1
2
3
4
5
6
7
8#include "test_util.h"
9#include "kvm_util.h"
10#include "../kvm_util_internal.h"
11#include "processor.h"
12
13#ifndef NUM_INTERRUPTS
14#define NUM_INTERRUPTS 256
15#endif
16
17#define DEFAULT_CODE_SELECTOR 0x8
18#define DEFAULT_DATA_SELECTOR 0x10
19
20vm_vaddr_t exception_handlers;
21
22void regs_dump(FILE *stream, struct kvm_regs *regs,
23 uint8_t indent)
24{
25 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
26 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
27 indent, "",
28 regs->rax, regs->rbx, regs->rcx, regs->rdx);
29 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
30 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
31 indent, "",
32 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
33 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
34 "r10: 0x%.16llx r11: 0x%.16llx\n",
35 indent, "",
36 regs->r8, regs->r9, regs->r10, regs->r11);
37 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
38 "r14: 0x%.16llx r15: 0x%.16llx\n",
39 indent, "",
40 regs->r12, regs->r13, regs->r14, regs->r15);
41 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
42 indent, "",
43 regs->rip, regs->rflags);
44}
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61static void segment_dump(FILE *stream, struct kvm_segment *segment,
62 uint8_t indent)
63{
64 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
65 "selector: 0x%.4x type: 0x%.2x\n",
66 indent, "", segment->base, segment->limit,
67 segment->selector, segment->type);
68 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
69 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
70 indent, "", segment->present, segment->dpl,
71 segment->db, segment->s, segment->l);
72 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
73 "unusable: 0x%.2x padding: 0x%.2x\n",
74 indent, "", segment->g, segment->avl,
75 segment->unusable, segment->padding);
76}
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
94 uint8_t indent)
95{
96 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
97 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
98 indent, "", dtable->base, dtable->limit,
99 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
100}
101
102void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
103 uint8_t indent)
104{
105 unsigned int i;
106
107 fprintf(stream, "%*scs:\n", indent, "");
108 segment_dump(stream, &sregs->cs, indent + 2);
109 fprintf(stream, "%*sds:\n", indent, "");
110 segment_dump(stream, &sregs->ds, indent + 2);
111 fprintf(stream, "%*ses:\n", indent, "");
112 segment_dump(stream, &sregs->es, indent + 2);
113 fprintf(stream, "%*sfs:\n", indent, "");
114 segment_dump(stream, &sregs->fs, indent + 2);
115 fprintf(stream, "%*sgs:\n", indent, "");
116 segment_dump(stream, &sregs->gs, indent + 2);
117 fprintf(stream, "%*sss:\n", indent, "");
118 segment_dump(stream, &sregs->ss, indent + 2);
119 fprintf(stream, "%*str:\n", indent, "");
120 segment_dump(stream, &sregs->tr, indent + 2);
121 fprintf(stream, "%*sldt:\n", indent, "");
122 segment_dump(stream, &sregs->ldt, indent + 2);
123
124 fprintf(stream, "%*sgdt:\n", indent, "");
125 dtable_dump(stream, &sregs->gdt, indent + 2);
126 fprintf(stream, "%*sidt:\n", indent, "");
127 dtable_dump(stream, &sregs->idt, indent + 2);
128
129 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
130 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
131 indent, "",
132 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
133 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
134 "apic_base: 0x%.16llx\n",
135 indent, "",
136 sregs->cr8, sregs->efer, sregs->apic_base);
137
138 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
139 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
140 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
141 sregs->interrupt_bitmap[i]);
142 }
143}
144
145void virt_pgd_alloc(struct kvm_vm *vm)
146{
147 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
148 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
149
150
151 if (!vm->pgd_created) {
152 vm->pgd = vm_alloc_page_table(vm);
153 vm->pgd_created = true;
154 }
155}
156
157static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
158 int level)
159{
160 uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
161 int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
162
163 return &page_table[index];
164}
165
166static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
167 uint64_t pt_pfn,
168 uint64_t vaddr,
169 uint64_t paddr,
170 int level,
171 enum x86_page_size page_size)
172{
173 uint64_t *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
174
175 if (!(*pte & PTE_PRESENT_MASK)) {
