linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Derived from "arch/i386/kernel/process.c"
   4 *    Copyright (C) 1995  Linus Torvalds
   5 *
   6 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   7 *  Paul Mackerras (paulus@cs.anu.edu.au)
   8 *
   9 *  PowerPC version
  10 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  11 */
  12
  13#include <linux/errno.h>
  14#include <linux/sched.h>
  15#include <linux/sched/debug.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/task_stack.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/unistd.h>
  23#include <linux/ptrace.h>
  24#include <linux/slab.h>
  25#include <linux/user.h>
  26#include <linux/elf.h>
  27#include <linux/prctl.h>
  28#include <linux/init_task.h>
  29#include <linux/export.h>
  30#include <linux/kallsyms.h>
  31#include <linux/mqueue.h>
  32#include <linux/hardirq.h>
  33#include <linux/utsname.h>
  34#include <linux/ftrace.h>
  35#include <linux/kernel_stat.h>
  36#include <linux/personality.h>
  37#include <linux/hw_breakpoint.h>
  38#include <linux/uaccess.h>
  39#include <linux/pkeys.h>
  40#include <linux/seq_buf.h>
  41
  42#include <asm/interrupt.h>
  43#include <asm/io.h>
  44#include <asm/processor.h>
  45#include <asm/mmu.h>
  46#include <asm/machdep.h>
  47#include <asm/time.h>
  48#include <asm/runlatch.h>
  49#include <asm/syscalls.h>
  50#include <asm/switch_to.h>
  51#include <asm/tm.h>
  52#include <asm/debug.h>
  53#ifdef CONFIG_PPC64
  54#include <asm/firmware.h>
  55#include <asm/hw_irq.h>
  56#endif
  57#include <asm/code-patching.h>
  58#include <asm/exec.h>
  59#include <asm/livepatch.h>
  60#include <asm/cpu_has_feature.h>
  61#include <asm/asm-prototypes.h>
  62#include <asm/stacktrace.h>
  63#include <asm/hw_breakpoint.h>
  64
  65#include <linux/kprobes.h>
  66#include <linux/kdebug.h>
  67
  68/* Transactional Memory debug */
  69#ifdef TM_DEBUG_SW
  70#define TM_DEBUG(x...) printk(KERN_INFO x)
  71#else
  72#define TM_DEBUG(x...) do { } while(0)
  73#endif
  74
  75extern unsigned long _get_SP(void);
  76
  77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  78/*
  79 * Are we running in "Suspend disabled" mode? If so we have to block any
  80 * sigreturn that would get us into suspended state, and we also warn in some
  81 * other paths that we should never reach with suspend disabled.
  82 */
  83bool tm_suspend_disabled __ro_after_init = false;
  84
  85static void check_if_tm_restore_required(struct task_struct *tsk)
  86{
  87        /*
  88         * If we are saving the current thread's registers, and the
  89         * thread is in a transactional state, set the TIF_RESTORE_TM
  90         * bit so that we know to restore the registers before
  91         * returning to userspace.
  92         */
  93        if (tsk == current && tsk->thread.regs &&
  94            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  95            !test_thread_flag(TIF_RESTORE_TM)) {
  96                regs_set_return_msr(&tsk->thread.ckpt_regs,
  97                                                tsk->thread.regs->msr);
  98                set_thread_flag(TIF_RESTORE_TM);
  99        }
 100}
 101
 102#else
 103static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
 104#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 105
 106bool strict_msr_control;
 107EXPORT_SYMBOL(strict_msr_control);
 108
 109static int __init enable_strict_msr_control(char *str)
 110{
 111        strict_msr_control = true;
 112        pr_info("Enabling strict facility control\n");
 113
 114        return 0;
 115}
 116early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 117
 118/* notrace because it's called by restore_math */
 119unsigned long notrace msr_check_and_set(unsigned long bits)
 120{
 121        unsigned long oldmsr = mfmsr();
 122        unsigned long newmsr;
 123
 124        newmsr = oldmsr | bits;
 125
 126        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 127                newmsr |= MSR_VSX;
 128
 129        if (oldmsr != newmsr)
 130                mtmsr_isync(newmsr);
 131
 132        return newmsr;
 133}
 134EXPORT_SYMBOL_GPL(msr_check_and_set);
 135
 136/* notrace because it's called by restore_math */
 137void notrace __msr_check_and_clear(unsigned long bits)
 138{
 139        unsigned long oldmsr = mfmsr();
 140        unsigned long newmsr;
 141
 142        newmsr = oldmsr & ~bits;
 143
 144        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 145                newmsr &= ~MSR_VSX;
 146
 147        if (oldmsr != newmsr)
 148                mtmsr_isync(newmsr);
 149}
 150EXPORT_SYMBOL(__msr_check_and_clear);
 151
 152#ifdef CONFIG_PPC_FPU
 153static void __giveup_fpu(struct task_struct *tsk)
 154{
 155        unsigned long msr;
 156
 157        save_fpu(tsk);
 158        msr = tsk->thread.regs->msr;
 159        msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
 160        if (cpu_has_feature(CPU_FTR_VSX))
 161                msr &= ~MSR_VSX;
 162        regs_set_return_msr(tsk->thread.regs, msr);
 163}
 164
 165void giveup_fpu(struct task_struct *tsk)
 166{
 167        check_if_tm_restore_required(tsk);
 168
 169        msr_check_and_set(MSR_FP);
 170        __giveup_fpu(tsk);
 171        msr_check_and_clear(MSR_FP);
 172}
 173EXPORT_SYMBOL(giveup_fpu);
 174
 175/*
 176 * Make sure the floating-point register state in the
 177 * the thread_struct is up to date for task tsk.
 178 */
 179void flush_fp_to_thread(struct task_struct *tsk)
 180{
 181        if (tsk->thread.regs) {
 182                /*
 183                 * We need to disable preemption here because if we didn't,
 184                 * another process could get scheduled after the regs->msr
 185                 * test but before we have finished saving the FP registers
 186                 * to the thread_struct.  That process could take over the
 187                 * FPU, and then when we get scheduled again we would store
 188                 * bogus values for the remaining FP registers.
 189                 */
 190                preempt_disable();
 191                if (tsk->thread.regs->msr & MSR_FP) {
 192                        /*
 193                         * This should only ever be called for current or
 194                         * for a stopped child process.  Since we save away
 195                         * the FP register state on context switch,
 196                         * there is something wrong if a stopped child appears
 197                         * to still have its FP state in the CPU registers.
 198                         */
 199                        BUG_ON(tsk != current);
 200                        giveup_fpu(tsk);
 201                }
 202                preempt_enable();
 203        }
 204}
 205EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 206
 207void enable_kernel_fp(void)
 208{
 209        unsigned long cpumsr;
 210
 211        WARN_ON(preemptible());
 212
 213        cpumsr = msr_check_and_set(MSR_FP);
 214
 215        if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 216                check_if_tm_restore_required(current);
 217                /*
 218                 * If a thread has already been reclaimed then the
 219                 * checkpointed registers are on the CPU but have definitely
 220                 * been saved by the reclaim code. Don't need to and *cannot*
 221                 * giveup as this would save  to the 'live' structure not the
 222                 * checkpointed structure.
 223                 */
 224                if (!MSR_TM_ACTIVE(cpumsr) &&
 225                     MSR_TM_ACTIVE(current->thread.regs->msr))
 226                        return;
 227                __giveup_fpu(current);
 228        }
 229}
 230EXPORT_SYMBOL(enable_kernel_fp);
 231#else
 232static inline void __giveup_fpu(struct task_struct *tsk) { }
 233#endif /* CONFIG_PPC_FPU */
 234
 235#ifdef CONFIG_ALTIVEC
 236static void __giveup_altivec(struct task_struct *tsk)
 237{
 238        unsigned long msr;
 239
 240        save_altivec(tsk);
 241        msr = tsk->thread.regs->msr;
 242        msr &= ~MSR_VEC;
 243        if (cpu_has_feature(CPU_FTR_VSX))
 244                msr &= ~MSR_VSX;
 245        regs_set_return_msr(tsk->thread.regs, msr);
 246}
 247
 248void giveup_altivec(struct task_struct *tsk)
 249{
 250        check_if_tm_restore_required(tsk);
 251
 252        msr_check_and_set(MSR_VEC);
 253        __giveup_altivec(tsk);
 254        msr_check_and_clear(MSR_VEC);
 255}
 256EXPORT_SYMBOL(giveup_altivec);
 257
 258void enable_kernel_altivec(void)
 259{
 260        unsigned long cpumsr;
 261
 262        WARN_ON(preemptible());
 263
 264        cpumsr = msr_check_and_set(MSR_VEC);
 265
 266        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 267                check_if_tm_restore_required(current);
 268                /*
 269                 * If a thread has already been reclaimed then the
 270                 * checkpointed registers are on the CPU but have definitely
 271                 * been saved by the reclaim code. Don't need to and *cannot*
 272                 * giveup as this would save  to the 'live' structure not the
 273                 * checkpointed structure.
