linux/arch/arm64/kvm/vgic/vgic-mmio-v2.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VGICv2 MMIO handling functions
   4 */
   5
   6#include <linux/irqchip/arm-gic.h>
   7#include <linux/kvm.h>
   8#include <linux/kvm_host.h>
   9#include <linux/nospec.h>
  10
  11#include <kvm/iodev.h>
  12#include <kvm/arm_vgic.h>
  13
  14#include "vgic.h"
  15#include "vgic-mmio.h"
  16
  17/*
  18 * The Revision field in the IIDR have the following meanings:
  19 *
  20 * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
  21 * Revision 2: Interrupt groups are guest-configurable and signaled using
  22 *             their configured groups.
  23 */
  24
  25static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
  26                                            gpa_t addr, unsigned int len)
  27{
  28        struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  29        u32 value;
  30
  31        switch (addr & 0x0c) {
  32        case GIC_DIST_CTRL:
  33                value = vgic->enabled ? GICD_ENABLE : 0;
  34                break;
  35        case GIC_DIST_CTR:
  36                value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  37                value = (value >> 5) - 1;
  38                value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
  39                break;
  40        case GIC_DIST_IIDR:
  41                value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  42                        (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  43                        (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  44                break;
  45        default:
  46                return 0;
  47        }
  48
  49        return value;
  50}
  51
  52static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
  53                                    gpa_t addr, unsigned int len,
  54                                    unsigned long val)
  55{
  56        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  57        bool was_enabled = dist->enabled;
  58
  59        switch (addr & 0x0c) {
  60        case GIC_DIST_CTRL:
  61                dist->enabled = val & GICD_ENABLE;
  62                if (!was_enabled && dist->enabled)
  63                        vgic_kick_vcpus(vcpu->kvm);
  64                break;
  65        case GIC_DIST_CTR:
  66        case GIC_DIST_IIDR:
  67                /* Nothing to do */
  68                return;
  69        }
  70}
  71
  72static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
  73                                           gpa_t addr, unsigned int len,
  74                                           unsigned long val)
  75{
  76        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  77        u32 reg;
  78
  79        switch (addr & 0x0c) {
  80        case GIC_DIST_IIDR:
  81                reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
  82                if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
  83                        return -EINVAL;
  84
  85                /*
  86                 * If we observe a write to GICD_IIDR we know that userspace
  87                 * has been updated and has had a chance to cope with older
  88                 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
  89                 * interrupts as group 1, and therefore we now allow groups to
  90                 * be user writable.  Doing this by default would break
  91                 * migration from old kernels to new kernels with legacy
  92                 * userspace.
  93                 */
  94                reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
  95                switch (reg) {
  96                case KVM_VGIC_IMP_REV_2:
  97                case KVM_VGIC_IMP_REV_3:
  98                        vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
  99                        dist->implementation_rev = reg;
 100                        return 0;
 101                default:
 102                        return -EINVAL;
 103                }
 104        }
 105
 106        vgic_mmio_write_v2_misc(vcpu, addr, len, val);
 107        return 0;
 108}
 109
 110static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
 111                                            gpa_t addr, unsigned int len,
 112                                            unsigned long val)
 113{
 114        if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
 115                vgic_mmio_write_group(vcpu, addr, len, val);
 116
 117        return 0;
 118}
 119
 120static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
 121                                 gpa_t addr, unsigned int len,
 122                                 unsigned long val)
 123{
 124        int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
 125        int intid = val & 0xf;
 126        int targets = (val >> 16) & 0xff;
 127        int mode = (val >> 24) & 0x03;
 128        struct kvm_vcpu *vcpu;
 129        unsigned long flags, c;
 130
 131        switch (mode) {
 132        case 0x0:               /* as specified by targets */
 133                break;
 134        case 0x1:
 135                targets = (1U << nr_vcpus) - 1;                 /* all, ... */
 136                targets &= ~(1U << source_vcpu->vcpu_id);       /* but self */
 137                break;
 138        case 0x2:               /* this very vCPU only */
 139                targets = (1U << source_vcpu->vcpu_id);
 140                break;
 141        case 0x3:               /* reserved */
 142                return;
 143        }
 144
 145        kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
 146                struct vgic_irq *irq;
 147
