linux/tools/include/uapi/linux/perf_event.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2/*
   3 * Performance events:
   4 *
   5 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   7 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   8 *
   9 * Data type definitions, declarations, prototypes.
  10 *
  11 *    Started by: Thomas Gleixner and Ingo Molnar
  12 *
  13 * For licencing details see kernel-base/COPYING
  14 */
  15#ifndef _UAPI_LINUX_PERF_EVENT_H
  16#define _UAPI_LINUX_PERF_EVENT_H
  17
  18#include <linux/types.h>
  19#include <linux/ioctl.h>
  20#include <asm/byteorder.h>
  21
  22/*
  23 * User-space ABI bits:
  24 */
  25
  26/*
  27 * attr.type
  28 */
  29enum perf_type_id {
  30        PERF_TYPE_HARDWARE                      = 0,
  31        PERF_TYPE_SOFTWARE                      = 1,
  32        PERF_TYPE_TRACEPOINT                    = 2,
  33        PERF_TYPE_HW_CACHE                      = 3,
  34        PERF_TYPE_RAW                           = 4,
  35        PERF_TYPE_BREAKPOINT                    = 5,
  36
  37        PERF_TYPE_MAX,                          /* non-ABI */
  38};
  39
  40/*
  41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
  42 * PERF_TYPE_HARDWARE:                  0xEEEEEEEE000000AA
  43 *                                      AA: hardware event ID
  44 *                                      EEEEEEEE: PMU type ID
  45 * PERF_TYPE_HW_CACHE:                  0xEEEEEEEE00DDCCBB
  46 *                                      BB: hardware cache ID
  47 *                                      CC: hardware cache op ID
  48 *                                      DD: hardware cache op result ID
  49 *                                      EEEEEEEE: PMU type ID
  50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
  51 */
  52#define PERF_PMU_TYPE_SHIFT             32
  53#define PERF_HW_EVENT_MASK              0xffffffff
  54
  55/*
  56 * Generalized performance event event_id types, used by the
  57 * attr.event_id parameter of the sys_perf_event_open()
  58 * syscall:
  59 */
  60enum perf_hw_id {
  61        /*
  62         * Common hardware events, generalized by the kernel:
  63         */
  64        PERF_COUNT_HW_CPU_CYCLES                = 0,
  65        PERF_COUNT_HW_INSTRUCTIONS              = 1,
  66        PERF_COUNT_HW_CACHE_REFERENCES          = 2,
  67        PERF_COUNT_HW_CACHE_MISSES              = 3,
  68        PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
  69        PERF_COUNT_HW_BRANCH_MISSES             = 5,
  70        PERF_COUNT_HW_BUS_CYCLES                = 6,
  71        PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
  72        PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
  73        PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
  74
  75        PERF_COUNT_HW_MAX,                      /* non-ABI */
  76};
  77
  78/*
  79 * Generalized hardware cache events:
  80 *
  81 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
  82 *       { read, write, prefetch } x
  83 *       { accesses, misses }
  84 */
  85enum perf_hw_cache_id {
  86        PERF_COUNT_HW_CACHE_L1D                 = 0,
  87        PERF_COUNT_HW_CACHE_L1I                 = 1,
  88        PERF_COUNT_HW_CACHE_LL                  = 2,
  89        PERF_COUNT_HW_CACHE_DTLB                = 3,
  90        PERF_COUNT_HW_CACHE_ITLB                = 4,
  91        PERF_COUNT_HW_CACHE_BPU                 = 5,
  92        PERF_COUNT_HW_CACHE_NODE                = 6,
  93
  94        PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
  95};
  96
  97enum perf_hw_cache_op_id {
  98        PERF_COUNT_HW_CACHE_OP_READ             = 0,
  99        PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
 100        PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
 101
 102        PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
 103};
 104
 105enum perf_hw_cache_op_result_id {
 106        PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
 107        PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
 108
 109        PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
 110};
 111
 112/*
 113 * Special "software" events provided by the kernel, even if the hardware
 114 * does not support performance events. These events measure various
 115 * physical and sw events of the kernel (and allow the profiling of them as
 116 * well):
 117 */
 118enum perf_sw_ids {
 119        PERF_COUNT_SW_CPU_CLOCK                 = 0,
 120        PERF_COUNT_SW_TASK_CLOCK                = 1,
 121        PERF_COUNT_SW_PAGE_FAULTS               = 2,
 122        PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
 123        PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
 124        PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
 125        PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
 126        PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
 127        PERF_COUNT_SW_EMULATION_FAULTS          = 8,
 128        PERF_COUNT_SW_DUMMY                     = 9,
 129        PERF_COUNT_SW_BPF_OUTPUT                = 10,
 130        PERF_COUNT_SW_CGROUP_SWITCHES           = 11,
 131
 132        PERF_COUNT_SW_MAX,                      /* non-ABI */
 133};
 134
 135/*
 136 * Bits that can be set in attr.sample_type to request information
 137 * in the overflow packets.
 138 */
 139enum perf_event_sample_format {
 140        PERF_SAMPLE_IP                          = 1U << 0,
 141        PERF_SAMPLE_TID                         = 1U << 1,
 142        PERF_SAMPLE_TIME                        = 1U << 2,
 143        PERF_SAMPLE_ADDR                        = 1U << 3,
 144        PERF_SAMPLE_READ                        = 1U << 4,
 145        PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
 146        PERF_SAMPLE_ID                          = 1U << 6,
 147        PERF_SAMPLE_CPU                         = 1U << 7,
 148        PERF_SAMPLE_PERIOD                      = 1U << 8,
 149        PERF_SAMPLE_STREAM_ID                   = 1U << 9,
 150        PERF_SAMPLE_RAW                         = 1U << 10,
 151        PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
 152        PERF_SAMPLE_REGS_USER                   = 1U << 12,
 153        PERF_SAMPLE_STACK_USER                  = 1U << 13,
 154        PERF_SAMPLE_WEIGHT                      = 1U << 14,
 155        PERF_SAMPLE_DATA_SRC                    = 1U << 15,
 156        PERF_SAMPLE_IDENTIFIER                  = 1U << 16,
 157        PERF_SAMPLE_TRANSACTION                 = 1U << 17,
 158        PERF_SAMPLE_REGS_INTR                   = 1U << 18,
 159        PERF_SAMPLE_PHYS_ADDR                   = 1U << 19,
 160        PERF_SAMPLE_AUX                         = 1U << 20,
 161        PERF_SAMPLE_CGROUP                      = 1U << 21,
 162        PERF_SAMPLE_DATA_PAGE_SIZE              = 1U << 22,
 163        PERF_SAMPLE_CODE_PAGE_SIZE              = 1U << 23,
 164        PERF_SAMPLE_WEIGHT_STRUCT               = 1U << 24,
 165
 166        PERF_SAMPLE_MAX = 1U << 25,             /* non-ABI */
 167
 168        __PERF_SAMPLE_CALLCHAIN_EARLY           = 1ULL << 63, /* non-ABI; internal use */
 169};
 170
 171#define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
 172/*
 173 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
 174 *
 175 * If the user does not pass priv level information via branch_sample_type,
 176 * the kernel uses the event's priv level. Branch and event priv levels do
 177 * not have to match. Branch priv level is checked for permissions.
