linux/arch/powerpc/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SMP support for ppc.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
   6 * deal of code from the sparc and intel versions.
   7 *
   8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
   9 *
  10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  12 */
  13
  14#undef DEBUG
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/task_stack.h>
  20#include <linux/sched/topology.h>
  21#include <linux/smp.h>
  22#include <linux/interrupt.h>
  23#include <linux/delay.h>
  24#include <linux/init.h>
  25#include <linux/spinlock.h>
  26#include <linux/cache.h>
  27#include <linux/err.h>
  28#include <linux/device.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/topology.h>
  32#include <linux/profile.h>
  33#include <linux/processor.h>
  34#include <linux/random.h>
  35#include <linux/stackprotector.h>
  36#include <linux/pgtable.h>
  37#include <linux/clockchips.h>
  38
  39#include <asm/ptrace.h>
  40#include <linux/atomic.h>
  41#include <asm/irq.h>
  42#include <asm/hw_irq.h>
  43#include <asm/kvm_ppc.h>
  44#include <asm/dbell.h>
  45#include <asm/page.h>
  46#include <asm/smp.h>
  47#include <asm/time.h>
  48#include <asm/machdep.h>
  49#include <asm/cputhreads.h>
  50#include <asm/cputable.h>
  51#include <asm/mpic.h>
  52#include <asm/vdso_datapage.h>
  53#ifdef CONFIG_PPC64
  54#include <asm/paca.h>
  55#endif
  56#include <asm/vdso.h>
  57#include <asm/debug.h>
  58#include <asm/kexec.h>
  59#include <asm/cpu_has_feature.h>
  60#include <asm/ftrace.h>
  61#include <asm/kup.h>
  62#include <asm/fadump.h>
  63
  64#ifdef DEBUG
  65#include <asm/udbg.h>
  66#define DBG(fmt...) udbg_printf(fmt)
  67#else
  68#define DBG(fmt...)
  69#endif
  70
  71#ifdef CONFIG_HOTPLUG_CPU
  72/* State of each CPU during hotplug phases */
  73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  74#endif
  75
  76struct task_struct *secondary_current;
  77bool has_big_cores;
  78bool coregroup_enabled;
  79bool thread_group_shares_l2;
  80bool thread_group_shares_l3;
  81
  82DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  83DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
  84DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
  85DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  86static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
  87
  88EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  89EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
  90EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  91EXPORT_SYMBOL_GPL(has_big_cores);
  92
  93enum {
  94#ifdef CONFIG_SCHED_SMT
  95        smt_idx,
  96#endif
  97        cache_idx,
  98        mc_idx,
  99        die_idx,
 100};
 101
 102#define MAX_THREAD_LIST_SIZE    8
 103#define THREAD_GROUP_SHARE_L1   1
 104#define THREAD_GROUP_SHARE_L2_L3 2
 105struct thread_groups {
 106        unsigned int property;
 107        unsigned int nr_groups;
 108        unsigned int threads_per_group;
 109        unsigned int thread_list[MAX_THREAD_LIST_SIZE];
 110};
 111
 112/* Maximum number of properties that groups of threads within a core can share */
 113#define MAX_THREAD_GROUP_PROPERTIES 2
 114
 115struct thread_groups_list {
 116        unsigned int nr_properties;
 117        struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
 118};
 119
 120static struct thread_groups_list tgl[NR_CPUS] __initdata;
 121/*
 122 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
 123 * the set its siblings that share the L1-cache.
 124 */
 125DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
 126
 127/*
 128 * On some big-cores system, thread_group_l2_cache_map for each CPU
 129 * corresponds to the set its siblings within the core that share the
 130 * L2-cache.
 131 */
 132DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
 133
 134/*
 135 * On P10, thread_group_l3_cache_map for each CPU is equal to the
 136 * thread_group_l2_cache_map
 137 */
 138DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
 139
 140/* SMP operations for this machine */
 141struct smp_ops_t *smp_ops;
 142
 143/* Can't be static due to PowerMac hackery */
 144volatile unsigned int cpu_callin_map[NR_CPUS];
 145
 146int smt_enabled_at_boot = 1;
 147
 148/*
 149 * Returns 1 if the specified cpu should be brought up during boot.
 150 * Used to inhibit booting threads if they've been disabled or
 151 * limited on the command line
 152 */
 153int smp_generic_cpu_bootable(unsigned int nr)
 154{
 155        /* Special case - we inhibit secondary thread startup
 156         * during boot if the user requests it.
 157         */
 158        if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
 159                if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 160                        return 0;
 161                if (smt_enabled_at_boot
 162                    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
 163                        return 0;
 164        }
 165
 166        return 1;
 167}
 168
 169
 170#ifdef CONFIG_PPC64
 171int smp_generic_kick_cpu(int nr)
 172{
 173        if (nr < 0 || nr >= nr_cpu_ids)
 174                return -EINVAL;
 175
 176        /*
 177         * The processor is currently spinning, waiting for the
 178         * cpu_start field to become non-zero After we set cpu_start,
 179         * the processor will continue on to secondary_start
 180         */
 181        if (!paca_ptrs[nr]->cpu_start) {
 182                paca_ptrs[nr]->cpu_start = 1;
 183                smp_mb();
 184                return 0;
 185        }
 186
 187#ifdef CONFIG_HOTPLUG_CPU
 188        /*
 189         * Ok it's not there, so it might be soft-unplugged, let's
 190         * try to bring it back
 191         */
 192        generic_set_cpu_up(nr);
 193        smp_wmb();
 194        smp_send_reschedule(nr);
 195#endif /* CONFIG_HOTPLUG_CPU */
 196
 197        return 0;
 198}
 199#endif /* CONFIG_PPC64 */
 200
 201static irqreturn_t call_function_action(int irq, void *data)
 202{
 203        generic_smp_call_function_interrupt();
 204        return IRQ_HANDLED;
 205}
 206
 207static irqreturn_t reschedule_action(int irq, void *data)
 208{
 209        scheduler_ipi();
 210        return IRQ_HANDLED;
 211}
 212
 213#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 214static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
 215{
 216        timer_broadcast_interrupt();
 217        return IRQ_HANDLED;
 218}
 219#endif
 220
 221#ifdef CONFIG_NMI_IPI
 222static irqreturn_t nmi_ipi_action(int irq, void *data)
 223{
 224        smp_handle_nmi_ipi(get_irq_regs());
 225        return IRQ_HANDLED;
 226}
 227#endif
 228
 229static irq_handler_t smp_ipi_action[] = {
 230        [PPC_MSG_CALL_FUNCTION] =  call_function_action,
 231        [PPC_MSG_RESCHEDULE] = reschedule_action,
 232#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 233        [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
 234#endif
 235#ifdef CONFIG_NMI_IPI
 236        [PPC_MSG_NMI_IPI] = nmi_ipi_action,
 237#endif
 238};
 239
 240/*
 241 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 242 * than going through the call function infrastructure, and strongly
 243 * serialized, so it is more appropriate for debugging.
