linux/arch/arm64/kvm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   5 */
   6
   7#include <linux/mman.h>
   8#include <linux/kvm_host.h>
   9#include <linux/io.h>
  10#include <linux/hugetlb.h>
  11#include <linux/sched/signal.h>
  12#include <trace/events/kvm.h>
  13#include <asm/pgalloc.h>
  14#include <asm/cacheflush.h>
  15#include <asm/kvm_arm.h>
  16#include <asm/kvm_mmu.h>
  17#include <asm/kvm_pgtable.h>
  18#include <asm/kvm_ras.h>
  19#include <asm/kvm_asm.h>
  20#include <asm/kvm_emulate.h>
  21#include <asm/virt.h>
  22
  23#include "trace.h"
  24
  25static struct kvm_pgtable *hyp_pgtable;
  26static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  27
  28static unsigned long hyp_idmap_start;
  29static unsigned long hyp_idmap_end;
  30static phys_addr_t hyp_idmap_vector;
  31
  32static unsigned long io_map_base;
  33
  34
  35/*
  36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
  37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
  38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
  39 * long will also starve other vCPUs. We have to also make sure that the page
  40 * tables are not freed while we released the lock.
  41 */
  42static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
  43                              phys_addr_t end,
  44                              int (*fn)(struct kvm_pgtable *, u64, u64),
  45                              bool resched)
  46{
  47        int ret;
  48        u64 next;
  49
  50        do {
  51                struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
  52                if (!pgt)
  53                        return -EINVAL;
  54
  55                next = stage2_pgd_addr_end(kvm, addr, end);
  56                ret = fn(pgt, addr, next - addr);
  57                if (ret)
  58                        break;
  59
  60                if (resched && next != end)
  61                        cond_resched_rwlock_write(&kvm->mmu_lock);
  62        } while (addr = next, addr != end);
  63
  64        return ret;
  65}
  66
  67#define stage2_apply_range_resched(kvm, addr, end, fn)                  \
  68        stage2_apply_range(kvm, addr, end, fn, true)
  69
  70static bool memslot_is_logging(struct kvm_memory_slot *memslot)
  71{
  72        return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
  73}
  74
  75/**
  76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
  77 * @kvm:        pointer to kvm structure.
  78 *
  79 * Interface to HYP function to flush all VM TLB entries
  80 */
  81void kvm_flush_remote_tlbs(struct kvm *kvm)
  82{
  83        ++kvm->stat.generic.remote_tlb_flush_requests;
  84        kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
  85}
  86
  87static bool kvm_is_device_pfn(unsigned long pfn)
  88{
  89        return !pfn_is_map_memory(pfn);
  90}
  91
  92static void *stage2_memcache_zalloc_page(void *arg)
  93{
  94        struct kvm_mmu_memory_cache *mc = arg;
  95
  96        /* Allocated with __GFP_ZERO, so no need to zero */
  97        return kvm_mmu_memory_cache_alloc(mc);
  98}
  99
 100static void *kvm_host_zalloc_pages_exact(size_t size)
 101{
 102        return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 103}
 104
 105static void kvm_host_get_page(void *addr)
 106{
 107        get_page(virt_to_page(addr));
 108}
 109
 110static void kvm_host_put_page(void *addr)
 111{
 112        put_page(virt_to_page(addr));
 113}
 114
 115static int kvm_host_page_count(void *addr)
 116{
 117        return page_count(virt_to_page(addr));
 118}
 119
 120static phys_addr_t kvm_host_pa(void *addr)
 121{
 122        return __pa(addr);
 123}
 124
 125static void *kvm_host_va(phys_addr_t phys)
 126{
 127        return __va(phys);
 128}
 129
 130static void clean_dcache_guest_page(void *va, size_t size)
 131{
 132        __clean_dcache_guest_page(va, size);
 133}
 134
 135static void invalidate_icache_guest_page(void *va, size_t size)
 136{
 137        __invalidate_icache_guest_page(va, size);
 138}
 139
 140/*
 141 * Unmapping vs dcache management:
 142 *
 143 * If a guest maps certain memory pages as uncached, all writes will
 144 * bypass the data cache and go directly to RAM.  However, the CPUs
 145 * can still speculate reads (not writes) and fill cache lines with
 146 * data.
 147 *
 148 * Those cache lines will be *clean* cache lines though, so a
 149 * clean+invalidate operation is equivalent to an invalidate
 150 * operation, because no cache lines are marked dirty.
 151 *
 152 * Those clean cache lines could be filled prior to an uncached write
 153 * by the guest, and the cache coherent IO subsystem would therefore
 154 * end up writing old data to disk.
 155 *
 156 * This is why right after unmapping a page/section and invalidating
 157 * the corresponding TLBs, we flush to make sure the IO subsystem will
 158 * never hit in the cache.
 159 *
 160 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 161 * we then fully enforce cacheability of RAM, no matter what the guest
 162 * does.
 163 */
 164/**
 165 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 166 * @mmu:   The KVM stage-2 MMU pointer
 167 * @start: The intermediate physical base address of the range to unmap
 168 * @size:  The size of the area to unmap
 169 * @may_block: Whether or not we are permitted to block
 170 *
 171 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 172 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 173 * destroying the VM), otherwise another faulting VCPU may come in and mess
 174 * with things behind our backs.
 175 */
 176static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
 177                                 bool may_block)
 178{
 179        struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
 180        phys_addr_t end = start + size;
 181
 182        lockdep_assert_held_write(&kvm->mmu_lock);
 183        WARN_ON(size & ~PAGE_MASK);
 184        WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
 185                                   may_block));
 186}
 187
 188static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
 189{
 190        __unmap_stage2_range(mmu, start, size, true);
 191}
 192
 193static void stage2_flush_memslot(struct kvm *kvm,
 194                                 struct kvm_memory_slot *memslot)
 195{
 196        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 197        phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 198
 199        stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
 200}
 201
 202/**
 203 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 204 * @kvm: The struct kvm pointer
 205 *
 206 * Go through the stage 2 page tables and invalidate any cache lines
 207 * backing memory already mapped to the VM.
 208 */
 209static void stage2_flush_vm(struct kvm *kvm)
 210{
 211        struct kvm_memslots *slots;
 212        struct kvm_memory_slot *memslot;
 213        int idx, bkt;
 214
 215        idx = srcu_read_lock(&kvm->srcu);
 216        write_lock(&kvm->mmu_lock);
 217
 218        slots = kvm_memslots(kvm);
 219        kvm_for_each_memslot(memslot, bkt, slots)
 220                stage2_flush_memslot(kvm, memslot);
 221
 222        write_unlock(&kvm->mmu_lock);
 223        srcu_read_unlock(&kvm->srcu, idx);
 224}
 225
 226/**
 227 * free_hyp_pgds - free Hyp-mode page tables
 228 */
 229void free_hyp_pgds(void)
 230{
 231        mutex_lock(&kvm_hyp_pgd_mutex);
 232        if (hyp_pgtable) {
 233                kvm_pgtable_hyp_destroy(hyp_pgtable);
 234                kfree(hyp_pgtable);
 235                hyp_pgtable = NULL;
 236        }
 237        mutex_unlock(&kvm_hyp_pgd_mutex);
 238}
 239
 240static bool kvm_host_owns_hyp_mappings(void)
 241{
 242        if (is_kernel_in_hyp_mode())
 243                return false;
 244
 245        if (static_branch_likely(&kvm_protected_mode_initialized))
 246                return false;
 247
 248        /*
 249         * This can happen at boot time when __create_hyp_mappings() is called
 250         * after the hyp protection has been enabled, but the static key has
 251         * not been flipped yet.