176 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
177 if (level == page_size)
178 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
179 else
180 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
181 } else {
182
183
184
185
186
187 TEST_ASSERT(level != page_size,
188 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
189 page_size, vaddr);
190 TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
191 "Cannot create page table at level: %u, vaddr: 0x%lx\n",
192 level, vaddr);
193 }
194 return pte;
195}
196
197void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
198 enum x86_page_size page_size)
199{
200 const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
201 uint64_t *pml4e, *pdpe, *pde;
202 uint64_t *pte;
203
204 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
205 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
206
207 TEST_ASSERT((vaddr % pg_size) == 0,
208 "Virtual address not aligned,\n"
209 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
210 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
211 "Invalid virtual address, vaddr: 0x%lx", vaddr);
212 TEST_ASSERT((paddr % pg_size) == 0,
213 "Physical address not aligned,\n"
214 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
215 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
216 "Physical address beyond maximum supported,\n"
217 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
218 paddr, vm->max_gfn, vm->page_size);
219
220
221
222
223
224 pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
225 vaddr, paddr, 3, page_size);
226 if (*pml4e & PTE_LARGE_MASK)
227 return;
228
229 pdpe = virt_create_upper_pte(vm, PTE_GET_PFN(*pml4e), vaddr, paddr, 2, page_size);
230 if (*pdpe & PTE_LARGE_MASK)
231 return;
232
233 pde = virt_create_upper_pte(vm, PTE_GET_PFN(*pdpe), vaddr, paddr, 1, page_size);
234 if (*pde & PTE_LARGE_MASK)
235 return;
236
237
238 pte = virt_get_pte(vm, PTE_GET_PFN(*pde), vaddr, 0);
239 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
240 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
241 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
242}
243
244void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
245{
246 __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
247}
248
249static uint64_t *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
250 uint64_t vaddr)
251{
252 uint16_t index[4];
253 uint64_t *pml4e, *pdpe, *pde;
254 uint64_t *pte;
255 struct kvm_cpuid_entry2 *entry;
256 struct kvm_sregs sregs;
257 int max_phy_addr;
258 uint64_t rsvd_mask = 0;
259
260 entry = kvm_get_supported_cpuid_index(0x80000008, 0);
261 max_phy_addr = entry->eax & 0x000000ff;
262
263 if (max_phy_addr < 52)
264 rsvd_mask = GENMASK_ULL(51, max_phy_addr);
265
266
267
268
269
270
271
272 vcpu_sregs_get(vm, vcpuid, &sregs);
273 if ((sregs.efer & EFER_NX) == 0) {
274 rsvd_mask |= PTE_NX_MASK;
275 }
276
277 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
278 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
279 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
280 (vaddr >> vm->page_shift)),
281 "Invalid virtual address, vaddr: 0x%lx",
282 vaddr);
283
284
285
286
287 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
288 "Canonical check failed. The virtual address is invalid.");
289
290 index[0] = (vaddr >> 12) & 0x1ffu;
291 index[1] = (vaddr >> 21) & 0x1ffu;
292 index[2] = (vaddr >> 30) & 0x1ffu;
293 index[3] = (vaddr >> 39) & 0x1ffu;
294
295 pml4e = addr_gpa2hva(vm, vm->pgd);
296 TEST_ASSERT(pml4e[index[3]] & PTE_PRESENT_MASK,
297 "Expected pml4e to be present for gva: 0x%08lx", vaddr);
298 TEST_ASSERT((pml4e[index[3]] & (rsvd_mask | PTE_LARGE_MASK)) == 0,
299 "Unexpected reserved bits set.");
300
301 pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
302 TEST_ASSERT(pdpe[index[2]] & PTE_PRESENT_MASK,
303 "Expected pdpe to be present for gva: 0x%08lx", vaddr);
304 TEST_ASSERT(!(pdpe[index[2]] & PTE_LARGE_MASK),
305 "Expected pdpe to map a pde not a 1-GByte page.");
306 TEST_ASSERT((pdpe[index[2]] & rsvd_mask) == 0,
307 "Unexpected reserved bits set.");
308
309 pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
310 TEST_ASSERT(pde[index[1]] & PTE_PRESENT_MASK,
311 "Expected pde to be present for gva: 0x%08lx", vaddr);
312 TEST_ASSERT(!(pde[index[1]] & PTE_LARGE_MASK),
313 "Expected pde to map a pte not a 2-MByte page.");
314 TEST_ASSERT((pde[index[1]] & rsvd_mask) == 0,
315 "Unexpected reserved bits set.");
316
317 pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
318 TEST_ASSERT(pte[index[0]] & PTE_PRESENT_MASK,
319 "Expected pte to be present for gva: 0x%08lx", vaddr);
