation(zspage);
1834 migrate_write_unlock(zspage);
1835
1836 return true;
1837}
1838
1839static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1840 struct page *page, enum migrate_mode mode)
1841{
1842 struct zs_pool *pool;
1843 struct size_class *class;
1844 struct zspage *zspage;
1845 struct page *dummy;
1846 void *s_addr, *d_addr, *addr;
1847 int offset;
1848 unsigned long handle;
1849 unsigned long old_obj, new_obj;
1850 unsigned int obj_idx;
1851
1852
1853
1854
1855
1856
1857 if (mode == MIGRATE_SYNC_NO_COPY)
1858 return -EINVAL;
1859
1860 VM_BUG_ON_PAGE(!PageMovable(page), page);
1861 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1862
1863 pool = mapping->private_data;
1864
1865
1866
1867
1868
1869 write_lock(&pool->migrate_lock);
1870 zspage = get_zspage(page);
1871 class = zspage_class(pool, zspage);
1872
1873
1874
1875
1876 spin_lock(&class->lock);
1877
1878 migrate_write_lock(zspage);
1879
1880 offset = get_first_obj_offset(page);
1881 s_addr = kmap_atomic(page);
1882
1883
1884
1885
1886 d_addr = kmap_atomic(newpage);
1887 memcpy(d_addr, s_addr, PAGE_SIZE);
1888 kunmap_atomic(d_addr);
1889
1890 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1891 addr += class->size) {
1892 if (obj_allocated(page, addr, &handle)) {
1893
1894 old_obj = handle_to_obj(handle);
1895 obj_to_location(old_obj, &dummy, &obj_idx);
1896 new_obj = (unsigned long)location_to_obj(newpage,
1897 obj_idx);
1898 record_obj(handle, new_obj);
1899 }
1900 }
1901 kunmap_atomic(s_addr);
1902
1903 replace_sub_page(class, zspage, newpage, page);
1904
1905
1906
1907
1908 write_unlock(&pool->migrate_lock);
1909 spin_unlock(&class->lock);
1910 dec_zspage_isolation(zspage);
1911 migrate_write_unlock(zspage);
1912
1913 get_page(newpage);
1914 if (page_zone(newpage) != page_zone(page)) {
1915 dec_zone_page_state(page, NR_ZSPAGES);
1916 inc_zone_page_state(newpage, NR_ZSPAGES);
1917 }
1918
1919 reset_page(page);
1920 put_page(page);
1921
1922 return MIGRATEPAGE_SUCCESS;
1923}
1924
1925static void zs_page_putback(struct page *page)
1926{
1927 struct zspage *zspage;
1928
1929 VM_BUG_ON_PAGE(!PageMovable(page), page);
1930 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1931
1932 zspage = get_zspage(page);
1933 migrate_write_lock(zspage);
1934 dec_zspage_isolation(zspage);
1935 migrate_write_unlock(zspage);
1936}
1937
1938static const struct address_space_operations zsmalloc_aops = {
1939 .isolate_page = zs_page_isolate,
1940 .migratepage = zs_page_migrate,
1941 .putback_page = zs_page_putback,
1942};
1943
1944static int zs_register_migration(struct zs_pool *pool)
1945{
1946 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1947 if (IS_ERR(pool->inode)) {
1948 pool->inode = NULL;
1949 return 1;
1950 }
1951
1952 pool->inode->i_mapping->private_data = pool;
1953 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1954 return 0;
1955}
1956
1957static void zs_unregister_migration(struct zs_pool *pool)
1958{
1959 flush_work(&pool->free_work);
1960 iput(pool->inode);
1961}
1962
1963
1964
1965
1966
1967static void async_free_zspage(struct work_struct *work)
1968{
1969 int i;
1970 struct size_class *class;
1971 unsigned int class_idx;
1972 enum fullness_group fullness;
1973 struct zspage *zspage, *tmp;
1974 LIST_HEAD(free_pages);
1975 struct zs_pool *pool = container_of(work, struct zs_pool,
1976 free_work);
1977
1978 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1979 class = pool->size_class[i];
1980 if (class->index != i)
1981 continue;
1982
1983 spin_lock(&class->lock);
1984 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1985 spin_unlock(&class->lock);
1986 }
1987
1988 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1989 list_del(&zspage->list);
1990 lock_zspage(zspage);
1991
1992 get_zspage_mapping(zspage, &class_idx, &fullness);
1993 VM_BUG_ON(fullness != ZS_EMPTY);
1994 class = pool->size_class[class_idx];
1995 spin_lock(&class->lock);
1996 __free_zspage(pool, class, zspage);
1997 spin_unlock(&class->lock);
1998 }
1999};
2000
2001static void kick_deferred_free(struct zs_pool *pool)
2002{
2003 schedule_work(&pool->free_work);
2004}
2005
2006static void init_deferred_free(struct zs_pool *pool)
