linux/arch/arm64/kvm/arm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   5 */
   6
   7#include <linux/bug.h>
   8#include <linux/cpu_pm.h>
   9#include <linux/entry-kvm.h>
  10#include <linux/errno.h>
  11#include <linux/err.h>
  12#include <linux/kvm_host.h>
  13#include <linux/list.h>
  14#include <linux/module.h>
  15#include <linux/vmalloc.h>
  16#include <linux/fs.h>
  17#include <linux/mman.h>
  18#include <linux/sched.h>
  19#include <linux/kmemleak.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_irqfd.h>
  22#include <linux/irqbypass.h>
  23#include <linux/sched/stat.h>
  24#include <linux/psci.h>
  25#include <trace/events/kvm.h>
  26
  27#define CREATE_TRACE_POINTS
  28#include "trace_arm.h"
  29
  30#include <linux/uaccess.h>
  31#include <asm/ptrace.h>
  32#include <asm/mman.h>
  33#include <asm/tlbflush.h>
  34#include <asm/cacheflush.h>
  35#include <asm/cpufeature.h>
  36#include <asm/virt.h>
  37#include <asm/kvm_arm.h>
  38#include <asm/kvm_asm.h>
  39#include <asm/kvm_mmu.h>
  40#include <asm/kvm_emulate.h>
  41#include <asm/sections.h>
  42
  43#include <kvm/arm_hypercalls.h>
  44#include <kvm/arm_pmu.h>
  45#include <kvm/arm_psci.h>
  46
  47static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
  48DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
  49
  50DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
  51
  52static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  53unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
  54DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
  55
  56static bool vgic_present;
  57
  58static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  59DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
  60
  61int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  62{
  63        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  64}
  65
  66int kvm_arch_hardware_setup(void *opaque)
  67{
  68        return 0;
  69}
  70
  71int kvm_arch_check_processor_compat(void *opaque)
  72{
  73        return 0;
  74}
  75
  76int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
  77                            struct kvm_enable_cap *cap)
  78{
  79        int r;
  80
  81        if (cap->flags)
  82                return -EINVAL;
  83
  84        switch (cap->cap) {
  85        case KVM_CAP_ARM_NISV_TO_USER:
  86                r = 0;
  87                set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
  88                        &kvm->arch.flags);
  89                break;
  90        case KVM_CAP_ARM_MTE:
  91                mutex_lock(&kvm->lock);
  92                if (!system_supports_mte() || kvm->created_vcpus) {
  93                        r = -EINVAL;
  94                } else {
  95                        r = 0;
  96                        set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
  97                }
  98                mutex_unlock(&kvm->lock);
  99                break;
 100        case KVM_CAP_ARM_SYSTEM_SUSPEND:
 101                r = 0;
 102                set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
 103                break;
 104        default:
 105                r = -EINVAL;
 106                break;
 107        }
 108
 109        return r;
 110}
 111
 112static int kvm_arm_default_max_vcpus(void)
 113{
 114        return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 115}
 116
 117static void set_default_spectre(struct kvm *kvm)
 118{
 119        /*
 120         * The default is to expose CSV2 == 1 if the HW isn't affected.
 121         * Although this is a per-CPU feature, we make it global because
 122         * asymmetric systems are just a nuisance.
 123         *
 124         * Userspace can override this as long as it doesn't promise
 125         * the impossible.
 126         */
 127        if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
 128                kvm->arch.pfr0_csv2 = 1;
 129        if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
 130                kvm->arch.pfr0_csv3 = 1;
 131}
 132
 133/**
 134 * kvm_arch_init_vm - initializes a VM data structure
 135 * @kvm:        pointer to the KVM struct
 136 */
 137int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 138{
 139        int ret;
 140
 141        ret = kvm_arm_setup_stage2(kvm, type);
 142        if (ret)
 143                return ret;
 144
 145        ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
 146        if (ret)
 147                return ret;
 148
 149        ret = kvm_share_hyp(kvm, kvm + 1);
 150        if (ret)
 151                goto out_free_stage2_pgd;
 152
 153        if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL)) {
 154                ret = -ENOMEM;
 155                goto out_free_stage2_pgd;
 156        }
 157        cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
 158
 159        kvm_vgic_early_init(kvm);
 160
 161        /* The maximum number of VCPUs is limited by the host's GIC model */
 162        kvm->max_vcpus = kvm_arm_default_max_vcpus();
 163
 164        set_default_spectre(kvm);
 165        kvm_arm_init_hypercalls(kvm);
 166
 167        return ret;
 168out_free_stage2_pgd:
 169        kvm_free_stage2_pgd(&kvm->arch.mmu);
 170        return ret;
 171}
 172
 173vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 174{
 175        return VM_FAULT_SIGBUS;
 176}
 177
 178
 179/**
 180 * kvm_arch_destroy_vm - destroy the VM data structure
 181 * @kvm:        pointer to the KVM struct
 182 */
 183void kvm_arch_destroy_vm(struct kvm *kvm)
 184{
 185        bitmap_free(kvm->arch.pmu_filter);
 186        free_cpumask_var(kvm->arch.supported_cpus);
 187
 188        kvm_vgic_destroy(kvm);
 189
 190        kvm_destroy_vcpus(kvm);
 191
 192        kvm_unshare_hyp(kvm, kvm + 1);
 193}
 194
 195int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 196{
 197        int r;
 198        switch (ext) {
 199        case KVM_CAP_IRQCHIP:
 200                r = vgic_present;
 201                break;
 202        case KVM_CAP_IOEVENTFD:
 203        case KVM_CAP_DEVICE_CTRL:
 204        case KVM_CAP_USER_MEMORY:
 205        case KVM_CAP_SYNC_MMU:
 206        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 207        case KVM_CAP_ONE_REG:
 208        case KVM_CAP_ARM_PSCI:
 209        case KVM_CAP_ARM_PSCI_0_2:
 210        case KVM_CAP_READONLY_MEM:
 211        case KVM_CAP_MP_STATE:
 212        case KVM_CAP_IMMEDIATE_EXIT:
 213        case KVM_CAP_VCPU_EVENTS:
 214        case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
 215        case KVM_CAP_ARM_NISV_TO_USER:
 216        case KVM_CAP_ARM_INJECT_EXT_DABT:
 217        case KVM_CAP_SET_GUEST_DEBUG:
 218        case KVM_CAP_VCPU_ATTRIBUTES:
 219        case KVM_CAP_PTP_KVM:
 220        case KVM_CAP_ARM_SYSTEM_SUSPEND:
 221                r = 1;
 222                break;
 223        case KVM_CAP_SET_GUEST_DEBUG2:
 224                return KVM_GUESTDBG_VALID_MASK;
 225        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 226                r = 1;
 227                break;
 228        case KVM_CAP_NR_VCPUS:
 229                /*
 230                 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
 231                 * architectures, as it does not always bound it to
 232                 * KVM_CAP_MAX_VCPUS. It should not matter much because
 233                 * this is just an advisory value.