 274                 */
 275                if (!MSR_TM_ACTIVE(cpumsr) &&
 276                     MSR_TM_ACTIVE(current->thread.regs->msr))
 277                        return;
 278                __giveup_altivec(current);
 279        }
 280}
 281EXPORT_SYMBOL(enable_kernel_altivec);
 282
 283/*
 284 * Make sure the VMX/Altivec register state in the
 285 * the thread_struct is up to date for task tsk.
 286 */
 287void flush_altivec_to_thread(struct task_struct *tsk)
 288{
 289        if (tsk->thread.regs) {
 290                preempt_disable();
 291                if (tsk->thread.regs->msr & MSR_VEC) {
 292                        BUG_ON(tsk != current);
 293                        giveup_altivec(tsk);
 294                }
 295                preempt_enable();
 296        }
 297}
 298EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 299#endif /* CONFIG_ALTIVEC */
 300
 301#ifdef CONFIG_VSX
 302static void __giveup_vsx(struct task_struct *tsk)
 303{
 304        unsigned long msr = tsk->thread.regs->msr;
 305
 306        /*
 307         * We should never be setting MSR_VSX without also setting
 308         * MSR_FP and MSR_VEC
 309         */
 310        WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
 311
 312        /* __giveup_fpu will clear MSR_VSX */
 313        if (msr & MSR_FP)
 314                __giveup_fpu(tsk);
 315        if (msr & MSR_VEC)
 316                __giveup_altivec(tsk);
 317}
 318
 319static void giveup_vsx(struct task_struct *tsk)
 320{
 321        check_if_tm_restore_required(tsk);
 322
 323        msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 324        __giveup_vsx(tsk);
 325        msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 326}
 327
 328void enable_kernel_vsx(void)
 329{
 330        unsigned long cpumsr;
 331
 332        WARN_ON(preemptible());
 333
 334        cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 335
 336        if (current->thread.regs &&
 337            (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
 338                check_if_tm_restore_required(current);
 339                /*
 340                 * If a thread has already been reclaimed then the
 341                 * checkpointed registers are on the CPU but have definitely
 342                 * been saved by the reclaim code. Don't need to and *cannot*
 343                 * giveup as this would save  to the 'live' structure not the
 344                 * checkpointed structure.
 345                 */
 346                if (!MSR_TM_ACTIVE(cpumsr) &&
 347                     MSR_TM_ACTIVE(current->thread.regs->msr))
 348                        return;
 349                __giveup_vsx(current);
 350        }
 351}
 352EXPORT_SYMBOL(enable_kernel_vsx);
 353
 354void flush_vsx_to_thread(struct task_struct *tsk)
 355{
 356        if (tsk->thread.regs) {
 357                preempt_disable();
 358                if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
 359                        BUG_ON(tsk != current);
 360                        giveup_vsx(tsk);
 361                }
 362                preempt_enable();
 363        }
 364}
 365EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 366#endif /* CONFIG_VSX */
 367
 368#ifdef CONFIG_SPE
 369void giveup_spe(struct task_struct *tsk)
 370{
 371        check_if_tm_restore_required(tsk);
 372
 373        msr_check_and_set(MSR_SPE);
 374        __giveup_spe(tsk);
 375        msr_check_and_clear(MSR_SPE);
 376}
 377EXPORT_SYMBOL(giveup_spe);
 378
 379void enable_kernel_spe(void)
 380{
 381        WARN_ON(preemptible());
 382
 383        msr_check_and_set(MSR_SPE);
 384
 385        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 386                check_if_tm_restore_required(current);
 387                __giveup_spe(current);
 388        }
 389}
 390EXPORT_SYMBOL(enable_kernel_spe);
 391
 392void flush_spe_to_thread(struct task_struct *tsk)
 393{
 394        if (tsk->thread.regs) {
 395                preempt_disable();
 396                if (tsk->thread.regs->msr & MSR_SPE) {
 397                        BUG_ON(tsk != current);
 398                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 399                        giveup_spe(tsk);
 400                }
 401                preempt_enable();
 402        }
 403}
 404#endif /* CONFIG_SPE */
 405
 406static unsigned long msr_all_available;
 407
 408static int __init init_msr_all_available(void)
 409{
 410        if (IS_ENABLED(CONFIG_PPC_FPU))
 411                msr_all_available |= MSR_FP;
 412        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 413                msr_all_available |= MSR_VEC;
 414        if (cpu_has_feature(CPU_FTR_VSX))
 415                msr_all_available |= MSR_VSX;
 416        if (cpu_has_feature(CPU_FTR_SPE))
 417                msr_all_available |= MSR_SPE;
 418
 419        return 0;
 420}
 421early_initcall(init_msr_all_available);
 422
 423void giveup_all(struct task_struct *tsk)
 424{
 425        unsigned long usermsr;
 426
 427        if (!tsk->thread.regs)
 428                return;
 429
 430        check_if_tm_restore_required(tsk);
 431
 432        usermsr = tsk->thread.regs->msr;
 433
 434        if ((usermsr & msr_all_available) == 0)
 435                return;
 436
 437        msr_check_and_set(msr_all_available);
 438
 439        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 440
 441        if (usermsr & MSR_FP)
 442                __giveup_fpu(tsk);
 443        if (usermsr & MSR_VEC)
 444                __giveup_altivec(tsk);
 445        if (usermsr & MSR_SPE)
 446                __giveup_spe(tsk);
 447
 448        msr_check_and_clear(msr_all_available);
 449}
 450EXPORT_SYMBOL(giveup_all);
 451
 452#ifdef CONFIG_PPC_BOOK3S_64
 453#ifdef CONFIG_PPC_FPU
 454static bool should_restore_fp(void)
 455{
 456        if (current->thread.load_fp) {
 457                current->thread.load_fp++;
 458                return true;
 459        }
 460        return false;
 461}
 462
 463static void do_restore_fp(void)
 464{
 465        load_fp_state(&current->thread.fp_state);
 466}
 467#else
 468static bool should_restore_fp(void) { return false; }
 469static void do_restore_fp(void) { }
 470#endif /* CONFIG_PPC_FPU */
 471
 472#ifdef CONFIG_ALTIVEC
 473static bool should_restore_altivec(void)
 474{
 475        if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
 476                current->thread.load_vec++;
 477                return true;
 478        }
 479        return false;
 480}
 481
 482static void do_restore_altivec(void)
 483{
 484        load_vr_state(&current->thread.vr_state);
 485        current->thread.used_vr = 1;
 486}
 487#else
 488static bool should_restore_altivec(void) { return false; }
 489static void do_restore_altivec(void) { }
 490#endif /* CONFIG_ALTIVEC */
 491
 492static bool should_restore_vsx(void)
 493{
 494        if (cpu_has_feature(CPU_FTR_VSX))
 495                return true;
 496        return false;
 497}
 498#ifdef CONFIG_VSX
 499static void do_restore_vsx(void)
 500{
 501        current->thread.used_vsr = 1;
 502}
 503#else
 504static void do_restore_vsx(void) { }
 505#endif /* CONFIG_VSX */
 506
 507/*
 508 * The exception exit path calls restore_math() with interrupts hard disabled
 509 * but the soft irq state not "reconciled". ftrace code that calls
 510 * local_irq_save/restore causes warnings.
 511 *
 512 * Rather than complicate the exit path, just don't trace restore_math. This
 513 * could be done by having ftrace entry code check for this un-reconciled
 514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
 515 * temporarily fix it up for the duration of the ftrace call.
 516 */
 517void notrace restore_math(struct pt_regs *regs)
 518{
 519        unsigned long msr;
 520        unsigned long new_msr = 0;
 521
 522        msr = regs->msr;
 523
 524        /*
 525         * new_msr tracks the facilities that are to be restored. Only reload
 526         * if the bit is not set in the user MSR (if it is set, the registers
 527         * are live for the user thread).