320
321 return &pte[index[0]];
322}
323
324uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
325{
326 uint64_t *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
327
328 return *(uint64_t *)pte;
329}
330
331void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
332 uint64_t pte)
333{
334 uint64_t *new_pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
335
336 *(uint64_t *)new_pte = pte;
337}
338
339void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
340{
341 uint64_t *pml4e, *pml4e_start;
342 uint64_t *pdpe, *pdpe_start;
343 uint64_t *pde, *pde_start;
344 uint64_t *pte, *pte_start;
345
346 if (!vm->pgd_created)
347 return;
348
349 fprintf(stream, "%*s "
350 " no\n", indent, "");
351 fprintf(stream, "%*s index hvaddr gpaddr "
352 "addr w exec dirty\n",
353 indent, "");
354 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
355 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
356 pml4e = &pml4e_start[n1];
357 if (!(*pml4e & PTE_PRESENT_MASK))
358 continue;
359 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
360 " %u\n",
361 indent, "",
362 pml4e - pml4e_start, pml4e,
363 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
364 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
365
366 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
367 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
368 pdpe = &pdpe_start[n2];
369 if (!(*pdpe & PTE_PRESENT_MASK))
370 continue;
371 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx "
372 "%u %u\n",
373 indent, "",
374 pdpe - pdpe_start, pdpe,
375 addr_hva2gpa(vm, pdpe),
376 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
377 !!(*pdpe & PTE_NX_MASK));
378
379 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
380 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
381 pde = &pde_start[n3];
382 if (!(*pde & PTE_PRESENT_MASK))
383 continue;
384 fprintf(stream, "%*spde 0x%-3zx %p "
385 "0x%-12lx 0x%-10llx %u %u\n",
386 indent, "", pde - pde_start, pde,
387 addr_hva2gpa(vm, pde),
388 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
389 !!(*pde & PTE_NX_MASK));
390
391 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
392 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
393 pte = &pte_start[n4];
394 if (!(*pte & PTE_PRESENT_MASK))
395 continue;
396 fprintf(stream, "%*spte 0x%-3zx %p "
397 "0x%-12lx 0x%-10llx %u %u "
398 " %u 0x%-10lx\n",
399 indent, "",
400 pte - pte_start, pte,
401 addr_hva2gpa(vm, pte),
402 PTE_GET_PFN(*pte),
403 !!(*pte & PTE_WRITABLE_MASK),
404 !!(*pte & PTE_NX_MASK),
405 !!(*pte & PTE_DIRTY_MASK),
406 ((uint64_t) n1 << 27)
407 | ((uint64_t) n2 << 18)
408 | ((uint64_t) n3 << 9)
409 | ((uint64_t) n4));
410 }
411 }
412 }
413 }
414}
415
416
417
418
419
420
421
422
423
424
425
426
427
428static void kvm_seg_set_unusable(struct kvm_segment *segp)
429{
430 memset(segp, 0, sizeof(*segp));
431 segp->unusable = true;
432}
433
434static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
435{
436 void *gdt = addr_gva2hva(vm, vm->gdt);
437 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
438
439 desc->limit0 = segp->limit & 0xFFFF;
440 desc->base0 = segp->base & 0xFFFF;
441 desc->base1 = segp->base >> 16;
442 desc->type = segp->type;
443 desc->s = segp->s;
444 desc->dpl = segp->dpl;
445 desc->p = segp->present;
446 desc->limit1 = segp->limit >> 16;
447 desc->avl = segp->avl;
448 desc->l = segp->l;
449 desc->db = segp->db;
450 desc->g = segp->g;
451 desc->base2 = segp->base >> 24;
452 if (!segp->s)
453 desc->base3 = segp->base >> 32;
454}
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
473 struct kvm_segment *segp)
474{
475 memset(segp, 0, sizeof(*segp));
476 segp->selector = selector;
477 segp->limit = 0xFFFFFFFFu;
478 segp->s = 0x1;
479 segp->type = 0x08 | 0x01 | 0x02;
480
481
482 segp->g = true;
483 segp->l = true;
484 segp->present = 1;
485 if (vm)
486 kvm_seg_fill_gdt_64bit(vm, segp);
487}
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
505 struct kvm_segment *segp)
506{
507 memset(segp, 0, sizeof(*segp));
508 segp->selector = selector;
509 segp->limit = 0xFFFFFFFFu;
510 segp->s = 0x1;
511 segp->type = 0x00 | 0x01 | 0x02;
512
513
514 segp->g = true;
515 segp->present = true;
516 if (vm)
517 kvm_seg_fill_gdt_64bit(vm, segp);
518}
519
520vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
521{
522 uint16_t index[4];
523 uint64_t *pml4e, *pdpe, *pde;
524 uint64_t *pte;
525
526 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
527 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
528
529 index[0] = (gva >> 12) & 0x1ffu;
530 index[1] = (gva >> 21) & 0x1ffu;