 234                 */
 235                r = min_t(unsigned int, num_online_cpus(),
 236                          kvm_arm_default_max_vcpus());
 237                break;
 238        case KVM_CAP_MAX_VCPUS:
 239        case KVM_CAP_MAX_VCPU_ID:
 240                if (kvm)
 241                        r = kvm->max_vcpus;
 242                else
 243                        r = kvm_arm_default_max_vcpus();
 244                break;
 245        case KVM_CAP_MSI_DEVID:
 246                if (!kvm)
 247                        r = -EINVAL;
 248                else
 249                        r = kvm->arch.vgic.msis_require_devid;
 250                break;
 251        case KVM_CAP_ARM_USER_IRQ:
 252                /*
 253                 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
 254                 * (bump this number if adding more devices)
 255                 */
 256                r = 1;
 257                break;
 258        case KVM_CAP_ARM_MTE:
 259                r = system_supports_mte();
 260                break;
 261        case KVM_CAP_STEAL_TIME:
 262                r = kvm_arm_pvtime_supported();
 263                break;
 264        case KVM_CAP_ARM_EL1_32BIT:
 265                r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
 266                break;
 267        case KVM_CAP_GUEST_DEBUG_HW_BPS:
 268                r = get_num_brps();
 269                break;
 270        case KVM_CAP_GUEST_DEBUG_HW_WPS:
 271                r = get_num_wrps();
 272                break;
 273        case KVM_CAP_ARM_PMU_V3:
 274                r = kvm_arm_support_pmu_v3();
 275                break;
 276        case KVM_CAP_ARM_INJECT_SERROR_ESR:
 277                r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
 278                break;
 279        case KVM_CAP_ARM_VM_IPA_SIZE:
 280                r = get_kvm_ipa_limit();
 281                break;
 282        case KVM_CAP_ARM_SVE:
 283                r = system_supports_sve();
 284                break;
 285        case KVM_CAP_ARM_PTRAUTH_ADDRESS:
 286        case KVM_CAP_ARM_PTRAUTH_GENERIC:
 287                r = system_has_full_ptr_auth();
 288                break;
 289        default:
 290                r = 0;
 291        }
 292
 293        return r;
 294}
 295
 296long kvm_arch_dev_ioctl(struct file *filp,
 297                        unsigned int ioctl, unsigned long arg)
 298{
 299        return -EINVAL;
 300}
 301
 302struct kvm *kvm_arch_alloc_vm(void)
 303{
 304        size_t sz = sizeof(struct kvm);
 305
 306        if (!has_vhe())
 307                return kzalloc(sz, GFP_KERNEL_ACCOUNT);
 308
 309        return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
 310}
 311
 312int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 313{
 314        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
 315                return -EBUSY;
 316
 317        if (id >= kvm->max_vcpus)
 318                return -EINVAL;
 319
 320        return 0;
 321}
 322
 323int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 324{
 325        int err;
 326
 327        /* Force users to call KVM_ARM_VCPU_INIT */
 328        vcpu->arch.target = -1;
 329        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 330
 331        vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
 332
 333        /* Set up the timer */
 334        kvm_timer_vcpu_init(vcpu);
 335
 336        kvm_pmu_vcpu_init(vcpu);
 337
 338        kvm_arm_reset_debug_ptr(vcpu);
 339
 340        kvm_arm_pvtime_vcpu_init(&vcpu->arch);
 341
 342        vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
 343
 344        err = kvm_vgic_vcpu_init(vcpu);
 345        if (err)
 346                return err;
 347
 348        return kvm_share_hyp(vcpu, vcpu + 1);
 349}
 350
 351void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 352{
 353}
 354
 355void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 356{
 357        if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
 358                static_branch_dec(&userspace_irqchip_in_use);
 359
 360        kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 361        kvm_timer_vcpu_terminate(vcpu);
 362        kvm_pmu_vcpu_destroy(vcpu);
 363
 364        kvm_arm_vcpu_destroy(vcpu);
 365}
 366
 367void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 368{
 369
 370}
 371
 372void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 373{
 374
 375}
 376
 377void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 378{
 379        struct kvm_s2_mmu *mmu;
 380        int *last_ran;
 381
 382        mmu = vcpu->arch.hw_mmu;
 383        last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
 384
 385        /*
 386         * We guarantee that both TLBs and I-cache are private to each
 387         * vcpu. If detecting that a vcpu from the same VM has
 388         * previously run on the same physical CPU, call into the
 389         * hypervisor code to nuke the relevant contexts.
 390         *
 391         * We might get preempted before the vCPU actually runs, but
 392         * over-invalidation doesn't affect correctness.
 393         */
 394        if (*last_ran != vcpu->vcpu_id) {
 395                kvm_call_hyp(__kvm_flush_cpu_context, mmu);
 396                *last_ran = vcpu->vcpu_id;
 397        }
 398
 399        vcpu->cpu = cpu;
 400
 401        kvm_vgic_load(vcpu);
 402        kvm_timer_vcpu_load(vcpu);
 403        if (has_vhe())
 404                kvm_vcpu_load_sysregs_vhe(vcpu);
 405        kvm_arch_vcpu_load_fp(vcpu);
 406        kvm_vcpu_pmu_restore_guest(vcpu);
 407        if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
 408                kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
 409
 410        if (single_task_running())
 411                vcpu_clear_wfx_traps(vcpu);
 412        else
 413                vcpu_set_wfx_traps(vcpu);
 414
 415        if (vcpu_has_ptrauth(vcpu))
 416                vcpu_ptrauth_disable(vcpu);
 417        kvm_arch_vcpu_load_debug_state_flags(vcpu);
 418
 419        if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
 420                vcpu_set_on_unsupported_cpu(vcpu);
 421}
 422
 423void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 424{
 425        kvm_arch_vcpu_put_debug_state_flags(vcpu);
 426        kvm_arch_vcpu_put_fp(vcpu);
 427        if (has_vhe())
 428                kvm_vcpu_put_sysregs_vhe(vcpu);
 429        kvm_timer_vcpu_put(vcpu);
 430        kvm_vgic_put(vcpu);
 431        kvm_vcpu_pmu_restore_host(vcpu);
 432        kvm_arm_vmid_clear_active();
 433
 434        vcpu_clear_on_unsupported_cpu(vcpu);
 435        vcpu->cpu = -1;
 436}
 437
 438void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
 439{
 440        vcpu->arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
 441        kvm_make_request(KVM_REQ_SLEEP, vcpu);
 442        kvm_vcpu_kick(vcpu);
 443}
 444
 445bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
 446{
 447        return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED;
 448}
 449
 450static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
 451{
 452        vcpu->arch.mp_state.mp_state = KVM_MP_STATE_SUSPENDED;
 453        kvm_make_request(KVM_REQ_SUSPEND, vcpu);
 454        kvm_vcpu_kick(vcpu);
 455}
 456
 457static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
 458{
 459        return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_SUSPENDED;
 460}
 461
 462int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 463                                    struct kvm_mp_state *mp_state)
 464{
 465        *mp_state = vcpu->arch.mp_state;
 466
 467        return 0;
 468}
 469
 470int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 471                                    struct kvm_mp_state *mp_state)
 472{
 473        int ret = 0;
 474
 475        switch (mp_state->mp_state) {
 476        case KVM_MP_STATE_RUNNABLE:
 477                vcpu->arch.mp_state = *mp_state;
 478                break;
 479        case KVM_MP_STATE_STOPPED:
 480                kvm_arm_vcpu_power_off(vcpu);
 481                break;
 482        case KVM_MP_STATE_SUSPENDED:
 483                kvm_arm_vcpu_suspend(vcpu);
 484                break;
 485        default:
 486                ret = -EINVAL;
 487        }
 488
 489        return ret;
 490}
 491
 492/**
 493 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 494 * @v:          The VCPU pointer
 495 *
 496 * If the guest CPU is not waiting for interrupts or an interrupt line is
 497 * asserted, the CPU is by definition runnable.
 498 */
 499int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 500{
 501        bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
 502        return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
 503                && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
 504}
 505
 506bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 507{
 508        return vcpu_mode_priv(vcpu);
 509}
 510
 511#ifdef CONFIG_GUEST_PERF_EVENTS
 512unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
 513{
 514        return *vcpu_pc(vcpu);
 515}
 516#endif
 517
 518static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 519{
 520        return vcpu->arch.target >= 0;
 521}
 522
 523/*
 524 * Handle both the initialisation that is being done when the vcpu is
 525 * run for the first time, as well as the updates that must be
 526 * performed each time we get a new thread dealing with this vcpu.
 527 */
 528int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
 529{
 530        struct kvm *kvm = vcpu->kvm;
 531        int ret;
 532
 533        if (!kvm_vcpu_initialized(vcpu))
 534                return -ENOEXEC;
 535
 536        if (!kvm_arm_vcpu_is_finalized(vcpu))
 537                return -EPERM;
 538
 539        ret = kvm_arch_vcpu_run_map_fp(vcpu);
 540        if (ret)
 541                return ret;
 542
 543        if (likely(vcpu_has_run_once(vcpu)))
 544                return 0;
 545
 546        kvm_arm_vcpu_init_debug(vcpu);
 547
 548        if (likely(irqchip_in_kernel(kvm))) {
 549                /*
 550                 * Map the VGIC hardware resources before running a vcpu the
 551                 * first time on this VM.
 552                 */
 553                ret = kvm_vgic_map_resources(kvm);
 554                if (ret)
 555                        return ret;
 556        }
 557
 558        ret = kvm_timer_enable(vcpu);
 559        if (ret)
 560                return ret;
 561
 562        ret = kvm_arm_pmu_v3_enable(vcpu);
 563        if (ret)
 564                return ret;
 565
 566        if (!irqchip_in_kernel(kvm)) {
 567                /*
 568                 * Tell the rest of the code that there are userspace irqchip
 569                 * VMs in the wild.