 528         */
 529        if ((!(msr & MSR_FP)) && should_restore_fp())
 530                new_msr |= MSR_FP;
 531
 532        if ((!(msr & MSR_VEC)) && should_restore_altivec())
 533                new_msr |= MSR_VEC;
 534
 535        if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
 536                if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
 537                        new_msr |= MSR_VSX;
 538        }
 539
 540        if (new_msr) {
 541                unsigned long fpexc_mode = 0;
 542
 543                msr_check_and_set(new_msr);
 544
 545                if (new_msr & MSR_FP) {
 546                        do_restore_fp();
 547
 548                        // This also covers VSX, because VSX implies FP
 549                        fpexc_mode = current->thread.fpexc_mode;
 550                }
 551
 552                if (new_msr & MSR_VEC)
 553                        do_restore_altivec();
 554
 555                if (new_msr & MSR_VSX)
 556                        do_restore_vsx();
 557
 558                msr_check_and_clear(new_msr);
 559
 560                regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
 561        }
 562}
 563#endif /* CONFIG_PPC_BOOK3S_64 */
 564
 565static void save_all(struct task_struct *tsk)
 566{
 567        unsigned long usermsr;
 568
 569        if (!tsk->thread.regs)
 570                return;
 571
 572        usermsr = tsk->thread.regs->msr;
 573
 574        if ((usermsr & msr_all_available) == 0)
 575                return;
 576
 577        msr_check_and_set(msr_all_available);
 578
 579        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 580
 581        if (usermsr & MSR_FP)
 582                save_fpu(tsk);
 583
 584        if (usermsr & MSR_VEC)
 585                save_altivec(tsk);
 586
 587        if (usermsr & MSR_SPE)
 588                __giveup_spe(tsk);
 589
 590        msr_check_and_clear(msr_all_available);
 591}
 592
 593void flush_all_to_thread(struct task_struct *tsk)
 594{
 595        if (tsk->thread.regs) {
 596                preempt_disable();
 597                BUG_ON(tsk != current);
 598#ifdef CONFIG_SPE
 599                if (tsk->thread.regs->msr & MSR_SPE)
 600                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 601#endif
 602                save_all(tsk);
 603
 604                preempt_enable();
 605        }
 606}
 607EXPORT_SYMBOL(flush_all_to_thread);
 608
 609#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 610void do_send_trap(struct pt_regs *regs, unsigned long address,
 611                  unsigned long error_code, int breakpt)
 612{
 613        current->thread.trap_nr = TRAP_HWBKPT;
 614        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 615                        11, SIGSEGV) == NOTIFY_STOP)
 616                return;
 617
 618        /* Deliver the signal to userspace */
 619        force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
 620                                    (void __user *)address);
 621}
 622#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 623
 624static void do_break_handler(struct pt_regs *regs)
 625{
 626        struct arch_hw_breakpoint null_brk = {0};
 627        struct arch_hw_breakpoint *info;
 628        ppc_inst_t instr = ppc_inst(0);
 629        int type = 0;
 630        int size = 0;
 631        unsigned long ea;
 632        int i;
 633
 634        /*
 635         * If underneath hw supports only one watchpoint, we know it
 636         * caused exception. 8xx also falls into this category.
 637         */
 638        if (nr_wp_slots() == 1) {
 639                __set_breakpoint(0, &null_brk);
 640                current->thread.hw_brk[0] = null_brk;
 641                current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
 642                return;
 643        }
 644
 645        /* Otherwise find out which DAWR caused exception and disable it. */
 646        wp_get_instr_detail(regs, &instr, &type, &size, &ea);
 647
 648        for (i = 0; i < nr_wp_slots(); i++) {
 649                info = &current->thread.hw_brk[i];
 650                if (!info->address)
 651                        continue;
 652
 653                if (wp_check_constraints(regs, instr, ea, type, size, info)) {
 654                        __set_breakpoint(i, &null_brk);
 655                        current->thread.hw_brk[i] = null_brk;
 656                        current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
 657                }
 658        }
 659}
 660
 661DEFINE_INTERRUPT_HANDLER(do_break)
 662{
 663        current->thread.trap_nr = TRAP_HWBKPT;
 664        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
 665                        11, SIGSEGV) == NOTIFY_STOP)
 666                return;
 667
 668        if (debugger_break_match(regs))
 669                return;
 670
 671        /*
 672         * We reach here only when watchpoint exception is generated by ptrace
 673         * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
 674         * watchpoint is already handled by hw_breakpoint_handler() so we don't
 675         * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
 676         * we need to manually handle the watchpoint here.
 677         */
 678        if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
 679                do_break_handler(regs);
 680
 681        /* Deliver the signal to userspace */
 682        force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
 683}
 684#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 685
 686static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
 687
 688#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 689/*
 690 * Set the debug registers back to their default "safe" values.
 691 */
 692static void set_debug_reg_defaults(struct thread_struct *thread)
 693{
 694        thread->debug.iac1 = thread->debug.iac2 = 0;
 695#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 696        thread->debug.iac3 = thread->debug.iac4 = 0;
 697#endif
 698        thread->debug.dac1 = thread->debug.dac2 = 0;
 699#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 700        thread->debug.dvc1 = thread->debug.dvc2 = 0;
 701#endif
 702        thread->debug.dbcr0 = 0;
 703#ifdef CONFIG_BOOKE
 704        /*
 705         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 706         */
 707        thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 708                        DBCR1_IAC3US | DBCR1_IAC4US;
 709        /*
 710         * Force Data Address Compare User/Supervisor bits to be User-only
 711         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 712         */
 713        thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 714#else
 715        thread->debug.dbcr1 = 0;
 716#endif
 717}
 718
 719static void prime_debug_regs(struct debug_reg *debug)
 720{
 721        /*
 722         * We could have inherited MSR_DE from userspace, since
 723         * it doesn't get cleared on exception entry.  Make sure
 724         * MSR_DE is clear before we enable any debug events.
 725         */
 726        mtmsr(mfmsr() & ~MSR_DE);
 727
 728        mtspr(SPRN_IAC1, debug->iac1);
 729        mtspr(SPRN_IAC2, debug->iac2);
 730#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 731        mtspr(SPRN_IAC3, debug->iac3);
 732        mtspr(SPRN_IAC4, debug->iac4);
 733#endif
 734        mtspr(SPRN_DAC1, debug->dac1);
 735        mtspr(SPRN_DAC2, debug->dac2);
 736#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 737        mtspr(SPRN_DVC1, debug->dvc1);
 738        mtspr(SPRN_DVC2, debug->dvc2);
 739#endif
 740        mtspr(SPRN_DBCR0, debug->dbcr0);
 741        mtspr(SPRN_DBCR1, debug->dbcr1);
 742#ifdef CONFIG_BOOKE
 743        mtspr(SPRN_DBCR2, debug->dbcr2);
 744#endif
 745}
 746/*
 747 * Unless neither the old or new thread are making use of the
 748 * debug registers, set the debug registers from the values
 749 * stored in the new thread.
 750 */
 751void switch_booke_debug_regs(struct debug_reg *new_debug)
 752{
 753        if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 754                || (new_debug->dbcr0 & DBCR0_IDM))
 755                        prime_debug_regs(new_debug);
 756}
 757EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 758#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 759#ifndef CONFIG_HAVE_HW_BREAKPOINT
 760static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
 761{
 762        preempt_disable();
 763        __set_breakpoint(i, brk);
 764        preempt_enable();
 765}
 766
 767static void set_debug_reg_defaults(struct thread_struct *thread)
 768{
 769        int i;
 770        struct arch_hw_breakpoint null_brk = {0};
 771
 772        for (i = 0; i < nr_wp_slots(); i++) {
 773                thread->hw_brk[i] = null_brk;
 774                if (ppc_breakpoint_available())
 775                        set_breakpoint(i, &thread->hw_brk[i]);
 776        }
 777}
 778
 779static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 780                                struct arch_hw_breakpoint *b)
 781{
 782        if (a->address != b->address)
 783                return false;
 784        if (a->type != b->type)
 785                return false;
 786        if (a->len != b->len)
 787                return false;
 788        /* no need to check hw_len. it's calculated from address and len */
 789        return true;
 790}
 791
 792static void switch_hw_breakpoint(struct task_struct *new)
 793{
 794        int i;
 795
 796        for (i = 0; i < nr_wp_slots(); i++) {
 797                if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
 798                                        &new->thread.hw_brk[i])))
 799                        continue;
 800
 801                __set_breakpoint(i, &new->thread.hw_brk[i]);
 802        }
 803}
 804#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 805#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 806
 807static inline int set_dabr(struct arch_hw_breakpoint *brk)
 808{
 809        unsigned long dabr, dabrx;
 810
 811        dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 812        dabrx = ((brk->type >> 3) & 0x7);
 813
 814        if (ppc_md.set_dabr)
 815                return ppc_md.set_dabr(dabr, dabrx);
 816
 817        if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
 818                mtspr(SPRN_DAC1, dabr);
 819                if (IS_ENABLED(CONFIG_PPC_47x))
 820                        isync();
 821                return 0;
 822        } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
 823                mtspr(SPRN_DABR, dabr);
 824                if (cpu_has_feature(CPU_FTR_DABRX))
 825                        mtspr(SPRN_DABRX, dabrx);
 826                return 0;
 827        } else {
 828                return -EINVAL;
 829        }
 830}
 831
 832static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
 833{
 834        unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
 835                               LCTRL1_CRWF_RW;
 836        unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
 837        unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
 838        unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
 839
 840        if (start_addr == 0)
 841                lctrl2 |= LCTRL2_LW0LA_F;
 842        else if (end_addr == 0)
 843                lctrl2 |= LCTRL2_LW0LA_E;
 844        else
 845                lctrl2 |= LCTRL2_LW0LA_EandF;
 846
 847        mtspr(SPRN_LCTRL2, 0);
 848
 849        if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
 850                return 0;
 851
 852        if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
 853                lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
 854        if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
 855                lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
 856
 857        mtspr(SPRN_CMPE, start_addr - 1);
 858        mtspr(SPRN_CMPF, end_addr);
 859        mtspr(SPRN_LCTRL1, lctrl1);
 860        mtspr(SPRN_LCTRL2, lctrl2);
 861
 862        return 0;
 863}
 864
 865void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
 866{
 867        memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
 868
 869        if (dawr_enabled())
 870                // Power8 or later
 871                set_dawr(nr, brk);
 872        else if (IS_ENABLED(CONFIG_PPC_8xx))
 873                set_breakpoint_8xx(brk);
 874        else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 875                // Power7 or earlier
 876                set_dabr(brk);
 877        else
 878                // Shouldn't happen due to higher level checks
 879                WARN_ON_ONCE(1);
 880}
 881
 882/* Check if we have DAWR or DABR hardware */
 883bool ppc_breakpoint_available(void)
 884{
 885        if (dawr_enabled())
 886                return true; /* POWER8 DAWR or POWER9 forced DAWR */
 887        if (cpu_has_feature(CPU_FTR_ARCH_207S))
 888                return false; /* POWER9 with DAWR disabled */
 889        /* DABR: Everything but POWER8 and POWER9 */
 890        return true;
 891}
 892EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
 893
 894#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 895
 896static inline bool tm_enabled(struct task_struct *tsk)
 897{
 898        return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
 899}
 900
 901static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
 902{
 903        /*
 904         * Use the current MSR TM suspended bit to track if we have
 905         * checkpointed state outstanding.