 178 *
 179 * The branch types can be combined, however BRANCH_ANY covers all types
 180 * of branches and therefore it supersedes all the other types.
 181 */
 182enum perf_branch_sample_type_shift {
 183        PERF_SAMPLE_BRANCH_USER_SHIFT           = 0, /* user branches */
 184        PERF_SAMPLE_BRANCH_KERNEL_SHIFT         = 1, /* kernel branches */
 185        PERF_SAMPLE_BRANCH_HV_SHIFT             = 2, /* hypervisor branches */
 186
 187        PERF_SAMPLE_BRANCH_ANY_SHIFT            = 3, /* any branch types */
 188        PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT       = 4, /* any call branch */
 189        PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT     = 5, /* any return branch */
 190        PERF_SAMPLE_BRANCH_IND_CALL_SHIFT       = 6, /* indirect calls */
 191        PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT       = 7, /* transaction aborts */
 192        PERF_SAMPLE_BRANCH_IN_TX_SHIFT          = 8, /* in transaction */
 193        PERF_SAMPLE_BRANCH_NO_TX_SHIFT          = 9, /* not in transaction */
 194        PERF_SAMPLE_BRANCH_COND_SHIFT           = 10, /* conditional branches */
 195
 196        PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT     = 11, /* call/ret stack */
 197        PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT       = 12, /* indirect jumps */
 198        PERF_SAMPLE_BRANCH_CALL_SHIFT           = 13, /* direct call */
 199
 200        PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT       = 14, /* no flags */
 201        PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT      = 15, /* no cycles */
 202
 203        PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT      = 16, /* save branch type */
 204
 205        PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT       = 17, /* save low level index of raw branch records */
 206
 207        PERF_SAMPLE_BRANCH_MAX_SHIFT            /* non-ABI */
 208};
 209
 210enum perf_branch_sample_type {
 211        PERF_SAMPLE_BRANCH_USER         = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
 212        PERF_SAMPLE_BRANCH_KERNEL       = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
 213        PERF_SAMPLE_BRANCH_HV           = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
 214
 215        PERF_SAMPLE_BRANCH_ANY          = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
 216        PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
 217        PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
 218        PERF_SAMPLE_BRANCH_IND_CALL     = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
 219        PERF_SAMPLE_BRANCH_ABORT_TX     = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
 220        PERF_SAMPLE_BRANCH_IN_TX        = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
 221        PERF_SAMPLE_BRANCH_NO_TX        = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
 222        PERF_SAMPLE_BRANCH_COND         = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
 223
 224        PERF_SAMPLE_BRANCH_CALL_STACK   = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
 225        PERF_SAMPLE_BRANCH_IND_JUMP     = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
 226        PERF_SAMPLE_BRANCH_CALL         = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
 227
 228        PERF_SAMPLE_BRANCH_NO_FLAGS     = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
 229        PERF_SAMPLE_BRANCH_NO_CYCLES    = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
 230
 231        PERF_SAMPLE_BRANCH_TYPE_SAVE    =
 232                1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
 233
 234        PERF_SAMPLE_BRANCH_HW_INDEX     = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
 235
 236        PERF_SAMPLE_BRANCH_MAX          = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
 237};
 238
 239/*
 240 * Common flow change classification
 241 */
 242enum {
 243        PERF_BR_UNKNOWN         = 0,    /* unknown */
 244        PERF_BR_COND            = 1,    /* conditional */
 245        PERF_BR_UNCOND          = 2,    /* unconditional  */
 246        PERF_BR_IND             = 3,    /* indirect */
 247        PERF_BR_CALL            = 4,    /* function call */
 248        PERF_BR_IND_CALL        = 5,    /* indirect function call */
 249        PERF_BR_RET             = 6,    /* function return */
 250        PERF_BR_SYSCALL         = 7,    /* syscall */
 251        PERF_BR_SYSRET          = 8,    /* syscall return */
 252        PERF_BR_COND_CALL       = 9,    /* conditional function call */
 253        PERF_BR_COND_RET        = 10,   /* conditional function return */
 254        PERF_BR_ERET            = 11,   /* exception return */
 255        PERF_BR_IRQ             = 12,   /* irq */
 256        PERF_BR_MAX,
 257};
 258
 259#define PERF_SAMPLE_BRANCH_PLM_ALL \
 260        (PERF_SAMPLE_BRANCH_USER|\
 261         PERF_SAMPLE_BRANCH_KERNEL|\
 262         PERF_SAMPLE_BRANCH_HV)
 263
 264/*
 265 * Values to determine ABI of the registers dump.
 266 */
 267enum perf_sample_regs_abi {
 268        PERF_SAMPLE_REGS_ABI_NONE       = 0,
 269        PERF_SAMPLE_REGS_ABI_32         = 1,
 270        PERF_SAMPLE_REGS_ABI_64         = 2,
 271};
 272
 273/*
 274 * Values for the memory transaction event qualifier, mostly for
 275 * abort events. Multiple bits can be set.
 276 */
 277enum {
 278        PERF_TXN_ELISION        = (1 << 0), /* From elision */
 279        PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
 280        PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
 281        PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
 282        PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
 283        PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
 284        PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
 285        PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
 286
 287        PERF_TXN_MAX            = (1 << 8), /* non-ABI */
 288
 289        /* bits 32..63 are reserved for the abort code */
 290
 291        PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
 292        PERF_TXN_ABORT_SHIFT = 32,
 293};
 294
 295/*
 296 * The format of the data returned by read() on a perf event fd,
 297 * as specified by attr.read_format:
 298 *
 299 * struct read_format {
 300 *      { u64           value;
 301 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 302 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 303 *        { u64         id;           } && PERF_FORMAT_ID
 304 *      } && !PERF_FORMAT_GROUP
 305 *
 306 *      { u64           nr;
 307 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 308 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 309 *        { u64         value;
 310 *          { u64       id;           } && PERF_FORMAT_ID
 311 *        }             cntr[nr];
 312 *      } && PERF_FORMAT_GROUP
 313 * };
 314 */
 315enum perf_event_read_format {
 316        PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
 317        PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
 318        PERF_FORMAT_ID                          = 1U << 2,
 319        PERF_FORMAT_GROUP                       = 1U << 3,
 320
 321        PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
 322};
 323
 324#define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
 325#define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
 326#define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
 327#define PERF_ATTR_SIZE_VER3     96      /* add: sample_regs_user */
 328                                        /* add: sample_stack_user */
 329#define PERF_ATTR_SIZE_VER4     104     /* add: sample_regs_intr */
 330#define PERF_ATTR_SIZE_VER5     112     /* add: aux_watermark */
 331#define PERF_ATTR_SIZE_VER6     120     /* add: aux_sample_size */
 332#define PERF_ATTR_SIZE_VER7     128     /* add: sig_data */
 333
 334/*
 335 * Hardware event_id to monitor via a performance monitoring event:
 336 *
 337 * @sample_max_stack: Max number of frame pointers in a callchain,
 338 *                    should be < /proc/sys/kernel/perf_event_max_stack
 339 */
 340struct perf_event_attr {
 341
 342        /*
 343         * Major type: hardware/software/tracepoint/etc.