 252         */
 253        if (!hyp_pgtable && is_protected_kvm_enabled())
 254                return false;
 255
 256        WARN_ON(!hyp_pgtable);
 257
 258        return true;
 259}
 260
 261int __create_hyp_mappings(unsigned long start, unsigned long size,
 262                          unsigned long phys, enum kvm_pgtable_prot prot)
 263{
 264        int err;
 265
 266        if (WARN_ON(!kvm_host_owns_hyp_mappings()))
 267                return -EINVAL;
 268
 269        mutex_lock(&kvm_hyp_pgd_mutex);
 270        err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
 271        mutex_unlock(&kvm_hyp_pgd_mutex);
 272
 273        return err;
 274}
 275
 276static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 277{
 278        if (!is_vmalloc_addr(kaddr)) {
 279                BUG_ON(!virt_addr_valid(kaddr));
 280                return __pa(kaddr);
 281        } else {
 282                return page_to_phys(vmalloc_to_page(kaddr)) +
 283                       offset_in_page(kaddr);
 284        }
 285}
 286
 287struct hyp_shared_pfn {
 288        u64 pfn;
 289        int count;
 290        struct rb_node node;
 291};
 292
 293static DEFINE_MUTEX(hyp_shared_pfns_lock);
 294static struct rb_root hyp_shared_pfns = RB_ROOT;
 295
 296static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
 297                                              struct rb_node **parent)
 298{
 299        struct hyp_shared_pfn *this;
 300
 301        *node = &hyp_shared_pfns.rb_node;
 302        *parent = NULL;
 303        while (**node) {
 304                this = container_of(**node, struct hyp_shared_pfn, node);
 305                *parent = **node;
 306                if (this->pfn < pfn)
 307                        *node = &((**node)->rb_left);
 308                else if (this->pfn > pfn)
 309                        *node = &((**node)->rb_right);
 310                else
 311                        return this;
 312        }
 313
 314        return NULL;
 315}
 316
 317static int share_pfn_hyp(u64 pfn)
 318{
 319        struct rb_node **node, *parent;
 320        struct hyp_shared_pfn *this;
 321        int ret = 0;
 322
 323        mutex_lock(&hyp_shared_pfns_lock);
 324        this = find_shared_pfn(pfn, &node, &parent);
 325        if (this) {
 326                this->count++;
 327                goto unlock;
 328        }
 329
 330        this = kzalloc(sizeof(*this), GFP_KERNEL);
 331        if (!this) {
 332                ret = -ENOMEM;
 333                goto unlock;
 334        }
 335
 336        this->pfn = pfn;
 337        this->count = 1;
 338        rb_link_node(&this->node, parent, node);
 339        rb_insert_color(&this->node, &hyp_shared_pfns);
 340        ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
 341unlock:
 342        mutex_unlock(&hyp_shared_pfns_lock);
 343
 344        return ret;
 345}
 346
 347static int unshare_pfn_hyp(u64 pfn)
 348{
 349        struct rb_node **node, *parent;
 350        struct hyp_shared_pfn *this;
 351        int ret = 0;
 352
 353        mutex_lock(&hyp_shared_pfns_lock);
 354        this = find_shared_pfn(pfn, &node, &parent);
 355        if (WARN_ON(!this)) {
 356                ret = -ENOENT;
 357                goto unlock;
 358        }
 359
 360        this->count--;
 361        if (this->count)
 362                goto unlock;
 363
 364        rb_erase(&this->node, &hyp_shared_pfns);
 365        kfree(this);
 366        ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
 367unlock:
 368        mutex_unlock(&hyp_shared_pfns_lock);
 369
 370        return ret;
 371}
 372
 373int kvm_share_hyp(void *from, void *to)
 374{
 375        phys_addr_t start, end, cur;
 376        u64 pfn;
 377        int ret;
 378
 379        if (is_kernel_in_hyp_mode())
 380                return 0;
 381
 382        /*
 383         * The share hcall maps things in the 'fixed-offset' region of the hyp
 384         * VA space, so we can only share physically contiguous data-structures
 385         * for now.
 386         */
 387        if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
 388                return -EINVAL;
 389
 390        if (kvm_host_owns_hyp_mappings())
 391                return create_hyp_mappings(from, to, PAGE_HYP);
 392
 393        start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
 394        end = PAGE_ALIGN(__pa(to));
 395        for (cur = start; cur < end; cur += PAGE_SIZE) {
 396                pfn = __phys_to_pfn(cur);
 397                ret = share_pfn_hyp(pfn);
 398                if (ret)
 399                        return ret;
 400        }
 401
 402        return 0;
 403}
 404
 405void kvm_unshare_hyp(void *from, void *to)
 406{
 407        phys_addr_t start, end, cur;
 408        u64 pfn;
 409
 410        if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
 411                return;
 412
 413        start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
 414        end = PAGE_ALIGN(__pa(to));
 415        for (cur = start; cur < end; cur += PAGE_SIZE) {
 416                pfn = __phys_to_pfn(cur);
 417                WARN_ON(unshare_pfn_hyp(pfn));
 418        }
 419}
 420
 421/**
 422 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 423 * @from:       The virtual kernel start address of the range
 424 * @to:         The virtual kernel end address of the range (exclusive)
 425 * @prot:       The protection to be applied to this range
 426 *
 427 * The same virtual address as the kernel virtual address is also used
 428 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 429 * physical pages.
 430 */
 431int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
 432{
 433        phys_addr_t phys_addr;
 434        unsigned long virt_addr;
 435        unsigned long start = kern_hyp_va((unsigned long)from);
 436        unsigned long end = kern_hyp_va((unsigned long)to);
 437
 438        if (is_kernel_in_hyp_mode())
 439                return 0;
 440
 441        if (!kvm_host_owns_hyp_mappings())
 442                return -EPERM;
 443
 444        start = start & PAGE_MASK;
 445        end = PAGE_ALIGN(end);
 446
 447        for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 448                int err;
 449
 450                phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 451                err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
 452                                            prot);
 453                if (err)
 454                        return err;
 455        }
 456
 457        return 0;
 458}
 459
 460
 461/**
 462 * hyp_alloc_private_va_range - Allocates a private VA range.
 463 * @size:       The size of the VA range to reserve.
 464 * @haddr:      The hypervisor virtual start address of the allocation.
 465 *
 466 * The private virtual address (VA) range is allocated below io_map_base
 467 * and aligned based on the order of @size.
 468 *
 469 * Return: 0 on success or negative error code on failure.