 906         * On signal delivery, we'd normally reclaim the checkpointed
 907         * state to obtain stack pointer (see:get_tm_stackpointer()).
 908         * This will then directly return to userspace without going
 909         * through __switch_to(). However, if the stack frame is bad,
 910         * we need to exit this thread which calls __switch_to() which
 911         * will again attempt to reclaim the already saved tm state.
 912         * Hence we need to check that we've not already reclaimed
 913         * this state.
 914         * We do this using the current MSR, rather tracking it in
 915         * some specific thread_struct bit, as it has the additional
 916         * benefit of checking for a potential TM bad thing exception.
 917         */
 918        if (!MSR_TM_SUSPENDED(mfmsr()))
 919                return;
 920
 921        giveup_all(container_of(thr, struct task_struct, thread));
 922
 923        tm_reclaim(thr, cause);
 924
 925        /*
 926         * If we are in a transaction and FP is off then we can't have
 927         * used FP inside that transaction. Hence the checkpointed
 928         * state is the same as the live state. We need to copy the
 929         * live state to the checkpointed state so that when the
 930         * transaction is restored, the checkpointed state is correct
 931         * and the aborted transaction sees the correct state. We use
 932         * ckpt_regs.msr here as that's what tm_reclaim will use to
 933         * determine if it's going to write the checkpointed state or
 934         * not. So either this will write the checkpointed registers,
 935         * or reclaim will. Similarly for VMX.
 936         */
 937        if ((thr->ckpt_regs.msr & MSR_FP) == 0)
 938                memcpy(&thr->ckfp_state, &thr->fp_state,
 939                       sizeof(struct thread_fp_state));
 940        if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
 941                memcpy(&thr->ckvr_state, &thr->vr_state,
 942                       sizeof(struct thread_vr_state));
 943}
 944
 945void tm_reclaim_current(uint8_t cause)
 946{
 947        tm_enable();
 948        tm_reclaim_thread(&current->thread, cause);
 949}
 950
 951static inline void tm_reclaim_task(struct task_struct *tsk)
 952{
 953        /* We have to work out if we're switching from/to a task that's in the
 954         * middle of a transaction.
 955         *
 956         * In switching we need to maintain a 2nd register state as
 957         * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 958         * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
 959         * ckvr_state
 960         *
 961         * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 962         */
 963        struct thread_struct *thr = &tsk->thread;
 964
 965        if (!thr->regs)
 966                return;
 967
 968        if (!MSR_TM_ACTIVE(thr->regs->msr))
 969                goto out_and_saveregs;
 970
 971        WARN_ON(tm_suspend_disabled);
 972
 973        TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 974                 "ccr=%lx, msr=%lx, trap=%lx)\n",
 975                 tsk->pid, thr->regs->nip,
 976                 thr->regs->ccr, thr->regs->msr,
 977                 thr->regs->trap);
 978
 979        tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
 980
 981        TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 982                 tsk->pid);
 983
 984out_and_saveregs:
 985        /* Always save the regs here, even if a transaction's not active.
 986         * This context-switches a thread's TM info SPRs.  We do it here to
 987         * be consistent with the restore path (in recheckpoint) which
 988         * cannot happen later in _switch().
 989         */
 990        tm_save_sprs(thr);
 991}
 992
 993extern void __tm_recheckpoint(struct thread_struct *thread);
 994
 995void tm_recheckpoint(struct thread_struct *thread)
 996{
 997        unsigned long flags;
 998
 999        if (!(thread->regs->msr & MSR_TM))
1000                return;
1001
1002        /* We really can't be interrupted here as the TEXASR registers can't
1003         * change and later in the trecheckpoint code, we have a userspace R1.
1004         * So let's hard disable over this region.
1005         */
1006        local_irq_save(flags);
1007        hard_irq_disable();
1008
1009        /* The TM SPRs are restored here, so that TEXASR.FS can be set
1010         * before the trecheckpoint and no explosion occurs.
1011         */
1012        tm_restore_sprs(thread);
1013
1014        __tm_recheckpoint(thread);
1015
1016        local_irq_restore(flags);
1017}
1018
1019static inline void tm_recheckpoint_new_task(struct task_struct *new)
1020{
1021        if (!cpu_has_feature(CPU_FTR_TM))
1022                return;
1023
1024        /* Recheckpoint the registers of the thread we're about to switch to.
1025         *
1026         * If the task was using FP, we non-lazily reload both the original and
1027         * the speculative FP register states.  This is because the kernel
1028         * doesn't see if/when a TM rollback occurs, so if we take an FP
1029         * unavailable later, we are unable to determine which set of FP regs
1030         * need to be restored.
1031         */
1032        if (!tm_enabled(new))
1033                return;
1034
1035        if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1036                tm_restore_sprs(&new->thread);
1037                return;
1038        }
1039        /* Recheckpoint to restore original checkpointed register state. */
1040        TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1041                 new->pid, new->thread.regs->msr);
1042
1043        tm_recheckpoint(&new->thread);
1044
1045        /*
1046         * The checkpointed state has been restored but the live state has
1047         * not, ensure all the math functionality is turned off to trigger
1048         * restore_math() to reload.
1049         */
1050        new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1051
1052        TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1053                 "(kernel msr 0x%lx)\n",
1054                 new->pid, mfmsr());
1055}
1056
1057static inline void __switch_to_tm(struct task_struct *prev,
1058                struct task_struct *new)
1059{
1060        if (cpu_has_feature(CPU_FTR_TM)) {
1061                if (tm_enabled(prev) || tm_enabled(new))
1062                        tm_enable();
1063
1064                if (tm_enabled(prev)) {
1065                        prev->thread.load_tm++;
1066                        tm_reclaim_task(prev);
1067                        if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1068                                prev->thread.regs->msr &= ~MSR_TM;
1069                }
1070
1071                tm_recheckpoint_new_task(new);
1072        }
1073}
1074
1075/*
1076 * This is called if we are on the way out to userspace and the
1077 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1078 * FP and/or vector state and does so if necessary.
1079 * If userspace is inside a transaction (whether active or
1080 * suspended) and FP/VMX/VSX instructions have ever been enabled
1081 * inside that transaction, then we have to keep them enabled
1082 * and keep the FP/VMX/VSX state loaded while ever the transaction
1083 * continues.  The reason is that if we didn't, and subsequently
1084 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1085 * we don't know whether it's the same transaction, and thus we
1086 * don't know which of the checkpointed state and the transactional
1087 * state to use.
1088 */
1089void restore_tm_state(struct pt_regs *regs)
1090{
1091        unsigned long msr_diff;
1092
1093        /*
1094         * This is the only moment we should clear TIF_RESTORE_TM as
1095         * it is here that ckpt_regs.msr and pt_regs.msr become the same
1096         * again, anything else could lead to an incorrect ckpt_msr being
1097         * saved and therefore incorrect signal contexts.
1098         */
1099        clear_thread_flag(TIF_RESTORE_TM);
1100        if (!MSR_TM_ACTIVE(regs->msr))
1101                return;
1102
1103        msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1104        msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1105
1106        /* Ensure that restore_math() will restore */
1107        if (msr_diff & MSR_FP)
1108                current->thread.load_fp = 1;
1109#ifdef CONFIG_ALTIVEC
1110        if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1111                current->thread.load_vec = 1;
1112#endif
1113        restore_math(regs);
1114
1115        regs_set_return_msr(regs, regs->msr | msr_diff);
1116}
1117
1118#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1119#define tm_recheckpoint_new_task(new)
1120#define __switch_to_tm(prev, new)
1121void tm_reclaim_current(uint8_t cause) {}
1122#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1123
1124static inline void save_sprs(struct thread_struct *t)
1125{
1126#ifdef CONFIG_ALTIVEC
1127        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1128                t->vrsave = mfspr(SPRN_VRSAVE);
1129#endif
1130#ifdef CONFIG_SPE
1131        if (cpu_has_feature(CPU_FTR_SPE))
1132                t->spefscr = mfspr(SPRN_SPEFSCR);
1133#endif
1134#ifdef CONFIG_PPC_BOOK3S_64
1135        if (cpu_has_feature(CPU_FTR_DSCR))
1136                t->dscr = mfspr(SPRN_DSCR);
1137
1138        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1139                t->bescr = mfspr(SPRN_BESCR);
1140                t->ebbhr = mfspr(SPRN_EBBHR);
1141                t->ebbrr = mfspr(SPRN_EBBRR);
1142
1143                t->fscr = mfspr(SPRN_FSCR);
1144
1145                /*
1146                 * Note that the TAR is not available for use in the kernel.
