linux/arch/powerpc/include/asm/book3s/64/mmu-hash.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
   3#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
   4/*
   5 * PowerPC64 memory management structures
   6 *
   7 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
   8 *   PPC64 rework.
   9 */
  10
  11#include <asm/page.h>
  12#include <asm/bug.h>
  13#include <asm/asm-const.h>
  14
  15/*
  16 * This is necessary to get the definition of PGTABLE_RANGE which we
  17 * need for various slices related matters. Note that this isn't the
  18 * complete pgtable.h but only a portion of it.
  19 */
  20#include <asm/book3s/64/pgtable.h>
  21#include <asm/book3s/64/slice.h>
  22#include <asm/task_size_64.h>
  23#include <asm/cpu_has_feature.h>
  24
  25/*
  26 * SLB
  27 */
  28
  29#define SLB_NUM_BOLTED          2
  30#define SLB_CACHE_ENTRIES       8
  31#define SLB_MIN_SIZE            32
  32
  33/* Bits in the SLB ESID word */
  34#define SLB_ESID_V              ASM_CONST(0x0000000008000000) /* valid */
  35
  36/* Bits in the SLB VSID word */
  37#define SLB_VSID_SHIFT          12
  38#define SLB_VSID_SHIFT_256M     SLB_VSID_SHIFT
  39#define SLB_VSID_SHIFT_1T       24
  40#define SLB_VSID_SSIZE_SHIFT    62
  41#define SLB_VSID_B              ASM_CONST(0xc000000000000000)
  42#define SLB_VSID_B_256M         ASM_CONST(0x0000000000000000)
  43#define SLB_VSID_B_1T           ASM_CONST(0x4000000000000000)
  44#define SLB_VSID_KS             ASM_CONST(0x0000000000000800)
  45#define SLB_VSID_KP             ASM_CONST(0x0000000000000400)
  46#define SLB_VSID_N              ASM_CONST(0x0000000000000200) /* no-execute */
  47#define SLB_VSID_L              ASM_CONST(0x0000000000000100)
  48#define SLB_VSID_C              ASM_CONST(0x0000000000000080) /* class */
  49#define SLB_VSID_LP             ASM_CONST(0x0000000000000030)
  50#define SLB_VSID_LP_00          ASM_CONST(0x0000000000000000)
  51#define SLB_VSID_LP_01          ASM_CONST(0x0000000000000010)
  52#define SLB_VSID_LP_10          ASM_CONST(0x0000000000000020)
  53#define SLB_VSID_LP_11          ASM_CONST(0x0000000000000030)
  54#define SLB_VSID_LLP            (SLB_VSID_L|SLB_VSID_LP)
  55
  56#define SLB_VSID_KERNEL         (SLB_VSID_KP)
  57#define SLB_VSID_USER           (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  58
  59#define SLBIE_C                 (0x08000000)
  60#define SLBIE_SSIZE_SHIFT       25
  61
  62/*
  63 * Hash table
  64 */
  65
  66#define HPTES_PER_GROUP 8
  67
  68#define HPTE_V_SSIZE_SHIFT      62
  69#define HPTE_V_AVPN_SHIFT       7
  70#define HPTE_V_COMMON_BITS      ASM_CONST(0x000fffffffffffff)
  71#define HPTE_V_AVPN             ASM_CONST(0x3fffffffffffff80)
  72#define HPTE_V_AVPN_3_0         ASM_CONST(0x000fffffffffff80)
  73#define HPTE_V_AVPN_VAL(x)      (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  74#define HPTE_V_COMPARE(x,y)     (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  75#define HPTE_V_BOLTED           ASM_CONST(0x0000000000000010)
  76#define HPTE_V_LOCK             ASM_CONST(0x0000000000000008)
  77#define HPTE_V_LARGE            ASM_CONST(0x0000000000000004)
  78#define HPTE_V_SECONDARY        ASM_CONST(0x0000000000000002)
  79#define HPTE_V_VALID            ASM_CONST(0x0000000000000001)
  80
  81/*
  82 * ISA 3.0 has a different HPTE format.