 244 */
 245const char *smp_ipi_name[] = {
 246        [PPC_MSG_CALL_FUNCTION] =  "ipi call function",
 247        [PPC_MSG_RESCHEDULE] = "ipi reschedule",
 248#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 249        [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
 250#endif
 251#ifdef CONFIG_NMI_IPI
 252        [PPC_MSG_NMI_IPI] = "nmi ipi",
 253#endif
 254};
 255
 256/* optional function to request ipi, for controllers with >= 4 ipis */
 257int smp_request_message_ipi(int virq, int msg)
 258{
 259        int err;
 260
 261        if (msg < 0 || msg > PPC_MSG_NMI_IPI)
 262                return -EINVAL;
 263#ifndef CONFIG_NMI_IPI
 264        if (msg == PPC_MSG_NMI_IPI)
 265                return 1;
 266#endif
 267
 268        err = request_irq(virq, smp_ipi_action[msg],
 269                          IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
 270                          smp_ipi_name[msg], NULL);
 271        WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 272                virq, smp_ipi_name[msg], err);
 273
 274        return err;
 275}
 276
 277#ifdef CONFIG_PPC_SMP_MUXED_IPI
 278struct cpu_messages {
 279        long messages;                  /* current messages */
 280};
 281static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
 282
 283void smp_muxed_ipi_set_message(int cpu, int msg)
 284{
 285        struct cpu_messages *info = &per_cpu(ipi_message, cpu);
 286        char *message = (char *)&info->messages;
 287
 288        /*
 289         * Order previous accesses before accesses in the IPI handler.
 290         */
 291        smp_mb();
 292        message[msg] = 1;
 293}
 294
 295void smp_muxed_ipi_message_pass(int cpu, int msg)
 296{
 297        smp_muxed_ipi_set_message(cpu, msg);
 298
 299        /*
 300         * cause_ipi functions are required to include a full barrier
 301         * before doing whatever causes the IPI.
 302         */
 303        smp_ops->cause_ipi(cpu);
 304}
 305
 306#ifdef __BIG_ENDIAN__
 307#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
 308#else
 309#define IPI_MESSAGE(A) (1uL << (8 * (A)))
 310#endif
 311
 312irqreturn_t smp_ipi_demux(void)
 313{
 314        mb();   /* order any irq clear */
 315
 316        return smp_ipi_demux_relaxed();
 317}
 318
 319/* sync-free variant. Callers should ensure synchronization */
 320irqreturn_t smp_ipi_demux_relaxed(void)
 321{
 322        struct cpu_messages *info;
 323        unsigned long all;
 324
 325        info = this_cpu_ptr(&ipi_message);
 326        do {
 327                all = xchg(&info->messages, 0);
 328#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 329                /*
 330                 * Must check for PPC_MSG_RM_HOST_ACTION messages
 331                 * before PPC_MSG_CALL_FUNCTION messages because when
 332                 * a VM is destroyed, we call kick_all_cpus_sync()
 333                 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
 334                 * messages have completed before we free any VCPUs.
 335                 */
 336                if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
 337                        kvmppc_xics_ipi_action();
 338#endif
 339                if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
 340                        generic_smp_call_function_interrupt();
 341                if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
 342                        scheduler_ipi();
 343#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 344                if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
 345                        timer_broadcast_interrupt();
 346#endif
 347#ifdef CONFIG_NMI_IPI
 348                if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
 349                        nmi_ipi_action(0, NULL);
 350#endif
 351        } while (info->messages);
 352
 353        return IRQ_HANDLED;
 354}
 355#endif /* CONFIG_PPC_SMP_MUXED_IPI */
 356
 357static inline void do_message_pass(int cpu, int msg)
 358{
 359        if (smp_ops->message_pass)
 360                smp_ops->message_pass(cpu, msg);
 361#ifdef CONFIG_PPC_SMP_MUXED_IPI
 362        else
 363                smp_muxed_ipi_message_pass(cpu, msg);
 364#endif
 365}
 366
 367void smp_send_reschedule(int cpu)
 368{
 369        if (likely(smp_ops))
 370                do_message_pass(cpu, PPC_MSG_RESCHEDULE);
 371}
 372EXPORT_SYMBOL_GPL(smp_send_reschedule);
 373
 374void arch_send_call_function_single_ipi(int cpu)
 375{
 376        do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 377}
 378
 379void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 380{
 381        unsigned int cpu;
 382
 383        for_each_cpu(cpu, mask)
 384                do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 385}
 386
 387#ifdef CONFIG_NMI_IPI
 388
 389/*
 390 * "NMI IPI" system.
 391 *
 392 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 393 * a running system. They can be used for crash, debug, halt/reboot, etc.
 394 *
 395 * The IPI call waits with interrupts disabled until all targets enter the
 396 * NMI handler, then returns. Subsequent IPIs can be issued before targets
 397 * have returned from their handlers, so there is no guarantee about
 398 * concurrency or re-entrancy.
 399 *
 400 * A new NMI can be issued before all targets exit the handler.
 401 *
 402 * The IPI call may time out without all targets entering the NMI handler.
 403 * In that case, there is some logic to recover (and ignore subsequent
 404 * NMI interrupts that may eventually be raised), but the platform interrupt
 405 * handler may not be able to distinguish this from other exception causes,
 406 * which may cause a crash.
 407 */
 408
 409static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
 410static struct cpumask nmi_ipi_pending_mask;
 411static bool nmi_ipi_busy = false;
 412static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
 413
 414noinstr static void nmi_ipi_lock_start(unsigned long *flags)
 415{
 416        raw_local_irq_save(*flags);
 417        hard_irq_disable();
 418        while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
 419                raw_local_irq_restore(*flags);
 420                spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
 421                raw_local_irq_save(*flags);
 422                hard_irq_disable();
 423        }
 424}
 425
 426noinstr static void nmi_ipi_lock(void)
 427{
 428        while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
 429                spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
 430}
 431
 432noinstr static void nmi_ipi_unlock(void)
 433{
 434        smp_mb();
 435        WARN_ON(arch_atomic_read(&__nmi_ipi_lock) != 1);
 436        arch_atomic_set(&__nmi_ipi_lock, 0);
 437}
 438
 439noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
 440{
 441        nmi_ipi_unlock();
 442        raw_local_irq_restore(*flags);
 443}
 444
 445/*
 446 * Platform NMI handler calls this to ack
 447 */
 448noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
 449{
 450        void (*fn)(struct pt_regs *) = NULL;
 451        unsigned long flags;
 452        int me = raw_smp_processor_id();
 453        int ret = 0;
 454
 455        /*
 456         * Unexpected NMIs are possible here because the interrupt may not
 457         * be able to distinguish NMI IPIs from other types of NMIs, or
 458         * because the caller may have timed out.