1147                 * (To provide this, the TAR should be backed up/restored on
1148                 * exception entry/exit instead, and be in pt_regs.  FIXME,
1149                 * this should be in pt_regs anyway (for debug).)
1150                 */
1151                t->tar = mfspr(SPRN_TAR);
1152        }
1153#endif
1154}
1155
1156#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1157void kvmppc_save_user_regs(void)
1158{
1159        unsigned long usermsr;
1160
1161        if (!current->thread.regs)
1162                return;
1163
1164        usermsr = current->thread.regs->msr;
1165
1166        if (usermsr & MSR_FP)
1167                save_fpu(current);
1168
1169        if (usermsr & MSR_VEC)
1170                save_altivec(current);
1171
1172#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1173        if (usermsr & MSR_TM) {
1174                current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1175                current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1176                current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1177                current->thread.regs->msr &= ~MSR_TM;
1178        }
1179#endif
1180}
1181EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1182
1183void kvmppc_save_current_sprs(void)
1184{
1185        save_sprs(&current->thread);
1186}
1187EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1188#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1189
1190static inline void restore_sprs(struct thread_struct *old_thread,
1191                                struct thread_struct *new_thread)
1192{
1193#ifdef CONFIG_ALTIVEC
1194        if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1195            old_thread->vrsave != new_thread->vrsave)
1196                mtspr(SPRN_VRSAVE, new_thread->vrsave);
1197#endif
1198#ifdef CONFIG_SPE
1199        if (cpu_has_feature(CPU_FTR_SPE) &&
1200            old_thread->spefscr != new_thread->spefscr)
1201                mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1202#endif
1203#ifdef CONFIG_PPC_BOOK3S_64
1204        if (cpu_has_feature(CPU_FTR_DSCR)) {
1205                u64 dscr = get_paca()->dscr_default;
1206                if (new_thread->dscr_inherit)
1207                        dscr = new_thread->dscr;
1208
1209                if (old_thread->dscr != dscr)
1210                        mtspr(SPRN_DSCR, dscr);
1211        }
1212
1213        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1214                if (old_thread->bescr != new_thread->bescr)
1215                        mtspr(SPRN_BESCR, new_thread->bescr);
1216                if (old_thread->ebbhr != new_thread->ebbhr)
1217                        mtspr(SPRN_EBBHR, new_thread->ebbhr);
1218                if (old_thread->ebbrr != new_thread->ebbrr)
1219                        mtspr(SPRN_EBBRR, new_thread->ebbrr);
1220
1221                if (old_thread->fscr != new_thread->fscr)
1222                        mtspr(SPRN_FSCR, new_thread->fscr);
1223
1224                if (old_thread->tar != new_thread->tar)
1225                        mtspr(SPRN_TAR, new_thread->tar);
1226        }
1227
1228        if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1229            old_thread->tidr != new_thread->tidr)
1230                mtspr(SPRN_TIDR, new_thread->tidr);
1231#endif
1232
1233}
1234
1235struct task_struct *__switch_to(struct task_struct *prev,
1236        struct task_struct *new)
1237{
1238        struct thread_struct *new_thread, *old_thread;
1239        struct task_struct *last;
1240#ifdef CONFIG_PPC_64S_HASH_MMU
1241        struct ppc64_tlb_batch *batch;
1242#endif
1243
1244        new_thread = &new->thread;
1245        old_thread = &current->thread;
1246
1247        WARN_ON(!irqs_disabled());
1248
1249#ifdef CONFIG_PPC_64S_HASH_MMU
1250        batch = this_cpu_ptr(&ppc64_tlb_batch);
1251        if (batch->active) {
1252                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1253                if (batch->index)
1254                        __flush_tlb_pending(batch);
1255                batch->active = 0;
1256        }
1257
1258        /*
1259         * On POWER9 the copy-paste buffer can only paste into
1260         * foreign real addresses, so unprivileged processes can not
1261         * see the data or use it in any way unless they have
1262         * foreign real mappings. If the new process has the foreign
1263         * real address mappings, we must issue a cp_abort to clear
1264         * any state and prevent snooping, corruption or a covert
1265         * channel. ISA v3.1 supports paste into local memory.
1266         */
1267        if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1268                        atomic_read(&new->mm->context.vas_windows)))
1269                asm volatile(PPC_CP_ABORT);
1270#endif /* CONFIG_PPC_BOOK3S_64 */
1271
1272#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1273        switch_booke_debug_regs(&new->thread.debug);
1274#else
1275/*
1276 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1277 * schedule DABR
1278 */
1279#ifndef CONFIG_HAVE_HW_BREAKPOINT
1280        switch_hw_breakpoint(new);
1281#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1282#endif
1283
1284        /*
1285         * We need to save SPRs before treclaim/trecheckpoint as these will
1286         * change a number of them.
1287         */
1288        save_sprs(&prev->thread);
1289
1290        /* Save FPU, Altivec, VSX and SPE state */
1291        giveup_all(prev);
1292
1293        __switch_to_tm(prev, new);
1294
1295        if (!radix_enabled()) {
1296                /*
1297                 * We can't take a PMU exception inside _switch() since there
1298                 * is a window where the kernel stack SLB and the kernel stack
1299                 * are out of sync. Hard disable here.
1300                 */
1301                hard_irq_disable();
1302        }
1303
1304        /*
1305         * Call restore_sprs() and set_return_regs_changed() before calling
1306         * _switch(). If we move it after _switch() then we miss out on calling
1307         * it for new tasks. The reason for this is we manually create a stack
1308         * frame for new tasks that directly returns through ret_from_fork() or
1309         * ret_from_kernel_thread(). See copy_thread() for details.
1310         */
1311        restore_sprs(old_thread, new_thread);
1312
1313        set_return_regs_changed(); /* _switch changes stack (and regs) */
1314
1315        if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1316                kuap_assert_locked();
1317
1318        last = _switch(old_thread, new_thread);
1319
1320        /*
1321         * Nothing after _switch will be run for newly created tasks,
1322         * because they switch directly to ret_from_fork/ret_from_kernel_thread
1323         * etc. Code added here should have a comment explaining why that is
1324         * okay.
1325         */
1326
1327#ifdef CONFIG_PPC_BOOK3S_64
1328#ifdef CONFIG_PPC_64S_HASH_MMU
1329        /*
1330         * This applies to a process that was context switched while inside
1331         * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1332         * deactivated above, before _switch(). This will never be the case
1333         * for new tasks.
1334         */
1335        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1336                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1337                batch = this_cpu_ptr(&ppc64_tlb_batch);
1338                batch->active = 1;
1339        }
1340#endif
1341
1342        /*
1343         * Math facilities are masked out of the child MSR in copy_thread.
1344         * A new task does not need to restore_math because it will
1345         * demand fault them.
1346         */
1347        if (current->thread.regs)
1348                restore_math(current->thread.regs);
1349#endif /* CONFIG_PPC_BOOK3S_64 */
1350
1351        return last;
1352}
1353
1354#define NR_INSN_TO_PRINT        16
1355
1356static void show_instructions(struct pt_regs *regs)
1357{
1358        int i;
1359        unsigned long nip = regs->nip;
1360        unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1361
1362        printk("Instruction dump:");
1363
1364        /*
1365         * If we were executing with the MMU off for instructions, adjust pc
1366         * rather than printing XXXXXXXX.
1367         */
1368        if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1369                pc = (unsigned long)phys_to_virt(pc);
1370                nip = (unsigned long)phys_to_virt(regs->nip);
1371        }
1372
1373        for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1374                int instr;
1375
1376                if (!(i % 8))
1377                        pr_cont("\n");
1378
1379                if (!__kernel_text_address(pc) ||
1380                    get_kernel_nofault(instr, (const void *)pc)) {
1381                        pr_cont("XXXXXXXX ");
1382                } else {
1383                        if (nip == pc)
1384                                pr_cont("<%08x> ", instr);
1385                        else
1386                                pr_cont("%08x ", instr);
1387                }
1388
1389                pc += sizeof(int);
1390        }
1391
1392        pr_cont("\n");
1393}
1394
1395void show_user_instructions(struct pt_regs *regs)
1396{
1397        unsigned long pc;
1398        int n = NR_INSN_TO_PRINT;
1399        struct seq_buf s;
1400        char buf[96]; /* enough for 8 times 9 + 2 chars */
1401
1402        pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1403
1404        seq_buf_init(&s, buf, sizeof(buf));
1405
1406        while (n) {
1407                int i;
1408
1409                seq_buf_clear(&s);
1410
1411                for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1412                        int instr;
1413
1414                        if (copy_from_user_nofault(&instr, (void __user *)pc,
1415                                        sizeof(instr))) {
1416                                seq_buf_printf(&s, "XXXXXXXX ");
1417                                continue;
1418                        }
1419                        seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1420                }
1421
1422                if (!seq_buf_has_overflowed(&s))
1423                        pr_info("%s[%d]: code: %s\n", current->comm,
1424                                current->pid, s.buffer);
1425        }
1426}
1427
1428struct regbit {
1429        unsigned long bit;
1430        const char *name;
1431};
1432
1433static struct regbit msr_bits[] = {
1434#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1435        {MSR_SF,        "SF"},
1436        {MSR_HV,        "HV"},
1437#endif
1438        {MSR_VEC,       "VEC"},
1439        {MSR_VSX,       "VSX"},
1440#ifdef CONFIG_BOOKE
1441        {MSR_CE,        "CE"},
1442#endif
1443        {MSR_EE,        "EE"},
1444        {MSR_PR,        "PR"},
1445        {MSR_FP,        "FP"},
1446        {MSR_ME,        "ME"},
1447#ifdef CONFIG_BOOKE
1448        {MSR_DE,        "DE"},
1449#else
1450        {MSR_SE,        "SE"},
1451        {MSR_BE,        "BE"},
1452#endif
1453        {MSR_IR,        "IR"},
1454        {MSR_DR,        "DR"},
1455        {MSR_PMM,       "PMM"},
1456#ifndef CONFIG_BOOKE
1457        {MSR_RI,        "RI"},
1458        {MSR_LE,        "LE"},
1459#endif
1460        {0,             NULL}
1461};
1462
1463static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1464{
1465        const char *s = "";
1466
1467        for (; bits->bit; ++bits)
1468                if (val & bits->bit) {
1469                        pr_cont("%s%s", s, bits->name);
1470                        s = sep;
1471                }
1472}
1473
1474#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1475static struct regbit msr_tm_bits[] = {
1476        {MSR_TS_T,      "T"},
1477        {MSR_TS_S,      "S"},
1478        {MSR_TM,        "E"},
1479        {0,             NULL}
1480};
1481
1482static void print_tm_bits(unsigned long val)
1483{
1484/*
1485 * This only prints something if at least one of the TM bit is set.