  83 */
  84#define HPTE_R_3_0_SSIZE_SHIFT  58
  85#define HPTE_R_3_0_SSIZE_MASK   (3ull << HPTE_R_3_0_SSIZE_SHIFT)
  86#define HPTE_R_PP0              ASM_CONST(0x8000000000000000)
  87#define HPTE_R_TS               ASM_CONST(0x4000000000000000)
  88#define HPTE_R_KEY_HI           ASM_CONST(0x3000000000000000)
  89#define HPTE_R_KEY_BIT4         ASM_CONST(0x2000000000000000)
  90#define HPTE_R_KEY_BIT3         ASM_CONST(0x1000000000000000)
  91#define HPTE_R_RPN_SHIFT        12
  92#define HPTE_R_RPN              ASM_CONST(0x0ffffffffffff000)
  93#define HPTE_R_RPN_3_0          ASM_CONST(0x01fffffffffff000)
  94#define HPTE_R_PP               ASM_CONST(0x0000000000000003)
  95#define HPTE_R_PPP              ASM_CONST(0x8000000000000003)
  96#define HPTE_R_N                ASM_CONST(0x0000000000000004)
  97#define HPTE_R_G                ASM_CONST(0x0000000000000008)
  98#define HPTE_R_M                ASM_CONST(0x0000000000000010)
  99#define HPTE_R_I                ASM_CONST(0x0000000000000020)
 100#define HPTE_R_W                ASM_CONST(0x0000000000000040)
 101#define HPTE_R_WIMG             ASM_CONST(0x0000000000000078)
 102#define HPTE_R_C                ASM_CONST(0x0000000000000080)
 103#define HPTE_R_R                ASM_CONST(0x0000000000000100)
 104#define HPTE_R_KEY_LO           ASM_CONST(0x0000000000000e00)
 105#define HPTE_R_KEY_BIT2         ASM_CONST(0x0000000000000800)
 106#define HPTE_R_KEY_BIT1         ASM_CONST(0x0000000000000400)
 107#define HPTE_R_KEY_BIT0         ASM_CONST(0x0000000000000200)
 108#define HPTE_R_KEY              (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
 109
 110#define HPTE_V_1TB_SEG          ASM_CONST(0x4000000000000000)
 111#define HPTE_V_VRMA_MASK        ASM_CONST(0x4001ffffff000000)
 112
 113/* Values for PP (assumes Ks=0, Kp=1) */
 114#define PP_RWXX 0       /* Supervisor read/write, User none */
 115#define PP_RWRX 1       /* Supervisor read/write, User read */
 116#define PP_RWRW 2       /* Supervisor read/write, User read/write */
 117#define PP_RXRX 3       /* Supervisor read,       User read */
 118#define PP_RXXX (HPTE_R_PP0 | 2)        /* Supervisor read, user none */
 119
 120/* Fields for tlbiel instruction in architecture 2.06 */
 121#define TLBIEL_INVAL_SEL_MASK   0xc00   /* invalidation selector */
 122#define  TLBIEL_INVAL_PAGE      0x000   /* invalidate a single page */
 123#define  TLBIEL_INVAL_SET_LPID  0x800   /* invalidate a set for current LPID */
 124#define  TLBIEL_INVAL_SET       0xc00   /* invalidate a set for all LPIDs */
 125#define TLBIEL_INVAL_SET_MASK   0xfff000        /* set number to inval. */
 126#define TLBIEL_INVAL_SET_SHIFT  12
 127
 128#define POWER7_TLB_SETS         128     /* # sets in POWER7 TLB */
 129#define POWER8_TLB_SETS         512     /* # sets in POWER8 TLB */
 130#define POWER9_TLB_SETS_HASH    256     /* # sets in POWER9 TLB Hash mode */
 131#define POWER9_TLB_SETS_RADIX   128     /* # sets in POWER9 TLB Radix mode */
 132
 133#ifndef __ASSEMBLY__
 134
 135struct mmu_hash_ops {
 136        void            (*hpte_invalidate)(unsigned long slot,
 137                                           unsigned long vpn,
 138                                           int bpsize, int apsize,
 139                                           int ssize, int local);
 140        long            (*hpte_updatepp)(unsigned long slot,
 141                                         unsigned long newpp,
 142                                         unsigned long vpn,
 143                                         int bpsize, int apsize,
 144                                         int ssize, unsigned long flags);
 145        void            (*hpte_updateboltedpp)(unsigned long newpp,
 146                                               unsigned long ea,
 147                                               int psize, int ssize);
 148        long            (*hpte_insert)(unsigned long hpte_group,
 149                                       unsigned long vpn,
 150                                       unsigned long prpn,
 151                                       unsigned long rflags,
 152                                       unsigned long vflags,
 153                                       int psize, int apsize,
 154                                       int ssize);
 155        long            (*hpte_remove)(unsigned long hpte_group);
 156        int             (*hpte_removebolted)(unsigned long ea,
 157                                             int psize, int ssize);
 158        void            (*flush_hash_range)(unsigned long number, int local);
 159        void            (*hugepage_invalidate)(unsigned long vsid,
 160                                               unsigned long addr,
 161                                               unsigned char *hpte_slot_array,
 162                                               int psize, int ssize, int local);
 163        int             (*resize_hpt)(unsigned long shift);
 164        /*
 165         * Special for kexec.