531 index[2] = (gva >> 30) & 0x1ffu;
532 index[3] = (gva >> 39) & 0x1ffu;
533
534 if (!vm->pgd_created)
535 goto unmapped_gva;
536 pml4e = addr_gpa2hva(vm, vm->pgd);
537 if (!(pml4e[index[3]] & PTE_PRESENT_MASK))
538 goto unmapped_gva;
539
540 pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
541 if (!(pdpe[index[2]] & PTE_PRESENT_MASK))
542 goto unmapped_gva;
543
544 pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
545 if (!(pde[index[1]] & PTE_PRESENT_MASK))
546 goto unmapped_gva;
547
548 pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
549 if (!(pte[index[0]] & PTE_PRESENT_MASK))
550 goto unmapped_gva;
551
552 return (PTE_GET_PFN(pte[index[0]]) * vm->page_size) + (gva & ~PAGE_MASK);
553
554unmapped_gva:
555 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
556 exit(EXIT_FAILURE);
557}
558
559static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
560{
561 if (!vm->gdt)
562 vm->gdt = vm_vaddr_alloc_page(vm);
563
564 dt->base = vm->gdt;
565 dt->limit = getpagesize();
566}
567
568static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
569 int selector)
570{
571 if (!vm->tss)
572 vm->tss = vm_vaddr_alloc_page(vm);
573
574 memset(segp, 0, sizeof(*segp));
575 segp->base = vm->tss;
576 segp->limit = 0x67;
577 segp->selector = selector;
578 segp->type = 0xb;
579 segp->present = 1;
580 kvm_seg_fill_gdt_64bit(vm, segp);
581}
582
583static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
584{
585 struct kvm_sregs sregs;
586
587
588 vcpu_sregs_get(vm, vcpuid, &sregs);
589
590 sregs.idt.limit = 0;
591
592 kvm_setup_gdt(vm, &sregs.gdt);
593
594 switch (vm->mode) {
595 case VM_MODE_PXXV48_4K:
596 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
597 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
598 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
599
600 kvm_seg_set_unusable(&sregs.ldt);
601 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
602 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
603 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
604 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
605 break;
606
607 default:
608 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
609 }
610
611 sregs.cr3 = vm->pgd;
612 vcpu_sregs_set(vm, vcpuid, &sregs);
613}
614
615#define CPUID_XFD_BIT (1 << 4)
616static bool is_xfd_supported(void)
617{
618 int eax, ebx, ecx, edx;
619 const int leaf = 0xd, subleaf = 0x1;
620
621 __asm__ __volatile__(
622 "cpuid"
623 : "=a"(eax), "=b"(ebx),
624 "=c"(ecx), "=d"(edx)
625 : "0"(leaf), "2"(subleaf));
626
627 return !!(eax & CPUID_XFD_BIT);
628}
629
630void vm_xsave_req_perm(int bit)
631{
632 int kvm_fd;
633 u64 bitmask;
634 long rc;
635 struct kvm_device_attr attr = {
636 .group = 0,
637 .attr = KVM_X86_XCOMP_GUEST_SUPP,
638 .addr = (unsigned long) &bitmask
639 };
640
641 kvm_fd = open_kvm_dev_path_or_exit();
642 rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
643 close(kvm_fd);
644 if (rc == -1 && (errno == ENXIO || errno == EINVAL))
645 exit(KSFT_SKIP);
646 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
647 if (!(bitmask & (1ULL << bit)))
648 exit(KSFT_SKIP);
649
650 if (!is_xfd_supported())
651 exit(KSFT_SKIP);
652
653 rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
654
655
656
657
658
659 if (rc)
660 return;
661
662 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
663 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
664 TEST_ASSERT(bitmask & (1ULL << bit),
665 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
666 bitmask);
667}
668
669void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
670{
671 struct kvm_mp_state mp_state;
672 struct kvm_regs regs;
673 vm_vaddr_t stack_vaddr;
674 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
675 DEFAULT_GUEST_STACK_VADDR_MIN);
676
677
678 vm_vcpu_add(vm, vcpuid);
679 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
680 vcpu_setup(vm, vcpuid);
681
682
683 vcpu_regs_get(vm, vcpuid, ®s);
684 regs.rflags = regs.rflags | 0x2;
685 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
686 regs.rip = (unsigned long) guest_code;
687 vcpu_regs_set(vm, vcpuid, ®s);
688
689
690 mp_state.mp_state = 0;
691 vcpu_set_mp_state(vm, vcpuid, &mp_state);
692}
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
710{
711 struct kvm_cpuid2 *cpuid;
712 int nent = 100;
713 size_t size;
714
715 size = sizeof(*cpuid);
716 size += nent * sizeof(struct kvm_cpuid_entry2);
717 cpuid = malloc(size);
718 if (!cpuid) {
719 perror("malloc");
720 abort();
721 }
722
723 cpuid->nent = nent;
724
725 return cpuid;
726}
727
728
729
730
731
732
733
734
735
736
737
738
739struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