 570                 */
 571                static_branch_inc(&userspace_irqchip_in_use);
 572        }
 573
 574        /*
 575         * Initialize traps for protected VMs.
 576         * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
 577         * the code is in place for first run initialization at EL2.
 578         */
 579        if (kvm_vm_is_protected(kvm))
 580                kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
 581
 582        mutex_lock(&kvm->lock);
 583        set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
 584        mutex_unlock(&kvm->lock);
 585
 586        return ret;
 587}
 588
 589bool kvm_arch_intc_initialized(struct kvm *kvm)
 590{
 591        return vgic_initialized(kvm);
 592}
 593
 594void kvm_arm_halt_guest(struct kvm *kvm)
 595{
 596        unsigned long i;
 597        struct kvm_vcpu *vcpu;
 598
 599        kvm_for_each_vcpu(i, vcpu, kvm)
 600                vcpu->arch.pause = true;
 601        kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
 602}
 603
 604void kvm_arm_resume_guest(struct kvm *kvm)
 605{
 606        unsigned long i;
 607        struct kvm_vcpu *vcpu;
 608
 609        kvm_for_each_vcpu(i, vcpu, kvm) {
 610                vcpu->arch.pause = false;
 611                __kvm_vcpu_wake_up(vcpu);
 612        }
 613}
 614
 615static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
 616{
 617        struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
 618
 619        rcuwait_wait_event(wait,
 620                           (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
 621                           TASK_INTERRUPTIBLE);
 622
 623        if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
 624                /* Awaken to handle a signal, request we sleep again later. */
 625                kvm_make_request(KVM_REQ_SLEEP, vcpu);
 626        }
 627
 628        /*
 629         * Make sure we will observe a potential reset request if we've
 630         * observed a change to the power state. Pairs with the smp_wmb() in
 631         * kvm_psci_vcpu_on().
 632         */
 633        smp_rmb();
 634}
 635
 636/**
 637 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
 638 * @vcpu:       The VCPU pointer
 639 *
 640 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
 641 * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
 642 * on when a wake event arrives, e.g. there may already be a pending wake event.
 643 */
 644void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
 645{
 646        /*
 647         * Sync back the state of the GIC CPU interface so that we have
 648         * the latest PMR and group enables. This ensures that
 649         * kvm_arch_vcpu_runnable has up-to-date data to decide whether
 650         * we have pending interrupts, e.g. when determining if the
 651         * vCPU should block.
 652         *
 653         * For the same reason, we want to tell GICv4 that we need
 654         * doorbells to be signalled, should an interrupt become pending.
 655         */
 656        preempt_disable();
 657        kvm_vgic_vmcr_sync(vcpu);
 658        vgic_v4_put(vcpu, true);
 659        preempt_enable();
 660
 661        kvm_vcpu_halt(vcpu);
 662        vcpu->arch.flags &= ~KVM_ARM64_WFIT;
 663        kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 664
 665        preempt_disable();
 666        vgic_v4_load(vcpu);
 667        preempt_enable();
 668}
 669
 670static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
 671{
 672        if (!kvm_arm_vcpu_suspended(vcpu))
 673                return 1;
 674
 675        kvm_vcpu_wfi(vcpu);
 676
 677        /*
 678         * The suspend state is sticky; we do not leave it until userspace
 679         * explicitly marks the vCPU as runnable. Request that we suspend again
 680         * later.
 681         */
 682        kvm_make_request(KVM_REQ_SUSPEND, vcpu);
 683
 684        /*
 685         * Check to make sure the vCPU is actually runnable. If so, exit to
 686         * userspace informing it of the wakeup condition.
 687         */
 688        if (kvm_arch_vcpu_runnable(vcpu)) {
 689                memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
 690                vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
 691                vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
 692                return 0;
 693        }
 694
 695        /*
 696         * Otherwise, we were unblocked to process a different event, such as a
 697         * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
 698         * process the event.
 699         */
 700        return 1;
 701}
 702
 703/**
 704 * check_vcpu_requests - check and handle pending vCPU requests
 705 * @vcpu:       the VCPU pointer
 706 *
 707 * Return: 1 if we should enter the guest
 708 *         0 if we should exit to userspace
 709 *         < 0 if we should exit to userspace, where the return value indicates
 710 *         an error
 711 */
 712static int check_vcpu_requests(struct kvm_vcpu *vcpu)
 713{
 714        if (kvm_request_pending(vcpu)) {
 715                if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
 716                        kvm_vcpu_sleep(vcpu);
 717
 718                if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
 719                        kvm_reset_vcpu(vcpu);
 720
 721                /*
 722                 * Clear IRQ_PENDING requests that were made to guarantee
 723                 * that a VCPU sees new virtual interrupts.
 724                 */
 725                kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
 726
 727                if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
 728                        kvm_update_stolen_time(vcpu);
 729
 730                if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
 731                        /* The distributor enable bits were changed */
 732                        preempt_disable();
 733                        vgic_v4_put(vcpu, false);
 734                        vgic_v4_load(vcpu);
 735                        preempt_enable();
 736                }
 737
 738                if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
 739                        kvm_pmu_handle_pmcr(vcpu,
 740                                            __vcpu_sys_reg(vcpu, PMCR_EL0));
 741
 742                if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
 743                        return kvm_vcpu_suspend(vcpu);
 744        }
 745
 746        return 1;
 747}
 748
 749static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
 750{
 751        if (likely(!vcpu_mode_is_32bit(vcpu)))
 752                return false;
 753
 754        return !system_supports_32bit_el0() ||
 755                static_branch_unlikely(&arm64_mismatched_32bit_el0);
 756}
 757
 758/**
 759 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 760 * @vcpu:       The VCPU pointer
 761 * @ret:        Pointer to write optional return code
 762 *
 763 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 764 *          and skip guest entry.
 765 *
 766 * This function disambiguates between two different types of exits: exits to a
 767 * preemptible + interruptible kernel context and exits to userspace. For an
 768 * exit to userspace, this function will write the return code to ret and return
 769 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 770 * for pending work and re-enter), return true without writing to ret.
 771 */
 772static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
 773{
 774        struct kvm_run *run = vcpu->run;
 775
 776        /*
 777         * If we're using a userspace irqchip, then check if we need
 778         * to tell a userspace irqchip about timer or PMU level
 779         * changes and if so, exit to userspace (the actual level
 780         * state gets updated in kvm_timer_update_run and
 781         * kvm_pmu_update_run below).
 782         */
 783        if (static_branch_unlikely(&userspace_irqchip_in_use)) {
 784                if (kvm_timer_should_notify_user(vcpu) ||
 785                    kvm_pmu_should_notify_user(vcpu)) {
 786                        *ret = -EINTR;
 787                        run->exit_reason = KVM_EXIT_INTR;
 788                        return true;
 789                }
 790        }
 791
 792        if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
 793                run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 794                run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
 795                run->fail_entry.cpu = smp_processor_id();
 796                *ret = 0;
 797                return true;
 798        }
 799
 800        return kvm_request_pending(vcpu) ||
 801                        xfer_to_guest_mode_work_pending();
 802}
 803
 804/*
 805 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
 806 * the vCPU is running.
 807 *
 808 * This must be noinstr as instrumentation may make use of RCU, and this is not
 809 * safe during the EQS.
 810 */
 811static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
 812{
 813        int ret;
 814
 815        guest_state_enter_irqoff();
 816        ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
 817        guest_state_exit_irqoff();
 818
 819        return ret;
 820}
 821
 822/**
 823 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 824 * @vcpu:       The VCPU pointer
 825 *
 826 * This function is called through the VCPU_RUN ioctl called from user space. It
 827 * will execute VM code in a loop until the time slice for the process is used
 828 * or some emulation is needed from user space in which case the function will
 829 * return with return value 0 and with the kvm_run structure filled in with the
 830 * required data for the requested emulation.