2007{
2008 INIT_WORK(&pool->free_work, async_free_zspage);
2009}
2010
2011static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2012{
2013 struct page *page = get_first_page(zspage);
2014
2015 do {
2016 WARN_ON(!trylock_page(page));
2017 __SetPageMovable(page, pool->inode->i_mapping);
2018 unlock_page(page);
2019 } while ((page = get_next_page(page)) != NULL);
2020}
2021#endif
2022
2023
2024
2025
2026
2027
2028static unsigned long zs_can_compact(struct size_class *class)
2029{
2030 unsigned long obj_wasted;
2031 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2032 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2033
2034 if (obj_allocated <= obj_used)
2035 return 0;
2036
2037 obj_wasted = obj_allocated - obj_used;
2038 obj_wasted /= class->objs_per_zspage;
2039
2040 return obj_wasted * class->pages_per_zspage;
2041}
2042
2043static unsigned long __zs_compact(struct zs_pool *pool,
2044 struct size_class *class)
2045{
2046 struct zs_compact_control cc;
2047 struct zspage *src_zspage;
2048 struct zspage *dst_zspage = NULL;
2049 unsigned long pages_freed = 0;
2050
2051
2052 write_lock(&pool->migrate_lock);
2053
2054 spin_lock(&class->lock);
2055 while ((src_zspage = isolate_zspage(class, true))) {
2056
2057 migrate_write_lock(src_zspage);
2058
2059 if (!zs_can_compact(class))
2060 break;
2061
2062 cc.obj_idx = 0;
2063 cc.s_page = get_first_page(src_zspage);
2064
2065 while ((dst_zspage = isolate_zspage(class, false))) {
2066 migrate_write_lock_nested(dst_zspage);
2067
2068 cc.d_page = get_first_page(dst_zspage);
2069
2070
2071
2072
2073 if (!migrate_zspage(pool, class, &cc))
2074 break;
2075
2076 putback_zspage(class, dst_zspage);
2077 migrate_write_unlock(dst_zspage);
2078 dst_zspage = NULL;
2079 if (rwlock_is_contended(&pool->migrate_lock))
2080 break;
2081 }
2082
2083
2084 if (dst_zspage == NULL)
2085 break;
2086
2087 putback_zspage(class, dst_zspage);
2088 migrate_write_unlock(dst_zspage);
2089
2090 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2091 migrate_write_unlock(src_zspage);
2092 free_zspage(pool, class, src_zspage);
2093 pages_freed += class->pages_per_zspage;
2094 } else
2095 migrate_write_unlock(src_zspage);
2096 spin_unlock(&class->lock);
2097 write_unlock(&pool->migrate_lock);
2098 cond_resched();
2099 write_lock(&pool->migrate_lock);
2100 spin_lock(&class->lock);
2101 }
2102
2103 if (src_zspage) {
2104 putback_zspage(class, src_zspage);
2105 migrate_write_unlock(src_zspage);
2106 }
2107
2108 spin_unlock(&class->lock);
2109 write_unlock(&pool->migrate_lock);
2110
2111 return pages_freed;
2112}
2113
2114unsigned long zs_compact(struct zs_pool *pool)
2115{
2116 int i;
2117 struct size_class *class;
2118 unsigned long pages_freed = 0;
2119
2120 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2121 class = pool->size_class[i];
2122 if (!class)
2123 continue;
2124 if (class->index != i)
2125 continue;
2126 pages_freed += __zs_compact(pool, class);
2127 }
2128 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2129
2130 return pages_freed;
2131}
2132EXPORT_SYMBOL_GPL(zs_compact);
2133
2134void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2135{
2136 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2137}
2138EXPORT_SYMBOL_GPL(zs_pool_stats);
2139
2140static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2141 struct shrink_control *sc)
2142{
2143 unsigned long pages_freed;
2144 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2145 shrinker);
2146
2147
2148
2149
2150
2151
2152 pages_freed = zs_compact(pool);
2153
2154 return pages_freed ? pages_freed : SHRINK_STOP;
2155}
2156
2157static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2158 struct shrink_control *sc)
2159{
2160 int i;
2161 struct size_class *class;
2162 unsigned long pages_to_free = 0;
2163 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2164 shrinker);
2165
2166 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2167 class = pool->size_class[i];
2168 if (!class)
2169 continue;
2170 if (class->index != i)
2171 continue;
2172
2173 pages_to_free += zs_can_compact(class);
2174 }
2175
2176 return pages_to_free;
2177}
2178
2179static void zs_unregister_shrinker(struct zs_pool *pool)