 166         * To be called in real mode with interrupts disabled. No locks are
 167         * taken as such, concurrent access on pre POWER5 hardware could result
 168         * in a deadlock.
 169         * The linear mapping is destroyed as well.
 170         */
 171        void            (*hpte_clear_all)(void);
 172};
 173extern struct mmu_hash_ops mmu_hash_ops;
 174
 175struct hash_pte {
 176        __be64 v;
 177        __be64 r;
 178};
 179
 180extern struct hash_pte *htab_address;
 181extern unsigned long htab_size_bytes;
 182extern unsigned long htab_hash_mask;
 183
 184
 185static inline int shift_to_mmu_psize(unsigned int shift)
 186{
 187        int psize;
 188
 189        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
 190                if (mmu_psize_defs[psize].shift == shift)
 191                        return psize;
 192        return -1;
 193}
 194
 195static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
 196{
 197        if (mmu_psize_defs[mmu_psize].shift)
 198                return mmu_psize_defs[mmu_psize].shift;
 199        BUG();
 200}
 201
 202static inline unsigned int ap_to_shift(unsigned long ap)
 203{
 204        int psize;
 205
 206        for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
 207                if (mmu_psize_defs[psize].ap == ap)
 208                        return mmu_psize_defs[psize].shift;
 209        }
 210
 211        return -1;
 212}
 213
 214static inline unsigned long get_sllp_encoding(int psize)
 215{
 216        unsigned long sllp;
 217
 218        sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
 219                ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
 220        return sllp;
 221}
 222
 223#endif /* __ASSEMBLY__ */
 224
 225/*
 226 * Segment sizes.
 227 * These are the values used by hardware in the B field of
 228 * SLB entries and the first dword of MMU hashtable entries.
 229 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 230 */
 231#define MMU_SEGSIZE_256M        0
 232#define MMU_SEGSIZE_1T          1
 233
 234/*
 235 * encode page number shift.
 236 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
 237 * 12 bits. This enable us to address upto 76 bit va.
 238 * For hpt hash from a va we can ignore the page size bits of va and for
 239 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
 240 * we work in all cases including 4k page size.
 241 */
 242#define VPN_SHIFT       12
 243
 244/*
 245 * HPTE Large Page (LP) details
 246 */
 247#define LP_SHIFT        12
 248#define LP_BITS         8
 249#define LP_MASK(i)      ((0xFF >> (i)) << LP_SHIFT)
 250
 251#ifndef __ASSEMBLY__
 252
 253static inline int slb_vsid_shift(int ssize)
 254{
 255        if (ssize == MMU_SEGSIZE_256M)
 256                return SLB_VSID_SHIFT;
 257        return SLB_VSID_SHIFT_1T;
 258}
 259
 260static inline int segment_shift(int ssize)
 261{
 262        if (ssize == MMU_SEGSIZE_256M)
 263                return SID_SHIFT;
 264        return SID_SHIFT_1T;
 265}
 266
 267/*
 268 * This array is indexed by the LP field of the HPTE second dword.
 269 * Since this field may contain some RPN bits, some entries are
 270 * replicated so that we get the same value irrespective of RPN.
 271 * The top 4 bits are the page size index (MMU_PAGE_*) for the
 272 * actual page size, the bottom 4 bits are the base page size.
