linux/tools/testing/selftests/kvm/lib/x86_64/processor.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
   7
   8#include "test_util.h"
   9#include "kvm_util.h"
  10#include "../kvm_util_internal.h"
  11#include "processor.h"
  12
  13#ifndef NUM_INTERRUPTS
  14#define NUM_INTERRUPTS 256
  15#endif
  16
  17#define DEFAULT_CODE_SELECTOR 0x8
  18#define DEFAULT_DATA_SELECTOR 0x10
  19
  20vm_vaddr_t exception_handlers;
  21
  22void regs_dump(FILE *stream, struct kvm_regs *regs,
  23               uint8_t indent)
  24{
  25        fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
  26                "rcx: 0x%.16llx rdx: 0x%.16llx\n",
  27                indent, "",
  28                regs->rax, regs->rbx, regs->rcx, regs->rdx);
  29        fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
  30                "rsp: 0x%.16llx rbp: 0x%.16llx\n",
  31                indent, "",
  32                regs->rsi, regs->rdi, regs->rsp, regs->rbp);
  33        fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
  34                "r10: 0x%.16llx r11: 0x%.16llx\n",
  35                indent, "",
  36                regs->r8, regs->r9, regs->r10, regs->r11);
  37        fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
  38                "r14: 0x%.16llx r15: 0x%.16llx\n",
  39                indent, "",
  40                regs->r12, regs->r13, regs->r14, regs->r15);
  41        fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
  42                indent, "",
  43                regs->rip, regs->rflags);
  44}
  45
  46/*
  47 * Segment Dump
  48 *
  49 * Input Args:
  50 *   stream  - Output FILE stream
  51 *   segment - KVM segment
  52 *   indent  - Left margin indent amount
  53 *
  54 * Output Args: None
  55 *
  56 * Return: None
  57 *
  58 * Dumps the state of the KVM segment given by @segment, to the FILE stream
  59 * given by @stream.
  60 */
  61static void segment_dump(FILE *stream, struct kvm_segment *segment,
  62                         uint8_t indent)
  63{
  64        fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
  65                "selector: 0x%.4x type: 0x%.2x\n",
  66                indent, "", segment->base, segment->limit,
  67                segment->selector, segment->type);
  68        fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
  69                "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
  70                indent, "", segment->present, segment->dpl,
  71                segment->db, segment->s, segment->l);
  72        fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
  73                "unusable: 0x%.2x padding: 0x%.2x\n",
  74                indent, "", segment->g, segment->avl,
  75                segment->unusable, segment->padding);
  76}
  77
  78/*
  79 * dtable Dump
  80 *
  81 * Input Args:
  82 *   stream - Output FILE stream
  83 *   dtable - KVM dtable
  84 *   indent - Left margin indent amount
  85 *
  86 * Output Args: None
  87 *
  88 * Return: None
  89 *
  90 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
  91 * given by @stream.
  92 */
  93static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
  94                        uint8_t indent)
  95{
  96        fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
  97                "padding: 0x%.4x 0x%.4x 0x%.4x\n",
  98                indent, "", dtable->base, dtable->limit,
  99                dtable->padding[0], dtable->padding[1], dtable->padding[2]);
 100}
 101
 102void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
 103                uint8_t indent)
 104{
 105        unsigned int i;
 106
 107        fprintf(stream, "%*scs:\n", indent, "");
 108        segment_dump(stream, &sregs->cs, indent + 2);
 109        fprintf(stream, "%*sds:\n", indent, "");
 110        segment_dump(stream, &sregs->ds, indent + 2);
 111        fprintf(stream, "%*ses:\n", indent, "");
 112        segment_dump(stream, &sregs->es, indent + 2);
 113        fprintf(stream, "%*sfs:\n", indent, "");
 114        segment_dump(stream, &sregs->fs, indent + 2);
 115        fprintf(stream, "%*sgs:\n", indent, "");
 116        segment_dump(stream, &sregs->gs, indent + 2);
 117        fprintf(stream, "%*sss:\n", indent, "");
 118        segment_dump(stream, &sregs->ss, indent + 2);
 119        fprintf(stream, "%*str:\n", indent, "");
 120        segment_dump(stream, &sregs->tr, indent + 2);
 121        fprintf(stream, "%*sldt:\n", indent, "");
 122        segment_dump(stream, &sregs->ldt, indent + 2);
 123
 124        fprintf(stream, "%*sgdt:\n", indent, "");
 125        dtable_dump(stream, &sregs->gdt, indent + 2);
 126        fprintf(stream, "%*sidt:\n", indent, "");
 127        dtable_dump(stream, &sregs->idt, indent + 2);
 128
 129        fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
 130                "cr3: 0x%.16llx cr4: 0x%.16llx\n",
 131                indent, "",
 132                sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
 133        fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
 134                "apic_base: 0x%.16llx\n",
 135                indent, "",
 136                sregs->cr8, sregs->efer, sregs->apic_base);
 137
 138        fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
 139        for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
 140                fprintf(stream, "%*s%.16llx\n", indent + 2, "",
 141                        sregs->interrupt_bitmap[i]);
 142        }
 143}
 144
 145void virt_pgd_alloc(struct kvm_vm *vm)
 146{
 147        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 148                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 149
 150        /* If needed, create page map l4 table. */
 151        if (!vm->pgd_created) {
 152                vm->pgd = vm_alloc_page_table(vm);
 153                vm->pgd_created = true;
 154        }
 155}
 156
 157static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
 158                          int level)
 159{
 160        uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
 161        int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
 162
 163        return &page_table[index];
 164}
 165
 166static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
 167                                       uint64_t pt_pfn,
 168                                       uint64_t vaddr,
 169                                       uint64_t paddr,
 170                                       int level,
 171                                       enum x86_page_size page_size)
 172{
 173        uint64_t *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
 174
 175        if (!(*pte & PTE_PRESENT_MASK)) {
 176                *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
 177                if (level == page_size)
 178                        *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
 179                else
 180                        *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
 181        } else {
 182                /*
 183                 * Entry already present.  Assert that the caller doesn't want
 184                 * a hugepage at this level, and that there isn't a hugepage at
 185                 * this level.
