linux/arch/powerpc/mm/numa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
  18#include <linux/of.h>
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
  29#include <asm/smp.h>
  30#include <asm/topology.h>
  31#include <asm/firmware.h>
  32#include <asm/paca.h>
  33#include <asm/hvcall.h>
  34#include <asm/setup.h>
  35#include <asm/vdso.h>
  36#include <asm/drmem.h>
  37
  38static int numa_enabled = 1;
  39
  40static char *cmdline __initdata;
  41
  42int numa_cpu_lookup_table[NR_CPUS];
  43cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  44struct pglist_data *node_data[MAX_NUMNODES];
  45
  46EXPORT_SYMBOL(numa_cpu_lookup_table);
  47EXPORT_SYMBOL(node_to_cpumask_map);
  48EXPORT_SYMBOL(node_data);
  49
  50static int primary_domain_index;
  51static int n_mem_addr_cells, n_mem_size_cells;
  52
  53#define FORM0_AFFINITY 0
  54#define FORM1_AFFINITY 1
  55#define FORM2_AFFINITY 2
  56static int affinity_form;
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  62static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
  63        [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
  64};
  65static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
  66
  67/*
  68 * Allocate node_to_cpumask_map based on number of available nodes
  69 * Requires node_possible_map to be valid.
  70 *
  71 * Note: cpumask_of_node() is not valid until after this is done.
  72 */
  73static void __init setup_node_to_cpumask_map(void)
  74{
  75        unsigned int node;
  76
  77        /* setup nr_node_ids if not done yet */
  78        if (nr_node_ids == MAX_NUMNODES)
  79                setup_nr_node_ids();
  80
  81        /* allocate the map */
  82        for_each_node(node)
  83                alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  84
  85        /* cpumask_of_node() will now work */
  86        pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
  87}
  88
  89static int __init fake_numa_create_new_node(unsigned long end_pfn,
  90                                                unsigned int *nid)
  91{
  92        unsigned long long mem;
  93        char *p = cmdline;
  94        static unsigned int fake_nid;
  95        static unsigned long long curr_boundary;
  96
  97        /*
  98         * Modify node id, iff we started creating NUMA nodes
  99         * We want to continue from where we left of the last time
 100         */
 101        if (fake_nid)
 102                *nid = fake_nid;
 103        /*
 104         * In case there are no more arguments to parse, the
 105         * node_id should be the same as the last fake node id
 106         * (we've handled this above).
 107         */
 108        if (!p)
 109                return 0;
 110
 111        mem = memparse(p, &p);
 112        if (!mem)
 113                return 0;
 114
 115        if (mem < curr_boundary)
 116                return 0;
 117
 118        curr_boundary = mem;
 119
 120        if ((end_pfn << PAGE_SHIFT) > mem) {
 121                /*
 122                 * Skip commas and spaces
 123                 */
 124                while (*p == ',' || *p == ' ' || *p == '\t')
 125                        p++;
 126
 127                cmdline = p;
 128                fake_nid++;
 129                *nid = fake_nid;
 130                pr_debug("created new fake_node with id %d\n", fake_nid);
 131                return 1;
 132        }
 133        return 0;
 134}
 135
 136static void __init reset_numa_cpu_lookup_table(void)
 137{
 138        unsigned int cpu;
 139
 140        for_each_possible_cpu(cpu)
 141                numa_cpu_lookup_table[cpu] = -1;
 142}
 143
 144void map_cpu_to_node(int cpu, int node)
 145{
 146        update_numa_cpu_lookup_table(cpu, node);
 147
 148        if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
 149                pr_debug("adding cpu %d to node %d\n", cpu, node);
 150                cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 151        }
 152}
 153
 154#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 155void unmap_cpu_from_node(unsigned long cpu)
 156{
 157        int node = numa_cpu_lookup_table[cpu];
 158
 159        if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 160                cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 161                pr_debug("removing cpu %lu from node %d\n", cpu, node);
 162        } else {
 163                pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
 164        }
 165}
 166#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 167
 168static int __associativity_to_nid(const __be32 *associativity,
 169                                  int max_array_sz)
 170{
 171        int nid;
 172        /*
 173         * primary_domain_index is 1 based array index.
 174         */
 175        int index = primary_domain_index  - 1;
 176
 177        if (!numa_enabled || index >= max_array_sz)
 178                return NUMA_NO_NODE;
 179
 180        nid = of_read_number(&associativity[index], 1);
 181
 182        /* POWER4 LPAR uses 0xffff as invalid node */
 183        if (nid == 0xffff || nid >= nr_node_ids)
 184                nid = NUMA_NO_NODE;
 185        return nid;
 186}
 187/*
 188 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 189 * info is found.