 273 */
 274extern u8 hpte_page_sizes[1 << LP_BITS];
 275
 276static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
 277                                             bool is_base_size)
 278{
 279        unsigned int i, lp;
 280
 281        if (!(h & HPTE_V_LARGE))
 282                return 1ul << 12;
 283
 284        /* Look at the 8 bit LP value */
 285        lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
 286        i = hpte_page_sizes[lp];
 287        if (!i)
 288                return 0;
 289        if (!is_base_size)
 290                i >>= 4;
 291        return 1ul << mmu_psize_defs[i & 0xf].shift;
 292}
 293
 294static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
 295{
 296        return __hpte_page_size(h, l, 0);
 297}
 298
 299static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
 300{
 301        return __hpte_page_size(h, l, 1);
 302}
 303
 304/*
 305 * The current system page and segment sizes
 306 */
 307extern int mmu_kernel_ssize;
 308extern int mmu_highuser_ssize;
 309extern u16 mmu_slb_size;
 310extern unsigned long tce_alloc_start, tce_alloc_end;
 311
 312/*
 313 * If the processor supports 64k normal pages but not 64k cache
 314 * inhibited pages, we have to be prepared to switch processes
 315 * to use 4k pages when they create cache-inhibited mappings.
 316 * If this is the case, mmu_ci_restrictions will be set to 1.
 317 */
 318extern int mmu_ci_restrictions;
 319
 320/*
 321 * This computes the AVPN and B fields of the first dword of a HPTE,
 322 * for use when we want to match an existing PTE.  The bottom 7 bits
 323 * of the returned value are zero.
 324 */
 325static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
 326                                             int ssize)
 327{
 328        unsigned long v;
 329        /*
 330         * The AVA field omits the low-order 23 bits of the 78 bits VA.
 331         * These bits are not needed in the PTE, because the
 332         * low-order b of these bits are part of the byte offset
 333         * into the virtual page and, if b < 23, the high-order
 334         * 23-b of these bits are always used in selecting the
 335         * PTEGs to be searched
 336         */
 337        v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
 338        v <<= HPTE_V_AVPN_SHIFT;
 339        v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
 340        return v;
 341}
 342
 343/*
 344 * ISA v3.0 defines a new HPTE format, which differs from the old
 345 * format in having smaller AVPN and ARPN fields, and the B field
 346 * in the second dword instead of the first.
 347 */
 348static inline unsigned long hpte_old_to_new_v(unsigned long v)
 349{
 350        /* trim AVPN, drop B */
 351        return v & HPTE_V_COMMON_BITS;
 352}
 353
 354static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
 355{
 356        /* move B field from 1st to 2nd dword, trim ARPN */
 357        return (r & ~HPTE_R_3_0_SSIZE_MASK) |
 358                (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
 359}
 360
 361static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
 362{
 363        /* insert B field */
 364        return (v & HPTE_V_COMMON_BITS) |
 365                ((r & HPTE_R_3_0_SSIZE_MASK) <<
 366                 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
 367}
 368
 369static inline unsigned long hpte_new_to_old_r(unsigned long r)
 370{
 371        /* clear out B field */
 372        return r & ~HPTE_R_3_0_SSIZE_MASK;
 373}
 374
 375static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
 376{
 377        unsigned long hpte_v;
 378
 379        hpte_v = be64_to_cpu(hptep->v);
 380        if (cpu_has_feature(CPU_FTR_ARCH_300))
 381                hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
 382        return hpte_v;
 383}
 384
 385/*
 386 * This function sets the AVPN and L fields of the HPTE  appropriately
 387 * using the base page size and actual page size.