 831 */
 832int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 833{
 834        struct kvm_run *run = vcpu->run;
 835        int ret;
 836
 837        if (run->exit_reason == KVM_EXIT_MMIO) {
 838                ret = kvm_handle_mmio_return(vcpu);
 839                if (ret)
 840                        return ret;
 841        }
 842
 843        vcpu_load(vcpu);
 844
 845        if (run->immediate_exit) {
 846                ret = -EINTR;
 847                goto out;
 848        }
 849
 850        kvm_sigset_activate(vcpu);
 851
 852        ret = 1;
 853        run->exit_reason = KVM_EXIT_UNKNOWN;
 854        run->flags = 0;
 855        while (ret > 0) {
 856                /*
 857                 * Check conditions before entering the guest
 858                 */
 859                ret = xfer_to_guest_mode_handle_work(vcpu);
 860                if (!ret)
 861                        ret = 1;
 862
 863                if (ret > 0)
 864                        ret = check_vcpu_requests(vcpu);
 865
 866                /*
 867                 * Preparing the interrupts to be injected also
 868                 * involves poking the GIC, which must be done in a
 869                 * non-preemptible context.
 870                 */
 871                preempt_disable();
 872
 873                /*
 874                 * The VMID allocator only tracks active VMIDs per
 875                 * physical CPU, and therefore the VMID allocated may not be
 876                 * preserved on VMID roll-over if the task was preempted,
 877                 * making a thread's VMID inactive. So we need to call
 878                 * kvm_arm_vmid_update() in non-premptible context.
 879                 */
 880                kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
 881
 882                kvm_pmu_flush_hwstate(vcpu);
 883
 884                local_irq_disable();
 885
 886                kvm_vgic_flush_hwstate(vcpu);
 887
 888                kvm_pmu_update_vcpu_events(vcpu);
 889
 890                /*
 891                 * Ensure we set mode to IN_GUEST_MODE after we disable
 892                 * interrupts and before the final VCPU requests check.
 893                 * See the comment in kvm_vcpu_exiting_guest_mode() and
 894                 * Documentation/virt/kvm/vcpu-requests.rst
 895                 */
 896                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 897
 898                if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
 899                        vcpu->mode = OUTSIDE_GUEST_MODE;
 900                        isb(); /* Ensure work in x_flush_hwstate is committed */
 901                        kvm_pmu_sync_hwstate(vcpu);
 902                        if (static_branch_unlikely(&userspace_irqchip_in_use))
 903                                kvm_timer_sync_user(vcpu);
 904                        kvm_vgic_sync_hwstate(vcpu);
 905                        local_irq_enable();
 906                        preempt_enable();
 907                        continue;
 908                }
 909
 910                kvm_arm_setup_debug(vcpu);
 911                kvm_arch_vcpu_ctxflush_fp(vcpu);
 912
 913                /**************************************************************
 914                 * Enter the guest
 915                 */
 916                trace_kvm_entry(*vcpu_pc(vcpu));
 917                guest_timing_enter_irqoff();
 918
 919                ret = kvm_arm_vcpu_enter_exit(vcpu);
 920
 921                vcpu->mode = OUTSIDE_GUEST_MODE;
 922                vcpu->stat.exits++;
 923                /*
 924                 * Back from guest
 925                 *************************************************************/
 926
 927                kvm_arm_clear_debug(vcpu);
 928
 929                /*
 930                 * We must sync the PMU state before the vgic state so
 931                 * that the vgic can properly sample the updated state of the
 932                 * interrupt line.
 933                 */
 934                kvm_pmu_sync_hwstate(vcpu);
 935
 936                /*
 937                 * Sync the vgic state before syncing the timer state because
 938                 * the timer code needs to know if the virtual timer
 939                 * interrupts are active.
 940                 */
 941                kvm_vgic_sync_hwstate(vcpu);
 942
 943                /*
 944                 * Sync the timer hardware state before enabling interrupts as
 945                 * we don't want vtimer interrupts to race with syncing the
 946                 * timer virtual interrupt state.
 947                 */
 948                if (static_branch_unlikely(&userspace_irqchip_in_use))
 949                        kvm_timer_sync_user(vcpu);
 950
 951                kvm_arch_vcpu_ctxsync_fp(vcpu);
 952
 953                /*
 954                 * We must ensure that any pending interrupts are taken before
 955                 * we exit guest timing so that timer ticks are accounted as
 956                 * guest time. Transiently unmask interrupts so that any
 957                 * pending interrupts are taken.
 958                 *
 959                 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
 960                 * context synchronization event) is necessary to ensure that
 961                 * pending interrupts are taken.
 962                 */
 963                if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
 964                        local_irq_enable();
 965                        isb();
 966                        local_irq_disable();
 967                }
 968
 969                guest_timing_exit_irqoff();
 970
 971                local_irq_enable();
 972
 973                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 974
 975                /* Exit types that need handling before we can be preempted */
 976                handle_exit_early(vcpu, ret);
 977
 978                preempt_enable();
 979
 980                /*
 981                 * The ARMv8 architecture doesn't give the hypervisor
 982                 * a mechanism to prevent a guest from dropping to AArch32 EL0
 983                 * if implemented by the CPU. If we spot the guest in such
 984                 * state and that we decided it wasn't supposed to do so (like
 985                 * with the asymmetric AArch32 case), return to userspace with
 986                 * a fatal error.
 987                 */
 988                if (vcpu_mode_is_bad_32bit(vcpu)) {
 989                        /*
 990                         * As we have caught the guest red-handed, decide that
 991                         * it isn't fit for purpose anymore by making the vcpu
 992                         * invalid. The VMM can try and fix it by issuing  a
 993                         * KVM_ARM_VCPU_INIT if it really wants to.
 994                         */
 995                        vcpu->arch.target = -1;
 996                        ret = ARM_EXCEPTION_IL;
 997                }
 998
 999                ret = handle_exit(vcpu, ret);
1000        }
1001
1002        /* Tell userspace about in-kernel device output levels */
1003        if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1004                kvm_timer_update_run(vcpu);
1005                kvm_pmu_update_run(vcpu);
1006        }
1007
1008        kvm_sigset_deactivate(vcpu);
1009
1010out:
1011        /*
1012         * In the unlikely event that we are returning to userspace
1013         * with pending exceptions or PC adjustment, commit these
1014         * adjustments in order to give userspace a consistent view of
1015         * the vcpu state. Note that this relies on __kvm_adjust_pc()
1016         * being preempt-safe on VHE.
1017         */
1018        if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
1019                                         KVM_ARM64_INCREMENT_PC)))
1020                kvm_call_hyp(__kvm_adjust_pc, vcpu);
1021
1022        vcpu_put(vcpu);
1023        return ret;
1024}
1025
1026static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1027{
1028        int bit_index;
1029        bool set;
1030        unsigned long *hcr;
1031
1032        if (number == KVM_ARM_IRQ_CPU_IRQ)
1033                bit_index = __ffs(HCR_VI);
1034        else /* KVM_ARM_IRQ_CPU_FIQ */
1035                bit_index = __ffs(HCR_VF);
1036
1037        hcr = vcpu_hcr(vcpu);
1038        if (level)
1039                set = test_and_set_bit(bit_index, hcr);
1040        else
1041                set = test_and_clear_bit(bit_index, hcr);
1042
1043        /*
1044         * If we didn't change anything, no need to wake up or kick other CPUs
1045         */
1046        if (set == level)
1047                return 0;
1048
1049        /*
1050         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1051         * trigger a world-switch round on the running physical CPU to set the
1052         * virtual IRQ/FIQ fields in the HCR appropriately.