 459         */
 460        nmi_ipi_lock_start(&flags);
 461        if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
 462                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 463                fn = READ_ONCE(nmi_ipi_function);
 464                WARN_ON_ONCE(!fn);
 465                ret = 1;
 466        }
 467        nmi_ipi_unlock_end(&flags);
 468
 469        if (fn)
 470                fn(regs);
 471
 472        return ret;
 473}
 474
 475static void do_smp_send_nmi_ipi(int cpu, bool safe)
 476{
 477        if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
 478                return;
 479
 480        if (cpu >= 0) {
 481                do_message_pass(cpu, PPC_MSG_NMI_IPI);
 482        } else {
 483                int c;
 484
 485                for_each_online_cpu(c) {
 486                        if (c == raw_smp_processor_id())
 487                                continue;
 488                        do_message_pass(c, PPC_MSG_NMI_IPI);
 489                }
 490        }
 491}
 492
 493/*
 494 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 495 * - fn is the target callback function.
 496 * - delay_us > 0 is the delay before giving up waiting for targets to
 497 *   begin executing the handler, == 0 specifies indefinite delay.
 498 */
 499static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
 500                                u64 delay_us, bool safe)
 501{
 502        unsigned long flags;
 503        int me = raw_smp_processor_id();
 504        int ret = 1;
 505
 506        BUG_ON(cpu == me);
 507        BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
 508
 509        if (unlikely(!smp_ops))
 510                return 0;
 511
 512        nmi_ipi_lock_start(&flags);
 513        while (nmi_ipi_busy) {
 514                nmi_ipi_unlock_end(&flags);
 515                spin_until_cond(!nmi_ipi_busy);
 516                nmi_ipi_lock_start(&flags);
 517        }
 518        nmi_ipi_busy = true;
 519        nmi_ipi_function = fn;
 520
 521        WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
 522
 523        if (cpu < 0) {
 524                /* ALL_OTHERS */
 525                cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
 526                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 527        } else {
 528                cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
 529        }
 530
 531        nmi_ipi_unlock();
 532
 533        /* Interrupts remain hard disabled */
 534
 535        do_smp_send_nmi_ipi(cpu, safe);
 536
 537        nmi_ipi_lock();
 538        /* nmi_ipi_busy is set here, so unlock/lock is okay */
 539        while (!cpumask_empty(&nmi_ipi_pending_mask)) {
 540                nmi_ipi_unlock();
 541                udelay(1);
 542                nmi_ipi_lock();
 543                if (delay_us) {
 544                        delay_us--;
 545                        if (!delay_us)
 546                                break;
 547                }
 548        }
 549
 550        if (!cpumask_empty(&nmi_ipi_pending_mask)) {
 551                /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
 552                ret = 0;
 553                cpumask_clear(&nmi_ipi_pending_mask);
 554        }
 555
 556        nmi_ipi_function = NULL;
 557        nmi_ipi_busy = false;
 558
 559        nmi_ipi_unlock_end(&flags);
 560
 561        return ret;
 562}
 563
 564int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 565{
 566        return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
 567}
 568
 569int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 570{
 571        return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
 572}
 573#endif /* CONFIG_NMI_IPI */
 574
 575#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 576void tick_broadcast(const struct cpumask *mask)
 577{
 578        unsigned int cpu;
 579
 580        for_each_cpu(cpu, mask)
 581                do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
 582}
 583#endif
 584
 585#ifdef CONFIG_DEBUGGER
 586static void debugger_ipi_callback(struct pt_regs *regs)
 587{
 588        debugger_ipi(regs);
 589}
 590
 591void smp_send_debugger_break(void)
 592{
 593        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
 594}
 595#endif
 596
 597#ifdef CONFIG_KEXEC_CORE
 598void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
 599{
 600        int cpu;
 601
 602        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
 603        if (kdump_in_progress() && crash_wake_offline) {
 604                for_each_present_cpu(cpu) {
 605                        if (cpu_online(cpu))
 606                                continue;
 607                        /*
 608                         * crash_ipi_callback will wait for
 609                         * all cpus, including offline CPUs.
 610                         * We don't care about nmi_ipi_function.
 611                         * Offline cpus will jump straight into
 612                         * crash_ipi_callback, we can skip the
 613                         * entire NMI dance and waiting for
 614                         * cpus to clear pending mask, etc.
 615                         */
 616                        do_smp_send_nmi_ipi(cpu, false);
 617                }
 618        }
 619}
 620#endif
 621
 622#ifdef CONFIG_NMI_IPI
 623static void crash_stop_this_cpu(struct pt_regs *regs)
 624#else
 625static void crash_stop_this_cpu(void *dummy)
 626#endif
 627{
 628        /*
 629         * Just busy wait here and avoid marking CPU as offline to ensure
 630         * register data is captured appropriately.
 631         */
 632        while (1)
 633                cpu_relax();
 634}
 635
 636void crash_smp_send_stop(void)
 637{
 638        static bool stopped = false;
 639
 640        /*
 641         * In case of fadump, register data for all CPUs is captured by f/w
 642         * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
 643         * this rtas call to avoid tricky post processing of those CPUs'
 644         * backtraces.
 645         */
 646        if (should_fadump_crash())
 647                return;
 648
 649        if (stopped)
 650                return;
 651
 652        stopped = true;
 653
 654#ifdef CONFIG_NMI_IPI
 655        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
 656#else
 657        smp_call_function(crash_stop_this_cpu, NULL, 0);
 658#endif /* CONFIG_NMI_IPI */
 659}
 660
 661#ifdef CONFIG_NMI_IPI
 662static void nmi_stop_this_cpu(struct pt_regs *regs)
 663{
 664        /*
 665         * IRQs are already hard disabled by the smp_handle_nmi_ipi.