 186                 */
 187                TEST_ASSERT(level != page_size,
 188                            "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
 189                            page_size, vaddr);
 190                TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
 191                            "Cannot create page table at level: %u, vaddr: 0x%lx\n",
 192                            level, vaddr);
 193        }
 194        return pte;
 195}
 196
 197void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
 198                   enum x86_page_size page_size)
 199{
 200        const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
 201        uint64_t *pml4e, *pdpe, *pde;
 202        uint64_t *pte;
 203
 204        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
 205                    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 206
 207        TEST_ASSERT((vaddr % pg_size) == 0,
 208                    "Virtual address not aligned,\n"
 209                    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
 210        TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
 211                    "Invalid virtual address, vaddr: 0x%lx", vaddr);
 212        TEST_ASSERT((paddr % pg_size) == 0,
 213                    "Physical address not aligned,\n"
 214                    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
 215        TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
 216                    "Physical address beyond maximum supported,\n"
 217                    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 218                    paddr, vm->max_gfn, vm->page_size);
 219
 220        /*
 221         * Allocate upper level page tables, if not already present.  Return
 222         * early if a hugepage was created.
 223         */
 224        pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
 225                                      vaddr, paddr, 3, page_size);
 226        if (*pml4e & PTE_LARGE_MASK)
 227                return;
 228
 229        pdpe = virt_create_upper_pte(vm, PTE_GET_PFN(*pml4e), vaddr, paddr, 2, page_size);
 230        if (*pdpe & PTE_LARGE_MASK)
 231                return;
 232
 233        pde = virt_create_upper_pte(vm, PTE_GET_PFN(*pdpe), vaddr, paddr, 1, page_size);
 234        if (*pde & PTE_LARGE_MASK)
 235                return;
 236
 237        /* Fill in page table entry. */
 238        pte = virt_get_pte(vm, PTE_GET_PFN(*pde), vaddr, 0);
 239        TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
 240                    "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
 241        *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
 242}
 243
 244void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
 245{
 246        __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
 247}
 248
 249static uint64_t *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
 250                                                       uint64_t vaddr)
 251{
 252        uint16_t index[4];
 253        uint64_t *pml4e, *pdpe, *pde;
 254        uint64_t *pte;
 255        struct kvm_cpuid_entry2 *entry;
 256        struct kvm_sregs sregs;
 257        int max_phy_addr;
 258        uint64_t rsvd_mask = 0;
 259
 260        entry = kvm_get_supported_cpuid_index(0x80000008, 0);
 261        max_phy_addr = entry->eax & 0x000000ff;
 262        /* Set the high bits in the reserved mask. */
 263        if (max_phy_addr < 52)
 264                rsvd_mask = GENMASK_ULL(51, max_phy_addr);
 265
 266        /*
 267         * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
 268         * with 4-Level Paging and 5-Level Paging".
 269         * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
 270         * the XD flag (bit 63) is reserved.
 271         */
 272        vcpu_sregs_get(vm, vcpuid, &sregs);
 273        if ((sregs.efer & EFER_NX) == 0) {
 274                rsvd_mask |= PTE_NX_MASK;
 275        }
 276
 277        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 278                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 279        TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
 280                (vaddr >> vm->page_shift)),
 281                "Invalid virtual address, vaddr: 0x%lx",
 282                vaddr);
 283        /*
 284         * Based on the mode check above there are 48 bits in the vaddr, so
 285         * shift 16 to sign extend the last bit (bit-47),
 286         */
 287        TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
 288                "Canonical check failed.  The virtual address is invalid.");
 289
 290        index[0] = (vaddr >> 12) & 0x1ffu;
 291        index[1] = (vaddr >> 21) & 0x1ffu;
 292        index[2] = (vaddr >> 30) & 0x1ffu;
 293        index[3] = (vaddr >> 39) & 0x1ffu;
 294
 295        pml4e = addr_gpa2hva(vm, vm->pgd);
 296        TEST_ASSERT(pml4e[index[3]] & PTE_PRESENT_MASK,
 297                "Expected pml4e to be present for gva: 0x%08lx", vaddr);
 298        TEST_ASSERT((pml4e[index[3]] & (rsvd_mask | PTE_LARGE_MASK)) == 0,
 299                "Unexpected reserved bits set.");
 300
 301        pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
 302        TEST_ASSERT(pdpe[index[2]] & PTE_PRESENT_MASK,
 303                "Expected pdpe to be present for gva: 0x%08lx", vaddr);
 304        TEST_ASSERT(!(pdpe[index[2]] & PTE_LARGE_MASK),
 305                "Expected pdpe to map a pde not a 1-GByte page.");
 306        TEST_ASSERT((pdpe[index[2]] & rsvd_mask) == 0,
 307                "Unexpected reserved bits set.");
 308
 309        pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
 310        TEST_ASSERT(pde[index[1]] & PTE_PRESENT_MASK,
 311                "Expected pde to be present for gva: 0x%08lx", vaddr);
 312        TEST_ASSERT(!(pde[index[1]] & PTE_LARGE_MASK),
 313                "Expected pde to map a pte not a 2-MByte page.");
 314        TEST_ASSERT((pde[index[1]] & rsvd_mask) == 0,
 315                "Unexpected reserved bits set.");
 316
 317        pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
 318        TEST_ASSERT(pte[index[0]] & PTE_PRESENT_MASK,
 319                "Expected pte to be present for gva: 0x%08lx", vaddr);
 320
 321        return &pte[index[0]];
 322}
 323
 324uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
 325{
 326        uint64_t *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
 327
 328        return *(uint64_t *)pte;
 329}
 330
 331void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
 332                             uint64_t pte)
 333{
 334        uint64_t *new_pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
 335
 336        *(uint64_t *)new_pte = pte;
 337}
 338
 339void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
 340{
 341        uint64_t *pml4e, *pml4e_start;
 342        uint64_t *pdpe, *pdpe_start;