1053         */
1054        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1055        kvm_vcpu_kick(vcpu);
1056
1057        return 0;
1058}
1059
1060int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1061                          bool line_status)
1062{
1063        u32 irq = irq_level->irq;
1064        unsigned int irq_type, vcpu_idx, irq_num;
1065        int nrcpus = atomic_read(&kvm->online_vcpus);
1066        struct kvm_vcpu *vcpu = NULL;
1067        bool level = irq_level->level;
1068
1069        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1070        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1071        vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1072        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1073
1074        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1075
1076        switch (irq_type) {
1077        case KVM_ARM_IRQ_TYPE_CPU:
1078                if (irqchip_in_kernel(kvm))
1079                        return -ENXIO;
1080
1081                if (vcpu_idx >= nrcpus)
1082                        return -EINVAL;
1083
1084                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1085                if (!vcpu)
1086                        return -EINVAL;
1087
1088                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1089                        return -EINVAL;
1090
1091                return vcpu_interrupt_line(vcpu, irq_num, level);
1092        case KVM_ARM_IRQ_TYPE_PPI:
1093                if (!irqchip_in_kernel(kvm))
1094                        return -ENXIO;
1095
1096                if (vcpu_idx >= nrcpus)
1097                        return -EINVAL;
1098
1099                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1100                if (!vcpu)
1101                        return -EINVAL;
1102
1103                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1104                        return -EINVAL;
1105
1106                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1107        case KVM_ARM_IRQ_TYPE_SPI:
1108                if (!irqchip_in_kernel(kvm))
1109                        return -ENXIO;
1110
1111                if (irq_num < VGIC_NR_PRIVATE_IRQS)
1112                        return -EINVAL;
1113
1114                return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1115        }
1116
1117        return -EINVAL;
1118}
1119
1120static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1121                               const struct kvm_vcpu_init *init)
1122{
1123        unsigned int i, ret;
1124        u32 phys_target = kvm_target_cpu();
1125
1126        if (init->target != phys_target)
1127                return -EINVAL;
1128
1129        /*
1130         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1131         * use the same target.
1132         */
1133        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1134                return -EINVAL;
1135
1136        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1137        for (i = 0; i < sizeof(init->features) * 8; i++) {
1138                bool set = (init->features[i / 32] & (1 << (i % 32)));
1139
1140                if (set && i >= KVM_VCPU_MAX_FEATURES)
1141                        return -ENOENT;
1142
1143                /*
1144                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1145                 * use the same feature set.
1146                 */
1147                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1148                    test_bit(i, vcpu->arch.features) != set)
1149                        return -EINVAL;
1150
1151                if (set)
1152                        set_bit(i, vcpu->arch.features);
1153        }
1154
1155        vcpu->arch.target = phys_target;
1156
1157        /* Now we know what it is, we can reset it. */
1158        ret = kvm_reset_vcpu(vcpu);
1159        if (ret) {
1160                vcpu->arch.target = -1;
1161                bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1162        }
1163
1164        return ret;
1165}
1166
1167static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1168                                         struct kvm_vcpu_init *init)
1169{
1170        int ret;
1171
1172        ret = kvm_vcpu_set_target(vcpu, init);
1173        if (ret)
1174                return ret;
1175
1176        /*
1177         * Ensure a rebooted VM will fault in RAM pages and detect if the
1178         * guest MMU is turned off and flush the caches as needed.
1179         *
1180         * S2FWB enforces all memory accesses to RAM being cacheable,
1181         * ensuring that the data side is always coherent. We still
1182         * need to invalidate the I-cache though, as FWB does *not*
1183         * imply CTR_EL0.DIC.
1184         */
1185        if (vcpu_has_run_once(vcpu)) {
1186                if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1187                        stage2_unmap_vm(vcpu->kvm);
1188                else
1189                        icache_inval_all_pou();
1190        }
1191
1192        vcpu_reset_hcr(vcpu);
1193        vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1194
1195        /*
1196         * Handle the "start in power-off" case.
1197         */
1198        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1199                kvm_arm_vcpu_power_off(vcpu);
1200        else
1201                vcpu->arch.mp_state.mp_state = KVM_MP_STATE_RUNNABLE;
1202
1203        return 0;
1204}
1205
1206static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1207                                 struct kvm_device_attr *attr)
1208{
1209        int ret = -ENXIO;
1210
1211        switch (attr->group) {
1212        default:
1213                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1214                break;
1215        }
1216
1217        return ret;
1218}
1219
1220static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1221                                 struct kvm_device_attr *attr)
1222{
1223        int ret = -ENXIO;
1224
1225        switch (attr->group) {
1226        default:
1227                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1228                break;
1229        }
1230
1231        return ret;
1232}
1233
1234static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1235                                 struct kvm_device_attr *attr)
1236{
1237        int ret = -ENXIO;
1238
1239        switch (attr->group) {
1240        default:
1241                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1242                break;
1243        }
1244
1245        return ret;
1246}
1247
1248static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1249                                   struct kvm_vcpu_events *events)
1250{
1251        memset(events, 0, sizeof(*events));
1252
1253        return __kvm_arm_vcpu_get_events(vcpu, events);
1254}
1255
1256static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1257                                   struct kvm_vcpu_events *events)
1258{
1259        int i;
1260
1261        /* check whether the reserved field is zero */
1262        for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1263                if (events->reserved[i])
1264                        return -EINVAL;
1265
1266        /* check whether the pad field is zero */
1267        for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1268                if (events->exception.pad[i])
1269                        return -EINVAL;
1270
1271        return __kvm_arm_vcpu_set_events(vcpu, events);
1272}
1273
1274long kvm_arch_vcpu_ioctl(struct file *filp,
1275                         unsigned int ioctl, unsigned long arg)
1276{
1277        struct kvm_vcpu *vcpu = filp->private_data;
1278        void __user *argp = (void __user *)arg;
1279        struct kvm_device_attr attr;
1280        long r;
1281
1282        switch (ioctl) {
1283        case KVM_ARM_VCPU_INIT: {
1284                struct kvm_vcpu_init init;
1285
1286                r = -EFAULT;
1287                if (copy_from_user(&init, argp, sizeof(init)))
1288                        break;
1289
1290                r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1291                break;
1292        }
1293        case KVM_SET_ONE_REG:
1294        case KVM_GET_ONE_REG: {
1295                struct kvm_one_reg reg;
1296
1297                r = -ENOEXEC;
1298                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1299                        break;
1300
1301                r = -EFAULT;
1302                if (copy_from_user(&reg, argp, sizeof(reg)))
1303                        break;
1304
1305                /*
1306                 * We could owe a reset due to PSCI. Handle the pending reset
1307                 * here to ensure userspace register accesses are ordered after
1308                 * the reset.
1309                 */
1310                if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1311                        kvm_reset_vcpu(vcpu);
1312
1313                if (ioctl == KVM_SET_ONE_REG)
1314                        r = kvm_arm_set_reg(vcpu, &reg);
1315                else
1316                        r = kvm_arm_get_reg(vcpu, &reg);
1317                break;
1318        }
1319        case KVM_GET_REG_LIST: {
1320                struct kvm_reg_list __user *user_list = argp;
1321                struct kvm_reg_list reg_list;
1322                unsigned n;
1323
1324                r = -ENOEXEC;
1325                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1326                        break;
1327
1328                r = -EPERM;
1329                if (!kvm_arm_vcpu_is_finalized(vcpu))
1330                        break;
1331
1332                r = -EFAULT;
1333                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1334                        break;
1335                n = reg_list.n;
1336                reg_list.n = kvm_arm_num_regs(vcpu);
1337                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1338                        break;
1339                r = -E2BIG;
1340                if (n < reg_list.n)
1341                        break;
1342                r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1343                break;
1344        }
1345        case KVM_SET_DEVICE_ATTR: {
1346                r = -EFAULT;
1347                if (copy_from_user(&attr, argp, sizeof(attr)))
1348                        break;
1349                r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1350                break;
1351        }
1352        case KVM_GET_DEVICE_ATTR: {
1353                r = -EFAULT;
1354                if (copy_from_user(&attr, argp, sizeof(attr)))
1355                        break;
1356                r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1357                break;
1358        }
1359        case KVM_HAS_DEVICE_ATTR: {
1360                r = -EFAULT;
1361                if (copy_from_user(&attr, argp, sizeof(attr)))
1362                        break;
1363                r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1364                break;
1365        }
1366        case KVM_GET_VCPU_EVENTS: {
1367                struct kvm_vcpu_events events;
1368
1369                if (kvm_arm_vcpu_get_events(vcpu, &events))
1370                        return -EINVAL;
1371
1372                if (copy_to_user(argp, &events, sizeof(events)))
1373                        return -EFAULT;
1374
1375                return 0;
1376        }
1377        case KVM_SET_VCPU_EVENTS: {
1378                struct kvm_vcpu_events events;
1379
1380                if (copy_from_user(&events, argp, sizeof(events)))