 344         */
 345        __u32                   type;
 346
 347        /*
 348         * Size of the attr structure, for fwd/bwd compat.
 349         */
 350        __u32                   size;
 351
 352        /*
 353         * Type specific configuration information.
 354         */
 355        __u64                   config;
 356
 357        union {
 358                __u64           sample_period;
 359                __u64           sample_freq;
 360        };
 361
 362        __u64                   sample_type;
 363        __u64                   read_format;
 364
 365        __u64                   disabled       :  1, /* off by default        */
 366                                inherit        :  1, /* children inherit it   */
 367                                pinned         :  1, /* must always be on PMU */
 368                                exclusive      :  1, /* only group on PMU     */
 369                                exclude_user   :  1, /* don't count user      */
 370                                exclude_kernel :  1, /* ditto kernel          */
 371                                exclude_hv     :  1, /* ditto hypervisor      */
 372                                exclude_idle   :  1, /* don't count when idle */
 373                                mmap           :  1, /* include mmap data     */
 374                                comm           :  1, /* include comm data     */
 375                                freq           :  1, /* use freq, not period  */
 376                                inherit_stat   :  1, /* per task counts       */
 377                                enable_on_exec :  1, /* next exec enables     */
 378                                task           :  1, /* trace fork/exit       */
 379                                watermark      :  1, /* wakeup_watermark      */
 380                                /*
 381                                 * precise_ip:
 382                                 *
 383                                 *  0 - SAMPLE_IP can have arbitrary skid
 384                                 *  1 - SAMPLE_IP must have constant skid
 385                                 *  2 - SAMPLE_IP requested to have 0 skid
 386                                 *  3 - SAMPLE_IP must have 0 skid
 387                                 *
 388                                 *  See also PERF_RECORD_MISC_EXACT_IP
 389                                 */
 390                                precise_ip     :  2, /* skid constraint       */
 391                                mmap_data      :  1, /* non-exec mmap data    */
 392                                sample_id_all  :  1, /* sample_type all events */
 393
 394                                exclude_host   :  1, /* don't count in host   */
 395                                exclude_guest  :  1, /* don't count in guest  */
 396
 397                                exclude_callchain_kernel : 1, /* exclude kernel callchains */
 398                                exclude_callchain_user   : 1, /* exclude user callchains */
 399                                mmap2          :  1, /* include mmap with inode data     */
 400                                comm_exec      :  1, /* flag comm events that are due to an exec */
 401                                use_clockid    :  1, /* use @clockid for time fields */
 402                                context_switch :  1, /* context switch data */
 403                                write_backward :  1, /* Write ring buffer from end to beginning */
 404                                namespaces     :  1, /* include namespaces data */
 405                                ksymbol        :  1, /* include ksymbol events */
 406                                bpf_event      :  1, /* include bpf events */
 407                                aux_output     :  1, /* generate AUX records instead of events */
 408                                cgroup         :  1, /* include cgroup events */
 409                                text_poke      :  1, /* include text poke events */
 410                                build_id       :  1, /* use build id in mmap2 events */
 411                                inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
 412                                remove_on_exec :  1, /* event is removed from task on exec */
 413                                sigtrap        :  1, /* send synchronous SIGTRAP on event */
 414                                __reserved_1   : 26;
 415
 416        union {
 417                __u32           wakeup_events;    /* wakeup every n events */
 418                __u32           wakeup_watermark; /* bytes before wakeup   */
 419        };
 420
 421        __u32                   bp_type;
 422        union {
 423                __u64           bp_addr;
 424                __u64           kprobe_func; /* for perf_kprobe */
 425                __u64           uprobe_path; /* for perf_uprobe */
 426                __u64           config1; /* extension of config */
 427        };
 428        union {
 429                __u64           bp_len;
 430                __u64           kprobe_addr; /* when kprobe_func == NULL */
 431                __u64           probe_offset; /* for perf_[k,u]probe */
 432                __u64           config2; /* extension of config1 */
 433        };
 434        __u64   branch_sample_type; /* enum perf_branch_sample_type */
 435
 436        /*
 437         * Defines set of user regs to dump on samples.
 438         * See asm/perf_regs.h for details.
 439         */
 440        __u64   sample_regs_user;
 441
 442        /*
 443         * Defines size of the user stack to dump on samples.
 444         */
 445        __u32   sample_stack_user;
 446
 447        __s32   clockid;
 448        /*
 449         * Defines set of regs to dump for each sample
 450         * state captured on:
 451         *  - precise = 0: PMU interrupt
 452         *  - precise > 0: sampled instruction
 453         *
 454         * See asm/perf_regs.h for details.
 455         */
 456        __u64   sample_regs_intr;
 457
 458        /*
 459         * Wakeup watermark for AUX area
 460         */
 461        __u32   aux_watermark;
 462        __u16   sample_max_stack;
 463        __u16   __reserved_2;
 464        __u32   aux_sample_size;
 465        __u32   __reserved_3;
 466
 467        /*
 468         * User provided data if sigtrap=1, passed back to user via
 469         * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
 470         * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
 471         * truncated accordingly on 32 bit architectures.
 472         */
 473        __u64   sig_data;
 474};
 475
 476/*
 477 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
 478 * to query bpf programs attached to the same perf tracepoint
 479 * as the given perf event.