 666         */
 667        set_cpu_online(smp_processor_id(), false);
 668
 669        spin_begin();
 670        while (1)
 671                spin_cpu_relax();
 672}
 673
 674void smp_send_stop(void)
 675{
 676        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
 677}
 678
 679#else /* CONFIG_NMI_IPI */
 680
 681static void stop_this_cpu(void *dummy)
 682{
 683        hard_irq_disable();
 684
 685        /*
 686         * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
 687         * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
 688         * to know other CPUs are offline before it breaks locks to flush
 689         * printk buffers, in case we panic()ed while holding the lock.
 690         */
 691        set_cpu_online(smp_processor_id(), false);
 692
 693        spin_begin();
 694        while (1)
 695                spin_cpu_relax();
 696}
 697
 698void smp_send_stop(void)
 699{
 700        static bool stopped = false;
 701
 702        /*
 703         * Prevent waiting on csd lock from a previous smp_send_stop.
 704         * This is racy, but in general callers try to do the right
 705         * thing and only fire off one smp_send_stop (e.g., see
 706         * kernel/panic.c)
 707         */
 708        if (stopped)
 709                return;
 710
 711        stopped = true;
 712
 713        smp_call_function(stop_this_cpu, NULL, 0);
 714}
 715#endif /* CONFIG_NMI_IPI */
 716
 717static struct task_struct *current_set[NR_CPUS];
 718
 719static void smp_store_cpu_info(int id)
 720{
 721        per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
 722#ifdef CONFIG_PPC_FSL_BOOK3E
 723        per_cpu(next_tlbcam_idx, id)
 724                = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
 725#endif
 726}
 727
 728/*
 729 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 730 * rather than just passing around the cpumask we pass around a function that
 731 * returns the that cpumask for the given CPU.
 732 */
 733static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
 734{
 735        cpumask_set_cpu(i, get_cpumask(j));
 736        cpumask_set_cpu(j, get_cpumask(i));
 737}
 738
 739#ifdef CONFIG_HOTPLUG_CPU
 740static void set_cpus_unrelated(int i, int j,
 741                struct cpumask *(*get_cpumask)(int))
 742{
 743        cpumask_clear_cpu(i, get_cpumask(j));
 744        cpumask_clear_cpu(j, get_cpumask(i));
 745}
 746#endif
 747
 748/*
 749 * Extends set_cpus_related. Instead of setting one CPU at a time in
 750 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
 751 */
 752static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
 753                                struct cpumask *(*dstmask)(int))
 754{
 755        struct cpumask *mask;
 756        int k;
 757
 758        mask = srcmask(j);
 759        for_each_cpu(k, srcmask(i))
 760                cpumask_or(dstmask(k), dstmask(k), mask);
 761
 762        if (i == j)
 763                return;
 764
 765        mask = srcmask(i);
 766        for_each_cpu(k, srcmask(j))
 767                cpumask_or(dstmask(k), dstmask(k), mask);
 768}
 769
 770/*
 771 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
 772 *                      property for the CPU device node @dn and stores
 773 *                      the parsed output in the thread_groups_list
 774 *                      structure @tglp.
 775 *
 776 * @dn: The device node of the CPU device.
 777 * @tglp: Pointer to a thread group list structure into which the parsed
 778 *      output of "ibm,thread-groups" is stored.
 779 *
 780 * ibm,thread-groups[0..N-1] array defines which group of threads in
 781 * the CPU-device node can be grouped together based on the property.
 782 *
 783 * This array can represent thread groupings for multiple properties.
 784 *
 785 * ibm,thread-groups[i + 0] tells us the property based on which the
 786 * threads are being grouped together. If this value is 1, it implies
 787 * that the threads in the same group share L1, translation cache. If
 788 * the value is 2, it implies that the threads in the same group share
 789 * the same L2 cache.
 790 *
 791 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
 792 * property ibm,thread-groups[i]
 793 *
 794 * ibm,thread-groups[i+2] tells us the number of threads in each such
 795 * group.
 796 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
 797 *
 798 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
 799 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
 800 * the grouping.
 801 *
 802 * Example:
 803 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
 804 * This can be decomposed up into two consecutive arrays:
 805 * a) [1,2,4,8,10,12,14,9,11,13,15]
 806 * b) [2,2,4,8,10,12,14,9,11,13,15]
 807 *
 808 * where in,
 809 *
 810 * a) provides information of Property "1" being shared by "2" groups,
 811 *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
 812 *  the first group is {8,10,12,14} and the
 813 *  "ibm,ppc-interrupt-server#s" of the second group is
 814 *  {9,11,13,15}. Property "1" is indicative of the thread in the
 815 *  group sharing L1 cache, translation cache and Instruction Data
 816 *  flow.
 817 *
 818 * b) provides information of Property "2" being shared by "2" groups,
 819 *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
 820 *  the first group is {8,10,12,14} and the
 821 *  "ibm,ppc-interrupt-server#s" of the second group is
 822 *  {9,11,13,15}. Property "2" indicates that the threads in each
 823 *  group share the L2-cache.
 824 *
 825 * Returns 0 on success, -EINVAL if the property does not exist,
 826 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 827 * property data isn't large enough.
 828 */
 829static int parse_thread_groups(struct device_node *dn,
 830                               struct thread_groups_list *tglp)
 831{
 832        unsigned int property_idx = 0;
 833        u32 *thread_group_array;
 834        size_t total_threads;
 835        int ret = 0, count;
 836        u32 *thread_list;
 837        int i = 0;
 838
 839        count = of_property_count_u32_elems(dn, "ibm,thread-groups");
 840        thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
 841        ret = of_property_read_u32_array(dn, "ibm,thread-groups",
 842                                         thread_group_array, count);
 843        if (ret)
 844                goto out_free;
 845
 846        while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
 847                int j;
 848                struct thread_groups *tg = &tglp->property_tgs[property_idx++];
 849
 850                tg->property = thread_group_array[i];
 851                tg->nr_groups = thread_group_array[i + 1];
 852                tg->threads_per_group = thread_group_array[i + 2];
 853                total_threads = tg->nr_groups * tg->threads_per_group;
 854
 855                thread_list = &thread_group_array[i + 3];
 856
 857                for (j = 0; j < total_threads; j++)
 858                        tg->thread_list[j] = thread_list[j];
 859                i = i + 3 + total_threads;
 860        }
 861
 862        tglp->nr_properties = property_idx;
 863
 864out_free:
 865        kfree(thread_group_array);
 866        return ret;
 867}
 868
 869/*
 870 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
 871 *                              that @cpu belongs to.