 343        uint64_t *pde, *pde_start;
 344        uint64_t *pte, *pte_start;
 345
 346        if (!vm->pgd_created)
 347                return;
 348
 349        fprintf(stream, "%*s                                          "
 350                "                no\n", indent, "");
 351        fprintf(stream, "%*s      index hvaddr         gpaddr         "
 352                "addr         w exec dirty\n",
 353                indent, "");
 354        pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
 355        for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
 356                pml4e = &pml4e_start[n1];
 357                if (!(*pml4e & PTE_PRESENT_MASK))
 358                        continue;
 359                fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
 360                        " %u\n",
 361                        indent, "",
 362                        pml4e - pml4e_start, pml4e,
 363                        addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
 364                        !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
 365
 366                pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
 367                for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
 368                        pdpe = &pdpe_start[n2];
 369                        if (!(*pdpe & PTE_PRESENT_MASK))
 370                                continue;
 371                        fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
 372                                "%u  %u\n",
 373                                indent, "",
 374                                pdpe - pdpe_start, pdpe,
 375                                addr_hva2gpa(vm, pdpe),
 376                                PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
 377                                !!(*pdpe & PTE_NX_MASK));
 378
 379                        pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
 380                        for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
 381                                pde = &pde_start[n3];
 382                                if (!(*pde & PTE_PRESENT_MASK))
 383                                        continue;
 384                                fprintf(stream, "%*spde   0x%-3zx %p "
 385                                        "0x%-12lx 0x%-10llx %u  %u\n",
 386                                        indent, "", pde - pde_start, pde,
 387                                        addr_hva2gpa(vm, pde),
 388                                        PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
 389                                        !!(*pde & PTE_NX_MASK));
 390
 391                                pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
 392                                for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
 393                                        pte = &pte_start[n4];
 394                                        if (!(*pte & PTE_PRESENT_MASK))
 395                                                continue;
 396                                        fprintf(stream, "%*spte   0x%-3zx %p "
 397                                                "0x%-12lx 0x%-10llx %u  %u "
 398                                                "    %u    0x%-10lx\n",
 399                                                indent, "",
 400                                                pte - pte_start, pte,
 401                                                addr_hva2gpa(vm, pte),
 402                                                PTE_GET_PFN(*pte),
 403                                                !!(*pte & PTE_WRITABLE_MASK),
 404                                                !!(*pte & PTE_NX_MASK),
 405                                                !!(*pte & PTE_DIRTY_MASK),
 406                                                ((uint64_t) n1 << 27)
 407                                                        | ((uint64_t) n2 << 18)
 408                                                        | ((uint64_t) n3 << 9)
 409                                                        | ((uint64_t) n4));
 410                                }
 411                        }
 412                }
 413        }
 414}
 415
 416/*
 417 * Set Unusable Segment
 418 *
 419 * Input Args: None
 420 *
 421 * Output Args:
 422 *   segp - Pointer to segment register
 423 *
 424 * Return: None
 425 *
 426 * Sets the segment register pointed to by @segp to an unusable state.
 427 */
 428static void kvm_seg_set_unusable(struct kvm_segment *segp)
 429{
 430        memset(segp, 0, sizeof(*segp));
 431        segp->unusable = true;
 432}
 433
 434static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
 435{
 436        void *gdt = addr_gva2hva(vm, vm->gdt);
 437        struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
 438
 439        desc->limit0 = segp->limit & 0xFFFF;
 440        desc->base0 = segp->base & 0xFFFF;
 441        desc->base1 = segp->base >> 16;
 442        desc->type = segp->type;
 443        desc->s = segp->s;
 444        desc->dpl = segp->dpl;
 445        desc->p = segp->present;
 446        desc->limit1 = segp->limit >> 16;
 447        desc->avl = segp->avl;
 448        desc->l = segp->l;
 449        desc->db = segp->db;
 450        desc->g = segp->g;
 451        desc->base2 = segp->base >> 24;
 452        if (!segp->s)
 453                desc->base3 = segp->base >> 32;
 454}
 455
 456
 457/*
 458 * Set Long Mode Flat Kernel Code Segment
 459 *
 460 * Input Args:
 461 *   vm - VM whose GDT is being filled, or NULL to only write segp
 462 *   selector - selector value
 463 *
 464 * Output Args:
 465 *   segp - Pointer to KVM segment
 466 *
 467 * Return: None
 468 *
 469 * Sets up the KVM segment pointed to by @segp, to be a code segment
 470 * with the selector value given by @selector.
 471 */
 472static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
 473        struct kvm_segment *segp)
 474{
 475        memset(segp, 0, sizeof(*segp));
 476        segp->selector = selector;
 477        segp->limit = 0xFFFFFFFFu;
 478        segp->s = 0x1; /* kTypeCodeData */
 479        segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
 480                                          * | kFlagCodeReadable
 481                                          */
 482        segp->g = true;
 483        segp->l = true;
 484        segp->present = 1;
 485        if (vm)
 486                kvm_seg_fill_gdt_64bit(vm, segp);
 487}
 488
 489/*
 490 * Set Long Mode Flat Kernel Data Segment
 491 *
 492 * Input Args:
 493 *   vm - VM whose GDT is being filled, or NULL to only write segp
 494 *   selector - selector value
 495 *
 496 * Output Args:
 497 *   segp - Pointer to KVM segment
 498 *
 499 * Return: None
 500 *
 501 * Sets up the KVM segment pointed to by @segp, to be a data segment
 502 * with the selector value given by @selector.