 388 */
 389static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
 390                                          int actual_psize, int ssize)
 391{
 392        unsigned long v;
 393        v = hpte_encode_avpn(vpn, base_psize, ssize);
 394        if (actual_psize != MMU_PAGE_4K)
 395                v |= HPTE_V_LARGE;
 396        return v;
 397}
 398
 399/*
 400 * This function sets the ARPN, and LP fields of the HPTE appropriately
 401 * for the page size. We assume the pa is already "clean" that is properly
 402 * aligned for the requested page size
 403 */
 404static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
 405                                          int actual_psize)
 406{
 407        /* A 4K page needs no special encoding */
 408        if (actual_psize == MMU_PAGE_4K)
 409                return pa & HPTE_R_RPN;
 410        else {
 411                unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
 412                unsigned int shift = mmu_psize_defs[actual_psize].shift;
 413                return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
 414        }
 415}
 416
 417/*
 418 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
 419 */
 420static inline unsigned long hpt_vpn(unsigned long ea,
 421                                    unsigned long vsid, int ssize)
 422{
 423        unsigned long mask;
 424        int s_shift = segment_shift(ssize);
 425
 426        mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
 427        return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
 428}
 429
 430/*
 431 * This hashes a virtual address
 432 */
 433static inline unsigned long hpt_hash(unsigned long vpn,
 434                                     unsigned int shift, int ssize)
 435{
 436        unsigned long mask;
 437        unsigned long hash, vsid;
 438
 439        /* VPN_SHIFT can be atmost 12 */
 440        if (ssize == MMU_SEGSIZE_256M) {
 441                mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
 442                hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
 443                        ((vpn & mask) >> (shift - VPN_SHIFT));
 444        } else {
 445                mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
 446                vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
 447                hash = vsid ^ (vsid << 25) ^
 448                        ((vpn & mask) >> (shift - VPN_SHIFT)) ;
 449        }
 450        return hash & 0x7fffffffffUL;
 451}
 452
 453#define HPTE_LOCAL_UPDATE       0x1
 454#define HPTE_NOHPTE_UPDATE      0x2
 455#define HPTE_USE_KERNEL_KEY     0x4
 456
 457long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
 458                           unsigned long rlags, unsigned long vflags, int psize, int ssize);
 459extern int __hash_page_4K(unsigned long ea, unsigned long access,
 460                          unsigned long vsid, pte_t *ptep, unsigned long trap,
 461                          unsigned long flags, int ssize, int subpage_prot);
 462extern int __hash_page_64K(unsigned long ea, unsigned long access,
 463                           unsigned long vsid, pte_t *ptep, unsigned long trap,
 464                           unsigned long flags, int ssize);
 465struct mm_struct;
 466unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
 467extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
 468                        unsigned long access, unsigned long trap,
 469                        unsigned long flags);
 470extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
 471                     unsigned long dsisr);
 472void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
 473int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
 474int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
 475                     pte_t *ptep, unsigned long trap, unsigned long flags,
 476                     int ssize, unsigned int shift, unsigned int mmu_psize);
 477#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 478extern int __hash_page_thp(unsigned long ea, unsigned long access,
 479                           unsigned long vsid, pmd_t *pmdp, unsigned long trap,
 480                           unsigned long flags, int ssize, unsigned int psize);
 481#else
 482static inline int __hash_page_thp(unsigned long ea, unsigned long access,
 483                                  unsigned long vsid, pmd_t *pmdp,
 484                                  unsigned long trap, unsigned long flags,
 485                                  int ssize, unsigned int psize)
 486{
 487        BUG();
 488        return -1;
 489}
 490#endif
 491extern void hash_failure_debug(unsigned long ea, unsigned long access,
 492                               unsigned long vsid, unsigned long trap,
 493                               int ssize, int psize, int lpsize,
 494                               unsigned long pte);
 495extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 496                             unsigned long pstart, unsigned long prot,
 497                             int psize, int ssize);
 498int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 499                        int psize, int ssize);
 500extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
 501extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
 502
 503extern void hash__setup_new_exec(void);
 504
 505#ifdef CONFIG_PPC_PSERIES
 506void hpte_init_pseries(void);
 507#else
 508static inline void hpte_init_pseries(void) { }
 509#endif
 510
 511extern void hpte_init_native(void);
 512
 513struct slb_entry {
 514        u64     esid;
 515        u64     vsid;
 516};
 517
 518extern void slb_initialize(void);
 519void slb_flush_and_restore_bolted(void);
 520void slb_flush_all_realmode(void);
 521void __slb_restore_bolted_realmode(void);
 522void slb_restore_bolted_realmode(void);
 523void slb_save_contents(struct slb_entry *slb_ptr);
 524void slb_dump_contents(struct slb_entry *slb_ptr);
 525
 526extern void slb_vmalloc_update(void);
 527void preload_new_slb_context(unsigned long start, unsigned long sp);
 528
 529#ifdef CONFIG_PPC_64S_HASH_MMU
 530void slb_set_size(u16 size);
 531#else
 532static inline void slb_set_size(u16 size) { }
 533#endif
 534
 535#endif /* __ASSEMBLY__ */
 536
 537/*
 538 * VSID allocation (256MB segment)
 539 *
 540 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
 541 * from mmu context id and effective segment id of the address.