 872 *
 873 * @cpu : The logical CPU whose thread group is being searched.
 874 * @tg : The thread-group structure of the CPU node which @cpu belongs
 875 *       to.
 876 *
 877 * Returns the index to tg->thread_list that points to the start
 878 * of the thread_group that @cpu belongs to.
 879 *
 880 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
 881 * tg->thread_list.
 882 */
 883static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
 884{
 885        int hw_cpu_id = get_hard_smp_processor_id(cpu);
 886        int i, j;
 887
 888        for (i = 0; i < tg->nr_groups; i++) {
 889                int group_start = i * tg->threads_per_group;
 890
 891                for (j = 0; j < tg->threads_per_group; j++) {
 892                        int idx = group_start + j;
 893
 894                        if (tg->thread_list[idx] == hw_cpu_id)
 895                                return group_start;
 896                }
 897        }
 898
 899        return -1;
 900}
 901
 902static struct thread_groups *__init get_thread_groups(int cpu,
 903                                                      int group_property,
 904                                                      int *err)
 905{
 906        struct device_node *dn = of_get_cpu_node(cpu, NULL);
 907        struct thread_groups_list *cpu_tgl = &tgl[cpu];
 908        struct thread_groups *tg = NULL;
 909        int i;
 910        *err = 0;
 911
 912        if (!dn) {
 913                *err = -ENODATA;
 914                return NULL;
 915        }
 916
 917        if (!cpu_tgl->nr_properties) {
 918                *err = parse_thread_groups(dn, cpu_tgl);
 919                if (*err)
 920                        goto out;
 921        }
 922
 923        for (i = 0; i < cpu_tgl->nr_properties; i++) {
 924                if (cpu_tgl->property_tgs[i].property == group_property) {
 925                        tg = &cpu_tgl->property_tgs[i];
 926                        break;
 927                }
 928        }
 929
 930        if (!tg)
 931                *err = -EINVAL;
 932out:
 933        of_node_put(dn);
 934        return tg;
 935}
 936
 937static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
 938                                               int cpu, int cpu_group_start)
 939{
 940        int first_thread = cpu_first_thread_sibling(cpu);
 941        int i;
 942
 943        zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
 944
 945        for (i = first_thread; i < first_thread + threads_per_core; i++) {
 946                int i_group_start = get_cpu_thread_group_start(i, tg);
 947
 948                if (unlikely(i_group_start == -1)) {
 949                        WARN_ON_ONCE(1);
 950                        return -ENODATA;
 951                }
 952
 953                if (i_group_start == cpu_group_start)
 954                        cpumask_set_cpu(i, *mask);
 955        }
 956
 957        return 0;
 958}
 959
 960static int __init init_thread_group_cache_map(int cpu, int cache_property)
 961
 962{
 963        int cpu_group_start = -1, err = 0;
 964        struct thread_groups *tg = NULL;
 965        cpumask_var_t *mask = NULL;
 966
 967        if (cache_property != THREAD_GROUP_SHARE_L1 &&
 968            cache_property != THREAD_GROUP_SHARE_L2_L3)
 969                return -EINVAL;
 970
 971        tg = get_thread_groups(cpu, cache_property, &err);
 972
 973        if (!tg)
 974                return err;
 975
 976        cpu_group_start = get_cpu_thread_group_start(cpu, tg);
 977
 978        if (unlikely(cpu_group_start == -1)) {
 979                WARN_ON_ONCE(1);
 980                return -ENODATA;
 981        }
 982
 983        if (cache_property == THREAD_GROUP_SHARE_L1) {
 984                mask = &per_cpu(thread_group_l1_cache_map, cpu);
 985                update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
 986        }
 987        else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
 988                mask = &per_cpu(thread_group_l2_cache_map, cpu);
 989                update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
 990                mask = &per_cpu(thread_group_l3_cache_map, cpu);
 991                update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
 992        }
 993
 994
 995        return 0;
 996}
 997
 998static bool shared_caches;
 999
1000#ifdef CONFIG_SCHED_SMT
1001/* cpumask of CPUs with asymmetric SMT dependency */
1002static int powerpc_smt_flags(void)
1003{
1004        int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1005
1006        if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1007                printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1008                flags |= SD_ASYM_PACKING;
1009        }
1010        return flags;
1011}
1012#endif
1013
1014/*
1015 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1016 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1017 * since the migrated task remains cache hot. We want to take advantage of this
1018 * at the scheduler level so an extra topology level is required.
1019 */
1020static int powerpc_shared_cache_flags(void)
1021{
1022        return SD_SHARE_PKG_RESOURCES;
1023}
1024
1025/*
1026 * We can't just pass cpu_l2_cache_mask() directly because
1027 * returns a non-const pointer and the compiler barfs on that.
1028 */
1029static const struct cpumask *shared_cache_mask(int cpu)
1030{
1031        return per_cpu(cpu_l2_cache_map, cpu);
1032}
1033
1034#ifdef CONFIG_SCHED_SMT
1035static const struct cpumask *smallcore_smt_mask(int cpu)
1036{
1037        return cpu_smallcore_mask(cpu);
1038}
1039#endif
1040
1041static struct cpumask *cpu_coregroup_mask(int cpu)
1042{
1043        return per_cpu(cpu_coregroup_map, cpu);
1044}
1045
1046static bool has_coregroup_support(void)
1047{
1048        return coregroup_enabled;
1049}
1050
1051static const struct cpumask *cpu_mc_mask(int cpu)
1052{
1053        return cpu_coregroup_mask(cpu);
1054}
1055
1056static struct sched_domain_topology_level powerpc_topology[] = {
1057#ifdef CONFIG_SCHED_SMT
1058        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1059#endif
1060        { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1061        { cpu_mc_mask, SD_INIT_NAME(MC) },
1062        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1063        { NULL, },
1064};
1065
1066static int __init init_big_cores(void)
1067{
1068        int cpu;
1069
1070        for_each_possible_cpu(cpu) {
1071                int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1072
1073                if (err)
1074                        return err;
1075
1076                zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1077                                        GFP_KERNEL,
1078                                        cpu_to_node(cpu));
1079        }
1080
1081        has_big_cores = true;
1082
1083        for_each_possible_cpu(cpu) {
1084                int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1085
1086                if (err)
1087                        return err;
1088        }
1089
1090        thread_group_shares_l2 = true;
1091        thread_group_shares_l3 = true;
1092        pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1093
1094        return 0;
1095}
1096
1097void __init smp_prepare_cpus(unsigned int max_cpus)
1098{
1099        unsigned int cpu;
1100
1101        DBG("smp_prepare_cpus\n");
1102
1103        /* 
1104         * setup_cpu may need to be called on the boot cpu. We haven't
1105         * spun any cpus up but lets be paranoid.