 190 */
 191static int associativity_to_nid(const __be32 *associativity)
 192{
 193        int array_sz = of_read_number(associativity, 1);
 194
 195        /* Skip the first element in the associativity array */
 196        return __associativity_to_nid((associativity + 1), array_sz);
 197}
 198
 199static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 200{
 201        int dist;
 202        int node1, node2;
 203
 204        node1 = associativity_to_nid(cpu1_assoc);
 205        node2 = associativity_to_nid(cpu2_assoc);
 206
 207        dist = numa_distance_table[node1][node2];
 208        if (dist <= LOCAL_DISTANCE)
 209                return 0;
 210        else if (dist <= REMOTE_DISTANCE)
 211                return 1;
 212        else
 213                return 2;
 214}
 215
 216static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 217{
 218        int dist = 0;
 219
 220        int i, index;
 221
 222        for (i = 0; i < distance_ref_points_depth; i++) {
 223                index = be32_to_cpu(distance_ref_points[i]);
 224                if (cpu1_assoc[index] == cpu2_assoc[index])
 225                        break;
 226                dist++;
 227        }
 228
 229        return dist;
 230}
 231
 232int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 233{
 234        /* We should not get called with FORM0 */
 235        VM_WARN_ON(affinity_form == FORM0_AFFINITY);
 236        if (affinity_form == FORM1_AFFINITY)
 237                return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
 238        return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
 239}
 240
 241/* must hold reference to node during call */
 242static const __be32 *of_get_associativity(struct device_node *dev)
 243{
 244        return of_get_property(dev, "ibm,associativity", NULL);
 245}
 246
 247int __node_distance(int a, int b)
 248{
 249        int i;
 250        int distance = LOCAL_DISTANCE;
 251
 252        if (affinity_form == FORM2_AFFINITY)
 253                return numa_distance_table[a][b];
 254        else if (affinity_form == FORM0_AFFINITY)
 255                return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 256
 257        for (i = 0; i < distance_ref_points_depth; i++) {
 258                if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 259                        break;
 260
 261                /* Double the distance for each NUMA level */
 262                distance *= 2;
 263        }
 264
 265        return distance;
 266}
 267EXPORT_SYMBOL(__node_distance);
 268
 269/* Returns the nid associated with the given device tree node,
 270 * or -1 if not found.
 271 */
 272static int of_node_to_nid_single(struct device_node *device)
 273{
 274        int nid = NUMA_NO_NODE;
 275        const __be32 *tmp;
 276
 277        tmp = of_get_associativity(device);
 278        if (tmp)
 279                nid = associativity_to_nid(tmp);
 280        return nid;
 281}
 282
 283/* Walk the device tree upwards, looking for an associativity id */
 284int of_node_to_nid(struct device_node *device)
 285{
 286        int nid = NUMA_NO_NODE;
 287
 288        of_node_get(device);
 289        while (device) {
 290                nid = of_node_to_nid_single(device);
 291                if (nid != -1)
 292                        break;
 293
 294                device = of_get_next_parent(device);
 295        }
 296        of_node_put(device);
 297
 298        return nid;
 299}
 300EXPORT_SYMBOL(of_node_to_nid);
 301
 302static void __initialize_form1_numa_distance(const __be32 *associativity,
 303                                             int max_array_sz)
 304{
 305        int i, nid;
 306
 307        if (affinity_form != FORM1_AFFINITY)
 308                return;
 309
 310        nid = __associativity_to_nid(associativity, max_array_sz);
 311        if (nid != NUMA_NO_NODE) {
 312                for (i = 0; i < distance_ref_points_depth; i++) {
 313                        const __be32 *entry;
 314                        int index = be32_to_cpu(distance_ref_points[i]) - 1;
 315
 316                        /*
 317                         * broken hierarchy, return with broken distance table
 318                         */
 319                        if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
 320                                return;
 321
 322                        entry = &associativity[index];
 323                        distance_lookup_table[nid][i] = of_read_number(entry, 1);
 324                }
 325        }
 326}
 327
 328static void initialize_form1_numa_distance(const __be32 *associativity)
 329{
 330        int array_sz;
 331
 332        array_sz = of_read_number(associativity, 1);
 333        /* Skip the first element in the associativity array */
 334        __initialize_form1_numa_distance(associativity + 1, array_sz);
 335}
 336
 337/*
 338 * Used to update distance information w.r.t newly added node.
 339 */
 340void update_numa_distance(struct device_node *node)
 341{
 342        int nid;
 343
 344        if (affinity_form == FORM0_AFFINITY)
 345                return;
 346        else if (affinity_form == FORM1_AFFINITY) {
 347                const __be32 *associativity;
 348
 349                associativity = of_get_associativity(node);
 350                if (!associativity)
 351                        return;
 352
 353                initialize_form1_numa_distance(associativity);
 354                return;
 355        }
 356
 357        /* FORM2 affinity  */
 358        nid = of_node_to_nid_single(node);
 359        if (nid == NUMA_NO_NODE)
 360                return;
 361
 362        /*
 363         * With FORM2 we expect NUMA distance of all possible NUMA
 364         * nodes to be provided during boot.