 148                if (!(targets & (1U << c)))
 149                        continue;
 150
 151                irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
 152
 153                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 154                irq->pending_latch = true;
 155                irq->source |= 1U << source_vcpu->vcpu_id;
 156
 157                vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
 158                vgic_put_irq(source_vcpu->kvm, irq);
 159        }
 160}
 161
 162static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
 163                                           gpa_t addr, unsigned int len)
 164{
 165        u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
 166        int i;
 167        u64 val = 0;
 168
 169        for (i = 0; i < len; i++) {
 170                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 171
 172                val |= (u64)irq->targets << (i * 8);
 173
 174                vgic_put_irq(vcpu->kvm, irq);
 175        }
 176
 177        return val;
 178}
 179
 180static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
 181                                   gpa_t addr, unsigned int len,
 182                                   unsigned long val)
 183{
 184        u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
 185        u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
 186        int i;
 187        unsigned long flags;
 188
 189        /* GICD_ITARGETSR[0-7] are read-only */
 190        if (intid < VGIC_NR_PRIVATE_IRQS)
 191                return;
 192
 193        for (i = 0; i < len; i++) {
 194                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
 195                int target;
 196
 197                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 198
 199                irq->targets = (val >> (i * 8)) & cpu_mask;
 200                target = irq->targets ? __ffs(irq->targets) : 0;
 201                irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
 202
 203                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 204                vgic_put_irq(vcpu->kvm, irq);
 205        }
 206}
 207
 208static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
 209                                            gpa_t addr, unsigned int len)
 210{
 211        u32 intid = addr & 0x0f;
 212        int i;
 213        u64 val = 0;
 214
 215        for (i = 0; i < len; i++) {
 216                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 217
 218                val |= (u64)irq->source << (i * 8);
 219
 220                vgic_put_irq(vcpu->kvm, irq);
 221        }
 222        return val;
 223}
 224
 225static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
 226                                     gpa_t addr, unsigned int len,
 227                                     unsigned long val)
 228{
 229        u32 intid = addr & 0x0f;
 230        int i;
 231        unsigned long flags;
 232
 233        for (i = 0; i < len; i++) {
 234                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 235
 236                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 237
 238                irq->source &= ~((val >> (i * 8)) & 0xff);
 239                if (!irq->source)
 240                        irq->pending_latch = false;
 241
 242                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 243                vgic_put_irq(vcpu->kvm, irq);
 244        }
 245}
 246
 247static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
 248                                     gpa_t addr, unsigned int len,
 249                                     unsigned long val)
 250{
 251        u32 intid = addr & 0x0f;
 252        int i;
 253        unsigned long flags;
 254
 255        for (i = 0; i < len; i++) {
 256                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 257
 258                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 259
 260                irq->source |= (val >> (i * 8)) & 0xff;
 261
 262                if (irq->source) {
 263                        irq->pending_latch = true;
 264                        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 265                } else {
 266                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 267                }
 268                vgic_put_irq(vcpu->kvm, irq);
 269        }
 270}
 271
 272#define GICC_ARCH_VERSION_V2    0x2
 273
 274/* These are for userland accesses only, there is no guest-facing emulation. */
 275static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
 276                                           gpa_t addr, unsigned int len)
 277{
 278        struct vgic_vmcr vmcr;
 279        u32 val;
 280
 281        vgic_get_vmcr(vcpu, &vmcr);
 282
 283        switch (addr & 0xff) {
 284        case GIC_CPU_CTRL:
 285                val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
 286                val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
 287                val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
 288                val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
 289                val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
 290                val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
 291
 292                break;
 293        case GIC_CPU_PRIMASK:
 294                /*
 295                 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
 296                 * PMR field as GICH_VMCR.VMPriMask rather than
 297                 * GICC_PMR.Priority, so we expose the upper five bits of
 298                 * priority mask to userspace using the lower bits in the
 299                 * unsigned long.