1106         */
1107        BUG_ON(boot_cpuid != smp_processor_id());
1108
1109        /* Fixup boot cpu */
1110        smp_store_cpu_info(boot_cpuid);
1111        cpu_callin_map[boot_cpuid] = 1;
1112
1113        for_each_possible_cpu(cpu) {
1114                zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1115                                        GFP_KERNEL, cpu_to_node(cpu));
1116                zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1117                                        GFP_KERNEL, cpu_to_node(cpu));
1118                zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1119                                        GFP_KERNEL, cpu_to_node(cpu));
1120                if (has_coregroup_support())
1121                        zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1122                                                GFP_KERNEL, cpu_to_node(cpu));
1123
1124#ifdef CONFIG_NUMA
1125                /*
1126                 * numa_node_id() works after this.
1127                 */
1128                if (cpu_present(cpu)) {
1129                        set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1130                        set_cpu_numa_mem(cpu,
1131                                local_memory_node(numa_cpu_lookup_table[cpu]));
1132                }
1133#endif
1134        }
1135
1136        /* Init the cpumasks so the boot CPU is related to itself */
1137        cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1138        cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1139        cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1140
1141        if (has_coregroup_support())
1142                cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1143
1144        init_big_cores();
1145        if (has_big_cores) {
1146                cpumask_set_cpu(boot_cpuid,
1147                                cpu_smallcore_mask(boot_cpuid));
1148        }
1149
1150        if (cpu_to_chip_id(boot_cpuid) != -1) {
1151                int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1152
1153                /*
1154                 * All threads of a core will all belong to the same core,
1155                 * chip_id_lookup_table will have one entry per core.
1156                 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1157                 * other CPUs, will also not have chip-id.
1158                 */
1159                chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1160                if (chip_id_lookup_table)
1161                        memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1162        }
1163
1164        if (smp_ops && smp_ops->probe)
1165                smp_ops->probe();
1166}
1167
1168void smp_prepare_boot_cpu(void)
1169{
1170        BUG_ON(smp_processor_id() != boot_cpuid);
1171#ifdef CONFIG_PPC64
1172        paca_ptrs[boot_cpuid]->__current = current;
1173#endif
1174        set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1175        current_set[boot_cpuid] = current;
1176}
1177
1178#ifdef CONFIG_HOTPLUG_CPU
1179
1180int generic_cpu_disable(void)
1181{
1182        unsigned int cpu = smp_processor_id();
1183
1184        if (cpu == boot_cpuid)
1185                return -EBUSY;
1186
1187        set_cpu_online(cpu, false);
1188#ifdef CONFIG_PPC64
1189        vdso_data->processorCount--;
1190#endif
1191        /* Update affinity of all IRQs previously aimed at this CPU */
1192        irq_migrate_all_off_this_cpu();
1193
1194        /*
1195         * Depending on the details of the interrupt controller, it's possible
1196         * that one of the interrupts we just migrated away from this CPU is
1197         * actually already pending on this CPU. If we leave it in that state
1198         * the interrupt will never be EOI'ed, and will never fire again. So
1199         * temporarily enable interrupts here, to allow any pending interrupt to
1200         * be received (and EOI'ed), before we take this CPU offline.
1201         */
1202        local_irq_enable();
1203        mdelay(1);
1204        local_irq_disable();
1205
1206        return 0;
1207}
1208
1209void generic_cpu_die(unsigned int cpu)
1210{
1211        int i;
1212
1213        for (i = 0; i < 100; i++) {
1214                smp_rmb();
1215                if (is_cpu_dead(cpu))
1216                        return;
1217                msleep(100);
1218        }
1219        printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1220}
1221
1222void generic_set_cpu_dead(unsigned int cpu)
1223{
1224        per_cpu(cpu_state, cpu) = CPU_DEAD;
1225}
1226
1227/*
1228 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1229 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1230 * which makes the delay in generic_cpu_die() not happen.
1231 */
1232void generic_set_cpu_up(unsigned int cpu)
1233{
1234        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1235}
1236
1237int generic_check_cpu_restart(unsigned int cpu)
1238{
1239        return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1240}
1241
1242int is_cpu_dead(unsigned int cpu)
1243{
1244        return per_cpu(cpu_state, cpu) == CPU_DEAD;
1245}
1246
1247static bool secondaries_inhibited(void)
1248{
1249        return kvm_hv_mode_active();
1250}
1251
1252#else /* HOTPLUG_CPU */
1253
1254#define secondaries_inhibited()         0
1255
1256#endif
1257
1258static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1259{
1260#ifdef CONFIG_PPC64
1261        paca_ptrs[cpu]->__current = idle;
1262        paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1263                                 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1264#endif
1265        task_thread_info(idle)->cpu = cpu;
1266        secondary_current = current_set[cpu] = idle;
1267}
1268
1269int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1270{
1271        int rc, c;
1272
1273        /*
1274         * Don't allow secondary threads to come online if inhibited
1275         */
1276        if (threads_per_core > 1 && secondaries_inhibited() &&
1277            cpu_thread_in_subcore(cpu))
1278                return -EBUSY;
1279
1280        if (smp_ops == NULL ||
1281            (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1282                return -EINVAL;
1283
1284        cpu_idle_thread_init(cpu, tidle);
1285
1286        /*
1287         * The platform might need to allocate resources prior to bringing
1288         * up the CPU
1289         */
1290        if (smp_ops->prepare_cpu) {
1291                rc = smp_ops->prepare_cpu(cpu);
1292                if (rc)
1293                        return rc;
1294        }
1295
1296        /* Make sure callin-map entry is 0 (can be leftover a CPU
1297         * hotplug
1298         */
1299        cpu_callin_map[cpu] = 0;
1300
1301        /* The information for processor bringup must
1302         * be written out to main store before we release
1303         * the processor.
1304         */
1305        smp_mb();
1306
1307        /* wake up cpus */
1308        DBG("smp: kicking cpu %d\n", cpu);
1309        rc = smp_ops->kick_cpu(cpu);
1310        if (rc) {
1311                pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1312                return rc;
1313        }
1314
1315        /*
1316         * wait to see if the cpu made a callin (is actually up).
1317         * use this value that I found through experimentation.