740{
741 static struct kvm_cpuid2 *cpuid;
742 int ret;
743 int kvm_fd;
744
745 if (cpuid)
746 return cpuid;
747
748 cpuid = allocate_kvm_cpuid2();
749 kvm_fd = open_kvm_dev_path_or_exit();
750
751 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
752 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
753 ret, errno);
754
755 close(kvm_fd);
756 return cpuid;
757}
758
759
760
761
762
763
764
765
766
767
768
769
770
771uint64_t kvm_get_feature_msr(uint64_t msr_index)
772{
773 struct {
774 struct kvm_msrs header;
775 struct kvm_msr_entry entry;
776 } buffer = {};
777 int r, kvm_fd;
778
779 buffer.header.nmsrs = 1;
780 buffer.entry.index = msr_index;
781 kvm_fd = open_kvm_dev_path_or_exit();
782
783 r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
784 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
785 " rc: %i errno: %i", r, errno);
786
787 close(kvm_fd);
788 return buffer.entry.data;
789}
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
805{
806 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
807 struct kvm_cpuid2 *cpuid;
808 int max_ent;
809 int rc = -1;
810
811 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
812
813 cpuid = allocate_kvm_cpuid2();
814 max_ent = cpuid->nent;
815
816 for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
817 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
818 if (!rc)
819 break;
820
821 TEST_ASSERT(rc == -1 && errno == E2BIG,
822 "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
823 rc, errno);
824 }
825
826 TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
827 rc, errno);
828
829 return cpuid;
830}
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845struct kvm_cpuid_entry2 *
846kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
847{
848 struct kvm_cpuid2 *cpuid;
849 struct kvm_cpuid_entry2 *entry = NULL;
850 int i;
851
852 cpuid = kvm_get_supported_cpuid();
853 for (i = 0; i < cpuid->nent; i++) {
854 if (cpuid->entries[i].function == function &&
855 cpuid->entries[i].index == index) {
856 entry = &cpuid->entries[i];
857 break;
858 }
859 }
860
861 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
862 function, index);
863 return entry;
864}
865
866
867int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid,
868 struct kvm_cpuid2 *cpuid)
869{
870 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
871
872 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
873
874 return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
875}
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891void vcpu_set_cpuid(struct kvm_vm *vm,
892 uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
893{
894 int rc;
895
896 rc = __vcpu_set_cpuid(vm, vcpuid, cpuid);
897 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
898 rc, errno);
899
900}
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
917{
918 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
919 struct {
920 struct kvm_msrs header;
921 struct kvm_msr_entry entry;
922 } buffer = {};
923 int r;
924
925 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
926 buffer.header.nmsrs = 1;
927 buffer.entry.index = msr_index;
928 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
929 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
930 " rc: %i errno: %i", r, errno);
931
932 return buffer.entry.data;
933}
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
951 uint64_t msr_value)
952{
953 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
954 struct {
955 struct kvm_msrs header;
956 struct kvm_msr_entry entry;
957 } buffer = {};
958 int r;
959
960 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
961 memset(&buffer, 0, sizeof(buffer));
962 buffer.header.nmsrs = 1;
963 buffer.entry.index = msr_index;
964 buffer.entry.data = msr_value;
965 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
966 return r;
967}
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
985 uint64_t msr_value)
986{
987 int r;
988
989 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
990 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
991 " rc: %i errno: %i", r, errno);
992}
993
994void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
995{
996 va_list ap;
997 struct kvm_regs regs;
998
999 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
1000 " num: %u\n",
1001 num);
1002
1003 va_start(ap, num);
1004 vcpu_regs_get(vm, vcpuid, ®s);
1005
1006 if (num >= 1)
1007 regs.rdi = va_arg(ap, uint64_t);
1008
1009 if (num >= 2)
1010 regs.rsi = va_arg(ap, uint64_t);
1011
1012 if (num >= 3)
1013 regs.rdx = va_arg(ap, uint64_t);
1014
1015 if (num >= 4)
1016 regs.rcx = va_arg(ap, uint64_t);