 480 */
 481struct perf_event_query_bpf {
 482        /*
 483         * The below ids array length
 484         */
 485        __u32   ids_len;
 486        /*
 487         * Set by the kernel to indicate the number of
 488         * available programs
 489         */
 490        __u32   prog_cnt;
 491        /*
 492         * User provided buffer to store program ids
 493         */
 494        __u32   ids[0];
 495};
 496
 497/*
 498 * Ioctls that can be done on a perf event fd:
 499 */
 500#define PERF_EVENT_IOC_ENABLE                   _IO ('$', 0)
 501#define PERF_EVENT_IOC_DISABLE                  _IO ('$', 1)
 502#define PERF_EVENT_IOC_REFRESH                  _IO ('$', 2)
 503#define PERF_EVENT_IOC_RESET                    _IO ('$', 3)
 504#define PERF_EVENT_IOC_PERIOD                   _IOW('$', 4, __u64)
 505#define PERF_EVENT_IOC_SET_OUTPUT               _IO ('$', 5)
 506#define PERF_EVENT_IOC_SET_FILTER               _IOW('$', 6, char *)
 507#define PERF_EVENT_IOC_ID                       _IOR('$', 7, __u64 *)
 508#define PERF_EVENT_IOC_SET_BPF                  _IOW('$', 8, __u32)
 509#define PERF_EVENT_IOC_PAUSE_OUTPUT             _IOW('$', 9, __u32)
 510#define PERF_EVENT_IOC_QUERY_BPF                _IOWR('$', 10, struct perf_event_query_bpf *)
 511#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES        _IOW('$', 11, struct perf_event_attr *)
 512
 513enum perf_event_ioc_flags {
 514        PERF_IOC_FLAG_GROUP             = 1U << 0,
 515};
 516
 517/*
 518 * Structure of the page that can be mapped via mmap
 519 */
 520struct perf_event_mmap_page {
 521        __u32   version;                /* version number of this structure */
 522        __u32   compat_version;         /* lowest version this is compat with */
 523
 524        /*
 525         * Bits needed to read the hw events in user-space.
 526         *
 527         *   u32 seq, time_mult, time_shift, index, width;
 528         *   u64 count, enabled, running;
 529         *   u64 cyc, time_offset;
 530         *   s64 pmc = 0;
 531         *
 532         *   do {
 533         *     seq = pc->lock;
 534         *     barrier()
 535         *
 536         *     enabled = pc->time_enabled;
 537         *     running = pc->time_running;
 538         *
 539         *     if (pc->cap_usr_time && enabled != running) {
 540         *       cyc = rdtsc();
 541         *       time_offset = pc->time_offset;
 542         *       time_mult   = pc->time_mult;
 543         *       time_shift  = pc->time_shift;
 544         *     }
 545         *
 546         *     index = pc->index;
 547         *     count = pc->offset;
 548         *     if (pc->cap_user_rdpmc && index) {
 549         *       width = pc->pmc_width;
 550         *       pmc = rdpmc(index - 1);
 551         *     }
 552         *
 553         *     barrier();
 554         *   } while (pc->lock != seq);
 555         *
 556         * NOTE: for obvious reason this only works on self-monitoring
 557         *       processes.
 558         */
 559        __u32   lock;                   /* seqlock for synchronization */
 560        __u32   index;                  /* hardware event identifier */
 561        __s64   offset;                 /* add to hardware event value */
 562        __u64   time_enabled;           /* time event active */
 563        __u64   time_running;           /* time event on cpu */
 564        union {
 565                __u64   capabilities;
 566                struct {
 567                        __u64   cap_bit0                : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
 568                                cap_bit0_is_deprecated  : 1, /* Always 1, signals that bit 0 is zero */
 569
 570                                cap_user_rdpmc          : 1, /* The RDPMC instruction can be used to read counts */
 571                                cap_user_time           : 1, /* The time_{shift,mult,offset} fields are used */
 572                                cap_user_time_zero      : 1, /* The time_zero field is used */
 573                                cap_user_time_short     : 1, /* the time_{cycle,mask} fields are used */
 574                                cap_____res             : 58;
 575                };
 576        };
 577
 578        /*
 579         * If cap_user_rdpmc this field provides the bit-width of the value
 580         * read using the rdpmc() or equivalent instruction. This can be used
 581         * to sign extend the result like:
 582         *
 583         *   pmc <<= 64 - width;
 584         *   pmc >>= 64 - width; // signed shift right
 585         *   count += pmc;
 586         */
 587        __u16   pmc_width;
 588
 589        /*
 590         * If cap_usr_time the below fields can be used to compute the time
 591         * delta since time_enabled (in ns) using rdtsc or similar.
 592         *
 593         *   u64 quot, rem;
 594         *   u64 delta;
 595         *
 596         *   quot = (cyc >> time_shift);
 597         *   rem = cyc & (((u64)1 << time_shift) - 1);
 598         *   delta = time_offset + quot * time_mult +
 599         *              ((rem * time_mult) >> time_shift);
 600         *
 601         * Where time_offset,time_mult,time_shift and cyc are read in the
 602         * seqcount loop described above. This delta can then be added to
 603         * enabled and possible running (if index), improving the scaling:
 604         *
 605         *   enabled += delta;
 606         *   if (index)
 607         *     running += delta;
 608         *
 609         *   quot = count / running;
 610         *   rem  = count % running;
 611         *   count = quot * enabled + (rem * enabled) / running;
 612         */
 613        __u16   time_shift;
 614        __u32   time_mult;
 615        __u64   time_offset;
 616        /*
 617         * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
 618         * from sample timestamps.
 619         *
 620         *   time = timestamp - time_zero;
 621         *   quot = time / time_mult;
 622         *   rem  = time % time_mult;
 623         *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
 624         *
 625         * And vice versa:
 626         *
 627         *   quot = cyc >> time_shift;
 628         *   rem  = cyc & (((u64)1 << time_shift) - 1);
 629         *   timestamp = time_zero + quot * time_mult +
 630         *               ((rem * time_mult) >> time_shift);
 631         */
 632        __u64   time_zero;
 633
 634        __u32   size;                   /* Header size up to __reserved[] fields. */
 635        __u32   __reserved_1;
 636
 637        /*
 638         * If cap_usr_time_short, the hardware clock is less than 64bit wide
 639         * and we must compute the 'cyc' value, as used by cap_usr_time, as:
 640         *
 641         *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
 642         *
 643         * NOTE: this form is explicitly chosen such that cap_usr_time_short
 644         *       is a correction on top of cap_usr_time, and code that doesn't
 645         *       know about cap_usr_time_short still works under the assumption
 646         *       the counter doesn't wrap.
 647         */
 648        __u64   time_cycles;
 649        __u64   time_mask;
 650
 651                /*
 652                 * Hole for extension of the self monitor capabilities
 653                 */
 654
 655        __u8    __reserved[116*8];      /* align to 1k. */
 656
 657        /*
 658         * Control data for the mmap() data buffer.
 659         *
 660         * User-space reading the @data_head value should issue an smp_rmb(),
 661         * after reading this value.
 662         *
 663         * When the mapping is PROT_WRITE the @data_tail value should be
 664         * written by userspace to reflect the last read data, after issueing
 665         * an smp_mb() to separate the data read from the ->data_tail store.
 666         * In this case the kernel will not over-write unread data.
 667         *
 668         * See perf_output_put_handle() for the data ordering.
 669         *
 670         * data_{offset,size} indicate the location and size of the perf record
 671         * buffer within the mmapped area.