 365         */
 366        WARN(numa_distance_table[nid][nid] == -1,
 367             "NUMA distance details for node %d not provided\n", nid);
 368}
 369
 370/*
 371 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
 372 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
 373 */
 374static void __init initialize_form2_numa_distance_lookup_table(void)
 375{
 376        int i, j;
 377        struct device_node *root;
 378        const __u8 *form2_distances;
 379        const __be32 *numa_lookup_index;
 380        int form2_distances_length;
 381        int max_numa_index, distance_index;
 382
 383        if (firmware_has_feature(FW_FEATURE_OPAL))
 384                root = of_find_node_by_path("/ibm,opal");
 385        else
 386                root = of_find_node_by_path("/rtas");
 387        if (!root)
 388                root = of_find_node_by_path("/");
 389
 390        numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
 391        max_numa_index = of_read_number(&numa_lookup_index[0], 1);
 392
 393        /* first element of the array is the size and is encode-int */
 394        form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
 395        form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
 396        /* Skip the size which is encoded int */
 397        form2_distances += sizeof(__be32);
 398
 399        pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
 400                 form2_distances_length, max_numa_index);
 401
 402        for (i = 0; i < max_numa_index; i++)
 403                /* +1 skip the max_numa_index in the property */
 404                numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
 405
 406
 407        if (form2_distances_length != max_numa_index * max_numa_index) {
 408                WARN(1, "Wrong NUMA distance information\n");
 409                form2_distances = NULL; // don't use it
 410        }
 411        distance_index = 0;
 412        for (i = 0;  i < max_numa_index; i++) {
 413                for (j = 0; j < max_numa_index; j++) {
 414                        int nodeA = numa_id_index_table[i];
 415                        int nodeB = numa_id_index_table[j];
 416                        int dist;
 417
 418                        if (form2_distances)
 419                                dist = form2_distances[distance_index++];
 420                        else if (nodeA == nodeB)
 421                                dist = LOCAL_DISTANCE;
 422                        else
 423                                dist = REMOTE_DISTANCE;
 424                        numa_distance_table[nodeA][nodeB] = dist;
 425                        pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
 426                }
 427        }
 428
 429        of_node_put(root);
 430}
 431
 432static int __init find_primary_domain_index(void)
 433{
 434        int index;
 435        struct device_node *root;
 436
 437        /*
 438         * Check for which form of affinity.
 439         */
 440        if (firmware_has_feature(FW_FEATURE_OPAL)) {
 441                affinity_form = FORM1_AFFINITY;
 442        } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
 443                pr_debug("Using form 2 affinity\n");
 444                affinity_form = FORM2_AFFINITY;
 445        } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
 446                pr_debug("Using form 1 affinity\n");
 447                affinity_form = FORM1_AFFINITY;
 448        } else
 449                affinity_form = FORM0_AFFINITY;
 450
 451        if (firmware_has_feature(FW_FEATURE_OPAL))
 452                root = of_find_node_by_path("/ibm,opal");
 453        else
 454                root = of_find_node_by_path("/rtas");
 455        if (!root)
 456                root = of_find_node_by_path("/");
 457
 458        /*
 459         * This property is a set of 32-bit integers, each representing
 460         * an index into the ibm,associativity nodes.
 461         *
 462         * With form 0 affinity the first integer is for an SMP configuration
 463         * (should be all 0's) and the second is for a normal NUMA
 464         * configuration. We have only one level of NUMA.
 465         *
 466         * With form 1 affinity the first integer is the most significant
 467         * NUMA boundary and the following are progressively less significant
 468         * boundaries. There can be more than one level of NUMA.
 469         */
 470        distance_ref_points = of_get_property(root,
 471                                        "ibm,associativity-reference-points",
 472                                        &distance_ref_points_depth);
 473
 474        if (!distance_ref_points) {
 475                pr_debug("ibm,associativity-reference-points not found.\n");
 476                goto err;
 477        }
 478
 479        distance_ref_points_depth /= sizeof(int);
 480        if (affinity_form == FORM0_AFFINITY) {
 481                if (distance_ref_points_depth < 2) {
 482                        pr_warn("short ibm,associativity-reference-points\n");
 483                        goto err;
 484                }
 485
 486                index = of_read_number(&distance_ref_points[1], 1);
 487        } else {
 488                /*
 489                 * Both FORM1 and FORM2 affinity find the primary domain details
 490                 * at the same offset.
 491                 */
 492                index = of_read_number(distance_ref_points, 1);
 493        }
 494        /*
 495         * Warn and cap if the hardware supports more than
 496         * MAX_DISTANCE_REF_POINTS domains.
 497         */
 498        if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 499                pr_warn("distance array capped at %d entries\n",
 500                        MAX_DISTANCE_REF_POINTS);
 501                distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 502        }
 503
 504        of_node_put(root);
 505        return index;
 506
 507err:
 508        of_node_put(root);
 509        return -1;
 510}
 511
 512static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 513{
 514        struct device_node *memory = NULL;
 515
 516        memory = of_find_node_by_type(memory, "memory");
 517        if (!memory)
 518                panic("numa.c: No memory nodes found!");
 519
 520        *n_addr_cells = of_n_addr_cells(memory);
 521        *n_size_cells = of_n_size_cells(memory);
 522        of_node_put(memory);
 523}
 524
 525static unsigned long read_n_cells(int n, const __be32 **buf)
 526{
 527        unsigned long result = 0;
 528
 529        while (n--) {
 530                result = (result << 32) | of_read_number(*buf, 1);
 531                (*buf)++;
 532        }
 533        return result;
 534}
 535
 536struct assoc_arrays {
 537        u32     n_arrays;
 538        u32     array_sz;
 539        const __be32 *arrays;
 540};
 541
 542/*
 543 * Retrieve and validate the list of associativity arrays for drconf
 544 * memory from the ibm,associativity-lookup-arrays property of the
 545 * device tree..
 546 *
 547 * The layout of the ibm,associativity-lookup-arrays property is a number N
 548 * indicating the number of associativity arrays, followed by a number M
 549 * indicating the size of each associativity array, followed by a list
 550 * of N associativity arrays.
 551 */
 552static int of_get_assoc_arrays(struct assoc_arrays *aa)
 553{
 554        struct device_node *memory;
 555        const __be32 *prop;
 556        u32 len;
 557
 558        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 559        if (!memory)
 560                return -1;
 561
 562        prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 563        if (!prop || len < 2 * sizeof(unsigned int)) {
 564                of_node_put(memory);
 565                return -1;
 566        }
 567
 568        aa->n_arrays = of_read_number(prop++, 1);
 569        aa->array_sz = of_read_number(prop++, 1);
 570
 571        of_node_put(memory);
 572
 573        /* Now that we know the number of arrays and size of each array,
 574         * revalidate the size of the property read in.