1381                        return -EFAULT;
1382
1383                return kvm_arm_vcpu_set_events(vcpu, &events);
1384        }
1385        case KVM_ARM_VCPU_FINALIZE: {
1386                int what;
1387
1388                if (!kvm_vcpu_initialized(vcpu))
1389                        return -ENOEXEC;
1390
1391                if (get_user(what, (const int __user *)argp))
1392                        return -EFAULT;
1393
1394                return kvm_arm_vcpu_finalize(vcpu, what);
1395        }
1396        default:
1397                r = -EINVAL;
1398        }
1399
1400        return r;
1401}
1402
1403void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1404{
1405
1406}
1407
1408void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1409                                        const struct kvm_memory_slot *memslot)
1410{
1411        kvm_flush_remote_tlbs(kvm);
1412}
1413
1414static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1415                                        struct kvm_arm_device_addr *dev_addr)
1416{
1417        unsigned long dev_id, type;
1418
1419        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1420                KVM_ARM_DEVICE_ID_SHIFT;
1421        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1422                KVM_ARM_DEVICE_TYPE_SHIFT;
1423
1424        switch (dev_id) {
1425        case KVM_ARM_DEVICE_VGIC_V2:
1426                if (!vgic_present)
1427                        return -ENXIO;
1428                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1429        default:
1430                return -ENODEV;
1431        }
1432}
1433
1434long kvm_arch_vm_ioctl(struct file *filp,
1435                       unsigned int ioctl, unsigned long arg)
1436{
1437        struct kvm *kvm = filp->private_data;
1438        void __user *argp = (void __user *)arg;
1439
1440        switch (ioctl) {
1441        case KVM_CREATE_IRQCHIP: {
1442                int ret;
1443                if (!vgic_present)
1444                        return -ENXIO;
1445                mutex_lock(&kvm->lock);
1446                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1447                mutex_unlock(&kvm->lock);
1448                return ret;
1449        }
1450        case KVM_ARM_SET_DEVICE_ADDR: {
1451                struct kvm_arm_device_addr dev_addr;
1452
1453                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1454                        return -EFAULT;
1455                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1456        }
1457        case KVM_ARM_PREFERRED_TARGET: {
1458                struct kvm_vcpu_init init;
1459
1460                kvm_vcpu_preferred_target(&init);
1461
1462                if (copy_to_user(argp, &init, sizeof(init)))
1463                        return -EFAULT;
1464
1465                return 0;
1466        }
1467        case KVM_ARM_MTE_COPY_TAGS: {
1468                struct kvm_arm_copy_mte_tags copy_tags;
1469
1470                if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1471                        return -EFAULT;
1472                return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1473        }
1474        default:
1475                return -EINVAL;
1476        }
1477}
1478
1479static unsigned long nvhe_percpu_size(void)
1480{
1481        return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1482                (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1483}
1484
1485static unsigned long nvhe_percpu_order(void)
1486{
1487        unsigned long size = nvhe_percpu_size();
1488
1489        return size ? get_order(size) : 0;
1490}
1491
1492/* A lookup table holding the hypervisor VA for each vector slot */
1493static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1494
1495static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1496{
1497        hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1498}
1499
1500static int kvm_init_vector_slots(void)
1501{
1502        int err;
1503        void *base;
1504
1505        base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1506        kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1507
1508        base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1509        kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1510
1511        if (kvm_system_needs_idmapped_vectors() &&
1512            !is_protected_kvm_enabled()) {
1513                err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1514                                               __BP_HARDEN_HYP_VECS_SZ, &base);
1515                if (err)
1516                        return err;
1517        }
1518
1519        kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1520        kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1521        return 0;
1522}
1523
1524static void cpu_prepare_hyp_mode(int cpu)
1525{
1526        struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1527        unsigned long tcr;
1528
1529        /*
1530         * Calculate the raw per-cpu offset without a translation from the
1531         * kernel's mapping to the linear mapping, and store it in tpidr_el2
1532         * so that we can use adr_l to access per-cpu variables in EL2.
1533         * Also drop the KASAN tag which gets in the way...
1534         */
1535        params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1536                            (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1537
1538        params->mair_el2 = read_sysreg(mair_el1);
1539
1540        /*
1541         * The ID map may be configured to use an extended virtual address
1542         * range. This is only the case if system RAM is out of range for the
1543         * currently configured page size and VA_BITS, in which case we will
1544         * also need the extended virtual range for the HYP ID map, or we won't
1545         * be able to enable the EL2 MMU.
1546         *
1547         * However, at EL2, there is only one TTBR register, and we can't switch
1548         * between translation tables *and* update TCR_EL2.T0SZ at the same
1549         * time. Bottom line: we need to use the extended range with *both* our
1550         * translation tables.
1551         *
1552         * So use the same T0SZ value we use for the ID map.
1553         */
1554        tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1555        tcr &= ~TCR_T0SZ_MASK;
1556        tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1557        params->tcr_el2 = tcr;
1558
1559        params->pgd_pa = kvm_mmu_get_httbr();
1560        if (is_protected_kvm_enabled())
1561                params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1562        else
1563                params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1564        params->vttbr = params->vtcr = 0;
1565
1566        /*
1567         * Flush the init params from the data cache because the struct will
1568         * be read while the MMU is off.
1569         */
1570        kvm_flush_dcache_to_poc(params, sizeof(*params));
1571}
1572
1573static void hyp_install_host_vector(void)
1574{
1575        struct kvm_nvhe_init_params *params;
1576        struct arm_smccc_res res;
1577
1578        /* Switch from the HYP stub to our own HYP init vector */
1579        __hyp_set_vectors(kvm_get_idmap_vector());
1580
1581        /*
1582         * Call initialization code, and switch to the full blown HYP code.
1583         * If the cpucaps haven't been finalized yet, something has gone very
1584         * wrong, and hyp will crash and burn when it uses any
1585         * cpus_have_const_cap() wrapper.
1586         */
1587        BUG_ON(!system_capabilities_finalized());
1588        params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1589        arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1590        WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1591}
1592
1593static void cpu_init_hyp_mode(void)
1594{
1595        hyp_install_host_vector();
1596
1597        /*
1598         * Disabling SSBD on a non-VHE system requires us to enable SSBS
1599         * at EL2.
1600         */
1601        if (this_cpu_has_cap(ARM64_SSBS) &&
1602            arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1603                kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1604        }
1605}
1606
1607static void cpu_hyp_reset(void)
1608{
1609        if (!is_kernel_in_hyp_mode())
1610                __hyp_reset_vectors();
1611}
1612
1613/*
1614 * EL2 vectors can be mapped and rerouted in a number of ways,
1615 * depending on the kernel configuration and CPU present:
1616 *
1617 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1618 *   placed in one of the vector slots, which is executed before jumping
1619 *   to the real vectors.
1620 *
1621 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1622 *   containing the hardening sequence is mapped next to the idmap page,
1623 *   and executed before jumping to the real vectors.
1624 *
1625 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1626 *   empty slot is selected, mapped next to the idmap page, and
1627 *   executed before jumping to the real vectors.
1628 *
1629 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1630 * VHE, as we don't have hypervisor-specific mappings. If the system
1631 * is VHE and yet selects this capability, it will be ignored.
1632 */
1633static void cpu_set_hyp_vector(void)
1634{
1635        struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1636        void *vector = hyp_spectre_vector_selector[data->slot];
1637
1638        if (!is_protected_kvm_enabled())
1639                *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1640        else
1641                kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1642}
1643
1644static void cpu_hyp_init_context(void)
1645{
1646        kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1647
1648        if (!is_kernel_in_hyp_mode())
1649                cpu_init_hyp_mode();
1650}
1651
1652static void cpu_hyp_init_features(void)
1653{
1654        cpu_set_hyp_vector();
1655        kvm_arm_init_debug();
1656
1657        if (is_kernel_in_hyp_mode())
1658                kvm_timer_init_vhe();
1659
1660        if (vgic_present)
1661                kvm_vgic_init_cpu_hardware();
1662}
1663
1664static void cpu_hyp_reinit(void)
1665{
1666        cpu_hyp_reset();
1667        cpu_hyp_init_context();
1668        cpu_hyp_init_features();
1669}
1670
1671static void _kvm_arch_hardware_enable(void *discard)
1672{
1673        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1674                cpu_hyp_reinit();
1675                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1676        }
1677}
1678
1679int kvm_arch_hardware_enable(void)
1680{
1681        _kvm_arch_hardware_enable(NULL);
1682        return 0;
1683}
1684
1685static void _kvm_arch_hardware_disable(void *discard)
1686{
1687        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1688                cpu_hyp_reset();
1689                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1690        }
1691}
1692
1693void kvm_arch_hardware_disable(void)
1694{
1695        if (!is_protected_kvm_enabled())
1696                _kvm_arch_hardware_disable(NULL);
1697}
1698
1699#ifdef CONFIG_CPU_PM
1700static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1701                                    unsigned long cmd,
1702                                    void *v)
1703{
1704        /*
1705         * kvm_arm_hardware_enabled is left with its old value over
1706         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1707         * re-enable hyp.