 672         */
 673        __u64   data_head;              /* head in the data section */
 674        __u64   data_tail;              /* user-space written tail */
 675        __u64   data_offset;            /* where the buffer starts */
 676        __u64   data_size;              /* data buffer size */
 677
 678        /*
 679         * AUX area is defined by aux_{offset,size} fields that should be set
 680         * by the userspace, so that
 681         *
 682         *   aux_offset >= data_offset + data_size
 683         *
 684         * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
 685         *
 686         * Ring buffer pointers aux_{head,tail} have the same semantics as
 687         * data_{head,tail} and same ordering rules apply.
 688         */
 689        __u64   aux_head;
 690        __u64   aux_tail;
 691        __u64   aux_offset;
 692        __u64   aux_size;
 693};
 694
 695/*
 696 * The current state of perf_event_header::misc bits usage:
 697 * ('|' used bit, '-' unused bit)
 698 *
 699 *  012         CDEF
 700 *  |||---------||||
 701 *
 702 *  Where:
 703 *    0-2     CPUMODE_MASK
 704 *
 705 *    C       PROC_MAP_PARSE_TIMEOUT
 706 *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
 707 *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
 708 *    F       (reserved)
 709 */
 710
 711#define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
 712#define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
 713#define PERF_RECORD_MISC_KERNEL                 (1 << 0)
 714#define PERF_RECORD_MISC_USER                   (2 << 0)
 715#define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
 716#define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
 717#define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
 718
 719/*
 720 * Indicates that /proc/PID/maps parsing are truncated by time out.
 721 */
 722#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
 723/*
 724 * Following PERF_RECORD_MISC_* are used on different
 725 * events, so can reuse the same bit position:
 726 *
 727 *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
 728 *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
 729 *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
 730 *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
 731 */
 732#define PERF_RECORD_MISC_MMAP_DATA              (1 << 13)
 733#define PERF_RECORD_MISC_COMM_EXEC              (1 << 13)
 734#define PERF_RECORD_MISC_FORK_EXEC              (1 << 13)
 735#define PERF_RECORD_MISC_SWITCH_OUT             (1 << 13)
 736/*
 737 * These PERF_RECORD_MISC_* flags below are safely reused
 738 * for the following events:
 739 *
 740 *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
 741 *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
 742 *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
 743 *
 744 *
 745 * PERF_RECORD_MISC_EXACT_IP:
 746 *   Indicates that the content of PERF_SAMPLE_IP points to
 747 *   the actual instruction that triggered the event. See also
 748 *   perf_event_attr::precise_ip.
 749 *
 750 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
 751 *   Indicates that thread was preempted in TASK_RUNNING state.
 752 *
 753 * PERF_RECORD_MISC_MMAP_BUILD_ID:
 754 *   Indicates that mmap2 event carries build id data.
 755 */
 756#define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
 757#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT     (1 << 14)
 758#define PERF_RECORD_MISC_MMAP_BUILD_ID          (1 << 14)
 759/*
 760 * Reserve the last bit to indicate some extended misc field
 761 */
 762#define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
 763
 764struct perf_event_header {
 765        __u32   type;
 766        __u16   misc;
 767        __u16   size;
 768};
 769
 770struct perf_ns_link_info {
 771        __u64   dev;
 772        __u64   ino;
 773};
 774
 775enum {
 776        NET_NS_INDEX            = 0,
 777        UTS_NS_INDEX            = 1,
 778        IPC_NS_INDEX            = 2,
 779        PID_NS_INDEX            = 3,
 780        USER_NS_INDEX           = 4,
 781        MNT_NS_INDEX            = 5,
 782        CGROUP_NS_INDEX         = 6,
 783
 784        NR_NAMESPACES,          /* number of available namespaces */
 785};
 786
 787enum perf_event_type {
 788
 789        /*
 790         * If perf_event_attr.sample_id_all is set then all event types will
 791         * have the sample_type selected fields related to where/when
 792         * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
 793         * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
 794         * just after the perf_event_header and the fields already present for
 795         * the existing fields, i.e. at the end of the payload. That way a newer
 796         * perf.data file will be supported by older perf tools, with these new
 797         * optional fields being ignored.
 798         *
 799         * struct sample_id {
 800         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 801         *      { u64                   time;     } && PERF_SAMPLE_TIME
 802         *      { u64                   id;       } && PERF_SAMPLE_ID
 803         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 804         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 805         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 806         * } && perf_event_attr::sample_id_all
 807         *
 808         * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
 809         * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
 810         * relative to header.size.
 811         */
 812
 813        /*
 814         * The MMAP events record the PROT_EXEC mappings so that we can
 815         * correlate userspace IPs to code. They have the following structure:
 816         *
 817         * struct {
 818         *      struct perf_event_header        header;
 819         *
 820         *      u32                             pid, tid;
 821         *      u64                             addr;
 822         *      u64                             len;
 823         *      u64                             pgoff;
 824         *      char                            filename[];
 825         *      struct sample_id                sample_id;
 826         * };
 827         */
 828        PERF_RECORD_MMAP                        = 1,
 829
 830        /*
 831         * struct {
 832         *      struct perf_event_header        header;
 833         *      u64                             id;
 834         *      u64                             lost;
 835         *      struct sample_id                sample_id;
 836         * };
 837         */
 838        PERF_RECORD_LOST                        = 2,
 839
 840        /*
 841         * struct {
 842         *      struct perf_event_header        header;
 843         *
 844         *      u32                             pid, tid;
 845         *      char                            comm[];
 846         *      struct sample_id                sample_id;
 847         * };
 848         */
 849        PERF_RECORD_COMM                        = 3,
 850
 851        /*
 852         * struct {
 853         *      struct perf_event_header        header;
 854         *      u32                             pid, ppid;
 855         *      u32                             tid, ptid;
 856         *      u64                             time;
 857         *      struct sample_id                sample_id;
 858         * };
 859         */
 860        PERF_RECORD_EXIT                        = 4,
 861
 862        /*
 863         * struct {
 864         *      struct perf_event_header        header;
 865         *      u64                             time;
 866         *      u64                             id;
 867         *      u64                             stream_id;
 868         *      struct sample_id                sample_id;
 869         * };
 870         */
 871        PERF_RECORD_THROTTLE                    = 5,
 872        PERF_RECORD_UNTHROTTLE                  = 6,
 873
 874        /*
 875         * struct {
 876         *      struct perf_event_header        header;
 877         *      u32                             pid, ppid;
 878         *      u32                             tid, ptid;
 879         *      u64                             time;
 880         *      struct sample_id                sample_id;
 881         * };
 882         */
 883        PERF_RECORD_FORK                        = 7,
 884
 885        /*
 886         * struct {
 887         *      struct perf_event_header        header;
 888         *      u32                             pid, tid;
 889         *
 890         *      struct read_format              values;
 891         *      struct sample_id                sample_id;
 892         * };
 893         */
 894        PERF_RECORD_READ                        = 8,
 895
 896        /*
 897         * struct {
 898         *      struct perf_event_header        header;
 899         *
 900         *      #
 901         *      # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
 902         *      # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
 903         *      # is fixed relative to header.