 575         */
 576        if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 577                return -1;
 578
 579        aa->arrays = prop;
 580        return 0;
 581}
 582
 583static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
 584{
 585        struct assoc_arrays aa = { .arrays = NULL };
 586        int default_nid = NUMA_NO_NODE;
 587        int nid = default_nid;
 588        int rc, index;
 589
 590        if ((primary_domain_index < 0) || !numa_enabled)
 591                return default_nid;
 592
 593        rc = of_get_assoc_arrays(&aa);
 594        if (rc)
 595                return default_nid;
 596
 597        if (primary_domain_index <= aa.array_sz &&
 598            !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 599                const __be32 *associativity;
 600
 601                index = lmb->aa_index * aa.array_sz;
 602                associativity = &aa.arrays[index];
 603                nid = __associativity_to_nid(associativity, aa.array_sz);
 604                if (nid > 0 && affinity_form == FORM1_AFFINITY) {
 605                        /*
 606                         * lookup array associativity entries have
 607                         * no length of the array as the first element.
 608                         */
 609                        __initialize_form1_numa_distance(associativity, aa.array_sz);
 610                }
 611        }
 612        return nid;
 613}
 614
 615/*
 616 * This is like of_node_to_nid_single() for memory represented in the
 617 * ibm,dynamic-reconfiguration-memory node.
 618 */
 619int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 620{
 621        struct assoc_arrays aa = { .arrays = NULL };
 622        int default_nid = NUMA_NO_NODE;
 623        int nid = default_nid;
 624        int rc, index;
 625
 626        if ((primary_domain_index < 0) || !numa_enabled)
 627                return default_nid;
 628
 629        rc = of_get_assoc_arrays(&aa);
 630        if (rc)
 631                return default_nid;
 632
 633        if (primary_domain_index <= aa.array_sz &&
 634            !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 635                const __be32 *associativity;
 636
 637                index = lmb->aa_index * aa.array_sz;
 638                associativity = &aa.arrays[index];
 639                nid = __associativity_to_nid(associativity, aa.array_sz);
 640        }
 641        return nid;
 642}
 643
 644#ifdef CONFIG_PPC_SPLPAR
 645
 646static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 647{
 648        long rc, hwid;
 649
 650        /*
 651         * On a shared lpar, device tree will not have node associativity.
 652         * At this time lppaca, or its __old_status field may not be
 653         * updated. Hence kernel cannot detect if its on a shared lpar. So
 654         * request an explicit associativity irrespective of whether the
 655         * lpar is shared or dedicated. Use the device tree property as a
 656         * fallback. cpu_to_phys_id is only valid between
 657         * smp_setup_cpu_maps() and smp_setup_pacas().
 658         */
 659        if (firmware_has_feature(FW_FEATURE_VPHN)) {
 660                if (cpu_to_phys_id)
 661                        hwid = cpu_to_phys_id[lcpu];
 662                else
 663                        hwid = get_hard_smp_processor_id(lcpu);
 664
 665                rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 666                if (rc == H_SUCCESS)
 667                        return 0;
 668        }
 669
 670        return -1;
 671}
 672
 673static int vphn_get_nid(long lcpu)
 674{
 675        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 676
 677
 678        if (!__vphn_get_associativity(lcpu, associativity))
 679                return associativity_to_nid(associativity);
 680
 681        return NUMA_NO_NODE;
 682
 683}
 684#else
 685
 686static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 687{
 688        return -1;
 689}
 690
 691static int vphn_get_nid(long unused)
 692{
 693        return NUMA_NO_NODE;
 694}
 695#endif  /* CONFIG_PPC_SPLPAR */
 696
 697/*
 698 * Figure out to which domain a cpu belongs and stick it there.
 699 * Return the id of the domain used.
 700 */
 701static int numa_setup_cpu(unsigned long lcpu)
 702{
 703        struct device_node *cpu;
 704        int fcpu = cpu_first_thread_sibling(lcpu);
 705        int nid = NUMA_NO_NODE;
 706
 707        if (!cpu_present(lcpu)) {
 708                set_cpu_numa_node(lcpu, first_online_node);
 709                return first_online_node;
 710        }
 711
 712        /*
 713         * If a valid cpu-to-node mapping is already available, use it
 714         * directly instead of querying the firmware, since it represents
 715         * the most recent mapping notified to us by the platform (eg: VPHN).
 716         * Since cpu_to_node binding remains the same for all threads in the
 717         * core. If a valid cpu-to-node mapping is already available, for
 718         * the first thread in the core, use it.
 719         */
 720        nid = numa_cpu_lookup_table[fcpu];
 721        if (nid >= 0) {
 722                map_cpu_to_node(lcpu, nid);
 723                return nid;
 724        }
 725
 726        nid = vphn_get_nid(lcpu);
 727        if (nid != NUMA_NO_NODE)
 728                goto out_present;
 729
 730        cpu = of_get_cpu_node(lcpu, NULL);
 731
 732        if (!cpu) {
 733                WARN_ON(1);
 734                if (cpu_present(lcpu))
 735                        goto out_present;
 736                else
 737                        goto out;
 738        }
 739
 740        nid = of_node_to_nid_single(cpu);
 741        of_node_put(cpu);
 742
 743out_present:
 744        if (nid < 0 || !node_possible(nid))
 745                nid = first_online_node;
 746
 747        /*
 748         * Update for the first thread of the core. All threads of a core
 749         * have to be part of the same node. This not only avoids querying
 750         * for every other thread in the core, but always avoids a case
 751         * where virtual node associativity change causes subsequent threads
 752         * of a core to be associated with different nid. However if first
 753         * thread is already online, expect it to have a valid mapping.