1017
1018 if (num >= 5)
1019 regs.r8 = va_arg(ap, uint64_t);
1020
1021 if (num >= 6)
1022 regs.r9 = va_arg(ap, uint64_t);
1023
1024 vcpu_regs_set(vm, vcpuid, ®s);
1025 va_end(ap);
1026}
1027
1028void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1029{
1030 struct kvm_regs regs;
1031 struct kvm_sregs sregs;
1032
1033 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1034
1035 fprintf(stream, "%*sregs:\n", indent + 2, "");
1036 vcpu_regs_get(vm, vcpuid, ®s);
1037 regs_dump(stream, ®s, indent + 4);
1038
1039 fprintf(stream, "%*ssregs:\n", indent + 2, "");
1040 vcpu_sregs_get(vm, vcpuid, &sregs);
1041 sregs_dump(stream, &sregs, indent + 4);
1042}
1043
1044static int kvm_get_num_msrs_fd(int kvm_fd)
1045{
1046 struct kvm_msr_list nmsrs;
1047 int r;
1048
1049 nmsrs.nmsrs = 0;
1050 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1051 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1052 r);
1053
1054 return nmsrs.nmsrs;
1055}
1056
1057static int kvm_get_num_msrs(struct kvm_vm *vm)
1058{
1059 return kvm_get_num_msrs_fd(vm->kvm_fd);
1060}
1061
1062struct kvm_msr_list *kvm_get_msr_index_list(void)
1063{
1064 struct kvm_msr_list *list;
1065 int nmsrs, r, kvm_fd;
1066
1067 kvm_fd = open_kvm_dev_path_or_exit();
1068
1069 nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1070 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1071 list->nmsrs = nmsrs;
1072 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1073 close(kvm_fd);
1074
1075 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1076 r);
1077
1078 return list;
1079}
1080
1081static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu,
1082 struct kvm_x86_state *state)
1083{
1084 int size;
1085
1086 size = vm_check_cap(vm, KVM_CAP_XSAVE2);
1087 if (!size)
1088 size = sizeof(struct kvm_xsave);
1089
1090 state->xsave = malloc(size);
1091 if (size == sizeof(struct kvm_xsave))
1092 return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave);
1093 else
1094 return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave);
1095}
1096
1097struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1098{
1099 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1100 struct kvm_msr_list *list;
1101 struct kvm_x86_state *state;
1102 int nmsrs, r, i;
1103 static int nested_size = -1;
1104
1105 if (nested_size == -1) {
1106 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1107 TEST_ASSERT(nested_size <= sizeof(state->nested_),
1108 "Nested state size too big, %i > %zi",
1109 nested_size, sizeof(state->nested_));
1110 }
1111
1112
1113
1114
1115
1116
1117
1118 vcpu_run_complete_io(vm, vcpuid);
1119
1120 nmsrs = kvm_get_num_msrs(vm);
1121 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1122 list->nmsrs = nmsrs;
1123 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1124 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1125 r);
1126
1127 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1128 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1129 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1130 r);
1131
1132 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1133 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1134 r);
1135
1136 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1137 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1138 r);
1139
1140 r = vcpu_save_xsave_state(vm, vcpu, state);
1141 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1142 r);
1143
1144 if (kvm_check_cap(KVM_CAP_XCRS)) {
1145 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1146 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1147 r);
1148 }
1149
1150 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1151 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1152 r);
1153
1154 if (nested_size) {
1155 state->nested.size = sizeof(state->nested_);
1156 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1157 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1158 r);
1159 TEST_ASSERT(state->nested.size <= nested_size,
1160 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1161 state->nested.size, nested_size);
1162 } else
1163 state->nested.size = 0;
1164
1165 state->msrs.nmsrs = nmsrs;
1166 for (i = 0; i < nmsrs; i++)
1167 state->msrs.entries[i].index = list->indices[i];
1168 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1169 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1170 r, r == nmsrs ? -1 : list->indices[r]);
1171
1172 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1173 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1174 r);
1175
1176 free(list);
1177 return state;
1178}
1179