 542 *
 543 * For user processes max context id is limited to MAX_USER_CONTEXT.
 544 * more details in get_user_context
 545 *
 546 * For kernel space get_kernel_context
 547 *
 548 * The proto-VSIDs are then scrambled into real VSIDs with the
 549 * multiplicative hash:
 550 *
 551 *      VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 552 *
 553 * VSID_MULTIPLIER is prime, so in particular it is
 554 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 555 * Because the modulus is 2^n-1 we can compute it efficiently without
 556 * a divide or extra multiply (see below). The scramble function gives
 557 * robust scattering in the hash table (at least based on some initial
 558 * results).
 559 *
 560 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
 561 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
 562 * will produce a VSID of 0.
 563 *
 564 * We also need to avoid the last segment of the last context, because that
 565 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
 566 * because of the modulo operation in vsid scramble.
 567 */
 568
 569/*
 570 * Max Va bits we support as of now is 68 bits. We want 19 bit
 571 * context ID.
 572 * Restrictions:
 573 * GPU has restrictions of not able to access beyond 128TB
 574 * (47 bit effective address). We also cannot do more than 20bit PID.
 575 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
 576 * to 16 bits (ie, we can only have 2^16 pids at the same time).
 577 */
 578#define VA_BITS                 68
 579#define CONTEXT_BITS            19
 580#define ESID_BITS               (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
 581#define ESID_BITS_1T            (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
 582
 583#define ESID_BITS_MASK          ((1 << ESID_BITS) - 1)
 584#define ESID_BITS_1T_MASK       ((1 << ESID_BITS_1T) - 1)
 585
 586/*
 587 * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
 588 * to use more than one context for linear mapping the kernel.
 589 * For vmalloc and memmap, we use just one context with 512TB. With 64 byte
 590 * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
 591 */
 592#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
 593#define MAX_KERNEL_CTX_CNT      (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
 594#else
 595#define MAX_KERNEL_CTX_CNT      1
 596#endif
 597
 598#define MAX_VMALLOC_CTX_CNT     1
 599#define MAX_IO_CTX_CNT          1
 600#define MAX_VMEMMAP_CTX_CNT     1
 601
 602/*
 603 * 256MB segment
 604 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
 605 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
 606 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
 607 * context maps 2^49 bytes (512TB).
 608 *
 609 * We also need to avoid the last segment of the last context, because that
 610 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
 611 * because of the modulo operation in vsid scramble.
 612 *
 613 */
 614#define MAX_USER_CONTEXT        ((ASM_CONST(1) << CONTEXT_BITS) - 2)
 615
 616// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
 617#define MIN_USER_CONTEXT        (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
 618                                 MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
 619
 620/*
 621 * For platforms that support on 65bit VA we limit the context bits
 622 */
 623#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
 624
 625/*
 626 * This should be computed such that protovosid * vsid_mulitplier
 627 * doesn't overflow 64 bits. The vsid_mutliplier should also be
 628 * co-prime to vsid_modulus. We also need to make sure that number
 629 * of bits in multiplied result (dividend) is less than twice the number of
 630 * protovsid bits for our modulus optmization to work.
 631 *
 632 * The below table shows the current values used.