 300                 */
 301                val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
 302                        GICV_PMR_PRIORITY_SHIFT;
 303                break;
 304        case GIC_CPU_BINPOINT:
 305                val = vmcr.bpr;
 306                break;
 307        case GIC_CPU_ALIAS_BINPOINT:
 308                val = vmcr.abpr;
 309                break;
 310        case GIC_CPU_IDENT:
 311                val = ((PRODUCT_ID_KVM << 20) |
 312                       (GICC_ARCH_VERSION_V2 << 16) |
 313                       IMPLEMENTER_ARM);
 314                break;
 315        default:
 316                return 0;
 317        }
 318
 319        return val;
 320}
 321
 322static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
 323                                   gpa_t addr, unsigned int len,
 324                                   unsigned long val)
 325{
 326        struct vgic_vmcr vmcr;
 327
 328        vgic_get_vmcr(vcpu, &vmcr);
 329
 330        switch (addr & 0xff) {
 331        case GIC_CPU_CTRL:
 332                vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
 333                vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
 334                vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
 335                vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
 336                vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
 337                vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
 338
 339                break;
 340        case GIC_CPU_PRIMASK:
 341                /*
 342                 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
 343                 * PMR field as GICH_VMCR.VMPriMask rather than
 344                 * GICC_PMR.Priority, so we expose the upper five bits of
 345                 * priority mask to userspace using the lower bits in the
 346                 * unsigned long.
 347                 */
 348                vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
 349                        GICV_PMR_PRIORITY_MASK;
 350                break;
 351        case GIC_CPU_BINPOINT:
 352                vmcr.bpr = val;
 353                break;
 354        case GIC_CPU_ALIAS_BINPOINT:
 355                vmcr.abpr = val;
 356                break;
 357        }
 358
 359        vgic_set_vmcr(vcpu, &vmcr);
 360}
 361
 362static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
 363                                        gpa_t addr, unsigned int len)
 364{
 365        int n; /* which APRn is this */
 366
 367        n = (addr >> 2) & 0x3;
 368
 369        if (kvm_vgic_global_state.type == VGIC_V2) {
 370                /* GICv2 hardware systems support max. 32 groups */
 371                if (n != 0)
 372                        return 0;
 373                return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
 374        } else {
 375                struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
 376
 377                if (n > vgic_v3_max_apr_idx(vcpu))
 378                        return 0;
 379
 380                n = array_index_nospec(n, 4);
 381
 382                /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
 383                return vgicv3->vgic_ap1r[n];
 384        }
 385}
 386
 387static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
 388                                gpa_t addr, unsigned int len,
 389                                unsigned long val)
 390{
 391        int n; /* which APRn is this */
 392
 393        n = (addr >> 2) & 0x3;
 394
 395        if (kvm_vgic_global_state.type == VGIC_V2) {
 396                /* GICv2 hardware systems support max. 32 groups */
 397                if (n != 0)
 398                        return;
 399                vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
 400        } else {
 401                struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
 402
 403                if (n > vgic_v3_max_apr_idx(vcpu))
 404                        return;
 405
 406                n = array_index_nospec(n, 4);
 407
 408                /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
 409                vgicv3->vgic_ap1r[n] = val;
 410        }
 411}
 412
 413static const struct vgic_register_region vgic_v2_dist_registers[] = {
 414        REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
 415                vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
 416                NULL, vgic_mmio_uaccess_write_v2_misc,
 417                12, VGIC_ACCESS_32bit),
 418        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
 419                vgic_mmio_read_group, vgic_mmio_write_group,
 420                NULL, vgic_mmio_uaccess_write_v2_group, 1,
 421                VGIC_ACCESS_32bit),
 422        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
 423                vgic_mmio_read_enable, vgic_mmio_write_senable,
 424                NULL, vgic_uaccess_write_senable, 1,
 425                VGIC_ACCESS_32bit),
 426        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
 427                vgic_mmio_read_enable, vgic_mmio_write_cenable,
 428                NULL, vgic_uaccess_write_cenable, 1,
 429                VGIC_ACCESS_32bit),
 430        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
 431                vgic_mmio_read_pending, vgic_mmio_write_spending,
 432                vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
 433                VGIC_ACCESS_32bit),
 434        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