 470 */
 471int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
 472{
 473        unsigned long base;
 474        int ret = 0;
 475
 476        mutex_lock(&kvm_hyp_pgd_mutex);
 477
 478        /*
 479         * This assumes that we have enough space below the idmap
 480         * page to allocate our VAs. If not, the check below will
 481         * kick. A potential alternative would be to detect that
 482         * overflow and switch to an allocation above the idmap.
 483         *
 484         * The allocated size is always a multiple of PAGE_SIZE.
 485         */
 486        base = io_map_base - PAGE_ALIGN(size);
 487
 488        /* Align the allocation based on the order of its size */
 489        base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
 490
 491        /*
 492         * Verify that BIT(VA_BITS - 1) hasn't been flipped by
 493         * allocating the new area, as it would indicate we've
 494         * overflowed the idmap/IO address range.
 495         */
 496        if ((base ^ io_map_base) & BIT(VA_BITS - 1))
 497                ret = -ENOMEM;
 498        else
 499                *haddr = io_map_base = base;
 500
 501        mutex_unlock(&kvm_hyp_pgd_mutex);
 502
 503        return ret;
 504}
 505
 506static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
 507                                        unsigned long *haddr,
 508                                        enum kvm_pgtable_prot prot)
 509{
 510        unsigned long addr;
 511        int ret = 0;
 512
 513        if (!kvm_host_owns_hyp_mappings()) {
 514                addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
 515                                         phys_addr, size, prot);
 516                if (IS_ERR_VALUE(addr))
 517                        return addr;
 518                *haddr = addr;
 519
 520                return 0;
 521        }
 522
 523        size = PAGE_ALIGN(size + offset_in_page(phys_addr));
 524        ret = hyp_alloc_private_va_range(size, &addr);
 525        if (ret)
 526                return ret;
 527
 528        ret = __create_hyp_mappings(addr, size, phys_addr, prot);
 529        if (ret)
 530                return ret;
 531
 532        *haddr = addr + offset_in_page(phys_addr);
 533        return ret;
 534}
 535
 536/**
 537 * create_hyp_io_mappings - Map IO into both kernel and HYP
 538 * @phys_addr:  The physical start address which gets mapped
 539 * @size:       Size of the region being mapped
 540 * @kaddr:      Kernel VA for this mapping
 541 * @haddr:      HYP VA for this mapping
 542 */
 543int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 544                           void __iomem **kaddr,
 545                           void __iomem **haddr)
 546{
 547        unsigned long addr;
 548        int ret;
 549
 550        if (is_protected_kvm_enabled())
 551                return -EPERM;
 552
 553        *kaddr = ioremap(phys_addr, size);
 554        if (!*kaddr)
 555                return -ENOMEM;
 556
 557        if (is_kernel_in_hyp_mode()) {
 558                *haddr = *kaddr;
 559                return 0;
 560        }
 561
 562        ret = __create_hyp_private_mapping(phys_addr, size,
 563                                           &addr, PAGE_HYP_DEVICE);
 564        if (ret) {
 565                iounmap(*kaddr);
 566                *kaddr = NULL;
 567                *haddr = NULL;
 568                return ret;
 569        }
 570
 571        *haddr = (void __iomem *)addr;
 572        return 0;
 573}
 574
 575/**
 576 * create_hyp_exec_mappings - Map an executable range into HYP
 577 * @phys_addr:  The physical start address which gets mapped
 578 * @size:       Size of the region being mapped
 579 * @haddr:      HYP VA for this mapping
 580 */
 581int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
 582                             void **haddr)
 583{
 584        unsigned long addr;
 585        int ret;
 586
 587        BUG_ON(is_kernel_in_hyp_mode());
 588
 589        ret = __create_hyp_private_mapping(phys_addr, size,
 590                                           &addr, PAGE_HYP_EXEC);
 591        if (ret) {
 592                *haddr = NULL;
 593                return ret;
 594        }
 595
 596        *haddr = (void *)addr;
 597        return 0;
 598}
 599
 600static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
 601        /* We shouldn't need any other callback to walk the PT */
 602        .phys_to_virt           = kvm_host_va,
 603};
 604
 605static int get_user_mapping_size(struct kvm *kvm, u64 addr)
 606{
 607        struct kvm_pgtable pgt = {
 608                .pgd            = (kvm_pte_t *)kvm->mm->pgd,
 609                .ia_bits        = VA_BITS,
 610                .start_level    = (KVM_PGTABLE_MAX_LEVELS -
 611                                   CONFIG_PGTABLE_LEVELS),
 612                .mm_ops         = &kvm_user_mm_ops,
 613        };
 614        kvm_pte_t pte = 0;      /* Keep GCC quiet... */
 615        u32 level = ~0;
 616        int ret;
 617
 618        ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
 619        VM_BUG_ON(ret);
 620        VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
 621        VM_BUG_ON(!(pte & PTE_VALID));
 622
 623        return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
 624}
 625
 626static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
 627        .zalloc_page            = stage2_memcache_zalloc_page,
 628        .zalloc_pages_exact     = kvm_host_zalloc_pages_exact,
 629        .free_pages_exact       = free_pages_exact,
 630        .get_page               = kvm_host_get_page,
 631        .put_page               = kvm_host_put_page,
 632        .page_count             = kvm_host_page_count,
 633        .phys_to_virt           = kvm_host_va,
 634        .virt_to_phys           = kvm_host_pa,
 635        .dcache_clean_inval_poc = clean_dcache_guest_page,
 636        .icache_inval_pou       = invalidate_icache_guest_page,
 637};
 638
 639/**
 640 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
 641 * @kvm:        The pointer to the KVM structure
 642 * @mmu:        The pointer to the s2 MMU structure
 643 *
 644 * Allocates only the stage-2 HW PGD level table(s).
 645 * Note we don't need locking here as this is only called when the VM is
 646 * created, which can only be done once.
 647 */
 648int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
 649{
 650        int cpu, err;
 651        struct kvm_pgtable *pgt;
 652
 653        if (mmu->pgt != NULL) {
 654                kvm_err("kvm_arch already initialized?\n");
 655                return -EINVAL;
 656        }
 657
 658        pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
 659        if (!pgt)
 660                return -ENOMEM;
 661
 662        mmu->arch = &kvm->arch;
 663        err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
 664        if (err)
 665                goto out_free_pgtable;
 666
 667        mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
 668        if (!mmu->last_vcpu_ran) {
 669                err = -ENOMEM;
 670                goto out_destroy_pgtable;
 671        }
 672
 673        for_each_possible_cpu(cpu)
 674                *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
 675
 676        mmu->pgt = pgt;
 677        mmu->pgd_phys = __pa(pgt->pgd);
 678        return 0;
 679
 680out_destroy_pgtable:
 681        kvm_pgtable_stage2_destroy(pgt);
 682out_free_pgtable:
 683        kfree(pgt);
 684        return err;
 685}
 686
 687static void stage2_unmap_memslot(struct kvm *kvm,
 688                                 struct kvm_memory_slot *memslot)
 689{
 690        hva_t hva = memslot->userspace_addr;
 691        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 692        phys_addr_t size = PAGE_SIZE * memslot->npages;
 693        hva_t reg_end = hva + size;
 694
 695        /*
 696         * A memory region could potentially cover multiple VMAs, and any holes
 697         * between them, so iterate over all of them to find out if we should
 698         * unmap any of them.