 503 */
 504static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
 505        struct kvm_segment *segp)
 506{
 507        memset(segp, 0, sizeof(*segp));
 508        segp->selector = selector;
 509        segp->limit = 0xFFFFFFFFu;
 510        segp->s = 0x1; /* kTypeCodeData */
 511        segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
 512                                          * | kFlagDataWritable
 513                                          */
 514        segp->g = true;
 515        segp->present = true;
 516        if (vm)
 517                kvm_seg_fill_gdt_64bit(vm, segp);
 518}
 519
 520vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
 521{
 522        uint16_t index[4];
 523        uint64_t *pml4e, *pdpe, *pde;
 524        uint64_t *pte;
 525
 526        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 527                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 528
 529        index[0] = (gva >> 12) & 0x1ffu;
 530        index[1] = (gva >> 21) & 0x1ffu;
 531        index[2] = (gva >> 30) & 0x1ffu;
 532        index[3] = (gva >> 39) & 0x1ffu;
 533
 534        if (!vm->pgd_created)
 535                goto unmapped_gva;
 536        pml4e = addr_gpa2hva(vm, vm->pgd);
 537        if (!(pml4e[index[3]] & PTE_PRESENT_MASK))
 538                goto unmapped_gva;
 539
 540        pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
 541        if (!(pdpe[index[2]] & PTE_PRESENT_MASK))
 542                goto unmapped_gva;
 543
 544        pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
 545        if (!(pde[index[1]] & PTE_PRESENT_MASK))
 546                goto unmapped_gva;
 547
 548        pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
 549        if (!(pte[index[0]] & PTE_PRESENT_MASK))
 550                goto unmapped_gva;
 551
 552        return (PTE_GET_PFN(pte[index[0]]) * vm->page_size) + (gva & ~PAGE_MASK);
 553
 554unmapped_gva:
 555        TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
 556        exit(EXIT_FAILURE);
 557}
 558
 559static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
 560{
 561        if (!vm->gdt)
 562                vm->gdt = vm_vaddr_alloc_page(vm);
 563
 564        dt->base = vm->gdt;
 565        dt->limit = getpagesize();
 566}
 567
 568static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
 569                                int selector)
 570{
 571        if (!vm->tss)
 572                vm->tss = vm_vaddr_alloc_page(vm);
 573
 574        memset(segp, 0, sizeof(*segp));
 575        segp->base = vm->tss;
 576        segp->limit = 0x67;
 577        segp->selector = selector;
 578        segp->type = 0xb;
 579        segp->present = 1;
 580        kvm_seg_fill_gdt_64bit(vm, segp);
 581}
 582
 583static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
 584{
 585        struct kvm_sregs sregs;
 586
 587        /* Set mode specific system register values. */
 588        vcpu_sregs_get(vm, vcpuid, &sregs);
 589
 590        sregs.idt.limit = 0;
 591
 592        kvm_setup_gdt(vm, &sregs.gdt);
 593
 594        switch (vm->mode) {
 595        case VM_MODE_PXXV48_4K:
 596                sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
 597                sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
 598                sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
 599
 600                kvm_seg_set_unusable(&sregs.ldt);
 601                kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
 602                kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
 603                kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
 604                kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
 605                break;
 606
 607        default:
 608                TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
 609        }
 610
 611        sregs.cr3 = vm->pgd;
 612        vcpu_sregs_set(vm, vcpuid, &sregs);
 613}
 614
 615#define CPUID_XFD_BIT (1 << 4)
 616static bool is_xfd_supported(void)
 617{
 618        int eax, ebx, ecx, edx;
 619        const int leaf = 0xd, subleaf = 0x1;
 620
 621        __asm__ __volatile__(
 622                "cpuid"
 623                : /* output */ "=a"(eax), "=b"(ebx),
 624                  "=c"(ecx), "=d"(edx)
 625                : /* input */ "0"(leaf), "2"(subleaf));
 626
 627        return !!(eax & CPUID_XFD_BIT);
 628}
 629
 630void vm_xsave_req_perm(int bit)
 631{
 632        int kvm_fd;
 633        u64 bitmask;
 634        long rc;
 635        struct kvm_device_attr attr = {
 636                .group = 0,
 637                .attr = KVM_X86_XCOMP_GUEST_SUPP,
 638                .addr = (unsigned long) &bitmask
 639        };
 640
 641        kvm_fd = open_kvm_dev_path_or_exit();
 642        rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
 643        close(kvm_fd);
 644        if (rc == -1 && (errno == ENXIO || errno == EINVAL))
 645                exit(KSFT_SKIP);
 646        TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
 647        if (!(bitmask & (1ULL << bit)))
 648                exit(KSFT_SKIP);
 649
 650        if (!is_xfd_supported())
 651                exit(KSFT_SKIP);
 652
 653        rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
 654
 655        /*
 656         * The older kernel version(<5.15) can't support
 657         * ARCH_REQ_XCOMP_GUEST_PERM and directly return.