1318         * -- Cort
1319         */
1320        if (system_state < SYSTEM_RUNNING)
1321                for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1322                        udelay(100);
1323#ifdef CONFIG_HOTPLUG_CPU
1324        else
1325                /*
1326                 * CPUs can take much longer to come up in the
1327                 * hotplug case.  Wait five seconds.
1328                 */
1329                for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1330                        msleep(1);
1331#endif
1332
1333        if (!cpu_callin_map[cpu]) {
1334                printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1335                return -ENOENT;
1336        }
1337
1338        DBG("Processor %u found.\n", cpu);
1339
1340        if (smp_ops->give_timebase)
1341                smp_ops->give_timebase();
1342
1343        /* Wait until cpu puts itself in the online & active maps */
1344        spin_until_cond(cpu_online(cpu));
1345
1346        return 0;
1347}
1348
1349/* Return the value of the reg property corresponding to the given
1350 * logical cpu.
1351 */
1352int cpu_to_core_id(int cpu)
1353{
1354        struct device_node *np;
1355        int id = -1;
1356
1357        np = of_get_cpu_node(cpu, NULL);
1358        if (!np)
1359                goto out;
1360
1361        id = of_get_cpu_hwid(np, 0);
1362out:
1363        of_node_put(np);
1364        return id;
1365}
1366EXPORT_SYMBOL_GPL(cpu_to_core_id);
1367
1368/* Helper routines for cpu to core mapping */
1369int cpu_core_index_of_thread(int cpu)
1370{
1371        return cpu >> threads_shift;
1372}
1373EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1374
1375int cpu_first_thread_of_core(int core)
1376{
1377        return core << threads_shift;
1378}
1379EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1380
1381/* Must be called when no change can occur to cpu_present_mask,
1382 * i.e. during cpu online or offline.
1383 */
1384static struct device_node *cpu_to_l2cache(int cpu)
1385{
1386        struct device_node *np;
1387        struct device_node *cache;
1388
1389        if (!cpu_present(cpu))
1390                return NULL;
1391
1392        np = of_get_cpu_node(cpu, NULL);
1393        if (np == NULL)
1394                return NULL;
1395
1396        cache = of_find_next_cache_node(np);
1397
1398        of_node_put(np);
1399
1400        return cache;
1401}
1402
1403static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1404{
1405        struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1406        struct device_node *l2_cache, *np;
1407        int i;
1408
1409        if (has_big_cores)
1410                submask_fn = cpu_smallcore_mask;
1411
1412        /*
1413         * If the threads in a thread-group share L2 cache, then the
1414         * L2-mask can be obtained from thread_group_l2_cache_map.
1415         */
1416        if (thread_group_shares_l2) {
1417                cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1418
1419                for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1420                        if (cpu_online(i))
1421                                set_cpus_related(i, cpu, cpu_l2_cache_mask);
1422                }
1423
1424                /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1425                if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1426                    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1427                        pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1428                                     cpu);
1429                }
1430
1431                return true;
1432        }
1433
1434        l2_cache = cpu_to_l2cache(cpu);
1435        if (!l2_cache || !*mask) {
1436                /* Assume only core siblings share cache with this CPU */
1437                for_each_cpu(i, cpu_sibling_mask(cpu))
1438                        set_cpus_related(cpu, i, cpu_l2_cache_mask);
1439
1440                return false;
1441        }
1442
1443        cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1444
1445        /* Update l2-cache mask with all the CPUs that are part of submask */
1446        or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1447
1448        /* Skip all CPUs already part of current CPU l2-cache mask */
1449        cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1450
1451        for_each_cpu(i, *mask) {
1452                /*
1453                 * when updating the marks the current CPU has not been marked
1454                 * online, but we need to update the cache masks
1455                 */
1456                np = cpu_to_l2cache(i);
1457
1458                /* Skip all CPUs already part of current CPU l2-cache */
1459                if (np == l2_cache) {
1460                        or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1461                        cpumask_andnot(*mask, *mask, submask_fn(i));
1462                } else {
1463                        cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1464                }
1465
1466                of_node_put(np);
1467        }
1468        of_node_put(l2_cache);
1469
1470        return true;
1471}
1472
1473#ifdef CONFIG_HOTPLUG_CPU
1474static void remove_cpu_from_masks(int cpu)
1475{
1476        struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1477        int i;
1478
1479        unmap_cpu_from_node(cpu);
1480
1481        if (shared_caches)
1482                mask_fn = cpu_l2_cache_mask;
1483
1484        for_each_cpu(i, mask_fn(cpu)) {
1485                set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1486                set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1487                if (has_big_cores)
1488                        set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1489        }
1490
1491        for_each_cpu(i, cpu_core_mask(cpu))
1492                set_cpus_unrelated(cpu, i, cpu_core_mask);
1493
1494        if (has_coregroup_support()) {
1495                for_each_cpu(i, cpu_coregroup_mask(cpu))
1496                        set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1497        }
1498}
1499#endif
1500
1501static inline void add_cpu_to_smallcore_masks(int cpu)
1502{
1503        int i;
1504
1505        if (!has_big_cores)
1506                return;
1507
1508        cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1509
1510        for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1511                if (cpu_online(i))
1512                        set_cpus_related(i, cpu, cpu_smallcore_mask);
1513        }
1514}
1515
1516static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1517{
1518        struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1519        int coregroup_id = cpu_to_coregroup_id(cpu);
1520        int i;
1521
1522        if (shared_caches)
1523                submask_fn = cpu_l2_cache_mask;
1524
1525        if (!*mask) {
1526                /* Assume only siblings are part of this CPU's coregroup */
1527                for_each_cpu(i, submask_fn(cpu))
1528                        set_cpus_related(cpu, i, cpu_coregroup_mask);
1529
1530                return;
1531        }
1532
1533        cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1534
1535        /* Update coregroup mask with all the CPUs that are part of submask */
1536        or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1537
1538        /* Skip all CPUs already part of coregroup mask */
1539        cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1540
1541        for_each_cpu(i, *mask) {
1542                /* Skip all CPUs not part of this coregroup */
1543                if (coregroup_id == cpu_to_coregroup_id(i)) {
1544                        or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1545                        cpumask_andnot(*mask, *mask, submask_fn(i));
1546                } else {
1547                        cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1548                }
1549        }
1550}
1551
1552static void add_cpu_to_masks(int cpu)
1553{
1554        struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1555        int first_thread = cpu_first_thread_sibling(cpu);
1556        cpumask_var_t mask;
1557        int chip_id = -1;
1558        bool ret;
1559        int i;
1560
1561        /*
1562         * This CPU will not be in the online mask yet so we need to manually
1563         * add it to it's own thread sibling mask.