 754         */
 755        if (fcpu != lcpu) {
 756                WARN_ON(cpu_online(fcpu));
 757                map_cpu_to_node(fcpu, nid);
 758        }
 759
 760        map_cpu_to_node(lcpu, nid);
 761out:
 762        return nid;
 763}
 764
 765static void verify_cpu_node_mapping(int cpu, int node)
 766{
 767        int base, sibling, i;
 768
 769        /* Verify that all the threads in the core belong to the same node */
 770        base = cpu_first_thread_sibling(cpu);
 771
 772        for (i = 0; i < threads_per_core; i++) {
 773                sibling = base + i;
 774
 775                if (sibling == cpu || cpu_is_offline(sibling))
 776                        continue;
 777
 778                if (cpu_to_node(sibling) != node) {
 779                        WARN(1, "CPU thread siblings %d and %d don't belong"
 780                                " to the same node!\n", cpu, sibling);
 781                        break;
 782                }
 783        }
 784}
 785
 786/* Must run before sched domains notifier. */
 787static int ppc_numa_cpu_prepare(unsigned int cpu)
 788{
 789        int nid;
 790
 791        nid = numa_setup_cpu(cpu);
 792        verify_cpu_node_mapping(cpu, nid);
 793        return 0;
 794}
 795
 796static int ppc_numa_cpu_dead(unsigned int cpu)
 797{
 798        return 0;
 799}
 800
 801/*
 802 * Check and possibly modify a memory region to enforce the memory limit.
 803 *
 804 * Returns the size the region should have to enforce the memory limit.
 805 * This will either be the original value of size, a truncated value,
 806 * or zero. If the returned value of size is 0 the region should be
 807 * discarded as it lies wholly above the memory limit.
 808 */
 809static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 810                                                      unsigned long size)
 811{
 812        /*
 813         * We use memblock_end_of_DRAM() in here instead of memory_limit because
 814         * we've already adjusted it for the limit and it takes care of
 815         * having memory holes below the limit.  Also, in the case of
 816         * iommu_is_off, memory_limit is not set but is implicitly enforced.
 817         */
 818
 819        if (start + size <= memblock_end_of_DRAM())
 820                return size;
 821
 822        if (start >= memblock_end_of_DRAM())
 823                return 0;
 824
 825        return memblock_end_of_DRAM() - start;
 826}
 827
 828/*
 829 * Reads the counter for a given entry in
 830 * linux,drconf-usable-memory property
 831 */
 832static inline int __init read_usm_ranges(const __be32 **usm)
 833{
 834        /*
 835         * For each lmb in ibm,dynamic-memory a corresponding
 836         * entry in linux,drconf-usable-memory property contains
 837         * a counter followed by that many (base, size) duple.
 838         * read the counter from linux,drconf-usable-memory
 839         */
 840        return read_n_cells(n_mem_size_cells, usm);
 841}
 842
 843/*
 844 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 845 * node.  This assumes n_mem_{addr,size}_cells have been set.
 846 */
 847static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 848                                        const __be32 **usm,
 849                                        void *data)
 850{
 851        unsigned int ranges, is_kexec_kdump = 0;
 852        unsigned long base, size, sz;
 853        int nid;
 854
 855        /*
 856         * Skip this block if the reserved bit is set in flags (0x80)
 857         * or if the block is not assigned to this partition (0x8)
 858         */
 859        if ((lmb->flags & DRCONF_MEM_RESERVED)
 860            || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 861                return 0;
 862
 863        if (*usm)
 864                is_kexec_kdump = 1;
 865
 866        base = lmb->base_addr;
 867        size = drmem_lmb_size();
 868        ranges = 1;
 869
 870        if (is_kexec_kdump) {
 871                ranges = read_usm_ranges(usm);
 872                if (!ranges) /* there are no (base, size) duple */
 873                        return 0;
 874        }
 875
 876        do {
 877                if (is_kexec_kdump) {
 878                        base = read_n_cells(n_mem_addr_cells, usm);
 879                        size = read_n_cells(n_mem_size_cells, usm);
 880                }
 881
 882                nid = get_nid_and_numa_distance(lmb);
 883                fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 884                                          &nid);
 885                node_set_online(nid);
 886                sz = numa_enforce_memory_limit(base, size);
 887                if (sz)
 888                        memblock_set_node(base, sz, &memblock.memory, nid);
 889        } while (--ranges);
 890
 891        return 0;
 892}
 893
 894static int __init parse_numa_properties(void)
 895{
 896        struct device_node *memory;
 897        int default_nid = 0;
 898        unsigned long i;
 899        const __be32 *associativity;
 900
 901        if (numa_enabled == 0) {
 902                pr_warn("disabled by user\n");
 903                return -1;
 904        }
 905
 906        primary_domain_index = find_primary_domain_index();
 907
 908        if (primary_domain_index < 0) {
 909                /*
 910                 * if we fail to parse primary_domain_index from device tree
 911                 * mark the numa disabled, boot with numa disabled.