 904         *      #
 905         *
 906         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 907         *      { u64                   ip;       } && PERF_SAMPLE_IP
 908         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 909         *      { u64                   time;     } && PERF_SAMPLE_TIME
 910         *      { u64                   addr;     } && PERF_SAMPLE_ADDR
 911         *      { u64                   id;       } && PERF_SAMPLE_ID
 912         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 913         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 914         *      { u64                   period;   } && PERF_SAMPLE_PERIOD
 915         *
 916         *      { struct read_format    values;   } && PERF_SAMPLE_READ
 917         *
 918         *      { u64                   nr,
 919         *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
 920         *
 921         *      #
 922         *      # The RAW record below is opaque data wrt the ABI
 923         *      #
 924         *      # That is, the ABI doesn't make any promises wrt to
 925         *      # the stability of its content, it may vary depending
 926         *      # on event, hardware, kernel version and phase of
 927         *      # the moon.
 928         *      #
 929         *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
 930         *      #
 931         *
 932         *      { u32                   size;
 933         *        char                  data[size];}&& PERF_SAMPLE_RAW
 934         *
 935         *      { u64                   nr;
 936         *        { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
 937         *        { u64 from, to, flags } lbr[nr];
 938         *      } && PERF_SAMPLE_BRANCH_STACK
 939         *
 940         *      { u64                   abi; # enum perf_sample_regs_abi
 941         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
 942         *
 943         *      { u64                   size;
 944         *        char                  data[size];
 945         *        u64                   dyn_size; } && PERF_SAMPLE_STACK_USER
 946         *
 947         *      { union perf_sample_weight
 948         *       {
 949         *              u64             full; && PERF_SAMPLE_WEIGHT
 950         *      #if defined(__LITTLE_ENDIAN_BITFIELD)
 951         *              struct {
 952         *                      u32     var1_dw;
 953         *                      u16     var2_w;
 954         *                      u16     var3_w;
 955         *              } && PERF_SAMPLE_WEIGHT_STRUCT
 956         *      #elif defined(__BIG_ENDIAN_BITFIELD)
 957         *              struct {
 958         *                      u16     var3_w;
 959         *                      u16     var2_w;
 960         *                      u32     var1_dw;
 961         *              } && PERF_SAMPLE_WEIGHT_STRUCT
 962         *      #endif
 963         *       }
 964         *      }
 965         *      { u64                   data_src; } && PERF_SAMPLE_DATA_SRC
 966         *      { u64                   transaction; } && PERF_SAMPLE_TRANSACTION
 967         *      { u64                   abi; # enum perf_sample_regs_abi
 968         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
 969         *      { u64                   phys_addr;} && PERF_SAMPLE_PHYS_ADDR
 970         *      { u64                   size;
 971         *        char                  data[size]; } && PERF_SAMPLE_AUX
 972         *      { u64                   data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
 973         *      { u64                   code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
 974         * };
 975         */
 976        PERF_RECORD_SAMPLE                      = 9,
 977
 978        /*
 979         * The MMAP2 records are an augmented version of MMAP, they add
 980         * maj, min, ino numbers to be used to uniquely identify each mapping
 981         *
 982         * struct {
 983         *      struct perf_event_header        header;
 984         *
 985         *      u32                             pid, tid;
 986         *      u64                             addr;
 987         *      u64                             len;
 988         *      u64                             pgoff;
 989         *      union {
 990         *              struct {
 991         *                      u32             maj;
 992         *                      u32             min;
 993         *                      u64             ino;
 994         *                      u64             ino_generation;
 995         *              };
 996         *              struct {
 997         *                      u8              build_id_size;
 998         *                      u8              __reserved_1;
 999         *                      u16             __reserved_2;
1000         *                      u8              build_id[20];
1001         *              };
1002         *      };
1003         *      u32                             prot, flags;
1004         *      char                            filename[];
1005         *      struct sample_id                sample_id;
1006         * };
1007         */
1008        PERF_RECORD_MMAP2                       = 10,
1009
1010        /*
1011         * Records that new data landed in the AUX buffer part.
1012         *
1013         * struct {
1014         *      struct perf_event_header        header;
1015         *
1016         *      u64                             aux_offset;
1017         *      u64                             aux_size;
1018         *      u64                             flags;
1019         *      struct sample_id                sample_id;
1020         * };
1021         */
1022        PERF_RECORD_AUX                         = 11,
1023
1024        /*
1025         * Indicates that instruction trace has started
1026         *
1027         * struct {
1028         *      struct perf_event_header        header;
1029         *      u32                             pid;
1030         *      u32                             tid;
1031         *      struct sample_id                sample_id;
1032         * };
1033         */
1034        PERF_RECORD_ITRACE_START                = 12,
1035
1036        /*
1037         * Records the dropped/lost sample number.
1038         *
1039         * struct {
1040         *      struct perf_event_header        header;
1041         *
1042         *      u64                             lost;
1043         *      struct sample_id                sample_id;
1044         * };
1045         */
1046        PERF_RECORD_LOST_SAMPLES                = 13,
1047
1048        /*
1049         * Records a context switch in or out (flagged by
1050         * PERF_RECORD_MISC_SWITCH_OUT). See also
1051         * PERF_RECORD_SWITCH_CPU_WIDE.
1052         *
1053         * struct {
1054         *      struct perf_event_header        header;
1055         *      struct sample_id                sample_id;
1056         * };
1057         */
1058        PERF_RECORD_SWITCH                      = 14,
1059
1060        /*
1061         * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1062         * next_prev_tid that are the next (switching out) or previous
1063         * (switching in) pid/tid.