 658         */
 659        if (rc)
 660                return;
 661
 662        rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
 663        TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
 664        TEST_ASSERT(bitmask & (1ULL << bit),
 665                    "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
 666                    bitmask);
 667}
 668
 669void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
 670{
 671        struct kvm_mp_state mp_state;
 672        struct kvm_regs regs;
 673        vm_vaddr_t stack_vaddr;
 674        stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
 675                                     DEFAULT_GUEST_STACK_VADDR_MIN);
 676
 677        /* Create VCPU */
 678        vm_vcpu_add(vm, vcpuid);
 679        vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
 680        vcpu_setup(vm, vcpuid);
 681
 682        /* Setup guest general purpose registers */
 683        vcpu_regs_get(vm, vcpuid, &regs);
 684        regs.rflags = regs.rflags | 0x2;
 685        regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
 686        regs.rip = (unsigned long) guest_code;
 687        vcpu_regs_set(vm, vcpuid, &regs);
 688
 689        /* Setup the MP state */
 690        mp_state.mp_state = 0;
 691        vcpu_set_mp_state(vm, vcpuid, &mp_state);
 692}
 693
 694/*
 695 * Allocate an instance of struct kvm_cpuid2
 696 *
 697 * Input Args: None
 698 *
 699 * Output Args: None
 700 *
 701 * Return: A pointer to the allocated struct. The caller is responsible
 702 * for freeing this struct.
 703 *
 704 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
 705 * array to be decided at allocation time, allocation is slightly
 706 * complicated. This function uses a reasonable default length for
 707 * the array and performs the appropriate allocation.
 708 */
 709static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
 710{
 711        struct kvm_cpuid2 *cpuid;
 712        int nent = 100;
 713        size_t size;
 714
 715        size = sizeof(*cpuid);
 716        size += nent * sizeof(struct kvm_cpuid_entry2);
 717        cpuid = malloc(size);
 718        if (!cpuid) {
 719                perror("malloc");
 720                abort();
 721        }
 722
 723        cpuid->nent = nent;
 724
 725        return cpuid;
 726}
 727
 728/*
 729 * KVM Supported CPUID Get
 730 *
 731 * Input Args: None
 732 *
 733 * Output Args:
 734 *
 735 * Return: The supported KVM CPUID
 736 *
 737 * Get the guest CPUID supported by KVM.
 738 */
 739struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
 740{
 741        static struct kvm_cpuid2 *cpuid;
 742        int ret;
 743        int kvm_fd;
 744
 745        if (cpuid)
 746                return cpuid;
 747
 748        cpuid = allocate_kvm_cpuid2();
 749        kvm_fd = open_kvm_dev_path_or_exit();
 750
 751        ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
 752        TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
 753                    ret, errno);
 754
 755        close(kvm_fd);
 756        return cpuid;
 757}
 758
 759/*
 760 * KVM Get MSR
 761 *
 762 * Input Args:
 763 *   msr_index - Index of MSR
 764 *
 765 * Output Args: None
 766 *
 767 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
 768 *
 769 * Get value of MSR for VCPU.
 770 */
 771uint64_t kvm_get_feature_msr(uint64_t msr_index)
 772{
 773        struct {
 774                struct kvm_msrs header;
 775                struct kvm_msr_entry entry;
 776        } buffer = {};
 777        int r, kvm_fd;
 778
 779        buffer.header.nmsrs = 1;
 780        buffer.entry.index = msr_index;
 781        kvm_fd = open_kvm_dev_path_or_exit();
 782
 783        r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
 784        TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
 785                "  rc: %i errno: %i", r, errno);
 786
 787        close(kvm_fd);
 788        return buffer.entry.data;
 789}
 790
 791/*
 792 * VM VCPU CPUID Set
 793 *
 794 * Input Args:
 795 *   vm - Virtual Machine
 796 *   vcpuid - VCPU id
 797 *
 798 * Output Args: None
 799 *
 800 * Return: KVM CPUID (KVM_GET_CPUID2)
 801 *
 802 * Set the VCPU's CPUID.
 803 */
 804struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
 805{
 806        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 807        struct kvm_cpuid2 *cpuid;
 808        int max_ent;
 809        int rc = -1;
 810
 811        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 812
 813        cpuid = allocate_kvm_cpuid2();
 814        max_ent = cpuid->nent;
 815
 816        for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
 817                rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
 818                if (!rc)
 819                        break;
 820
 821                TEST_ASSERT(rc == -1 && errno == E2BIG,
 822                            "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
 823                            rc, errno);
 824        }
 825
 826        TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
 827                    rc, errno);
 828
 829        return cpuid;
 830}
 831
 832
 833
 834/*
 835 * Locate a cpuid entry.
 836 *
 837 * Input Args:
 838 *   function: The function of the cpuid entry to find.
 839 *   index: The index of the cpuid entry.
 840 *
 841 * Output Args: None
 842 *
 843 * Return: A pointer to the cpuid entry. Never returns NULL.
 844 */
 845struct kvm_cpuid_entry2 *
 846kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
 847{
 848        struct kvm_cpuid2 *cpuid;
 849        struct kvm_cpuid_entry2 *entry = NULL;
 850        int i;
 851
 852        cpuid = kvm_get_supported_cpuid();
 853        for (i = 0; i < cpuid->nent; i++) {
 854                if (cpuid->entries[i].function == function &&
 855                    cpuid->entries[i].index == index) {
 856                        entry = &cpuid->entries[i];
 857                        break;
 858                }
 859        }
 860
 861        TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
 862                    function, index);
 863        return entry;
 864}
 865
 866
 867int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid,
 868                     struct kvm_cpuid2 *cpuid)
 869{
 870        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 871
 872        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 873
 874        return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
 875}
 876
 877/*
 878 * VM VCPU CPUID Set
 879 *
 880 * Input Args:
 881 *   vm - Virtual Machine
 882 *   vcpuid - VCPU id
 883 *   cpuid - The CPUID values to set.
 884 *
 885 * Output Args: None
 886 *
 887 * Return: void
 888 *
 889 * Set the VCPU's CPUID.