 699         *
 700         *     +--------------------------------------------+
 701         * +---------------+----------------+   +----------------+
 702         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 703         * +---------------+----------------+   +----------------+
 704         *     |               memory region                |
 705         *     +--------------------------------------------+
 706         */
 707        do {
 708                struct vm_area_struct *vma;
 709                hva_t vm_start, vm_end;
 710
 711                vma = find_vma_intersection(current->mm, hva, reg_end);
 712                if (!vma)
 713                        break;
 714
 715                /*
 716                 * Take the intersection of this VMA with the memory region
 717                 */
 718                vm_start = max(hva, vma->vm_start);
 719                vm_end = min(reg_end, vma->vm_end);
 720
 721                if (!(vma->vm_flags & VM_PFNMAP)) {
 722                        gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
 723                        unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
 724                }
 725                hva = vm_end;
 726        } while (hva < reg_end);
 727}
 728
 729/**
 730 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 731 * @kvm: The struct kvm pointer
 732 *
 733 * Go through the memregions and unmap any regular RAM
 734 * backing memory already mapped to the VM.
 735 */
 736void stage2_unmap_vm(struct kvm *kvm)
 737{
 738        struct kvm_memslots *slots;
 739        struct kvm_memory_slot *memslot;
 740        int idx, bkt;
 741
 742        idx = srcu_read_lock(&kvm->srcu);
 743        mmap_read_lock(current->mm);
 744        write_lock(&kvm->mmu_lock);
 745
 746        slots = kvm_memslots(kvm);
 747        kvm_for_each_memslot(memslot, bkt, slots)
 748                stage2_unmap_memslot(kvm, memslot);
 749
 750        write_unlock(&kvm->mmu_lock);
 751        mmap_read_unlock(current->mm);
 752        srcu_read_unlock(&kvm->srcu, idx);
 753}
 754
 755void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
 756{
 757        struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
 758        struct kvm_pgtable *pgt = NULL;
 759
 760        write_lock(&kvm->mmu_lock);
 761        pgt = mmu->pgt;
 762        if (pgt) {
 763                mmu->pgd_phys = 0;
 764                mmu->pgt = NULL;
 765                free_percpu(mmu->last_vcpu_ran);
 766        }
 767        write_unlock(&kvm->mmu_lock);
 768
 769        if (pgt) {
 770                kvm_pgtable_stage2_destroy(pgt);
 771                kfree(pgt);
 772        }
 773}
 774
 775/**
 776 * kvm_phys_addr_ioremap - map a device range to guest IPA
 777 *
 778 * @kvm:        The KVM pointer
 779 * @guest_ipa:  The IPA at which to insert the mapping
 780 * @pa:         The physical address of the device
 781 * @size:       The size of the mapping
 782 * @writable:   Whether or not to create a writable mapping
 783 */
 784int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 785                          phys_addr_t pa, unsigned long size, bool writable)
 786{
 787        phys_addr_t addr;
 788        int ret = 0;
 789        struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
 790        struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
 791        enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
 792                                     KVM_PGTABLE_PROT_R |
 793                                     (writable ? KVM_PGTABLE_PROT_W : 0);
 794
 795        if (is_protected_kvm_enabled())
 796                return -EPERM;
 797
 798        size += offset_in_page(guest_ipa);
 799        guest_ipa &= PAGE_MASK;
 800
 801        for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
 802                ret = kvm_mmu_topup_memory_cache(&cache,
 803                                                 kvm_mmu_cache_min_pages(kvm));
 804                if (ret)
 805                        break;
 806
 807                write_lock(&kvm->mmu_lock);
 808                ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
 809                                             &cache);
 810                write_unlock(&kvm->mmu_lock);
 811                if (ret)
 812                        break;
 813
 814                pa += PAGE_SIZE;
 815        }
 816
 817        kvm_mmu_free_memory_cache(&cache);
 818        return ret;
 819}
 820
 821/**
 822 * stage2_wp_range() - write protect stage2 memory region range
 823 * @mmu:        The KVM stage-2 MMU pointer
 824 * @addr:       Start address of range
 825 * @end:        End address of range
 826 */
 827static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
 828{
 829        struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
 830        stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
 831}
 832
 833/**
 834 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 835 * @kvm:        The KVM pointer
 836 * @slot:       The memory slot to write protect
 837 *
 838 * Called to start logging dirty pages after memory region
 839 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 840 * all present PUD, PMD and PTEs are write protected in the memory region.
 841 * Afterwards read of dirty page log can be called.
 842 *
 843 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 844 * serializing operations for VM memory regions.
 845 */
 846static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
 847{
 848        struct kvm_memslots *slots = kvm_memslots(kvm);
 849        struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
 850        phys_addr_t start, end;
 851
 852        if (WARN_ON_ONCE(!memslot))
 853                return;
 854
 855        start = memslot->base_gfn << PAGE_SHIFT;
 856        end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
 857
 858        write_lock(&kvm->mmu_lock);
 859        stage2_wp_range(&kvm->arch.mmu, start, end);
 860        write_unlock(&kvm->mmu_lock);
 861        kvm_flush_remote_tlbs(kvm);
 862}
 863
 864/**
 865 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
 866 * @kvm:        The KVM pointer
 867 * @slot:       The memory slot associated with mask
 868 * @gfn_offset: The gfn offset in memory slot
 869 * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
 870 *              slot to be write protected
 871 *
 872 * Walks bits set in mask write protects the associated pte's. Caller must
 873 * acquire kvm_mmu_lock.
 874 */
 875static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
 876                struct kvm_memory_slot *slot,
 877                gfn_t gfn_offset, unsigned long mask)
 878{
 879        phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
 880        phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
 881        phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
 882
 883        stage2_wp_range(&kvm->arch.mmu, start, end);
 884}
 885
 886/*
 887 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 888 * dirty pages.
 889 *
 890 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 891 * enable dirty logging for them.
 892 */
 893void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 894                struct kvm_memory_slot *slot,
 895                gfn_t gfn_offset, unsigned long mask)
 896{
 897        kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
 898}
 899
 900static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
 901{
 902        send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
 903}
 904
 905static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
 906                                               unsigned long hva,
 907                                               unsigned long map_size)
 908{
 909        gpa_t gpa_start;
 910        hva_t uaddr_start, uaddr_end;
 911        size_t size;
 912
 913        /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
 914        if (map_size == PAGE_SIZE)
 915                return true;
 916
 917        size = memslot->npages * PAGE_SIZE;
 918
 919        gpa_start = memslot->base_gfn << PAGE_SHIFT;
 920
 921        uaddr_start = memslot->userspace_addr;
 922        uaddr_end = uaddr_start + size;
 923
 924        /*
 925         * Pages belonging to memslots that don't have the same alignment
 926         * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
 927         * PMD/PUD entries, because we'll end up mapping the wrong pages.