1486 * Inside the TM[], the output means:
1487 *   E: Enabled         (bit 32)
1488 *   S: Suspended       (bit 33)
1489 *   T: Transactional   (bit 34)
1490 */
1491        if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1492                pr_cont(",TM[");
1493                print_bits(val, msr_tm_bits, "");
1494                pr_cont("]");
1495        }
1496}
1497#else
1498static void print_tm_bits(unsigned long val) {}
1499#endif
1500
1501static void print_msr_bits(unsigned long val)
1502{
1503        pr_cont("<");
1504        print_bits(val, msr_bits, ",");
1505        print_tm_bits(val);
1506        pr_cont(">");
1507}
1508
1509#ifdef CONFIG_PPC64
1510#define REG             "%016lx"
1511#define REGS_PER_LINE   4
1512#else
1513#define REG             "%08lx"
1514#define REGS_PER_LINE   8
1515#endif
1516
1517static void __show_regs(struct pt_regs *regs)
1518{
1519        int i, trap;
1520
1521        printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1522               regs->nip, regs->link, regs->ctr);
1523        printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1524               regs, regs->trap, print_tainted(), init_utsname()->release);
1525        printk("MSR:  "REG" ", regs->msr);
1526        print_msr_bits(regs->msr);
1527        pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1528        trap = TRAP(regs);
1529        if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1530                pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1531        if (trap == INTERRUPT_MACHINE_CHECK ||
1532            trap == INTERRUPT_DATA_STORAGE ||
1533            trap == INTERRUPT_ALIGNMENT) {
1534                if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1535                        pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1536                else
1537                        pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1538        }
1539
1540#ifdef CONFIG_PPC64
1541        pr_cont("IRQMASK: %lx ", regs->softe);
1542#endif
1543#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1544        if (MSR_TM_ACTIVE(regs->msr))
1545                pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1546#endif
1547
1548        for (i = 0;  i < 32;  i++) {
1549                if ((i % REGS_PER_LINE) == 0)
1550                        pr_cont("\nGPR%02d: ", i);
1551                pr_cont(REG " ", regs->gpr[i]);
1552        }
1553        pr_cont("\n");
1554        /*
1555         * Lookup NIP late so we have the best change of getting the
1556         * above info out without failing
1557         */
1558        if (IS_ENABLED(CONFIG_KALLSYMS)) {
1559                printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1560                printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1561        }
1562}
1563
1564void show_regs(struct pt_regs *regs)
1565{
1566        show_regs_print_info(KERN_DEFAULT);
1567        __show_regs(regs);
1568        show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1569        if (!user_mode(regs))
1570                show_instructions(regs);
1571}
1572
1573void flush_thread(void)
1574{
1575#ifdef CONFIG_HAVE_HW_BREAKPOINT
1576        flush_ptrace_hw_breakpoint(current);
1577#else /* CONFIG_HAVE_HW_BREAKPOINT */
1578        set_debug_reg_defaults(&current->thread);
1579#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1580}
1581
1582void arch_setup_new_exec(void)
1583{
1584
1585#ifdef CONFIG_PPC_BOOK3S_64
1586        if (!radix_enabled())
1587                hash__setup_new_exec();
1588#endif
1589        /*
1590         * If we exec out of a kernel thread then thread.regs will not be
1591         * set.  Do it now.
1592         */
1593        if (!current->thread.regs) {
1594                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1595                current->thread.regs = regs - 1;
1596        }
1597
1598#ifdef CONFIG_PPC_MEM_KEYS
1599        current->thread.regs->amr  = default_amr;
1600        current->thread.regs->iamr  = default_iamr;
1601#endif
1602}
1603
1604#ifdef CONFIG_PPC64
1605/**
1606 * Assign a TIDR (thread ID) for task @t and set it in the thread
1607 * structure. For now, we only support setting TIDR for 'current' task.
1608 *
1609 * Since the TID value is a truncated form of it PID, it is possible
1610 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1611 * that 2 threads share the same TID and are waiting, one of the following
1612 * cases will happen:
1613 *
1614 * 1. The correct thread is running, the wrong thread is not
1615 * In this situation, the correct thread is woken and proceeds to pass it's
1616 * condition check.
1617 *
1618 * 2. Neither threads are running
1619 * In this situation, neither thread will be woken. When scheduled, the waiting
1620 * threads will execute either a wait, which will return immediately, followed
1621 * by a condition check, which will pass for the correct thread and fail
1622 * for the wrong thread, or they will execute the condition check immediately.
1623 *
1624 * 3. The wrong thread is running, the correct thread is not
1625 * The wrong thread will be woken, but will fail it's condition check and
1626 * re-execute wait. The correct thread, when scheduled, will execute either
1627 * it's condition check (which will pass), or wait, which returns immediately
1628 * when called the first time after the thread is scheduled, followed by it's
1629 * condition check (which will pass).
1630 *
1631 * 4. Both threads are running
1632 * Both threads will be woken. The wrong thread will fail it's condition check
1633 * and execute another wait, while the correct thread will pass it's condition
1634 * check.
1635 *
1636 * @t: the task to set the thread ID for
1637 */
1638int set_thread_tidr(struct task_struct *t)
1639{
1640        if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1641                return -EINVAL;
1642
1643        if (t != current)
1644                return -EINVAL;
1645
1646        if (t->thread.tidr)
1647                return 0;
1648
1649        t->thread.tidr = (u16)task_pid_nr(t);
1650        mtspr(SPRN_TIDR, t->thread.tidr);
1651
1652        return 0;
1653}
1654EXPORT_SYMBOL_GPL(set_thread_tidr);
1655
1656#endif /* CONFIG_PPC64 */
1657
1658void
1659release_thread(struct task_struct *t)
1660{
1661}
1662
1663/*
1664 * this gets called so that we can store coprocessor state into memory and
1665 * copy the current task into the new thread.
1666 */
1667int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1668{
1669        flush_all_to_thread(src);
1670        /*
1671         * Flush TM state out so we can copy it.  __switch_to_tm() does this
1672         * flush but it removes the checkpointed state from the current CPU and
1673         * transitions the CPU out of TM mode.  Hence we need to call
1674         * tm_recheckpoint_new_task() (on the same task) to restore the
1675         * checkpointed state back and the TM mode.
1676         *
1677         * Can't pass dst because it isn't ready. Doesn't matter, passing
1678         * dst is only important for __switch_to()
1679         */
1680        __switch_to_tm(src, src);
1681
1682        *dst = *src;
1683
1684        clear_task_ebb(dst);
1685
1686        return 0;
1687}
1688
1689static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1690{
1691#ifdef CONFIG_PPC_64S_HASH_MMU
1692        unsigned long sp_vsid;
1693        unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1694
1695        if (radix_enabled())
1696                return;
1697
1698        if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1699                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1700                        << SLB_VSID_SHIFT_1T;
1701        else
1702                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1703                        << SLB_VSID_SHIFT;
1704        sp_vsid |= SLB_VSID_KERNEL | llp;
1705        p->thread.ksp_vsid = sp_vsid;
1706#endif
1707}
1708
1709/*
1710 * Copy a thread..