 435                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 436                vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
 437                VGIC_ACCESS_32bit),
 438        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
 439                vgic_mmio_read_active, vgic_mmio_write_sactive,
 440                vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
 441                VGIC_ACCESS_32bit),
 442        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
 443                vgic_mmio_read_active, vgic_mmio_write_cactive,
 444                vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
 445                VGIC_ACCESS_32bit),
 446        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
 447                vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
 448                8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 449        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
 450                vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
 451                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 452        REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
 453                vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
 454                VGIC_ACCESS_32bit),
 455        REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
 456                vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
 457                VGIC_ACCESS_32bit),
 458        REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
 459                vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
 460                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 461        REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
 462                vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
 463                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 464};
 465
 466static const struct vgic_register_region vgic_v2_cpu_registers[] = {
 467        REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
 468                vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
 469                VGIC_ACCESS_32bit),
 470        REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
 471                vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
 472                VGIC_ACCESS_32bit),
 473        REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
 474                vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
 475                VGIC_ACCESS_32bit),
 476        REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
 477                vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
 478                VGIC_ACCESS_32bit),
 479        REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
 480                vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
 481                VGIC_ACCESS_32bit),
 482        REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
 483                vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
 484                VGIC_ACCESS_32bit),
 485};
 486
 487unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
 488{
 489        dev->regions = vgic_v2_dist_registers;
 490        dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
 491
 492        kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
 493
 494        return SZ_4K;
 495}
 496
 497int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
 498{
 499        const struct vgic_register_region *region;
 500        struct vgic_io_device iodev;
 501        struct vgic_reg_attr reg_attr;
 502        struct kvm_vcpu *vcpu;
 503        gpa_t addr;
 504        int ret;
 505
 506        ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
 507        if (ret)
 508                return ret;
 509
 510        vcpu = reg_attr.vcpu;
 511        addr = reg_attr.addr;
 512
 513        switch (attr->group) {
 514        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
 515                iodev.regions = vgic_v2_dist_registers;
 516                iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
 517                iodev.base_addr = 0;
 518                break;
 519        case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
 520                iodev.regions = vgic_v2_cpu_registers;
 521                iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
 522                iodev.base_addr = 0;
 523                break;
 524        default:
 525                return -ENXIO;
 526        }
 527
 528        /* We only support aligned 32-bit accesses. */
 529        if (addr & 3)
 530                return -ENXIO;
 531
 532        region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
 533        if (!region)
 534                return -ENXIO;
 535
 536        return 0;
 537}
 538
 539int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 540                          int offset, u32 *val)
 541{
 542        struct vgic_io_device dev = {
 543                .regions = vgic_v2_cpu_registers,
 544                .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
 545                .iodev_type = IODEV_CPUIF,
 546        };
 547
 548        return vgic_uaccess(vcpu, &dev, is_write, offset, val);
 549}
 550
 551int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 552                         int offset, u32 *val)
 553{
 554        struct vgic_io_device dev = {
 555                .regions = vgic_v2_dist_registers,
 556                .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
 557                .iodev_type = IODEV_DIST,
 558        };
 559
 560        return vgic_uaccess(vcpu, &dev, is_write, offset, val);
 561}
 562