 912                 */
 913                numa_enabled = false;
 914                return primary_domain_index;
 915        }
 916
 917        pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
 918
 919        /*
 920         * If it is FORM2 initialize the distance table here.
 921         */
 922        if (affinity_form == FORM2_AFFINITY)
 923                initialize_form2_numa_distance_lookup_table();
 924
 925        /*
 926         * Even though we connect cpus to numa domains later in SMP
 927         * init, we need to know the node ids now. This is because
 928         * each node to be onlined must have NODE_DATA etc backing it.
 929         */
 930        for_each_present_cpu(i) {
 931                __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
 932                struct device_node *cpu;
 933                int nid = NUMA_NO_NODE;
 934
 935                memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
 936
 937                if (__vphn_get_associativity(i, vphn_assoc) == 0) {
 938                        nid = associativity_to_nid(vphn_assoc);
 939                        initialize_form1_numa_distance(vphn_assoc);
 940                } else {
 941
 942                        /*
 943                         * Don't fall back to default_nid yet -- we will plug
 944                         * cpus into nodes once the memory scan has discovered
 945                         * the topology.
 946                         */
 947                        cpu = of_get_cpu_node(i, NULL);
 948                        BUG_ON(!cpu);
 949
 950                        associativity = of_get_associativity(cpu);
 951                        if (associativity) {
 952                                nid = associativity_to_nid(associativity);
 953                                initialize_form1_numa_distance(associativity);
 954                        }
 955                        of_node_put(cpu);
 956                }
 957
 958                /* node_set_online() is an UB if 'nid' is negative */
 959                if (likely(nid >= 0))
 960                        node_set_online(nid);
 961        }
 962
 963        get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 964
 965        for_each_node_by_type(memory, "memory") {
 966                unsigned long start;
 967                unsigned long size;
 968                int nid;
 969                int ranges;
 970                const __be32 *memcell_buf;
 971                unsigned int len;
 972
 973                memcell_buf = of_get_property(memory,
 974                        "linux,usable-memory", &len);
 975                if (!memcell_buf || len <= 0)
 976                        memcell_buf = of_get_property(memory, "reg", &len);
 977                if (!memcell_buf || len <= 0)
 978                        continue;
 979
 980                /* ranges in cell */
 981                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 982new_range:
 983                /* these are order-sensitive, and modify the buffer pointer */
 984                start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 985                size = read_n_cells(n_mem_size_cells, &memcell_buf);
 986
 987                /*
 988                 * Assumption: either all memory nodes or none will
 989                 * have associativity properties.  If none, then
 990                 * everything goes to default_nid.
 991                 */
 992                associativity = of_get_associativity(memory);
 993                if (associativity) {
 994                        nid = associativity_to_nid(associativity);
 995                        initialize_form1_numa_distance(associativity);
 996                } else
 997                        nid = default_nid;
 998
 999                fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1000                node_set_online(nid);
1001
1002                size = numa_enforce_memory_limit(start, size);
1003                if (size)
1004                        memblock_set_node(start, size, &memblock.memory, nid);
1005
1006                if (--ranges)
1007                        goto new_range;
1008        }
1009
1010        /*
1011         * Now do the same thing for each MEMBLOCK listed in the
1012         * ibm,dynamic-memory property in the
1013         * ibm,dynamic-reconfiguration-memory node.
1014         */
1015        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1016        if (memory) {
1017                walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1018                of_node_put(memory);
1019        }
1020
1021        return 0;
1022}
1023
1024static void __init setup_nonnuma(void)
1025{
1026        unsigned long top_of_ram = memblock_end_of_DRAM();
1027        unsigned long total_ram = memblock_phys_mem_size();
1028        unsigned long start_pfn, end_pfn;
1029        unsigned int nid = 0;
1030        int i;
1031
1032        pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1033        pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1034
1035        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1036                fake_numa_create_new_node(end_pfn, &nid);
1037                memblock_set_node(PFN_PHYS(start_pfn),
1038                                  PFN_PHYS(end_pfn - start_pfn),
1039                                  &memblock.memory, nid);
1040                node_set_online(nid);
1041        }
1042}
1043
1044void __init dump_numa_cpu_topology(void)
1045{
1046        unsigned int node;
1047        unsigned int cpu, count;
1048
1049        if (!numa_enabled)
1050                return;
1051
1052        for_each_online_node(node) {
1053                pr_info("Node %d CPUs:", node);
1054
1055                count = 0;
1056                /*
1057                 * If we used a CPU iterator here we would miss printing
1058                 * the holes in the cpumap.
1059                 */
1060                for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1061                        if (cpumask_test_cpu(cpu,
1062                                        node_to_cpumask_map[node])) {
1063                                if (count == 0)
1064                                        pr_cont(" %u", cpu);
1065                                ++count;
1066                        } else {
1067                                if (count > 1)
1068                                        pr_cont("-%u", cpu - 1);
1069                                count = 0;
1070                        }
1071                }
1072
1073                if (count > 1)
1074                        pr_cont("-%u", nr_cpu_ids - 1);
1075                pr_cont("\n");
1076        }
1077}
1078
1079/* Initialize NODE_DATA for a node on the local memory */
1080static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1081{
1082        u64 spanned_pages = end_pfn - start_pfn;
1083        const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1084        u64 nd_pa;
1085        void *nd;
1086        int tnid;
1087
1088        nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1089        if (!nd_pa)
1090                panic("Cannot allocate %zu bytes for node %d data\n",
1091                      nd_size, nid);
1092
1093        nd = __va(nd_pa);
1094
1095        /* report and initialize */
1096        pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1097                nd_pa, nd_pa + nd_size - 1);
1098        tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1099        if (tnid != nid)
1100                pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1101
1102        node_data[nid] = nd;
1103        memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1104        NODE_DATA(nid)->node_id = nid;
1105        NODE_DATA(nid)->node_start_pfn = start_pfn;
1106        NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1107}
1108
1109static void __init find_possible_nodes(void)
1110{
1111        struct device_node *rtas;
1112        const __be32 *domains = NULL;
1113        int prop_length, max_nodes;
1114        u32 i;
1115
1116        if (!numa_enabled)
1117                return;
1118
1119        rtas = of_find_node_by_path("/rtas");
1120        if (!rtas)
1121                return;
1122
1123        /*
1124         * ibm,current-associativity-domains is a fairly recent property. If
1125         * it doesn't exist, then fallback on ibm,max-associativity-domains.