1711 */
1712
1713/*
1714 * Copy architecture-specific thread state
1715 */
1716int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1717{
1718        unsigned long clone_flags = args->flags;
1719        unsigned long usp = args->stack;
1720        unsigned long tls = args->tls;
1721        struct pt_regs *childregs, *kregs;
1722        extern void ret_from_fork(void);
1723        extern void ret_from_fork_scv(void);
1724        extern void ret_from_kernel_thread(void);
1725        void (*f)(void);
1726        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1727        struct thread_info *ti = task_thread_info(p);
1728#ifdef CONFIG_HAVE_HW_BREAKPOINT
1729        int i;
1730#endif
1731
1732        klp_init_thread_info(p);
1733
1734        /* Copy registers */
1735        sp -= sizeof(struct pt_regs);
1736        childregs = (struct pt_regs *) sp;
1737        if (unlikely(args->fn)) {
1738                /* kernel thread */
1739                memset(childregs, 0, sizeof(struct pt_regs));
1740                childregs->gpr[1] = sp + sizeof(struct pt_regs);
1741                /* function */
1742                if (args->fn)
1743                        childregs->gpr[14] = ppc_function_entry((void *)args->fn);
1744#ifdef CONFIG_PPC64
1745                clear_tsk_thread_flag(p, TIF_32BIT);
1746                childregs->softe = IRQS_ENABLED;
1747#endif
1748                childregs->gpr[15] = (unsigned long)args->fn_arg;
1749                p->thread.regs = NULL;  /* no user register state */
1750                ti->flags |= _TIF_RESTOREALL;
1751                f = ret_from_kernel_thread;
1752        } else {
1753                /* user thread */
1754                struct pt_regs *regs = current_pt_regs();
1755                *childregs = *regs;
1756                if (usp)
1757                        childregs->gpr[1] = usp;
1758                p->thread.regs = childregs;
1759                /* 64s sets this in ret_from_fork */
1760                if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1761                        childregs->gpr[3] = 0;  /* Result from fork() */
1762                if (clone_flags & CLONE_SETTLS) {
1763                        if (!is_32bit_task())
1764                                childregs->gpr[13] = tls;
1765                        else
1766                                childregs->gpr[2] = tls;
1767                }
1768
1769                if (trap_is_scv(regs))
1770                        f = ret_from_fork_scv;
1771                else
1772                        f = ret_from_fork;
1773        }
1774        childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1775        sp -= STACK_FRAME_OVERHEAD;
1776
1777        /*
1778         * The way this works is that at some point in the future
1779         * some task will call _switch to switch to the new task.
1780         * That will pop off the stack frame created below and start
1781         * the new task running at ret_from_fork.  The new task will
1782         * do some house keeping and then return from the fork or clone
1783         * system call, using the stack frame created above.
1784         */
1785        ((unsigned long *)sp)[0] = 0;
1786        sp -= sizeof(struct pt_regs);
1787        kregs = (struct pt_regs *) sp;
1788        sp -= STACK_FRAME_OVERHEAD;
1789        p->thread.ksp = sp;
1790#ifdef CONFIG_HAVE_HW_BREAKPOINT
1791        for (i = 0; i < nr_wp_slots(); i++)
1792                p->thread.ptrace_bps[i] = NULL;
1793#endif
1794
1795#ifdef CONFIG_PPC_FPU_REGS
1796        p->thread.fp_save_area = NULL;
1797#endif
1798#ifdef CONFIG_ALTIVEC
1799        p->thread.vr_save_area = NULL;
1800#endif
1801#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1802        p->thread.kuap = KUAP_NONE;
1803#endif
1804#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1805        p->thread.pid = MMU_NO_CONTEXT;
1806#endif
1807
1808        setup_ksp_vsid(p, sp);
1809
1810#ifdef CONFIG_PPC64 
1811        if (cpu_has_feature(CPU_FTR_DSCR)) {
1812                p->thread.dscr_inherit = current->thread.dscr_inherit;
1813                p->thread.dscr = mfspr(SPRN_DSCR);
1814        }
1815        if (cpu_has_feature(CPU_FTR_HAS_PPR))
1816                childregs->ppr = DEFAULT_PPR;
1817
1818        p->thread.tidr = 0;
1819#endif
1820        /*
1821         * Run with the current AMR value of the kernel
1822         */
1823#ifdef CONFIG_PPC_PKEY
1824        if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1825                kregs->amr = AMR_KUAP_BLOCKED;
1826
1827        if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1828                kregs->iamr = AMR_KUEP_BLOCKED;
1829#endif
1830        kregs->nip = ppc_function_entry(f);
1831        return 0;
1832}
1833
1834void preload_new_slb_context(unsigned long start, unsigned long sp);
1835
1836/*
1837 * Set up a thread for executing a new program
1838 */
1839void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1840{
1841#ifdef CONFIG_PPC64
1842        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1843
1844        if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1845                preload_new_slb_context(start, sp);
1846#endif
1847
1848#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1849        /*
1850         * Clear any transactional state, we're exec()ing. The cause is
1851         * not important as there will never be a recheckpoint so it's not
1852         * user visible.
1853         */
1854        if (MSR_TM_SUSPENDED(mfmsr()))
1855                tm_reclaim_current(0);
1856#endif
1857
1858        memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1859        regs->ctr = 0;
1860        regs->link = 0;
1861        regs->xer = 0;
1862        regs->ccr = 0;
1863        regs->gpr[1] = sp;
1864
1865#ifdef CONFIG_PPC32
1866        regs->mq = 0;
1867        regs->nip = start;
1868        regs->msr = MSR_USER;
1869#else
1870        if (!is_32bit_task()) {
1871                unsigned long entry;
1872
1873                if (is_elf2_task()) {
1874                        /* Look ma, no function descriptors! */
1875                        entry = start;
1876
1877                        /*
1878                         * Ulrich says:
1879                         *   The latest iteration of the ABI requires that when
1880                         *   calling a function (at its global entry point),
1881                         *   the caller must ensure r12 holds the entry point
1882                         *   address (so that the function can quickly
1883                         *   establish addressability).
1884                         */
1885                        regs->gpr[12] = start;
1886                        /* Make sure that's restored on entry to userspace. */
1887                        set_thread_flag(TIF_RESTOREALL);
1888                } else {
1889                        unsigned long toc;
1890
1891                        /* start is a relocated pointer to the function
1892                         * descriptor for the elf _start routine.  The first
1893                         * entry in the function descriptor is the entry
1894                         * address of _start and the second entry is the TOC
1895                         * value we need to use.
1896                         */
1897                        __get_user(entry, (unsigned long __user *)start);
1898                        __get_user(toc, (unsigned long __user *)start+1);
1899
1900                        /* Check whether the e_entry function descriptor entries
1901                         * need to be relocated before we can use them.
1902                         */
1903                        if (load_addr != 0) {
1904                                entry += load_addr;
1905                                toc   += load_addr;
1906                        }
1907                        regs->gpr[2] = toc;
1908                }
1909                regs_set_return_ip(regs, entry);
1910                regs_set_return_msr(regs, MSR_USER64);
1911        } else {
1912                regs->gpr[2] = 0;
1913                regs_set_return_ip(regs, start);
1914                regs_set_return_msr(regs, MSR_USER32);
1915        }
1916
1917#endif
1918#ifdef CONFIG_VSX
1919        current->thread.used_vsr = 0;
1920#endif
1921        current->thread.load_slb = 0;
1922        current->thread.load_fp = 0;
1923#ifdef CONFIG_PPC_FPU_REGS
1924        memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1925        current->thread.fp_save_area = NULL;
1926#endif
1927#ifdef CONFIG_ALTIVEC
1928        memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1929        current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1930        current->thread.vr_save_area = NULL;
1931        current->thread.vrsave = 0;
1932        current->thread.used_vr = 0;
1933        current->thread.load_vec = 0;
1934#endif /* CONFIG_ALTIVEC */
1935#ifdef CONFIG_SPE
1936        memset(current->thread.evr, 0, sizeof(current->thread.evr));
1937        current->thread.acc = 0;
1938        current->thread.spefscr = 0;
1939        current->thread.used_spe = 0;
1940#endif /* CONFIG_SPE */
1941#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1942        current->thread.tm_tfhar = 0;
1943        current->thread.tm_texasr = 0;
1944        current->thread.tm_tfiar = 0;
1945        current->thread.load_tm = 0;
1946#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1947}
1948EXPORT_SYMBOL(start_thread);
1949
1950#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1951                | PR_FP_EXC_RES | PR_FP_EXC_INV)
1952
1953int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1954{
1955        struct pt_regs *regs = tsk->thread.regs;
1956
1957        /* This is a bit hairy.  If we are an SPE enabled  processor
1958         * (have embedded fp) we store the IEEE exception enable flags in
1959         * fpexc_mode.  fpexc_mode is also used for setting FP exception
1960         * mode (asyn, precise, disabled) for 'Classic' FP. */
1961        if (val & PR_FP_EXC_SW_ENABLE) {
1962                if (cpu_has_feature(CPU_FTR_SPE)) {
1963                        /*
1964                         * When the sticky exception bits are set
1965                         * directly by userspace, it must call prctl
1966                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1967                         * in the existing prctl settings) or
1968                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1969                         * the bits being set).  <fenv.h> functions
1970                         * saving and restoring the whole
1971                         * floating-point environment need to do so
1972                         * anyway to restore the prctl settings from
1973                         * the saved environment.