1064         *
1065         * struct {
1066         *      struct perf_event_header        header;
1067         *      u32                             next_prev_pid;
1068         *      u32                             next_prev_tid;
1069         *      struct sample_id                sample_id;
1070         * };
1071         */
1072        PERF_RECORD_SWITCH_CPU_WIDE             = 15,
1073
1074        /*
1075         * struct {
1076         *      struct perf_event_header        header;
1077         *      u32                             pid;
1078         *      u32                             tid;
1079         *      u64                             nr_namespaces;
1080         *      { u64                           dev, inode; } [nr_namespaces];
1081         *      struct sample_id                sample_id;
1082         * };
1083         */
1084        PERF_RECORD_NAMESPACES                  = 16,
1085
1086        /*
1087         * Record ksymbol register/unregister events:
1088         *
1089         * struct {
1090         *      struct perf_event_header        header;
1091         *      u64                             addr;
1092         *      u32                             len;
1093         *      u16                             ksym_type;
1094         *      u16                             flags;
1095         *      char                            name[];
1096         *      struct sample_id                sample_id;
1097         * };
1098         */
1099        PERF_RECORD_KSYMBOL                     = 17,
1100
1101        /*
1102         * Record bpf events:
1103         *  enum perf_bpf_event_type {
1104         *      PERF_BPF_EVENT_UNKNOWN          = 0,
1105         *      PERF_BPF_EVENT_PROG_LOAD        = 1,
1106         *      PERF_BPF_EVENT_PROG_UNLOAD      = 2,
1107         *  };
1108         *
1109         * struct {
1110         *      struct perf_event_header        header;
1111         *      u16                             type;
1112         *      u16                             flags;
1113         *      u32                             id;
1114         *      u8                              tag[BPF_TAG_SIZE];
1115         *      struct sample_id                sample_id;
1116         * };
1117         */
1118        PERF_RECORD_BPF_EVENT                   = 18,
1119
1120        /*
1121         * struct {
1122         *      struct perf_event_header        header;
1123         *      u64                             id;
1124         *      char                            path[];
1125         *      struct sample_id                sample_id;
1126         * };
1127         */
1128        PERF_RECORD_CGROUP                      = 19,
1129
1130        /*
1131         * Records changes to kernel text i.e. self-modified code. 'old_len' is
1132         * the number of old bytes, 'new_len' is the number of new bytes. Either
1133         * 'old_len' or 'new_len' may be zero to indicate, for example, the
1134         * addition or removal of a trampoline. 'bytes' contains the old bytes
1135         * followed immediately by the new bytes.
1136         *
1137         * struct {
1138         *      struct perf_event_header        header;
1139         *      u64                             addr;
1140         *      u16                             old_len;
1141         *      u16                             new_len;
1142         *      u8                              bytes[];
1143         *      struct sample_id                sample_id;
1144         * };
1145         */
1146        PERF_RECORD_TEXT_POKE                   = 20,
1147
1148        /*
1149         * Data written to the AUX area by hardware due to aux_output, may need
1150         * to be matched to the event by an architecture-specific hardware ID.
1151         * This records the hardware ID, but requires sample_id to provide the
1152         * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1153         * records from multiple events.
1154         *
1155         * struct {
1156         *      struct perf_event_header        header;
1157         *      u64                             hw_id;
1158         *      struct sample_id                sample_id;
1159         * };
1160         */
1161        PERF_RECORD_AUX_OUTPUT_HW_ID            = 21,
1162
1163        PERF_RECORD_MAX,                        /* non-ABI */
1164};
1165
1166enum perf_record_ksymbol_type {
1167        PERF_RECORD_KSYMBOL_TYPE_UNKNOWN        = 0,
1168        PERF_RECORD_KSYMBOL_TYPE_BPF            = 1,
1169        /*
1170         * Out of line code such as kprobe-replaced instructions or optimized
1171         * kprobes or ftrace trampolines.
1172         */
1173        PERF_RECORD_KSYMBOL_TYPE_OOL            = 2,
1174        PERF_RECORD_KSYMBOL_TYPE_MAX            /* non-ABI */
1175};
1176
1177#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER    (1 << 0)
1178
1179enum perf_bpf_event_type {
1180        PERF_BPF_EVENT_UNKNOWN          = 0,
1181        PERF_BPF_EVENT_PROG_LOAD        = 1,
1182        PERF_BPF_EVENT_PROG_UNLOAD      = 2,
1183        PERF_BPF_EVENT_MAX,             /* non-ABI */
1184};
1185
1186#define PERF_MAX_STACK_DEPTH            127
1187#define PERF_MAX_CONTEXTS_PER_STACK       8
1188
1189enum perf_callchain_context {
1190        PERF_CONTEXT_HV                 = (__u64)-32,
1191        PERF_CONTEXT_KERNEL             = (__u64)-128,
1192        PERF_CONTEXT_USER               = (__u64)-512,
1193
1194        PERF_CONTEXT_GUEST              = (__u64)-2048,
1195        PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
1196        PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
1197
1198        PERF_CONTEXT_MAX                = (__u64)-4095,
1199};
1200
1201/**
1202 * PERF_RECORD_AUX::flags bits
1203 */
1204#define PERF_AUX_FLAG_TRUNCATED                 0x01    /* record was truncated to fit */
1205#define PERF_AUX_FLAG_OVERWRITE                 0x02    /* snapshot from overwrite mode */
1206#define PERF_AUX_FLAG_PARTIAL                   0x04    /* record contains gaps */
1207#define PERF_AUX_FLAG_COLLISION                 0x08    /* sample collided with another */
1208#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK      0xff00  /* PMU specific trace format type */
1209
1210/* CoreSight PMU AUX buffer formats */
1211#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT        0x0000 /* Default for backward compatibility */
1212#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW              0x0100 /* Raw format of the source */
1213
1214#define PERF_FLAG_FD_NO_GROUP           (1UL << 0)
1215#define PERF_FLAG_FD_OUTPUT             (1UL << 1)
1216#define PERF_FLAG_PID_CGROUP            (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1217#define PERF_FLAG_FD_CLOEXEC            (1UL << 3) /* O_CLOEXEC */
1218
1219#if defined(__LITTLE_ENDIAN_BITFIELD)
1220union perf_mem_data_src {
1221        __u64 val;
1222        struct {
1223                __u64   mem_op:5,       /* type of opcode */
1224                        mem_lvl:14,     /* memory hierarchy level */
1225                        mem_snoop:5,    /* snoop mode */
1226                        mem_lock:2,     /* lock instr */
1227                        mem_dtlb:7,     /* tlb access */
1228                        mem_lvl_num:4,  /* memory hierarchy level number */
1229                        mem_remote:1,   /* remote */
1230                        mem_snoopx:2,   /* snoop mode, ext */
1231                        mem_blk:3,      /* access blocked */
1232                        mem_hops:3,     /* hop level */
1233                        mem_rsvd:18;
1234        };
1235};
1236#elif defined(__BIG_ENDIAN_BITFIELD)
1237union perf_mem_data_src {
1238        __u64 val;
1239        struct {
1240                __u64   mem_rsvd:18,
1241                        mem_hops:3,     /* hop level */
1242                        mem_blk:3,      /* access blocked */
1243                        mem_snoopx:2,   /* snoop mode, ext */
1244                        mem_remote:1,   /* remote */
1245                        mem_lvl_num:4,  /* memory hierarchy level number */
1246                        mem_dtlb:7,     /* tlb access */
1247                        mem_lock:2,     /* lock instr */
1248                        mem_snoop:5,    /* snoop mode */
1249                        mem_lvl:14,     /* memory hierarchy level */
1250                        mem_op:5;       /* type of opcode */
1251        };
1252};
1253#else
1254#error "Unknown endianness"
1255#endif
1256
1257/* type of opcode (load/store/prefetch,code) */
1258#define PERF_MEM_OP_NA          0x01 /* not available */
1259#define PERF_MEM_OP_LOAD        0x02 /* load instruction */
1260#define PERF_MEM_OP_STORE       0x04 /* store instruction */
1261#define PERF_MEM_OP_PFETCH      0x08 /* prefetch */
1262#define PERF_MEM_OP_EXEC        0x10 /* code (execution) */
1263#define PERF_MEM_OP_SHIFT       0
1264
1265/*
1266 * PERF_MEM_LVL_* namespace being depricated to some extent in the
1267 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1268 * Supporting this namespace inorder to not break defined ABIs.