1564         */
1565        map_cpu_to_node(cpu, cpu_to_node(cpu));
1566        cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1567        cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1568
1569        for (i = first_thread; i < first_thread + threads_per_core; i++)
1570                if (cpu_online(i))
1571                        set_cpus_related(i, cpu, cpu_sibling_mask);
1572
1573        add_cpu_to_smallcore_masks(cpu);
1574
1575        /* In CPU-hotplug path, hence use GFP_ATOMIC */
1576        ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1577        update_mask_by_l2(cpu, &mask);
1578
1579        if (has_coregroup_support())
1580                update_coregroup_mask(cpu, &mask);
1581
1582        if (chip_id_lookup_table && ret)
1583                chip_id = cpu_to_chip_id(cpu);
1584
1585        if (shared_caches)
1586                submask_fn = cpu_l2_cache_mask;
1587
1588        /* Update core_mask with all the CPUs that are part of submask */
1589        or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1590
1591        /* Skip all CPUs already part of current CPU core mask */
1592        cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1593
1594        /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1595        if (chip_id == -1)
1596                cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1597
1598        for_each_cpu(i, mask) {
1599                if (chip_id == cpu_to_chip_id(i)) {
1600                        or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1601                        cpumask_andnot(mask, mask, submask_fn(i));
1602                } else {
1603                        cpumask_andnot(mask, mask, cpu_core_mask(i));
1604                }
1605        }
1606
1607        free_cpumask_var(mask);
1608}
1609
1610/* Activate a secondary processor. */
1611void start_secondary(void *unused)
1612{
1613        unsigned int cpu = raw_smp_processor_id();
1614
1615        /* PPC64 calls setup_kup() in early_setup_secondary() */
1616        if (IS_ENABLED(CONFIG_PPC32))
1617                setup_kup();
1618
1619        mmgrab(&init_mm);
1620        current->active_mm = &init_mm;
1621
1622        smp_store_cpu_info(cpu);
1623        set_dec(tb_ticks_per_jiffy);
1624        rcu_cpu_starting(cpu);
1625        cpu_callin_map[cpu] = 1;
1626
1627        if (smp_ops->setup_cpu)
1628                smp_ops->setup_cpu(cpu);
1629        if (smp_ops->take_timebase)
1630                smp_ops->take_timebase();
1631
1632        secondary_cpu_time_init();
1633
1634#ifdef CONFIG_PPC64
1635        if (system_state == SYSTEM_RUNNING)
1636                vdso_data->processorCount++;
1637
1638        vdso_getcpu_init();
1639#endif
1640        set_numa_node(numa_cpu_lookup_table[cpu]);
1641        set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1642
1643        /* Update topology CPU masks */
1644        add_cpu_to_masks(cpu);
1645
1646        /*
1647         * Check for any shared caches. Note that this must be done on a
1648         * per-core basis because one core in the pair might be disabled.
1649         */
1650        if (!shared_caches) {
1651                struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1652                struct cpumask *mask = cpu_l2_cache_mask(cpu);
1653
1654                if (has_big_cores)
1655                        sibling_mask = cpu_smallcore_mask;
1656
1657                if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1658                        shared_caches = true;
1659        }
1660
1661        smp_wmb();
1662        notify_cpu_starting(cpu);
1663        set_cpu_online(cpu, true);
1664
1665        boot_init_stack_canary();
1666
1667        local_irq_enable();
1668
1669        /* We can enable ftrace for secondary cpus now */
1670        this_cpu_enable_ftrace();
1671
1672        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1673
1674        BUG();
1675}
1676
1677#ifdef CONFIG_PROFILING
1678int setup_profiling_timer(unsigned int multiplier)
1679{
1680        return 0;
1681}
1682#endif
1683
1684static void __init fixup_topology(void)
1685{
1686        int i;
1687
1688#ifdef CONFIG_SCHED_SMT
1689        if (has_big_cores) {
1690                pr_info("Big cores detected but using small core scheduling\n");
1691                powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1692        }
1693#endif
1694
1695        if (!has_coregroup_support())
1696                powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1697
1698        /*
1699         * Try to consolidate topology levels here instead of
1700         * allowing scheduler to degenerate.
1701         * - Dont consolidate if masks are different.
1702         * - Dont consolidate if sd_flags exists and are different.
1703         */
1704        for (i = 1; i <= die_idx; i++) {
1705                if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1706                        continue;
1707
1708                if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1709                                powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1710                        continue;
1711
1712                if (!powerpc_topology[i - 1].sd_flags)
1713                        powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1714
1715                powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1716                powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1717#ifdef CONFIG_SCHED_DEBUG
1718                powerpc_topology[i].name = powerpc_topology[i + 1].name;
1719#endif
1720        }
1721}
1722
1723void __init smp_cpus_done(unsigned int max_cpus)
1724{
1725        /*
1726         * We are running pinned to the boot CPU, see rest_init().
1727         */
1728        if (smp_ops && smp_ops->setup_cpu)
1729                smp_ops->setup_cpu(boot_cpuid);
1730
1731        if (smp_ops && smp_ops->bringup_done)
1732                smp_ops->bringup_done();
1733
1734        dump_numa_cpu_topology();
1735
1736        fixup_topology();
1737        set_sched_topology(powerpc_topology);
1738}
1739
1740#ifdef CONFIG_HOTPLUG_CPU
1741int __cpu_disable(void)
1742{
1743        int cpu = smp_processor_id();
1744        int err;
1745
1746        if (!smp_ops->cpu_disable)
1747                return -ENOSYS;
1748
1749        this_cpu_disable_ftrace();
1750
1751        err = smp_ops->cpu_disable();
1752        if (err)
1753                return err;
1754
1755        /* Update sibling maps */
1756        remove_cpu_from_masks(cpu);
1757
1758        return 0;
1759}
1760
1761void __cpu_die(unsigned int cpu)
1762{
1763        if (smp_ops->cpu_die)
1764                smp_ops->cpu_die(cpu);
1765}
1766
1767void arch_cpu_idle_dead(void)
1768{
1769        /*
1770         * Disable on the down path. This will be re-enabled by
1771         * start_secondary() via start_secondary_resume() below
1772         */
1773        this_cpu_disable_ftrace();
1774
1775        if (smp_ops->cpu_offline_self)
1776                smp_ops->cpu_offline_self();
1777
1778        /* If we return, we re-enter start_secondary */
1779        start_secondary_resume();
1780}
1781
1782#endif
1783