1180void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1181{
1182 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1183 int r;
1184
1185 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1186 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1187 r);
1188
1189 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1190 TEST_ASSERT(r == state->msrs.nmsrs,
1191 "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1192 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1193
1194 if (kvm_check_cap(KVM_CAP_XCRS)) {
1195 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1196 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1197 r);
1198 }
1199
1200 r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave);
1201 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1202 r);
1203
1204 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1205 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1206 r);
1207
1208 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1209 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1210 r);
1211
1212 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1213 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1214 r);
1215
1216 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1217 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1218 r);
1219
1220 if (state->nested.size) {
1221 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1222 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1223 r);
1224 }
1225}
1226
1227void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1228{
1229 free(state->xsave);
1230 free(state);
1231}
1232
1233static bool cpu_vendor_string_is(const char *vendor)
1234{
1235 const uint32_t *chunk = (const uint32_t *)vendor;
1236 int eax, ebx, ecx, edx;
1237 const int leaf = 0;
1238
1239 __asm__ __volatile__(
1240 "cpuid"
1241 : "=a"(eax), "=b"(ebx),
1242 "=c"(ecx), "=d"(edx)
1243 : "0"(leaf), "2"(0));
1244
1245 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1246}
1247
1248bool is_intel_cpu(void)
1249{
1250 return cpu_vendor_string_is("GenuineIntel");
1251}
1252
1253
1254
1255
1256bool is_amd_cpu(void)
1257{
1258 return cpu_vendor_string_is("AuthenticAMD");
1259}
1260
1261uint32_t kvm_get_cpuid_max_basic(void)
1262{
1263 return kvm_get_supported_cpuid_entry(0)->eax;
1264}
1265
1266uint32_t kvm_get_cpuid_max_extended(void)
1267{
1268 return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1269}
1270
1271void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1272{
1273 struct kvm_cpuid_entry2 *entry;
1274 bool pae;
1275
1276
1277 if (kvm_get_cpuid_max_extended() < 0x80000008) {
1278 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1279 *pa_bits = pae ? 36 : 32;
1280 *va_bits = 32;
1281 } else {
1282 entry = kvm_get_supported_cpuid_entry(0x80000008);
1283 *pa_bits = entry->eax & 0xff;
1284 *va_bits = (entry->eax >> 8) & 0xff;
1285 }
1286}
1287
1288struct idt_entry {
1289 uint16_t offset0;
1290 uint16_t selector;
1291 uint16_t ist : 3;
1292 uint16_t : 5;
1293 uint16_t type : 4;
1294 uint16_t : 1;
1295 uint16_t dpl : 2;
1296 uint16_t p : 1;
1297 uint16_t offset1;
1298 uint32_t offset2; uint32_t reserved;
1299};
1300
1301static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1302 int dpl, unsigned short selector)
1303{
1304 struct idt_entry *base =
1305 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1306 struct idt_entry *e = &base[vector];
1307
1308 memset(e, 0, sizeof(*e));
1309 e->offset0 = addr;
1310 e->selector = selector;
1311 e->ist = 0;
1312 e->type = 14;
1313 e->dpl = dpl;
1314 e->p = 1;
1315 e->offset1 = addr >> 16;
1316 e->offset2 = addr >> 32;
1317}
1318
1319void kvm_exit_unexpected_vector(uint32_t value)
1320{
1321 ucall(UCALL_UNHANDLED, 1, value);
1322}
1323
1324void route_exception(struct ex_regs *regs)
1325{
1326 typedef void(*handler)(struct ex_regs *);
1327 handler *handlers = (handler *)exception_handlers;
1328
1329 if (handlers && handlers[regs->vector]) {
1330 handlers[regs->vector](regs);
1331 return;
1332 }
1333
1334 kvm_exit_unexpected_vector(regs->vector);
1335}
1336
1337void vm_init_descriptor_tables(struct kvm_vm *vm)
1338{
1339 extern void *idt_handlers;
1340 int i;
1341
1342 vm->idt = vm_vaddr_alloc_page(vm);
1343 vm->handlers = vm_vaddr_alloc_page(vm);
1344
1345 for (i = 0; i < NUM_INTERRUPTS; i++)
1346 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1347 DEFAULT_CODE_SELECTOR);
1348}
1349
1350void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1351{
1352 struct kvm_sregs sregs;
1353
1354 vcpu_sregs_get(vm, vcpuid, &sregs);
1355 sregs.idt.base = vm->idt;
1356 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1357 sregs.gdt.base = vm->gdt;