1269 *
1270 * memory hierarchy (memory level, hit or miss)
1271 */
1272#define PERF_MEM_LVL_NA         0x01  /* not available */
1273#define PERF_MEM_LVL_HIT        0x02  /* hit level */
1274#define PERF_MEM_LVL_MISS       0x04  /* miss level  */
1275#define PERF_MEM_LVL_L1         0x08  /* L1 */
1276#define PERF_MEM_LVL_LFB        0x10  /* Line Fill Buffer */
1277#define PERF_MEM_LVL_L2         0x20  /* L2 */
1278#define PERF_MEM_LVL_L3         0x40  /* L3 */
1279#define PERF_MEM_LVL_LOC_RAM    0x80  /* Local DRAM */
1280#define PERF_MEM_LVL_REM_RAM1   0x100 /* Remote DRAM (1 hop) */
1281#define PERF_MEM_LVL_REM_RAM2   0x200 /* Remote DRAM (2 hops) */
1282#define PERF_MEM_LVL_REM_CCE1   0x400 /* Remote Cache (1 hop) */
1283#define PERF_MEM_LVL_REM_CCE2   0x800 /* Remote Cache (2 hops) */
1284#define PERF_MEM_LVL_IO         0x1000 /* I/O memory */
1285#define PERF_MEM_LVL_UNC        0x2000 /* Uncached memory */
1286#define PERF_MEM_LVL_SHIFT      5
1287
1288#define PERF_MEM_REMOTE_REMOTE  0x01  /* Remote */
1289#define PERF_MEM_REMOTE_SHIFT   37
1290
1291#define PERF_MEM_LVLNUM_L1      0x01 /* L1 */
1292#define PERF_MEM_LVLNUM_L2      0x02 /* L2 */
1293#define PERF_MEM_LVLNUM_L3      0x03 /* L3 */
1294#define PERF_MEM_LVLNUM_L4      0x04 /* L4 */
1295/* 5-0xa available */
1296#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1297#define PERF_MEM_LVLNUM_LFB     0x0c /* LFB */
1298#define PERF_MEM_LVLNUM_RAM     0x0d /* RAM */
1299#define PERF_MEM_LVLNUM_PMEM    0x0e /* PMEM */
1300#define PERF_MEM_LVLNUM_NA      0x0f /* N/A */
1301
1302#define PERF_MEM_LVLNUM_SHIFT   33
1303
1304/* snoop mode */
1305#define PERF_MEM_SNOOP_NA       0x01 /* not available */
1306#define PERF_MEM_SNOOP_NONE     0x02 /* no snoop */
1307#define PERF_MEM_SNOOP_HIT      0x04 /* snoop hit */
1308#define PERF_MEM_SNOOP_MISS     0x08 /* snoop miss */
1309#define PERF_MEM_SNOOP_HITM     0x10 /* snoop hit modified */
1310#define PERF_MEM_SNOOP_SHIFT    19
1311
1312#define PERF_MEM_SNOOPX_FWD     0x01 /* forward */
1313/* 1 free */
1314#define PERF_MEM_SNOOPX_SHIFT  38
1315
1316/* locked instruction */
1317#define PERF_MEM_LOCK_NA        0x01 /* not available */
1318#define PERF_MEM_LOCK_LOCKED    0x02 /* locked transaction */
1319#define PERF_MEM_LOCK_SHIFT     24
1320
1321/* TLB access */
1322#define PERF_MEM_TLB_NA         0x01 /* not available */
1323#define PERF_MEM_TLB_HIT        0x02 /* hit level */
1324#define PERF_MEM_TLB_MISS       0x04 /* miss level */
1325#define PERF_MEM_TLB_L1         0x08 /* L1 */
1326#define PERF_MEM_TLB_L2         0x10 /* L2 */
1327#define PERF_MEM_TLB_WK         0x20 /* Hardware Walker*/
1328#define PERF_MEM_TLB_OS         0x40 /* OS fault handler */
1329#define PERF_MEM_TLB_SHIFT      26
1330
1331/* Access blocked */
1332#define PERF_MEM_BLK_NA         0x01 /* not available */
1333#define PERF_MEM_BLK_DATA       0x02 /* data could not be forwarded */
1334#define PERF_MEM_BLK_ADDR       0x04 /* address conflict */
1335#define PERF_MEM_BLK_SHIFT      40
1336
1337/* hop level */
1338#define PERF_MEM_HOPS_0         0x01 /* remote core, same node */
1339#define PERF_MEM_HOPS_1         0x02 /* remote node, same socket */
1340#define PERF_MEM_HOPS_2         0x03 /* remote socket, same board */
1341#define PERF_MEM_HOPS_3         0x04 /* remote board */
1342/* 5-7 available */
1343#define PERF_MEM_HOPS_SHIFT     43
1344
1345#define PERF_MEM_S(a, s) \
1346        (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1347
1348/*
1349 * single taken branch record layout:
1350 *
1351 *      from: source instruction (may not always be a branch insn)
1352 *        to: branch target
1353 *   mispred: branch target was mispredicted
1354 * predicted: branch target was predicted
1355 *
1356 * support for mispred, predicted is optional. In case it
1357 * is not supported mispred = predicted = 0.
1358 *
1359 *     in_tx: running in a hardware transaction
1360 *     abort: aborting a hardware transaction
1361 *    cycles: cycles from last branch (or 0 if not supported)
1362 *      type: branch type
1363 */
1364struct perf_branch_entry {
1365        __u64   from;
1366        __u64   to;
1367        __u64   mispred:1,  /* target mispredicted */
1368                predicted:1,/* target predicted */
1369                in_tx:1,    /* in transaction */
1370                abort:1,    /* transaction abort */
1371                cycles:16,  /* cycle count to last branch */
1372                type:4,     /* branch type */
1373                reserved:40;
1374};
1375
1376union perf_sample_weight {
1377        __u64           full;
1378#if defined(__LITTLE_ENDIAN_BITFIELD)
1379        struct {
1380                __u32   var1_dw;
1381                __u16   var2_w;
1382                __u16   var3_w;
1383        };
1384#elif defined(__BIG_ENDIAN_BITFIELD)
1385        struct {
1386                __u16   var3_w;
1387                __u16   var2_w;
1388                __u32   var1_dw;
1389        };
1390#else
1391#error "Unknown endianness"
1392#endif
1393};
1394
1395#endif /* _UAPI_LINUX_PERF_EVENT_H */
1396