 633 * |-------+------------+----------------------+------------+-------------------|
 634 * |       | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
 635 * |-------+------------+----------------------+------------+-------------------|
 636 * | 1T    |         24 |                   25 |         49 |                50 |
 637 * |-------+------------+----------------------+------------+-------------------|
 638 * | 256MB |         24 |                   37 |         61 |                74 |
 639 * |-------+------------+----------------------+------------+-------------------|
 640 *
 641 * |-------+------------+----------------------+------------+--------------------|
 642 * |       | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
 643 * |-------+------------+----------------------+------------+--------------------|
 644 * | 1T    |         24 |                   28 |         52 |                 56 |
 645 * |-------+------------+----------------------+------------+--------------------|
 646 * | 256MB |         24 |                   40 |         64 |                 80 |
 647 * |-------+------------+----------------------+------------+--------------------|
 648 *
 649 */
 650#define VSID_MULTIPLIER_256M    ASM_CONST(12538073)     /* 24-bit prime */
 651#define VSID_BITS_256M          (VA_BITS - SID_SHIFT)
 652#define VSID_BITS_65_256M       (65 - SID_SHIFT)
 653/*
 654 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
 655 */
 656#define VSID_MULINV_256M        ASM_CONST(665548017062)
 657
 658#define VSID_MULTIPLIER_1T      ASM_CONST(12538073)     /* 24-bit prime */
 659#define VSID_BITS_1T            (VA_BITS - SID_SHIFT_1T)
 660#define VSID_BITS_65_1T         (65 - SID_SHIFT_1T)
 661#define VSID_MULINV_1T          ASM_CONST(209034062)
 662
 663/* 1TB VSID reserved for VRMA */
 664#define VRMA_VSID       0x1ffffffUL
 665#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
 666
 667/* 4 bits per slice and we have one slice per 1TB */
 668#define SLICE_ARRAY_SIZE        (H_PGTABLE_RANGE >> 41)
 669#define LOW_SLICE_ARRAY_SZ      (BITS_PER_LONG / BITS_PER_BYTE)
 670#define TASK_SLICE_ARRAY_SZ(x)  ((x)->hash_context->slb_addr_limit >> 41)
 671#ifndef __ASSEMBLY__
 672
 673#ifdef CONFIG_PPC_SUBPAGE_PROT
 674/*
 675 * For the sub-page protection option, we extend the PGD with one of
 676 * these.  Basically we have a 3-level tree, with the top level being
 677 * the protptrs array.  To optimize speed and memory consumption when
 678 * only addresses < 4GB are being protected, pointers to the first
 679 * four pages of sub-page protection words are stored in the low_prot
 680 * array.
 681 * Each page of sub-page protection words protects 1GB (4 bytes
 682 * protects 64k).  For the 3-level tree, each page of pointers then
 683 * protects 8TB.
 684 */
 685struct subpage_prot_table {
 686        unsigned long maxaddr;  /* only addresses < this are protected */
 687        unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
 688        unsigned int *low_prot[4];
 689};
 690
 691#define SBP_L1_BITS             (PAGE_SHIFT - 2)
 692#define SBP_L2_BITS             (PAGE_SHIFT - 3)
 693#define SBP_L1_COUNT            (1 << SBP_L1_BITS)
 694#define SBP_L2_COUNT            (1 << SBP_L2_BITS)
 695#define SBP_L2_SHIFT            (PAGE_SHIFT + SBP_L1_BITS)
 696#define SBP_L3_SHIFT            (SBP_L2_SHIFT + SBP_L2_BITS)
 697
 698extern void subpage_prot_free(struct mm_struct *mm);
 699#else
 700static inline void subpage_prot_free(struct mm_struct *mm) {}
 701#endif /* CONFIG_PPC_SUBPAGE_PROT */
 702
 703/*
 704 * One bit per slice. We have lower slices which cover 256MB segments
 705 * upto 4G range. That gets us 16 low slices. For the rest we track slices
 706 * in 1TB size.
 707 */
 708struct slice_mask {
 709        u64 low_slices;
 710        DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
 711};
 712
 713struct hash_mm_context {
 714        u16 user_psize; /* page size index */
 715
 716        /* SLB page size encodings*/
 717        unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
 718        unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
 719        unsigned long slb_addr_limit;
 720#ifdef CONFIG_PPC_64K_PAGES
 721        struct slice_mask mask_64k;
 722#endif
 723        struct slice_mask mask_4k;
 724#ifdef CONFIG_HUGETLB_PAGE
 725        struct slice_mask mask_16m;
 726        struct slice_mask mask_16g;
 727#endif
 728
 729#ifdef CONFIG_PPC_SUBPAGE_PROT
 730        struct subpage_prot_table *spt;
 731#endif /* CONFIG_PPC_SUBPAGE_PROT */
 732};
 733
 734#if 0
 735/*
 736 * The code below is equivalent to this function for arguments
 737 * < 2^VSID_BITS, which is all this should ever be called
 738 * with.  However gcc is not clever enough to compute the
 739 * modulus (2^n-1) without a second multiply.