2180{
2181 unregister_shrinker(&pool->shrinker);
2182}
2183
2184static int zs_register_shrinker(struct zs_pool *pool)
2185{
2186 pool->shrinker.scan_objects = zs_shrinker_scan;
2187 pool->shrinker.count_objects = zs_shrinker_count;
2188 pool->shrinker.batch = 0;
2189 pool->shrinker.seeks = DEFAULT_SEEKS;
2190
2191 return register_shrinker(&pool->shrinker);
2192}
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204struct zs_pool *zs_create_pool(const char *name)
2205{
2206 int i;
2207 struct zs_pool *pool;
2208 struct size_class *prev_class = NULL;
2209
2210 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2211 if (!pool)
2212 return NULL;
2213
2214 init_deferred_free(pool);
2215 rwlock_init(&pool->migrate_lock);
2216
2217 pool->name = kstrdup(name, GFP_KERNEL);
2218 if (!pool->name)
2219 goto err;
2220
2221 if (create_cache(pool))
2222 goto err;
2223
2224
2225
2226
2227
2228 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2229 int size;
2230 int pages_per_zspage;
2231 int objs_per_zspage;
2232 struct size_class *class;
2233 int fullness = 0;
2234
2235 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2236 if (size > ZS_MAX_ALLOC_SIZE)
2237 size = ZS_MAX_ALLOC_SIZE;
2238 pages_per_zspage = get_pages_per_zspage(size);
2239 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2240
2241
2242
2243
2244
2245
2246
2247 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2248 !huge_class_size) {
2249 huge_class_size = size;
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2260 }
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271 if (prev_class) {
2272 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2273 pool->size_class[i] = prev_class;
2274 continue;
2275 }
2276 }
2277
2278 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2279 if (!class)
2280 goto err;
2281
2282 class->size = size;
2283 class->index = i;
2284 class->pages_per_zspage = pages_per_zspage;
2285 class->objs_per_zspage = objs_per_zspage;
2286 spin_lock_init(&class->lock);
2287 pool->size_class[i] = class;
2288 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2289 fullness++)
2290 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2291
2292 prev_class = class;
2293 }
2294
2295
2296 zs_pool_stat_create(pool, name);
2297
2298 if (zs_register_migration(pool))
2299 goto err;
2300
2301
2302
2303
2304
2305
2306
2307 zs_register_shrinker(pool);
2308
2309 return pool;
2310
2311err:
2312 zs_destroy_pool(pool);
2313 return NULL;
2314}
2315EXPORT_SYMBOL_GPL(zs_create_pool);
2316
2317void zs_destroy_pool(struct zs_pool *pool)
2318{
2319 int i;
2320
2321 zs_unregister_shrinker(pool);
2322 zs_unregister_migration(pool);
2323 zs_pool_stat_destroy(pool);
2324
2325 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2326 int fg;
2327 struct size_class *class = pool->size_class[i];
2328
2329 if (!class)
2330 continue;
2331
2332 if (class->index != i)
2333 continue;
2334
2335 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2336 if (!list_empty(&class->fullness_list[fg])) {
2337 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2338 class->size, fg);
2339 }
2340 }
2341 kfree(class);
2342 }
2343
2344 destroy_cache(pool);
2345 kfree(pool->name);
2346 kfree(pool);
2347}
2348EXPORT_SYMBOL_GPL(zs_destroy_pool);
2349
2350static int __init zs_init(void)
2351{
2352 int ret;
2353
2354 ret = zsmalloc_mount();
2355 if (ret)
2356 goto out;
2357
2358 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2359 zs_cpu_prepare, zs_cpu_dead);
2360 if (ret)
2361 goto hp_setup_fail;
2362
2363#ifdef CONFIG_ZPOOL
2364 zpool_register_driver(&zs_zpool_driver);
2365#endif
2366
2367 zs_stat_init();
2368
2369 return 0;
2370
2371hp_setup_fail:
2372 zsmalloc_unmount();
2373out:
2374 return ret;
2375}
2376
2377static void __exit zs_exit(void)
2378{
2379#ifdef CONFIG_ZPOOL
2380 zpool_unregister_driver(&zs_zpool_driver);
2381#endif
2382 zsmalloc_unmount();
2383 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2384
2385 zs_stat_exit();
2386}
2387
2388module_init(zs_init);
2389module_exit(zs_exit);
2390
2391MODULE_LICENSE("Dual BSD/GPL");
2392MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2393