1358 sregs.gdt.limit = getpagesize() - 1;
1359 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1360 vcpu_sregs_set(vm, vcpuid, &sregs);
1361 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1362}
1363
1364void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1365 void (*handler)(struct ex_regs *))
1366{
1367 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1368
1369 handlers[vector] = (vm_vaddr_t)handler;
1370}
1371
1372void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1373{
1374 struct ucall uc;
1375
1376 if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1377 uint64_t vector = uc.args[0];
1378
1379 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1380 vector);
1381 }
1382}
1383
1384struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function,
1385 uint32_t index)
1386{
1387 int i;
1388
1389 for (i = 0; i < cpuid->nent; i++) {
1390 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1391
1392 if (cur->function == function && cur->index == index)
1393 return cur;
1394 }
1395
1396 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1397
1398 return NULL;
1399}
1400
1401bool set_cpuid(struct kvm_cpuid2 *cpuid,
1402 struct kvm_cpuid_entry2 *ent)
1403{
1404 int i;
1405
1406 for (i = 0; i < cpuid->nent; i++) {
1407 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1408
1409 if (cur->function != ent->function || cur->index != ent->index)
1410 continue;
1411
1412 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1413 return true;
1414 }
1415
1416 return false;
1417}
1418
1419uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1420 uint64_t a3)
1421{
1422 uint64_t r;
1423
1424 asm volatile("vmcall"
1425 : "=a"(r)
1426 : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1427 return r;
1428}
1429
1430struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1431{
1432 static struct kvm_cpuid2 *cpuid;
1433 int ret;
1434 int kvm_fd;
1435
1436 if (cpuid)
1437 return cpuid;
1438
1439 cpuid = allocate_kvm_cpuid2();
1440 kvm_fd = open_kvm_dev_path_or_exit();
1441
1442 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1443 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1444 ret, errno);
1445
1446 close(kvm_fd);
1447 return cpuid;
1448}
1449
1450void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1451{
1452 static struct kvm_cpuid2 *cpuid_full;
1453 struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1454 int i, nent = 0;
1455
1456 if (!cpuid_full) {
1457 cpuid_sys = kvm_get_supported_cpuid();
1458 cpuid_hv = kvm_get_supported_hv_cpuid();
1459
1460 cpuid_full = malloc(sizeof(*cpuid_full) +
1461 (cpuid_sys->nent + cpuid_hv->nent) *
1462 sizeof(struct kvm_cpuid_entry2));
1463 if (!cpuid_full) {
1464 perror("malloc");
1465 abort();
1466 }
1467
1468
1469 for (i = 0; i < cpuid_sys->nent; i++) {
1470 if (cpuid_sys->entries[i].function >= 0x40000000 &&
1471 cpuid_sys->entries[i].function < 0x40000100)
1472 continue;
1473 cpuid_full->entries[nent] = cpuid_sys->entries[i];
1474 nent++;
1475 }
1476
1477 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1478 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1479 cpuid_full->nent = nent + cpuid_hv->nent;
1480 }
1481
1482 vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1483}
1484
1485struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1486{
1487 static struct kvm_cpuid2 *cpuid;
1488
1489 cpuid = allocate_kvm_cpuid2();
1490
1491 vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1492
1493 return cpuid;
1494}
1495
1496unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1497{
1498 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift);
1499 unsigned long ht_gfn, max_gfn, max_pfn;
1500 uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1501
1502 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1503
1504
1505 if (!is_amd_cpu())
1506 return max_gfn;
1507
1508
1509 if (vm->pa_bits < 40)
1510 return max_gfn;
1511
1512
1513 ht_gfn = (1 << 28) - num_ht_pages;
1514 eax = 1;
1515 ecx = 0;
1516 cpuid(&eax, &ebx, &ecx, &edx);
1517 if (x86_family(eax) < 0x17)
1518 goto done;
1519
1520
1521
1522
1523
1524
1525 eax = 0x80000000;
1526 cpuid(&eax, &ebx, &ecx, &edx);
1527 max_ext_leaf = eax;
1528 if (max_ext_leaf < 0x80000008)
1529 goto done;
1530
1531 eax = 0x80000008;
1532 cpuid(&eax, &ebx, &ecx, &edx);
1533 max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1534 if (max_ext_leaf >= 0x8000001f) {
1535 eax = 0x8000001f;
1536 cpuid(&eax, &ebx, &ecx, &edx);
1537 max_pfn >>= (ebx >> 6) & 0x3f;
1538 }
1539
1540 ht_gfn = max_pfn - num_ht_pages;
1541done:
1542 return min(max_gfn, ht_gfn - 1);
1543}
1544