 890 */
 891void vcpu_set_cpuid(struct kvm_vm *vm,
 892                uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
 893{
 894        int rc;
 895
 896        rc = __vcpu_set_cpuid(vm, vcpuid, cpuid);
 897        TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
 898                    rc, errno);
 899
 900}
 901
 902/*
 903 * VCPU Get MSR
 904 *
 905 * Input Args:
 906 *   vm - Virtual Machine
 907 *   vcpuid - VCPU ID
 908 *   msr_index - Index of MSR
 909 *
 910 * Output Args: None
 911 *
 912 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
 913 *
 914 * Get value of MSR for VCPU.
 915 */
 916uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
 917{
 918        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 919        struct {
 920                struct kvm_msrs header;
 921                struct kvm_msr_entry entry;
 922        } buffer = {};
 923        int r;
 924
 925        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 926        buffer.header.nmsrs = 1;
 927        buffer.entry.index = msr_index;
 928        r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
 929        TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
 930                "  rc: %i errno: %i", r, errno);
 931
 932        return buffer.entry.data;
 933}
 934
 935/*
 936 * _VCPU Set MSR
 937 *
 938 * Input Args:
 939 *   vm - Virtual Machine
 940 *   vcpuid - VCPU ID
 941 *   msr_index - Index of MSR
 942 *   msr_value - New value of MSR
 943 *
 944 * Output Args: None
 945 *
 946 * Return: The result of KVM_SET_MSRS.
 947 *
 948 * Sets the value of an MSR for the given VCPU.
 949 */
 950int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
 951                  uint64_t msr_value)
 952{
 953        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 954        struct {
 955                struct kvm_msrs header;
 956                struct kvm_msr_entry entry;
 957        } buffer = {};
 958        int r;
 959
 960        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 961        memset(&buffer, 0, sizeof(buffer));
 962        buffer.header.nmsrs = 1;
 963        buffer.entry.index = msr_index;
 964        buffer.entry.data = msr_value;
 965        r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
 966        return r;
 967}
 968
 969/*
 970 * VCPU Set MSR
 971 *
 972 * Input Args:
 973 *   vm - Virtual Machine
 974 *   vcpuid - VCPU ID
 975 *   msr_index - Index of MSR
 976 *   msr_value - New value of MSR
 977 *
 978 * Output Args: None
 979 *
 980 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
 981 *
 982 * Set value of MSR for VCPU.
 983 */
 984void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
 985        uint64_t msr_value)
 986{
 987        int r;
 988
 989        r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
 990        TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
 991                "  rc: %i errno: %i", r, errno);
 992}
 993
 994void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
 995{
 996        va_list ap;
 997        struct kvm_regs regs;
 998
 999        TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
1000                    "  num: %u\n",
1001                    num);
1002
1003        va_start(ap, num);
1004        vcpu_regs_get(vm, vcpuid, &regs);
1005
1006        if (num >= 1)
1007                regs.rdi = va_arg(ap, uint64_t);
1008
1009        if (num >= 2)
1010                regs.rsi = va_arg(ap, uint64_t);
1011
1012        if (num >= 3)
1013                regs.rdx = va_arg(ap, uint64_t);
1014
1015        if (num >= 4)
1016                regs.rcx = va_arg(ap, uint64_t);
1017
1018        if (num >= 5)
1019                regs.r8 = va_arg(ap, uint64_t);
1020
1021        if (num >= 6)
1022                regs.r9 = va_arg(ap, uint64_t);
1023
1024        vcpu_regs_set(vm, vcpuid, &regs);
1025        va_end(ap);
1026}
1027
1028void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1029{
1030        struct kvm_regs regs;
1031        struct kvm_sregs sregs;
1032
1033        fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1034
1035        fprintf(stream, "%*sregs:\n", indent + 2, "");
1036        vcpu_regs_get(vm, vcpuid, &regs);
1037        regs_dump(stream, &regs, indent + 4);
1038
1039        fprintf(stream, "%*ssregs:\n", indent + 2, "");
1040        vcpu_sregs_get(vm, vcpuid, &sregs);
1041        sregs_dump(stream, &sregs, indent + 4);
1042}
1043
1044static int kvm_get_num_msrs_fd(int kvm_fd)
1045{
1046        struct kvm_msr_list nmsrs;
1047        int r;
1048
1049        nmsrs.nmsrs = 0;
1050        r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1051        TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1052                r);
1053
1054        return nmsrs.nmsrs;
1055}
1056
1057static int kvm_get_num_msrs(struct kvm_vm *vm)
1058{
1059        return kvm_get_num_msrs_fd(vm->kvm_fd);
1060}
1061
1062struct kvm_msr_list *kvm_get_msr_index_list(void)
1063{
1064        struct kvm_msr_list *list;
1065        int nmsrs, r, kvm_fd;
1066
1067        kvm_fd = open_kvm_dev_path_or_exit();
1068
1069        nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1070        list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1071        list->nmsrs = nmsrs;
1072        r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1073        close(kvm_fd);
1074
1075        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1076                r);
1077
1078        return list;
1079}
1080
1081static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu,
1082                                 struct kvm_x86_state *state)
1083{
1084        int size;
1085
1086        size = vm_check_cap(vm, KVM_CAP_XSAVE2);
1087        if (!size)
1088                size = sizeof(struct kvm_xsave);
1089
1090        state->xsave = malloc(size);
1091        if (size == sizeof(struct kvm_xsave))
1092                return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave);
1093        else
1094                return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave);
1095}
1096
1097struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1098{
1099        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1100        struct kvm_msr_list *list;
1101        struct kvm_x86_state *state;
1102        int nmsrs, r, i;
1103        static int nested_size = -1;
1104
1105        if (nested_size == -1) {
1106                nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1107                TEST_ASSERT(nested_size <= sizeof(state->nested_),
1108                            "Nested state size too big, %i > %zi",
1109                            nested_size, sizeof(state->nested_));
1110        }
1111
1112        /*
1113         * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1114         * guest state is consistent only after userspace re-enters the
1115         * kernel with KVM_RUN.  Complete IO prior to migrating state
1116         * to a new VM.