 740 */
 741#define vsid_scramble(protovsid, size) \
 742        ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
 743
 744/* simplified form avoiding mod operation */
 745#define vsid_scramble(protovsid, size) \
 746        ({                                                               \
 747                unsigned long x;                                         \
 748                x = (protovsid) * VSID_MULTIPLIER_##size;                \
 749                x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
 750                (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
 751        })
 752
 753#else /* 1 */
 754static inline unsigned long vsid_scramble(unsigned long protovsid,
 755                                  unsigned long vsid_multiplier, int vsid_bits)
 756{
 757        unsigned long vsid;
 758        unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
 759        /*
 760         * We have same multipler for both 256 and 1T segements now
 761         */
 762        vsid = protovsid * vsid_multiplier;
 763        vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
 764        return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
 765}
 766
 767#endif /* 1 */
 768
 769/* Returns the segment size indicator for a user address */
 770static inline int user_segment_size(unsigned long addr)
 771{
 772        /* Use 1T segments if possible for addresses >= 1T */
 773        if (addr >= (1UL << SID_SHIFT_1T))
 774                return mmu_highuser_ssize;
 775        return MMU_SEGSIZE_256M;
 776}
 777
 778static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 779                                     int ssize)
 780{
 781        unsigned long va_bits = VA_BITS;
 782        unsigned long vsid_bits;
 783        unsigned long protovsid;
 784
 785        /*
 786         * Bad address. We return VSID 0 for that
 787         */
 788        if ((ea & EA_MASK)  >= H_PGTABLE_RANGE)
 789                return 0;
 790
 791        if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
 792                va_bits = 65;
 793
 794        if (ssize == MMU_SEGSIZE_256M) {
 795                vsid_bits = va_bits - SID_SHIFT;
 796                protovsid = (context << ESID_BITS) |
 797                        ((ea >> SID_SHIFT) & ESID_BITS_MASK);
 798                return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
 799        }
 800        /* 1T segment */
 801        vsid_bits = va_bits - SID_SHIFT_1T;
 802        protovsid = (context << ESID_BITS_1T) |
 803                ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
 804        return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
 805}
 806
 807/*
 808 * For kernel space, we use context ids as
 809 * below. Range is 512TB per context.
 810 *
 811 * 0x00001 -  [ 0xc000000000000000 - 0xc001ffffffffffff]
 812 * 0x00002 -  [ 0xc002000000000000 - 0xc003ffffffffffff]
 813 * 0x00003 -  [ 0xc004000000000000 - 0xc005ffffffffffff]
 814 * 0x00004 -  [ 0xc006000000000000 - 0xc007ffffffffffff]
 815 *
 816 * vmap, IO, vmemap
 817 *
 818 * 0x00005 -  [ 0xc008000000000000 - 0xc009ffffffffffff]
 819 * 0x00006 -  [ 0xc00a000000000000 - 0xc00bffffffffffff]
 820 * 0x00007 -  [ 0xc00c000000000000 - 0xc00dffffffffffff]
 821 *
 822 */
 823static inline unsigned long get_kernel_context(unsigned long ea)
 824{
 825        unsigned long region_id = get_region_id(ea);
 826        unsigned long ctx;
 827        /*
 828         * Depending on Kernel config, kernel region can have one context
 829         * or more.
 830         */
 831        if (region_id == LINEAR_MAP_REGION_ID) {
 832                /*
 833                 * We already verified ea to be not beyond the addr limit.
 834                 */
 835                ctx =  1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
 836        } else
 837                ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
 838        return ctx;
 839}
 840
 841/*
 842 * This is only valid for addresses >= PAGE_OFFSET
 843 */
 844static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
 845{
 846        unsigned long context;
 847
 848        if (!is_kernel_addr(ea))
 849                return 0;
 850
 851        context = get_kernel_context(ea);
 852        return get_vsid(context, ea, ssize);
 853}
 854
 855unsigned htab_shift_for_mem_size(unsigned long mem_size);
 856
 857enum slb_index {
 858        LINEAR_INDEX    = 0, /* Kernel linear map  (0xc000000000000000) */
 859        KSTACK_INDEX    = 1, /* Kernel stack map */
 860};
 861
 862#define slb_esid_mask(ssize)    \
 863        (((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
 864
 865static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
 866                                         enum slb_index index)
 867{
 868        return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
 869}
 870
 871static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
 872                                           unsigned long flags)
 873{
 874        return (vsid << slb_vsid_shift(ssize)) | flags |
 875                ((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
 876}
 877
 878static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
 879                                         unsigned long flags)
 880{
 881        return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
 882}
 883
 884#endif /* __ASSEMBLY__ */
 885#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
 886