1126         * Current denotes what the platform can support compared to max
1127         * which denotes what the Hypervisor can support.
1128         *
1129         * If the LPAR is migratable, new nodes might be activated after a LPM,
1130         * so we should consider the max number in that case.
1131         */
1132        if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1133                domains = of_get_property(rtas,
1134                                          "ibm,current-associativity-domains",
1135                                          &prop_length);
1136        if (!domains) {
1137                domains = of_get_property(rtas, "ibm,max-associativity-domains",
1138                                        &prop_length);
1139                if (!domains)
1140                        goto out;
1141        }
1142
1143        max_nodes = of_read_number(&domains[primary_domain_index], 1);
1144        pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1145
1146        for (i = 0; i < max_nodes; i++) {
1147                if (!node_possible(i))
1148                        node_set(i, node_possible_map);
1149        }
1150
1151        prop_length /= sizeof(int);
1152        if (prop_length > primary_domain_index + 2)
1153                coregroup_enabled = 1;
1154
1155out:
1156        of_node_put(rtas);
1157}
1158
1159void __init mem_topology_setup(void)
1160{
1161        int cpu;
1162
1163        /*
1164         * Linux/mm assumes node 0 to be online at boot. However this is not
1165         * true on PowerPC, where node 0 is similar to any other node, it
1166         * could be cpuless, memoryless node. So force node 0 to be offline
1167         * for now. This will prevent cpuless, memoryless node 0 showing up
1168         * unnecessarily as online. If a node has cpus or memory that need
1169         * to be online, then node will anyway be marked online.
1170         */
1171        node_set_offline(0);
1172
1173        if (parse_numa_properties())
1174                setup_nonnuma();
1175
1176        /*
1177         * Modify the set of possible NUMA nodes to reflect information
1178         * available about the set of online nodes, and the set of nodes
1179         * that we expect to make use of for this platform's affinity
1180         * calculations.
1181         */
1182        nodes_and(node_possible_map, node_possible_map, node_online_map);
1183
1184        find_possible_nodes();
1185
1186        setup_node_to_cpumask_map();
1187
1188        reset_numa_cpu_lookup_table();
1189
1190        for_each_possible_cpu(cpu) {
1191                /*
1192                 * Powerpc with CONFIG_NUMA always used to have a node 0,
1193                 * even if it was memoryless or cpuless. For all cpus that
1194                 * are possible but not present, cpu_to_node() would point
1195                 * to node 0. To remove a cpuless, memoryless dummy node,
1196                 * powerpc need to make sure all possible but not present
1197                 * cpu_to_node are set to a proper node.
1198                 */
1199                numa_setup_cpu(cpu);
1200        }
1201}
1202
1203void __init initmem_init(void)
1204{
1205        int nid;
1206
1207        max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1208        max_pfn = max_low_pfn;
1209
1210        memblock_dump_all();
1211
1212        for_each_online_node(nid) {
1213                unsigned long start_pfn, end_pfn;
1214
1215                get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1216                setup_node_data(nid, start_pfn, end_pfn);
1217        }
1218
1219        sparse_init();
1220
1221        /*
1222         * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1223         * even before we online them, so that we can use cpu_to_{node,mem}
1224         * early in boot, cf. smp_prepare_cpus().
1225         * _nocalls() + manual invocation is used because cpuhp is not yet
1226         * initialized for the boot CPU.
1227         */
1228        cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1229                                  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1230}
1231
1232static int __init early_numa(char *p)
1233{
1234        if (!p)
1235                return 0;
1236
1237        if (strstr(p, "off"))
1238                numa_enabled = 0;
1239
1240        p = strstr(p, "fake=");
1241        if (p)
1242                cmdline = p + strlen("fake=");
1243
1244        return 0;
1245}
1246early_param("numa", early_numa);
1247
1248#ifdef CONFIG_MEMORY_HOTPLUG
1249/*
1250 * Find the node associated with a hot added memory section for
1251 * memory represented in the device tree by the property
1252 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1253 */
1254static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1255{
1256        struct drmem_lmb *lmb;
1257        unsigned long lmb_size;
1258        int nid = NUMA_NO_NODE;
1259
1260        lmb_size = drmem_lmb_size();
1261
1262        for_each_drmem_lmb(lmb) {
1263                /* skip this block if it is reserved or not assigned to
1264                 * this partition */
1265                if ((lmb->flags & DRCONF_MEM_RESERVED)
1266                    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1267                        continue;
1268
1269                if ((scn_addr < lmb->base_addr)
1270                    || (scn_addr >= (lmb->base_addr + lmb_size)))
1271                        continue;
1272
1273                nid = of_drconf_to_nid_single(lmb);
1274                break;
1275        }
1276
1277        return nid;
1278}
1279
1280/*
1281 * Find the node associated with a hot added memory section for memory
1282 * represented in the device tree as a node (i.e. memory@XXXX) for
1283 * each memblock.