 928         *
 929         * Consider a layout like the following:
 930         *
 931         *    memslot->userspace_addr:
 932         *    +-----+--------------------+--------------------+---+
 933         *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
 934         *    +-----+--------------------+--------------------+---+
 935         *
 936         *    memslot->base_gfn << PAGE_SHIFT:
 937         *      +---+--------------------+--------------------+-----+
 938         *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
 939         *      +---+--------------------+--------------------+-----+
 940         *
 941         * If we create those stage-2 blocks, we'll end up with this incorrect
 942         * mapping:
 943         *   d -> f
 944         *   e -> g
 945         *   f -> h
 946         */
 947        if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
 948                return false;
 949
 950        /*
 951         * Next, let's make sure we're not trying to map anything not covered
 952         * by the memslot. This means we have to prohibit block size mappings
 953         * for the beginning and end of a non-block aligned and non-block sized
 954         * memory slot (illustrated by the head and tail parts of the
 955         * userspace view above containing pages 'abcde' and 'xyz',
 956         * respectively).
 957         *
 958         * Note that it doesn't matter if we do the check using the
 959         * userspace_addr or the base_gfn, as both are equally aligned (per
 960         * the check above) and equally sized.
 961         */
 962        return (hva & ~(map_size - 1)) >= uaddr_start &&
 963               (hva & ~(map_size - 1)) + map_size <= uaddr_end;
 964}
 965
 966/*
 967 * Check if the given hva is backed by a transparent huge page (THP) and
 968 * whether it can be mapped using block mapping in stage2. If so, adjust
 969 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 970 * supported. This will need to be updated to support other THP sizes.
 971 *
 972 * Returns the size of the mapping.
 973 */
 974static unsigned long
 975transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
 976                            unsigned long hva, kvm_pfn_t *pfnp,
 977                            phys_addr_t *ipap)
 978{
 979        kvm_pfn_t pfn = *pfnp;
 980
 981        /*
 982         * Make sure the adjustment is done only for THP pages. Also make
 983         * sure that the HVA and IPA are sufficiently aligned and that the
 984         * block map is contained within the memslot.
 985         */
 986        if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
 987            get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
 988                /*
 989                 * The address we faulted on is backed by a transparent huge
 990                 * page.  However, because we map the compound huge page and
 991                 * not the individual tail page, we need to transfer the
 992                 * refcount to the head page.  We have to be careful that the
 993                 * THP doesn't start to split while we are adjusting the
 994                 * refcounts.
 995                 *
 996                 * We are sure this doesn't happen, because mmu_notifier_retry
 997                 * was successful and we are holding the mmu_lock, so if this
 998                 * THP is trying to split, it will be blocked in the mmu
 999                 * notifier before touching any of the pages, specifically
1000                 * before being able to call __split_huge_page_refcount().
1001                 *
1002                 * We can therefore safely transfer the refcount from PG_tail
1003                 * to PG_head and switch the pfn from a tail page to the head
1004                 * page accordingly.
1005                 */
1006                *ipap &= PMD_MASK;
1007                kvm_release_pfn_clean(pfn);
1008                pfn &= ~(PTRS_PER_PMD - 1);
1009                get_page(pfn_to_page(pfn));
1010                *pfnp = pfn;
1011
1012                return PMD_SIZE;
1013        }
1014
1015        /* Use page mapping if we cannot use block mapping. */
1016        return PAGE_SIZE;
1017}
1018
1019static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1020{
1021        unsigned long pa;
1022
1023        if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1024                return huge_page_shift(hstate_vma(vma));
1025
1026        if (!(vma->vm_flags & VM_PFNMAP))
1027                return PAGE_SHIFT;
1028
1029        VM_BUG_ON(is_vm_hugetlb_page(vma));
1030
1031        pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1032
1033#ifndef __PAGETABLE_PMD_FOLDED
1034        if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1035            ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1036            ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1037                return PUD_SHIFT;
1038#endif
1039
1040        if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1041            ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1042            ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1043                return PMD_SHIFT;
1044
1045        return PAGE_SHIFT;
1046}
1047
1048/*
1049 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1050 * able to see the page's tags and therefore they must be initialised first. If
1051 * PG_mte_tagged is set, tags have already been initialised.
1052 *
1053 * The race in the test/set of the PG_mte_tagged flag is handled by:
1054 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1055 *   racing to santise the same page
1056 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1057 *   an mprotect() to add VM_MTE
1058 */
1059static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1060                             unsigned long size)
1061{
1062        unsigned long i, nr_pages = size >> PAGE_SHIFT;
1063        struct page *page;
1064
1065        if (!kvm_has_mte(kvm))
1066                return 0;
1067
1068        /*
1069         * pfn_to_online_page() is used to reject ZONE_DEVICE pages
1070         * that may not support tags.
1071         */
1072        page = pfn_to_online_page(pfn);
1073
1074        if (!page)
1075                return -EFAULT;
1076
1077        for (i = 0; i < nr_pages; i++, page++) {
1078                if (!test_bit(PG_mte_tagged, &page->flags)) {
1079                        mte_clear_page_tags(page_address(page));
1080                        set_bit(PG_mte_tagged, &page->flags);
1081                }
1082        }
1083
1084        return 0;
1085}
1086
1087static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1088                          struct kvm_memory_slot *memslot, unsigned long hva,
1089                          unsigned long fault_status)
1090{
1091        int ret = 0;
1092        bool write_fault, writable, force_pte = false;
1093        bool exec_fault;
1094        bool device = false;
1095        bool shared;
1096        unsigned long mmu_seq;
1097        struct kvm *kvm = vcpu->kvm;
1098        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1099        struct vm_area_struct *vma;
1100        short vma_shift;
1101        gfn_t gfn;
1102        kvm_pfn_t pfn;
1103        bool logging_active = memslot_is_logging(memslot);
1104        bool use_read_lock = false;
1105        unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1106        unsigned long vma_pagesize, fault_granule;
1107        enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1108        struct kvm_pgtable *pgt;
1109
1110        fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1111        write_fault = kvm_is_write_fault(vcpu);
1112        exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1113        VM_BUG_ON(write_fault && exec_fault);
1114
1115        if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1116                kvm_err("Unexpected L2 read permission error\n");
1117                return -EFAULT;
1118        }
1119
1120        /*
1121         * Let's check if we will get back a huge page backed by hugetlbfs, or
1122         * get block mapping for device MMIO region.
1123         */
1124        mmap_read_lock(current->mm);
1125        vma = vma_lookup(current->mm, hva);
1126        if (unlikely(!vma)) {
1127                kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1128                mmap_read_unlock(current->mm);
1129                return -EFAULT;
1130        }
1131
1132        /*
1133         * logging_active is guaranteed to never be true for VM_PFNMAP
1134         * memslots.