1117         */
1118        vcpu_run_complete_io(vm, vcpuid);
1119
1120        nmsrs = kvm_get_num_msrs(vm);
1121        list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1122        list->nmsrs = nmsrs;
1123        r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1124        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1125                    r);
1126
1127        state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1128        r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1129        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1130                    r);
1131
1132        r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1133        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1134                    r);
1135
1136        r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1137        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1138                    r);
1139
1140        r = vcpu_save_xsave_state(vm, vcpu, state);
1141        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1142                    r);
1143
1144        if (kvm_check_cap(KVM_CAP_XCRS)) {
1145                r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1146                TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1147                            r);
1148        }
1149
1150        r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1151        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1152                    r);
1153
1154        if (nested_size) {
1155                state->nested.size = sizeof(state->nested_);
1156                r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1157                TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1158                            r);
1159                TEST_ASSERT(state->nested.size <= nested_size,
1160                            "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1161                            state->nested.size, nested_size);
1162        } else
1163                state->nested.size = 0;
1164
1165        state->msrs.nmsrs = nmsrs;
1166        for (i = 0; i < nmsrs; i++)
1167                state->msrs.entries[i].index = list->indices[i];
1168        r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1169        TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1170                    r, r == nmsrs ? -1 : list->indices[r]);
1171
1172        r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1173        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1174                    r);
1175
1176        free(list);
1177        return state;
1178}
1179
1180void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1181{
1182        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1183        int r;
1184
1185        r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1186        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1187                    r);
1188
1189        r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1190        TEST_ASSERT(r == state->msrs.nmsrs,
1191                "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1192                r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1193
1194        if (kvm_check_cap(KVM_CAP_XCRS)) {
1195                r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1196                TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1197                            r);
1198        }
1199
1200        r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave);
1201        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1202                    r);
1203
1204        r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1205        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1206                    r);
1207
1208        r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1209        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1210                    r);
1211
1212        r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1213        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1214                    r);
1215
1216        r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1217        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1218                    r);
1219
1220        if (state->nested.size) {
1221                r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1222                TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1223                            r);
1224        }
1225}
1226
1227void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1228{
1229        free(state->xsave);
1230        free(state);
1231}
1232
1233static bool cpu_vendor_string_is(const char *vendor)
1234{
1235        const uint32_t *chunk = (const uint32_t *)vendor;
1236        int eax, ebx, ecx, edx;
1237        const int leaf = 0;
1238
1239        __asm__ __volatile__(
1240                "cpuid"
1241                : /* output */ "=a"(eax), "=b"(ebx),
1242                  "=c"(ecx), "=d"(edx)
1243                : /* input */ "0"(leaf), "2"(0));
1244
1245        return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1246}
1247
1248bool is_intel_cpu(void)
1249{
1250        return cpu_vendor_string_is("GenuineIntel");
1251}
1252
1253/*
1254 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
1255 */
1256bool is_amd_cpu(void)
1257{
1258        return cpu_vendor_string_is("AuthenticAMD");
1259}
1260
1261uint32_t kvm_get_cpuid_max_basic(void)
1262{
1263        return kvm_get_supported_cpuid_entry(0)->eax;
1264}
1265
1266uint32_t kvm_get_cpuid_max_extended(void)
1267{
1268        return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1269}
1270
1271void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1272{
1273        struct kvm_cpuid_entry2 *entry;
1274        bool pae;
1275
1276        /* SDM 4.1.4 */
1277        if (kvm_get_cpuid_max_extended() < 0x80000008) {
1278                pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1279                *pa_bits = pae ? 36 : 32;
1280                *va_bits = 32;
1281        } else {
1282                entry = kvm_get_supported_cpuid_entry(0x80000008);
1283                *pa_bits = entry->eax & 0xff;
1284                *va_bits = (entry->eax >> 8) & 0xff;
1285        }
1286}
1287
1288struct idt_entry {
1289        uint16_t offset0;
1290        uint16_t selector;
1291        uint16_t ist : 3;
1292        uint16_t : 5;
1293        uint16_t type : 4;
1294        uint16_t : 1;
1295        uint16_t dpl : 2;
1296        uint16_t p : 1;
1297        uint16_t offset1;
1298        uint32_t offset2; uint32_t reserved;
1299};
1300
1301static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1302                          int dpl, unsigned short selector)
1303{
1304        struct idt_entry *base =
1305                (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1306        struct idt_entry *e = &base[vector];
1307
1308        memset(e, 0, sizeof(*e));
1309        e->offset0 = addr;
1310        e->selector = selector;
1311        e->ist = 0;
1312        e->type = 14;
1313        e->dpl = dpl;
1314        e->p = 1;
1315        e->offset1 = addr >> 16;
1316        e->offset2 = addr >> 32;
1317}
1318
1319void kvm_exit_unexpected_vector(uint32_t value)
1320{
1321        ucall(UCALL_UNHANDLED, 1, value);
1322}
1323
1324void route_exception(struct ex_regs *regs)
1325{
1326        typedef void(*handler)(struct ex_regs *);