1708         */
1709        switch (cmd) {
1710        case CPU_PM_ENTER:
1711                if (__this_cpu_read(kvm_arm_hardware_enabled))
1712                        /*
1713                         * don't update kvm_arm_hardware_enabled here
1714                         * so that the hardware will be re-enabled
1715                         * when we resume. See below.
1716                         */
1717                        cpu_hyp_reset();
1718
1719                return NOTIFY_OK;
1720        case CPU_PM_ENTER_FAILED:
1721        case CPU_PM_EXIT:
1722                if (__this_cpu_read(kvm_arm_hardware_enabled))
1723                        /* The hardware was enabled before suspend. */
1724                        cpu_hyp_reinit();
1725
1726                return NOTIFY_OK;
1727
1728        default:
1729                return NOTIFY_DONE;
1730        }
1731}
1732
1733static struct notifier_block hyp_init_cpu_pm_nb = {
1734        .notifier_call = hyp_init_cpu_pm_notifier,
1735};
1736
1737static void hyp_cpu_pm_init(void)
1738{
1739        if (!is_protected_kvm_enabled())
1740                cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1741}
1742static void hyp_cpu_pm_exit(void)
1743{
1744        if (!is_protected_kvm_enabled())
1745                cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1746}
1747#else
1748static inline void hyp_cpu_pm_init(void)
1749{
1750}
1751static inline void hyp_cpu_pm_exit(void)
1752{
1753}
1754#endif
1755
1756static void init_cpu_logical_map(void)
1757{
1758        unsigned int cpu;
1759
1760        /*
1761         * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1762         * Only copy the set of online CPUs whose features have been checked
1763         * against the finalized system capabilities. The hypervisor will not
1764         * allow any other CPUs from the `possible` set to boot.
1765         */
1766        for_each_online_cpu(cpu)
1767                hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1768}
1769
1770#define init_psci_0_1_impl_state(config, what)  \
1771        config.psci_0_1_ ## what ## _implemented = psci_ops.what
1772
1773static bool init_psci_relay(void)
1774{
1775        /*
1776         * If PSCI has not been initialized, protected KVM cannot install
1777         * itself on newly booted CPUs.
1778         */
1779        if (!psci_ops.get_version) {
1780                kvm_err("Cannot initialize protected mode without PSCI\n");
1781                return false;
1782        }
1783
1784        kvm_host_psci_config.version = psci_ops.get_version();
1785
1786        if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1787                kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1788                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1789                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1790                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1791                init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1792        }
1793        return true;
1794}
1795
1796static int init_subsystems(void)
1797{
1798        int err = 0;
1799
1800        /*
1801         * Enable hardware so that subsystem initialisation can access EL2.
1802         */
1803        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1804
1805        /*
1806         * Register CPU lower-power notifier
1807         */
1808        hyp_cpu_pm_init();
1809
1810        /*
1811         * Init HYP view of VGIC
1812         */
1813        err = kvm_vgic_hyp_init();
1814        switch (err) {
1815        case 0:
1816                vgic_present = true;
1817                break;
1818        case -ENODEV:
1819        case -ENXIO:
1820                vgic_present = false;
1821                err = 0;
1822                break;
1823        default:
1824                goto out;
1825        }
1826
1827        /*
1828         * Init HYP architected timer support
1829         */
1830        err = kvm_timer_hyp_init(vgic_present);
1831        if (err)
1832                goto out;
1833
1834        kvm_register_perf_callbacks(NULL);
1835
1836out:
1837        if (err || !is_protected_kvm_enabled())
1838                on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1839
1840        return err;
1841}
1842
1843static void teardown_hyp_mode(void)
1844{
1845        int cpu;
1846
1847        free_hyp_pgds();
1848        for_each_possible_cpu(cpu) {
1849                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1850                free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1851        }
1852}
1853
1854static int do_pkvm_init(u32 hyp_va_bits)
1855{
1856        void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1857        int ret;
1858
1859        preempt_disable();
1860        cpu_hyp_init_context();
1861        ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1862                                num_possible_cpus(), kern_hyp_va(per_cpu_base),
1863                                hyp_va_bits);
1864        cpu_hyp_init_features();
1865
1866        /*
1867         * The stub hypercalls are now disabled, so set our local flag to
1868         * prevent a later re-init attempt in kvm_arch_hardware_enable().
1869         */
1870        __this_cpu_write(kvm_arm_hardware_enabled, 1);
1871        preempt_enable();
1872
1873        return ret;
1874}
1875
1876static int kvm_hyp_init_protection(u32 hyp_va_bits)
1877{
1878        void *addr = phys_to_virt(hyp_mem_base);
1879        int ret;
1880
1881        kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1882        kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1883        kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1884        kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1885        kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
1886        kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1887        kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1888        kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1889
1890        ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1891        if (ret)
1892                return ret;
1893
1894        ret = do_pkvm_init(hyp_va_bits);
1895        if (ret)
1896                return ret;
1897
1898        free_hyp_pgds();
1899
1900        return 0;
1901}
1902
1903/**
1904 * Inits Hyp-mode on all online CPUs
1905 */
1906static int init_hyp_mode(void)
1907{
1908        u32 hyp_va_bits;
1909        int cpu;
1910        int err = -ENOMEM;
1911
1912        /*
1913         * The protected Hyp-mode cannot be initialized if the memory pool
1914         * allocation has failed.
1915         */
1916        if (is_protected_kvm_enabled() && !hyp_mem_base)
1917                goto out_err;
1918
1919        /*
1920         * Allocate Hyp PGD and setup Hyp identity mapping
1921         */
1922        err = kvm_mmu_init(&hyp_va_bits);
1923        if (err)
1924                goto out_err;
1925
1926        /*
1927         * Allocate stack pages for Hypervisor-mode
1928         */
1929        for_each_possible_cpu(cpu) {
1930                unsigned long stack_page;
1931
1932                stack_page = __get_free_page(GFP_KERNEL);
1933                if (!stack_page) {
1934                        err = -ENOMEM;
1935                        goto out_err;
1936                }
1937
1938                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1939        }
1940
1941        /*
1942         * Allocate and initialize pages for Hypervisor-mode percpu regions.
1943         */
1944        for_each_possible_cpu(cpu) {
1945                struct page *page;
1946                void *page_addr;
1947
1948                page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1949                if (!page) {
1950                        err = -ENOMEM;
1951                        goto out_err;
1952                }
1953
1954                page_addr = page_address(page);
1955                memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1956                kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1957        }
1958
1959        /*
1960         * Map the Hyp-code called directly from the host
1961         */
1962        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1963                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1964        if (err) {
1965                kvm_err("Cannot map world-switch code\n");
1966                goto out_err;
1967        }
1968
1969        err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1970                                  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1971        if (err) {
1972                kvm_err("Cannot map .hyp.rodata section\n");
1973                goto out_err;
1974        }
1975
1976        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1977                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1978        if (err) {
1979                kvm_err("Cannot map rodata section\n");
1980                goto out_err;
1981        }
1982
1983        /*
1984         * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1985         * section thanks to an assertion in the linker script. Map it RW and
1986         * the rest of .bss RO.
1987         */
1988        err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1989                                  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1990        if (err) {
1991                kvm_err("Cannot map hyp bss section: %d\n", err);
1992                goto out_err;
1993        }
1994
1995        err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1996                                  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1997        if (err) {
1998                kvm_err("Cannot map bss section\n");
1999                goto out_err;
2000        }
2001
2002        /*
2003         * Map the Hyp stack pages
2004         */
2005        for_each_possible_cpu(cpu) {
2006                struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2007                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2008                unsigned long hyp_addr;
2009
2010                /*
2011                 * Allocate a contiguous HYP private VA range for the stack
2012                 * and guard page. The allocation is also aligned based on
2013                 * the order of its size.