1974                         */
1975#ifdef CONFIG_SPE
1976                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1977                        tsk->thread.fpexc_mode = val &
1978                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1979#endif
1980                        return 0;
1981                } else {
1982                        return -EINVAL;
1983                }
1984        }
1985
1986        /* on a CONFIG_SPE this does not hurt us.  The bits that
1987         * __pack_fe01 use do not overlap with bits used for
1988         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1989         * on CONFIG_SPE implementations are reserved so writing to
1990         * them does not change anything */
1991        if (val > PR_FP_EXC_PRECISE)
1992                return -EINVAL;
1993        tsk->thread.fpexc_mode = __pack_fe01(val);
1994        if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1995                regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1996                                                | tsk->thread.fpexc_mode);
1997        }
1998        return 0;
1999}
2000
2001int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2002{
2003        unsigned int val = 0;
2004
2005        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2006                if (cpu_has_feature(CPU_FTR_SPE)) {
2007                        /*
2008                         * When the sticky exception bits are set
2009                         * directly by userspace, it must call prctl
2010                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2011                         * in the existing prctl settings) or
2012                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2013                         * the bits being set).  <fenv.h> functions
2014                         * saving and restoring the whole
2015                         * floating-point environment need to do so
2016                         * anyway to restore the prctl settings from
2017                         * the saved environment.
2018                         */
2019#ifdef CONFIG_SPE
2020                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2021                        val = tsk->thread.fpexc_mode;
2022#endif
2023                } else
2024                        return -EINVAL;
2025        } else {
2026                val = __unpack_fe01(tsk->thread.fpexc_mode);
2027        }
2028        return put_user(val, (unsigned int __user *) adr);
2029}
2030
2031int set_endian(struct task_struct *tsk, unsigned int val)
2032{
2033        struct pt_regs *regs = tsk->thread.regs;
2034
2035        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2036            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2037                return -EINVAL;
2038
2039        if (regs == NULL)
2040                return -EINVAL;
2041
2042        if (val == PR_ENDIAN_BIG)
2043                regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2044        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2045                regs_set_return_msr(regs, regs->msr | MSR_LE);
2046        else
2047                return -EINVAL;
2048
2049        return 0;
2050}
2051
2052int get_endian(struct task_struct *tsk, unsigned long adr)
2053{
2054        struct pt_regs *regs = tsk->thread.regs;
2055        unsigned int val;
2056
2057        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2058            !cpu_has_feature(CPU_FTR_REAL_LE))
2059                return -EINVAL;
2060
2061        if (regs == NULL)
2062                return -EINVAL;
2063
2064        if (regs->msr & MSR_LE) {
2065                if (cpu_has_feature(CPU_FTR_REAL_LE))
2066                        val = PR_ENDIAN_LITTLE;
2067                else
2068                        val = PR_ENDIAN_PPC_LITTLE;
2069        } else
2070                val = PR_ENDIAN_BIG;
2071
2072        return put_user(val, (unsigned int __user *)adr);
2073}
2074
2075int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2076{
2077        tsk->thread.align_ctl = val;
2078        return 0;
2079}
2080
2081int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2082{
2083        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2084}
2085
2086static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2087                                  unsigned long nbytes)
2088{
2089        unsigned long stack_page;
2090        unsigned long cpu = task_cpu(p);
2091
2092        stack_page = (unsigned long)hardirq_ctx[cpu];
2093        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2094                return 1;
2095
2096        stack_page = (unsigned long)softirq_ctx[cpu];
2097        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2098                return 1;
2099
2100        return 0;
2101}
2102
2103static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2104                                        unsigned long nbytes)
2105{
2106#ifdef CONFIG_PPC64
2107        unsigned long stack_page;
2108        unsigned long cpu = task_cpu(p);
2109
2110        if (!paca_ptrs)
2111                return 0;
2112
2113        stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2114        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2115                return 1;
2116
2117# ifdef CONFIG_PPC_BOOK3S_64
2118        stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2119        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2120                return 1;
2121
2122        stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2123        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2124                return 1;
2125# endif
2126#endif
2127
2128        return 0;
2129}
2130
2131
2132int validate_sp(unsigned long sp, struct task_struct *p,
2133                       unsigned long nbytes)
2134{
2135        unsigned long stack_page = (unsigned long)task_stack_page(p);
2136
2137        if (sp < THREAD_SIZE)
2138                return 0;
2139
2140        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2141                return 1;
2142
2143        if (valid_irq_stack(sp, p, nbytes))
2144                return 1;
2145
2146        return valid_emergency_stack(sp, p, nbytes);
2147}
2148
2149EXPORT_SYMBOL(validate_sp);
2150
2151static unsigned long ___get_wchan(struct task_struct *p)
2152{
2153        unsigned long ip, sp;
2154        int count = 0;
2155
2156        sp = p->thread.ksp;
2157        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2158                return 0;
2159
2160        do {
2161                sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2162                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2163                    task_is_running(p))
2164                        return 0;
2165                if (count > 0) {
2166                        ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2167                        if (!in_sched_functions(ip))
2168                                return ip;
2169                }
2170        } while (count++ < 16);
2171        return 0;
2172}
2173
2174unsigned long __get_wchan(struct task_struct *p)
2175{
2176        unsigned long ret;
2177
2178        if (!try_get_task_stack(p))
2179                return 0;
2180
2181        ret = ___get_wchan(p);
2182
2183        put_task_stack(p);
2184
2185        return ret;
2186}
2187
2188static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2189
2190void __no_sanitize_address show_stack(struct task_struct *tsk,
2191                                      unsigned long *stack,
2192                                      const char *loglvl)
2193{
2194        unsigned long sp, ip, lr, newsp;
2195        int count = 0;
2196        int firstframe = 1;
2197        unsigned long ret_addr;
2198        int ftrace_idx = 0;
2199
2200        if (tsk == NULL)
2201                tsk = current;
2202
2203        if (!try_get_task_stack(tsk))
2204                return;
2205
2206        sp = (unsigned long) stack;
2207        if (sp == 0) {
2208                if (tsk == current)
2209                        sp = current_stack_frame();
2210                else
2211                        sp = tsk->thread.ksp;
2212        }
2213
2214        lr = 0;
2215        printk("%sCall Trace:\n", loglvl);
2216        do {
2217                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2218                        break;
2219
2220                stack = (unsigned long *) sp;
2221                newsp = stack[0];
2222                ip = stack[STACK_FRAME_LR_SAVE];
2223                if (!firstframe || ip != lr) {
2224                        printk("%s["REG"] ["REG"] %pS",
2225                                loglvl, sp, ip, (void *)ip);
2226                        ret_addr = ftrace_graph_ret_addr(current,
2227                                                &ftrace_idx, ip, stack);
2228                        if (ret_addr != ip)
2229                                pr_cont(" (%pS)", (void *)ret_addr);
2230                        if (firstframe)
2231                                pr_cont(" (unreliable)");
2232                        pr_cont("\n");
2233                }
2234                firstframe = 0;
2235
2236                /*
2237                 * See if this is an exception frame.
2238                 * We look for the "regshere" marker in the current frame.
2239                 */
2240                if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2241                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2242                        struct pt_regs *regs = (struct pt_regs *)
2243                                (sp + STACK_FRAME_OVERHEAD);
2244
2245                        lr = regs->link;
2246                        printk("%s--- interrupt: %lx at %pS\n",
2247                               loglvl, regs->trap, (void *)regs->nip);
2248                        __show_regs(regs);
2249                        printk("%s--- interrupt: %lx\n",
2250                               loglvl, regs->trap);
2251
2252                        firstframe = 1;
2253                }
2254
2255                sp = newsp;
2256        } while (count++ < kstack_depth_to_print);
2257
2258        put_task_stack(tsk);
2259}
2260
2261#ifdef CONFIG_PPC64
2262/* Called with hard IRQs off */
2263void notrace __ppc64_runlatch_on(void)
2264{
2265        struct thread_info *ti = current_thread_info();
2266
2267        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2268                /*
2269                 * Least significant bit (RUN) is the only writable bit of
2270                 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2271                 * earliest ISA where this is the case, but it's convenient.
2272                 */
2273                mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2274        } else {
2275                unsigned long ctrl;
2276
2277                /*
2278                 * Some architectures (e.g., Cell) have writable fields other
2279                 * than RUN, so do the read-modify-write.
2280                 */
2281                ctrl = mfspr(SPRN_CTRLF);
2282                ctrl |= CTRL_RUNLATCH;
2283                mtspr(SPRN_CTRLT, ctrl);
2284        }
2285
2286        ti->local_flags |= _TLF_RUNLATCH;
2287}
2288
2289/* Called with hard IRQs off */
2290void notrace __ppc64_runlatch_off(void)
2291{
2292        struct thread_info *ti = current_thread_info();
2293
2294        ti->local_flags &= ~_TLF_RUNLATCH;
2295
2296        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2297                mtspr(SPRN_CTRLT, 0);
2298        } else {
2299                unsigned long ctrl;
2300
2301                ctrl = mfspr(SPRN_CTRLF);
2302                ctrl &= ~CTRL_RUNLATCH;
2303                mtspr(SPRN_CTRLT, ctrl);
2304        }
2305}
2306#endif /* CONFIG_PPC64 */
2307
2308unsigned long arch_align_stack(unsigned long sp)
2309{
2310        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2311                sp -= get_random_int() & ~PAGE_MASK;
2312        return sp & ~0xf;
2313}
2314