1327        handler *handlers = (handler *)exception_handlers;
1328
1329        if (handlers && handlers[regs->vector]) {
1330                handlers[regs->vector](regs);
1331                return;
1332        }
1333
1334        kvm_exit_unexpected_vector(regs->vector);
1335}
1336
1337void vm_init_descriptor_tables(struct kvm_vm *vm)
1338{
1339        extern void *idt_handlers;
1340        int i;
1341
1342        vm->idt = vm_vaddr_alloc_page(vm);
1343        vm->handlers = vm_vaddr_alloc_page(vm);
1344        /* Handlers have the same address in both address spaces.*/
1345        for (i = 0; i < NUM_INTERRUPTS; i++)
1346                set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1347                        DEFAULT_CODE_SELECTOR);
1348}
1349
1350void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1351{
1352        struct kvm_sregs sregs;
1353
1354        vcpu_sregs_get(vm, vcpuid, &sregs);
1355        sregs.idt.base = vm->idt;
1356        sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1357        sregs.gdt.base = vm->gdt;
1358        sregs.gdt.limit = getpagesize() - 1;
1359        kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1360        vcpu_sregs_set(vm, vcpuid, &sregs);
1361        *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1362}
1363
1364void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1365                               void (*handler)(struct ex_regs *))
1366{
1367        vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1368
1369        handlers[vector] = (vm_vaddr_t)handler;
1370}
1371
1372void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1373{
1374        struct ucall uc;
1375
1376        if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1377                uint64_t vector = uc.args[0];
1378
1379                TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1380                          vector);
1381        }
1382}
1383
1384struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function,
1385                                   uint32_t index)
1386{
1387        int i;
1388
1389        for (i = 0; i < cpuid->nent; i++) {
1390                struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1391
1392                if (cur->function == function && cur->index == index)
1393                        return cur;
1394        }
1395
1396        TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1397
1398        return NULL;
1399}
1400
1401bool set_cpuid(struct kvm_cpuid2 *cpuid,
1402               struct kvm_cpuid_entry2 *ent)
1403{
1404        int i;
1405
1406        for (i = 0; i < cpuid->nent; i++) {
1407                struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1408
1409                if (cur->function != ent->function || cur->index != ent->index)
1410                        continue;
1411
1412                memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1413                return true;
1414        }
1415
1416        return false;
1417}
1418
1419uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1420                       uint64_t a3)
1421{
1422        uint64_t r;
1423
1424        asm volatile("vmcall"
1425                     : "=a"(r)
1426                     : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1427        return r;
1428}
1429
1430struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1431{
1432        static struct kvm_cpuid2 *cpuid;
1433        int ret;
1434        int kvm_fd;
1435
1436        if (cpuid)
1437                return cpuid;
1438
1439        cpuid = allocate_kvm_cpuid2();
1440        kvm_fd = open_kvm_dev_path_or_exit();
1441
1442        ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1443        TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1444                    ret, errno);
1445
1446        close(kvm_fd);
1447        return cpuid;
1448}
1449
1450void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1451{
1452        static struct kvm_cpuid2 *cpuid_full;
1453        struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1454        int i, nent = 0;
1455
1456        if (!cpuid_full) {
1457                cpuid_sys = kvm_get_supported_cpuid();
1458                cpuid_hv = kvm_get_supported_hv_cpuid();
1459
1460                cpuid_full = malloc(sizeof(*cpuid_full) +
1461                                    (cpuid_sys->nent + cpuid_hv->nent) *
1462                                    sizeof(struct kvm_cpuid_entry2));
1463                if (!cpuid_full) {
1464                        perror("malloc");
1465                        abort();
1466                }
1467
1468                /* Need to skip KVM CPUID leaves 0x400000xx */
1469                for (i = 0; i < cpuid_sys->nent; i++) {
1470                        if (cpuid_sys->entries[i].function >= 0x40000000 &&
1471                            cpuid_sys->entries[i].function < 0x40000100)
1472                                continue;
1473                        cpuid_full->entries[nent] = cpuid_sys->entries[i];
1474                        nent++;
1475                }
1476
1477                memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1478                       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1479                cpuid_full->nent = nent + cpuid_hv->nent;
1480        }
1481
1482        vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1483}
1484
1485struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1486{
1487        static struct kvm_cpuid2 *cpuid;
1488
1489        cpuid = allocate_kvm_cpuid2();
1490
1491        vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1492
1493        return cpuid;
1494}
1495
1496unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1497{
1498        const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1499        unsigned long ht_gfn, max_gfn, max_pfn;
1500        uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1501
1502        max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1503
1504        /* Avoid reserved HyperTransport region on AMD processors.  */
1505        if (!is_amd_cpu())
1506                return max_gfn;
1507
1508        /* On parts with <40 physical address bits, the area is fully hidden */
1509        if (vm->pa_bits < 40)
1510                return max_gfn;
1511
1512        /* Before family 17h, the HyperTransport area is just below 1T.  */
1513        ht_gfn = (1 << 28) - num_ht_pages;
1514        eax = 1;
1515        ecx = 0;
1516        cpuid(&eax, &ebx, &ecx, &edx);
1517        if (x86_family(eax) < 0x17)
1518                goto done;
1519
1520        /*
1521         * Otherwise it's at the top of the physical address space, possibly
1522         * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1523         * the old conservative value if MAXPHYADDR is not enumerated.
1524         */
1525        eax = 0x80000000;
1526        cpuid(&eax, &ebx, &ecx, &edx);
1527        max_ext_leaf = eax;
1528        if (max_ext_leaf < 0x80000008)
1529                goto done;
1530
1531        eax = 0x80000008;
1532        cpuid(&eax, &ebx, &ecx, &edx);
1533        max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1534        if (max_ext_leaf >= 0x8000001f) {
1535                eax = 0x8000001f;
1536                cpuid(&eax, &ebx, &ecx, &edx);
1537                max_pfn >>= (ebx >> 6) & 0x3f;
1538        }
1539
1540        ht_gfn = max_pfn - num_ht_pages;
1541done:
1542        return min(max_gfn, ht_gfn - 1);
1543}
1544