2014                 */
2015                err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2016                if (err) {
2017                        kvm_err("Cannot allocate hyp stack guard page\n");
2018                        goto out_err;
2019                }
2020
2021                /*
2022                 * Since the stack grows downwards, map the stack to the page
2023                 * at the higher address and leave the lower guard page
2024                 * unbacked.
2025                 *
2026                 * Any valid stack address now has the PAGE_SHIFT bit as 1
2027                 * and addresses corresponding to the guard page have the
2028                 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2029                 */
2030                err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2031                                            __pa(stack_page), PAGE_HYP);
2032                if (err) {
2033                        kvm_err("Cannot map hyp stack\n");
2034                        goto out_err;
2035                }
2036
2037                /*
2038                 * Save the stack PA in nvhe_init_params. This will be needed
2039                 * to recreate the stack mapping in protected nVHE mode.
2040                 * __hyp_pa() won't do the right thing there, since the stack
2041                 * has been mapped in the flexible private VA space.
2042                 */
2043                params->stack_pa = __pa(stack_page);
2044
2045                params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2046        }
2047
2048        for_each_possible_cpu(cpu) {
2049                char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
2050                char *percpu_end = percpu_begin + nvhe_percpu_size();
2051
2052                /* Map Hyp percpu pages */
2053                err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2054                if (err) {
2055                        kvm_err("Cannot map hyp percpu region\n");
2056                        goto out_err;
2057                }
2058
2059                /* Prepare the CPU initialization parameters */
2060                cpu_prepare_hyp_mode(cpu);
2061        }
2062
2063        if (is_protected_kvm_enabled()) {
2064                init_cpu_logical_map();
2065
2066                if (!init_psci_relay()) {
2067                        err = -ENODEV;
2068                        goto out_err;
2069                }
2070        }
2071
2072        if (is_protected_kvm_enabled()) {
2073                err = kvm_hyp_init_protection(hyp_va_bits);
2074                if (err) {
2075                        kvm_err("Failed to init hyp memory protection\n");
2076                        goto out_err;
2077                }
2078        }
2079
2080        return 0;
2081
2082out_err:
2083        teardown_hyp_mode();
2084        kvm_err("error initializing Hyp mode: %d\n", err);
2085        return err;
2086}
2087
2088static void _kvm_host_prot_finalize(void *arg)
2089{
2090        int *err = arg;
2091
2092        if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2093                WRITE_ONCE(*err, -EINVAL);
2094}
2095
2096static int pkvm_drop_host_privileges(void)
2097{
2098        int ret = 0;
2099
2100        /*
2101         * Flip the static key upfront as that may no longer be possible
2102         * once the host stage 2 is installed.
2103         */
2104        static_branch_enable(&kvm_protected_mode_initialized);
2105        on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2106        return ret;
2107}
2108
2109static int finalize_hyp_mode(void)
2110{
2111        if (!is_protected_kvm_enabled())
2112                return 0;
2113
2114        /*
2115         * Exclude HYP sections from kmemleak so that they don't get peeked
2116         * at, which would end badly once inaccessible.
2117         */
2118        kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2119        kmemleak_free_part(__va(hyp_mem_base), hyp_mem_size);
2120        return pkvm_drop_host_privileges();
2121}
2122
2123struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2124{
2125        struct kvm_vcpu *vcpu;
2126        unsigned long i;
2127
2128        mpidr &= MPIDR_HWID_BITMASK;
2129        kvm_for_each_vcpu(i, vcpu, kvm) {
2130                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2131                        return vcpu;
2132        }
2133        return NULL;
2134}
2135
2136bool kvm_arch_has_irq_bypass(void)
2137{
2138        return true;
2139}
2140
2141int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2142                                      struct irq_bypass_producer *prod)
2143{
2144        struct kvm_kernel_irqfd *irqfd =
2145                container_of(cons, struct kvm_kernel_irqfd, consumer);
2146
2147        return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2148                                          &irqfd->irq_entry);
2149}
2150void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2151                                      struct irq_bypass_producer *prod)
2152{
2153        struct kvm_kernel_irqfd *irqfd =
2154                container_of(cons, struct kvm_kernel_irqfd, consumer);
2155
2156        kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2157                                     &irqfd->irq_entry);
2158}
2159
2160void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2161{
2162        struct kvm_kernel_irqfd *irqfd =
2163                container_of(cons, struct kvm_kernel_irqfd, consumer);
2164
2165        kvm_arm_halt_guest(irqfd->kvm);
2166}
2167
2168void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2169{
2170        struct kvm_kernel_irqfd *irqfd =
2171                container_of(cons, struct kvm_kernel_irqfd, consumer);
2172
2173        kvm_arm_resume_guest(irqfd->kvm);
2174}
2175
2176/**
2177 * Initialize Hyp-mode and memory mappings on all CPUs.
2178 */
2179int kvm_arch_init(void *opaque)
2180{
2181        int err;
2182        bool in_hyp_mode;
2183
2184        if (!is_hyp_mode_available()) {
2185                kvm_info("HYP mode not available\n");
2186                return -ENODEV;
2187        }
2188
2189        if (kvm_get_mode() == KVM_MODE_NONE) {
2190                kvm_info("KVM disabled from command line\n");
2191                return -ENODEV;
2192        }
2193
2194        err = kvm_sys_reg_table_init();
2195        if (err) {
2196                kvm_info("Error initializing system register tables");
2197                return err;
2198        }
2199
2200        in_hyp_mode = is_kernel_in_hyp_mode();
2201
2202        if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2203            cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2204                kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2205                         "Only trusted guests should be used on this system.\n");
2206
2207        err = kvm_set_ipa_limit();
2208        if (err)
2209                return err;
2210
2211        err = kvm_arm_init_sve();
2212        if (err)
2213                return err;
2214
2215        err = kvm_arm_vmid_alloc_init();
2216        if (err) {
2217                kvm_err("Failed to initialize VMID allocator.\n");
2218                return err;
2219        }
2220
2221        if (!in_hyp_mode) {
2222                err = init_hyp_mode();
2223                if (err)
2224                        goto out_err;
2225        }
2226
2227        err = kvm_init_vector_slots();
2228        if (err) {
2229                kvm_err("Cannot initialise vector slots\n");
2230                goto out_err;
2231        }
2232
2233        err = init_subsystems();
2234        if (err)
2235                goto out_hyp;
2236
2237        if (!in_hyp_mode) {
2238                err = finalize_hyp_mode();
2239                if (err) {
2240                        kvm_err("Failed to finalize Hyp protection\n");
2241                        goto out_hyp;
2242                }
2243        }
2244
2245        if (is_protected_kvm_enabled()) {
2246                kvm_info("Protected nVHE mode initialized successfully\n");
2247        } else if (in_hyp_mode) {
2248                kvm_info("VHE mode initialized successfully\n");
2249        } else {
2250                kvm_info("Hyp mode initialized successfully\n");
2251        }
2252
2253        return 0;
2254
2255out_hyp:
2256        hyp_cpu_pm_exit();
2257        if (!in_hyp_mode)
2258                teardown_hyp_mode();
2259out_err:
2260        kvm_arm_vmid_alloc_free();
2261        return err;
2262}
2263
2264/* NOP: Compiling as a module not supported */
2265void kvm_arch_exit(void)
2266{
2267        kvm_unregister_perf_callbacks();
2268}
2269
2270static int __init early_kvm_mode_cfg(char *arg)
2271{
2272        if (!arg)
2273                return -EINVAL;
2274
2275        if (strcmp(arg, "protected") == 0) {
2276                if (!is_kernel_in_hyp_mode())
2277                        kvm_mode = KVM_MODE_PROTECTED;
2278                else
2279                        pr_warn_once("Protected KVM not available with VHE\n");
2280
2281                return 0;
2282        }
2283
2284        if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2285                kvm_mode = KVM_MODE_DEFAULT;
2286                return 0;
2287        }
2288
2289        if (strcmp(arg, "none") == 0) {
2290                kvm_mode = KVM_MODE_NONE;
2291                return 0;
2292        }
2293
2294        return -EINVAL;
2295}
2296early_param("kvm-arm.mode", early_kvm_mode_cfg);
2297
2298enum kvm_mode kvm_get_mode(void)
2299{
2300        return kvm_mode;
2301}
2302
2303static int arm_init(void)
2304{
2305        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2306        return rc;
2307}
2308
2309module_init(arm_init);
2310