1135         */
1136        if (logging_active) {
1137                force_pte = true;
1138                vma_shift = PAGE_SHIFT;
1139                use_read_lock = (fault_status == FSC_PERM && write_fault &&
1140                                 fault_granule == PAGE_SIZE);
1141        } else {
1142                vma_shift = get_vma_page_shift(vma, hva);
1143        }
1144
1145        shared = (vma->vm_flags & VM_SHARED);
1146
1147        switch (vma_shift) {
1148#ifndef __PAGETABLE_PMD_FOLDED
1149        case PUD_SHIFT:
1150                if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1151                        break;
1152                fallthrough;
1153#endif
1154        case CONT_PMD_SHIFT:
1155                vma_shift = PMD_SHIFT;
1156                fallthrough;
1157        case PMD_SHIFT:
1158                if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1159                        break;
1160                fallthrough;
1161        case CONT_PTE_SHIFT:
1162                vma_shift = PAGE_SHIFT;
1163                force_pte = true;
1164                fallthrough;
1165        case PAGE_SHIFT:
1166                break;
1167        default:
1168                WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1169        }
1170
1171        vma_pagesize = 1UL << vma_shift;
1172        if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1173                fault_ipa &= ~(vma_pagesize - 1);
1174
1175        gfn = fault_ipa >> PAGE_SHIFT;
1176        mmap_read_unlock(current->mm);
1177
1178        /*
1179         * Permission faults just need to update the existing leaf entry,
1180         * and so normally don't require allocations from the memcache. The
1181         * only exception to this is when dirty logging is enabled at runtime
1182         * and a write fault needs to collapse a block entry into a table.
1183         */
1184        if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1185                ret = kvm_mmu_topup_memory_cache(memcache,
1186                                                 kvm_mmu_cache_min_pages(kvm));
1187                if (ret)
1188                        return ret;
1189        }
1190
1191        mmu_seq = vcpu->kvm->mmu_notifier_seq;
1192        /*
1193         * Ensure the read of mmu_notifier_seq happens before we call
1194         * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1195         * the page we just got a reference to gets unmapped before we have a
1196         * chance to grab the mmu_lock, which ensure that if the page gets
1197         * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1198         * from us again properly. This smp_rmb() interacts with the smp_wmb()
1199         * in kvm_mmu_notifier_invalidate_<page|range_end>.
1200         *
1201         * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1202         * used to avoid unnecessary overhead introduced to locate the memory
1203         * slot because it's always fixed even @gfn is adjusted for huge pages.
1204         */
1205        smp_rmb();
1206
1207        pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1208                                   write_fault, &writable, NULL);
1209        if (pfn == KVM_PFN_ERR_HWPOISON) {
1210                kvm_send_hwpoison_signal(hva, vma_shift);
1211                return 0;
1212        }
1213        if (is_error_noslot_pfn(pfn))
1214                return -EFAULT;
1215
1216        if (kvm_is_device_pfn(pfn)) {
1217                /*
1218                 * If the page was identified as device early by looking at
1219                 * the VMA flags, vma_pagesize is already representing the
1220                 * largest quantity we can map.  If instead it was mapped
1221                 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1222                 * and must not be upgraded.
1223                 *
1224                 * In both cases, we don't let transparent_hugepage_adjust()
1225                 * change things at the last minute.
1226                 */
1227                device = true;
1228        } else if (logging_active && !write_fault) {
1229                /*
1230                 * Only actually map the page as writable if this was a write
1231                 * fault.
1232                 */
1233                writable = false;
1234        }
1235
1236        if (exec_fault && device)
1237                return -ENOEXEC;
1238
1239        /*
1240         * To reduce MMU contentions and enhance concurrency during dirty
1241         * logging dirty logging, only acquire read lock for permission
1242         * relaxation.
1243         */
1244        if (use_read_lock)
1245                read_lock(&kvm->mmu_lock);
1246        else
1247                write_lock(&kvm->mmu_lock);
1248        pgt = vcpu->arch.hw_mmu->pgt;
1249        if (mmu_notifier_retry(kvm, mmu_seq))
1250                goto out_unlock;
1251
1252        /*
1253         * If we are not forced to use page mapping, check if we are
1254         * backed by a THP and thus use block mapping if possible.
1255         */
1256        if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1257                if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1258                        vma_pagesize = fault_granule;
1259                else
1260                        vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1261                                                                   hva, &pfn,
1262                                                                   &fault_ipa);
1263        }
1264
1265        if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1266                /* Check the VMM hasn't introduced a new VM_SHARED VMA */
1267                if (!shared)
1268                        ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1269                else
1270                        ret = -EFAULT;
1271                if (ret)
1272                        goto out_unlock;
1273        }
1274
1275        if (writable)
1276                prot |= KVM_PGTABLE_PROT_W;
1277
1278        if (exec_fault)
1279                prot |= KVM_PGTABLE_PROT_X;
1280
1281        if (device)
1282                prot |= KVM_PGTABLE_PROT_DEVICE;
1283        else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1284                prot |= KVM_PGTABLE_PROT_X;
1285
1286        /*
1287         * Under the premise of getting a FSC_PERM fault, we just need to relax
1288         * permissions only if vma_pagesize equals fault_granule. Otherwise,
1289         * kvm_pgtable_stage2_map() should be called to change block size.
1290         */
1291        if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1292                ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1293        } else {
1294                WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n");
1295
1296                ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1297                                             __pfn_to_phys(pfn), prot,
1298                                             memcache);
1299        }
1300
1301        /* Mark the page dirty only if the fault is handled successfully */
1302        if (writable && !ret) {
1303                kvm_set_pfn_dirty(pfn);
1304                mark_page_dirty_in_slot(kvm, memslot, gfn);
1305        }
1306
1307out_unlock:
1308        if (use_read_lock)
1309                read_unlock(&kvm->mmu_lock);
1310        else
1311                write_unlock(&kvm->mmu_lock);
1312        kvm_set_pfn_accessed(pfn);
1313        kvm_release_pfn_clean(pfn);
1314        return ret != -EAGAIN ? ret : 0;
1315}
1316
1317/* Resolve the access fault by making the page young again. */
1318static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1319{
1320        pte_t pte;
1321        kvm_pte_t kpte;
1322        struct kvm_s2_mmu *mmu;
1323
1324        trace_kvm_access_fault(fault_ipa);
1325
1326        write_lock(&vcpu->kvm->mmu_lock);
1327        mmu = vcpu->arch.hw_mmu;
1328        kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1329        write_unlock(&vcpu->kvm->mmu_lock);
1330
1331        pte = __pte(kpte);
1332        if (pte_valid(pte))
1333                kvm_set_pfn_accessed(pte_pfn(pte));
1334}
1335
1336/**
1337 * kvm_handle_guest_abort - handles all 2nd stage aborts
1338 * @vcpu:       the VCPU pointer
1339 *
1340 * Any abort that gets to the host is almost guaranteed to be caused by a
1341 * missing second stage translation table entry, which can mean that either the
1342 * guest simply needs more memory and we must allocate an appropriate page or it
1343 * can mean that the guest tried to access I/O memory, which is emulated by user
1344 * space. The distinction is based on the IPA causing the fault and whether this
1345 * memory region has been registered as standard RAM by user space.
1346 */
1347int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1348{
1349        unsigned long fault_status;
1350        phys_addr_t fault_ipa;
1351        struct kvm_memory_slot *memslot;
1352        unsigned long hva;
1353        bool is_iabt, write_fault, writable;
1354        gfn_t gfn;
1355        int ret, idx;
1356
1357        fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1358
1359        fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1360        is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1361
1362        if (fault_status == FSC_FAULT) {
1363                /* Beyond sanitised PARange (which is the IPA limit) */
1364                if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1365                        kvm_inject_size_fault(vcpu);
1366                        return 1;
1367                }
1368
1369                /* Falls between the IPA range and the PARange? */
1370                if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1371                        fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1372
1373                        if (is_iabt)
1374                                kvm_inject_pabt(vcpu, fault_ipa);
1375                        else
1376                                kvm_inject_dabt(vcpu, fault_ipa);
1377                        return 1;
1378                }
1379        }
1380
1381        /* Synchronous External Abort? */
1382        if (kvm_vcpu_abt_issea(vcpu)) {
1383                /*
1384                 * For RAS the host kernel may handle this abort.
1385                 * There is no need to pass the error into the guest.
1386                 */
1387                if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1388                        kvm_inject_vabt(vcpu);
1389
1390                return 1;
1391        }
1392
1393        trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1394                              kvm_vcpu_get_hfar(vcpu), fault_ipa);
1395
1396        /* Check the stage-2 fault is trans. fault or write fault */
1397        if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1398            fault_status != FSC_ACCESS) {
1399                kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1400                        kvm_vcpu_trap_get_class(vcpu),
1401                        (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1402                        (unsigned long)kvm_vcpu_get_esr(vcpu));
1403                return -EFAULT;
1404        }
1405
1406        idx = srcu_read_lock(&vcpu->kvm->srcu);
1407
1408        gfn = fault_ipa >> PAGE_SHIFT;
1409        memslot = gfn_to_memslot(vcpu->kvm, gfn);
1410        hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1411        write_fault = kvm_is_write_fault(vcpu);
1412        if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1413                /*
1414                 * The guest has put either its instructions or its page-tables
1415                 * somewhere it shouldn't have. Userspace won't be able to do
1416                 * anything about this (there's no syndrome for a start), so
1417                 * re-inject the abort back into the guest.
1418                 */
1419                if (is_iabt) {
1420                        ret = -ENOEXEC;
1421                        goto out;
1422                }
1423
1424                if (kvm_vcpu_abt_iss1tw(vcpu)) {
1425                        kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1426                        ret = 1;
1427                        goto out_unlock;
1428                }
1429
1430                /*
1431                 * Check for a cache maintenance operation. Since we
1432                 * ended-up here, we know it is outside of any memory
1433                 * slot. But we can't find out if that is for a device,
1434                 * or if the guest is just being stupid. The only thing
1435                 * we know for sure is that this range cannot be cached.
1436                 *
1437                 * So let's assume that the guest is just being
1438                 * cautious, and skip the instruction.
1439                 */
1440                if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1441                        kvm_incr_pc(vcpu);
1442                        ret = 1;
1443                        goto out_unlock;
1444                }
1445
1446                /*
1447                 * The IPA is reported as [MAX:12], so we need to
1448                 * complement it with the bottom 12 bits from the
1449                 * faulting VA. This is always 12 bits, irrespective
1450                 * of the page size.
1451                 */
1452                fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1453                ret = io_mem_abort(vcpu, fault_ipa);
1454                goto out_unlock;
1455        }
1456
1457        /* Userspace should not be able to register out-of-bounds IPAs */
1458        VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1459
1460        if (fault_status == FSC_ACCESS) {
1461                handle_access_fault(vcpu, fault_ipa);
1462                ret = 1;
1463                goto out_unlock;
1464        }
1465
1466        ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1467        if (ret == 0)
1468                ret = 1;
1469out:
1470        if (ret == -ENOEXEC) {
1471                kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1472                ret = 1;
1473        }
1474out_unlock:
1475        srcu_read_unlock(&vcpu->kvm->srcu, idx);
1476        return ret;
1477}
1478
1479bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1480{
1481        if (!kvm->arch.mmu.pgt)
1482                return false;
1483
1484        __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1485                             (range->end - range->start) << PAGE_SHIFT,
1486                             range->may_block);
1487
1488        return false;
1489}
1490
1491bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1492{
1493        kvm_pfn_t pfn = pte_pfn(range->pte);
1494        int ret;
1495
1496        if (!kvm->arch.mmu.pgt)
1497                return false;
1498
1499        WARN_ON(range->end - range->start != 1);
1500
1501        ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1502        if (ret)
1503                return false;
1504
1505        /*
1506         * We've moved a page around, probably through CoW, so let's treat
1507         * it just like a translation fault and the map handler will clean
1508         * the cache to the PoC.
1509         *
1510         * The MMU notifiers will have unmapped a huge PMD before calling
1511         * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1512         * therefore we never need to clear out a huge PMD through this
1513         * calling path and a memcache is not required.
1514         */
1515        kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1516                               PAGE_SIZE, __pfn_to_phys(pfn),
1517                               KVM_PGTABLE_PROT_R, NULL);
1518
1519        return false;
1520}
1521
1522bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1523{
1524        u64 size = (range->end - range->start) << PAGE_SHIFT;
1525        kvm_pte_t kpte;
1526        pte_t pte;
1527
1528        if (!kvm->arch.mmu.pgt)
1529                return false;
1530
1531        WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1532
1533        kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1534                                        range->start << PAGE_SHIFT);
1535        pte = __pte(kpte);
1536        return pte_valid(pte) && pte_young(pte);
1537}
1538
1539bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1540{
1541        if (!kvm->arch.mmu.pgt)
1542                return false;
1543
1544        return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1545                                           range->start << PAGE_SHIFT);
1546}
1547
1548phys_addr_t kvm_mmu_get_httbr(void)
1549{
1550        return __pa(hyp_pgtable->pgd);
1551}
1552
1553phys_addr_t kvm_get_idmap_vector(void)
1554{
1555        return hyp_idmap_vector;
1556}
1557
1558static int kvm_map_idmap_text(void)
1559{
1560        unsigned long size = hyp_idmap_end - hyp_idmap_start;
1561        int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1562                                        PAGE_HYP_EXEC);
1563        if (err)
1564                kvm_err("Failed to idmap %lx-%lx\n",
1565                        hyp_idmap_start, hyp_idmap_end);
1566
1567        return err;
1568}
1569
1570static void *kvm_hyp_zalloc_page(void *arg)
1571{
1572        return (void *)get_zeroed_page(GFP_KERNEL);
1573}
1574
1575static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1576        .zalloc_page            = kvm_hyp_zalloc_page,
1577        .get_page               = kvm_host_get_page,
1578        .put_page               = kvm_host_put_page,
1579        .phys_to_virt           = kvm_host_va,
1580        .virt_to_phys           = kvm_host_pa,
1581};
1582
1583int kvm_mmu_init(u32 *hyp_va_bits)
1584{
1585        int err;
1586
1587        hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1588        hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1589        hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1590        hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1591        hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1592
1593        /*
1594         * We rely on the linker script to ensure at build time that the HYP
1595         * init code does not cross a page boundary.
1596         */
1597        BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1598
1599        *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1600        kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1601        kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1602        kvm_debug("HYP VA range: %lx:%lx\n",
1603                  kern_hyp_va(PAGE_OFFSET),
1604                  kern_hyp_va((unsigned long)high_memory - 1));
1605
1606        if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1607            hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1608            hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1609                /*
1610                 * The idmap page is intersecting with the VA space,
1611                 * it is not safe to continue further.
1612                 */
1613                kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1614                err = -EINVAL;
1615                goto out;
1616        }
1617
1618        hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1619        if (!hyp_pgtable) {
1620                kvm_err("Hyp mode page-table not allocated\n");
1621                err = -ENOMEM;
1622                goto out;
1623        }
1624
1625        err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1626        if (err)
1627                goto out_free_pgtable;
1628
1629        err = kvm_map_idmap_text();
1630        if (err)
1631                goto out_destroy_pgtable;
1632
1633        io_map_base = hyp_idmap_start;
1634        return 0;
1635
1636out_destroy_pgtable:
1637        kvm_pgtable_hyp_destroy(hyp_pgtable);
1638out_free_pgtable:
1639        kfree(hyp_pgtable);
1640        hyp_pgtable = NULL;
1641out:
1642        return err;
1643}
1644
1645void kvm_arch_commit_memory_region(struct kvm *kvm,
1646                                   struct kvm_memory_slot *old,
1647                                   const struct kvm_memory_slot *new,
1648                                   enum kvm_mr_change change)
1649{
1650        /*
1651         * At this point memslot has been committed and there is an
1652         * allocated dirty_bitmap[], dirty pages will be tracked while the
1653         * memory slot is write protected.
1654         */
1655        if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1656                /*
1657                 * If we're with initial-all-set, we don't need to write
1658                 * protect any pages because they're all reported as dirty.
1659                 * Huge pages and normal pages will be write protect gradually.
1660                 */
1661                if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1662                        kvm_mmu_wp_memory_region(kvm, new->id);
1663                }
1664        }
1665}
1666
1667int kvm_arch_prepare_memory_region(struct kvm *kvm,
1668                                   const struct kvm_memory_slot *old,
1669                                   struct kvm_memory_slot *new,
1670                                   enum kvm_mr_change change)
1671{
1672        hva_t hva, reg_end;
1673        int ret = 0;
1674
1675        if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1676                        change != KVM_MR_FLAGS_ONLY)
1677                return 0;
1678
1679        /*
1680         * Prevent userspace from creating a memory region outside of the IPA
1681         * space addressable by the KVM guest IPA space.
1682         */
1683        if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1684                return -EFAULT;
1685
1686        hva = new->userspace_addr;
1687        reg_end = hva + (new->npages << PAGE_SHIFT);
1688
1689        mmap_read_lock(current->mm);
1690        /*
1691         * A memory region could potentially cover multiple VMAs, and any holes
1692         * between them, so iterate over all of them.
1693         *
1694         *     +--------------------------------------------+
1695         * +---------------+----------------+   +----------------+
1696         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1697         * +---------------+----------------+   +----------------+
1698         *     |               memory region                |
1699         *     +--------------------------------------------+
1700         */
1701        do {
1702                struct vm_area_struct *vma;
1703
1704                vma = find_vma_intersection(current->mm, hva, reg_end);
1705                if (!vma)
1706                        break;
1707
1708                /*
1709                 * VM_SHARED mappings are not allowed with MTE to avoid races
1710                 * when updating the PG_mte_tagged page flag, see
1711                 * sanitise_mte_tags for more details.
1712                 */
1713                if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1714                        ret = -EINVAL;
1715                        break;
1716                }
1717
1718                if (vma->vm_flags & VM_PFNMAP) {
1719                        /* IO region dirty page logging not allowed */
1720                        if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1721                                ret = -EINVAL;
1722                                break;
1723                        }
1724                }
1725                hva = min(reg_end, vma->vm_end);
1726        } while (hva < reg_end);
1727
1728        mmap_read_unlock(current->mm);
1729        return ret;
1730}
1731
1732void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1733{
1734}
1735
1736void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1737{
1738}
1739
1740void kvm_arch_flush_shadow_all(struct kvm *kvm)
1741{
1742        kvm_free_stage2_pgd(&kvm->arch.mmu);
1743}
1744
1745void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1746                                   struct kvm_memory_slot *slot)
1747{
1748        gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1749        phys_addr_t size = slot->npages << PAGE_SHIFT;
1750
1751        write_lock(&kvm->mmu_lock);
1752        unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1753        write_unlock(&kvm->mmu_lock);
1754}
1755
1756/*
1757 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1758 *
1759 * Main problems:
1760 * - S/W ops are local to a CPU (not broadcast)
1761 * - We have line migration behind our back (speculation)
1762 * - System caches don't support S/W at all (damn!)
1763 *
1764 * In the face of the above, the best we can do is to try and convert
1765 * S/W ops to VA ops. Because the guest is not allowed to infer the
1766 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1767 * which is a rather good thing for us.
1768 *
1769 * Also, it is only used when turning caches on/off ("The expected
1770 * usage of the cache maintenance instructions that operate by set/way
1771 * is associated with the cache maintenance instructions associated
1772 * with the powerdown and powerup of caches, if this is required by
1773 * the implementation.").
1774 *
1775 * We use the following policy:
1776 *
1777 * - If we trap a S/W operation, we enable VM trapping to detect
1778 *   caches being turned on/off, and do a full clean.
1779 *
1780 * - We flush the caches on both caches being turned on and off.
1781 *
1782 * - Once the caches are enabled, we stop trapping VM ops.
1783 */
1784void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1785{
1786        unsigned long hcr = *vcpu_hcr(vcpu);
1787
1788        /*
1789         * If this is the first time we do a S/W operation
1790         * (i.e. HCR_TVM not set) flush the whole memory, and set the
1791         * VM trapping.
1792         *
1793         * Otherwise, rely on the VM trapping to wait for the MMU +
1794         * Caches to be turned off. At that point, we'll be able to
1795         * clean the caches again.
1796         */
1797        if (!(hcr & HCR_TVM)) {
1798                trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1799                                        vcpu_has_cache_enabled(vcpu));
1800                stage2_flush_vm(vcpu->kvm);
1801                *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1802        }
1803}
1804
1805void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1806{
1807        bool now_enabled = vcpu_has_cache_enabled(vcpu);
1808
1809        /*
1810         * If switching the MMU+caches on, need to invalidate the caches.
1811         * If switching it off, need to clean the caches.
1812         * Clean + invalidate does the trick always.
1813         */
1814        if (now_enabled != was_enabled)
1815                stage2_flush_vm(vcpu->kvm);
1816
1817        /* Caches are now on, stop trapping VM ops (until a S/W op) */
1818        if (now_enabled)
1819                *vcpu_hcr(vcpu) &= ~HCR_TVM;
1820
1821        trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1822}
1823