1284 */
1285static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1286{
1287        struct device_node *memory;
1288        int nid = NUMA_NO_NODE;
1289
1290        for_each_node_by_type(memory, "memory") {
1291                unsigned long start, size;
1292                int ranges;
1293                const __be32 *memcell_buf;
1294                unsigned int len;
1295
1296                memcell_buf = of_get_property(memory, "reg", &len);
1297                if (!memcell_buf || len <= 0)
1298                        continue;
1299
1300                /* ranges in cell */
1301                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1302
1303                while (ranges--) {
1304                        start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1305                        size = read_n_cells(n_mem_size_cells, &memcell_buf);
1306
1307                        if ((scn_addr < start) || (scn_addr >= (start + size)))
1308                                continue;
1309
1310                        nid = of_node_to_nid_single(memory);
1311                        break;
1312                }
1313
1314                if (nid >= 0)
1315                        break;
1316        }
1317
1318        of_node_put(memory);
1319
1320        return nid;
1321}
1322
1323/*
1324 * Find the node associated with a hot added memory section.  Section
1325 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1326 * sections are fully contained within a single MEMBLOCK.
1327 */
1328int hot_add_scn_to_nid(unsigned long scn_addr)
1329{
1330        struct device_node *memory = NULL;
1331        int nid;
1332
1333        if (!numa_enabled)
1334                return first_online_node;
1335
1336        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1337        if (memory) {
1338                nid = hot_add_drconf_scn_to_nid(scn_addr);
1339                of_node_put(memory);
1340        } else {
1341                nid = hot_add_node_scn_to_nid(scn_addr);
1342        }
1343
1344        if (nid < 0 || !node_possible(nid))
1345                nid = first_online_node;
1346
1347        return nid;
1348}
1349
1350static u64 hot_add_drconf_memory_max(void)
1351{
1352        struct device_node *memory = NULL;
1353        struct device_node *dn = NULL;
1354        const __be64 *lrdr = NULL;
1355
1356        dn = of_find_node_by_path("/rtas");
1357        if (dn) {
1358                lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1359                of_node_put(dn);
1360                if (lrdr)
1361                        return be64_to_cpup(lrdr);
1362        }
1363
1364        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1365        if (memory) {
1366                of_node_put(memory);
1367                return drmem_lmb_memory_max();
1368        }
1369        return 0;
1370}
1371
1372/*
1373 * memory_hotplug_max - return max address of memory that may be added
1374 *
1375 * This is currently only used on systems that support drconfig memory
1376 * hotplug.
1377 */
1378u64 memory_hotplug_max(void)
1379{
1380        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1381}
1382#endif /* CONFIG_MEMORY_HOTPLUG */
1383
1384/* Virtual Processor Home Node (VPHN) support */
1385#ifdef CONFIG_PPC_SPLPAR
1386static int topology_inited;
1387
1388/*
1389 * Retrieve the new associativity information for a virtual processor's
1390 * home node.
1391 */
1392static long vphn_get_associativity(unsigned long cpu,
1393                                        __be32 *associativity)
1394{
1395        long rc;
1396
1397        rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1398                                VPHN_FLAG_VCPU, associativity);
1399
1400        switch (rc) {
1401        case H_SUCCESS:
1402                pr_debug("VPHN hcall succeeded. Reset polling...\n");
1403                goto out;
1404
1405        case H_FUNCTION:
1406                pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1407                break;
1408        case H_HARDWARE:
1409                pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1410                        "preventing VPHN. Disabling polling...\n");
1411                break;
1412        case H_PARAMETER:
1413                pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1414                        "Disabling polling...\n");
1415                break;
1416        default:
1417                pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1418                        , rc);
1419                break;
1420        }
1421out:
1422        return rc;
1423}
1424
1425void find_and_update_cpu_nid(int cpu)
1426{
1427        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1428        int new_nid;
1429
1430        /* Use associativity from first thread for all siblings */
1431        if (vphn_get_associativity(cpu, associativity))
1432                return;
1433
1434        /* Do not have previous associativity, so find it now. */
1435        new_nid = associativity_to_nid(associativity);
1436
1437        if (new_nid < 0 || !node_possible(new_nid))
1438                new_nid = first_online_node;
1439        else
1440                // Associate node <-> cpu, so cpu_up() calls
1441                // try_online_node() on the right node.
1442                set_cpu_numa_node(cpu, new_nid);
1443
1444        pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1445}
1446
1447int cpu_to_coregroup_id(int cpu)
1448{
1449        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1450        int index;
1451
1452        if (cpu < 0 || cpu > nr_cpu_ids)
1453                return -1;
1454
1455        if (!coregroup_enabled)
1456                goto out;
1457
1458        if (!firmware_has_feature(FW_FEATURE_VPHN))
1459                goto out;
1460
1461        if (vphn_get_associativity(cpu, associativity))
1462                goto out;
1463
1464        index = of_read_number(associativity, 1);
1465        if (index > primary_domain_index + 1)
1466                return of_read_number(&associativity[index - 1], 1);
1467
1468out:
1469        return cpu_to_core_id(cpu);
1470}
1471
1472static int topology_update_init(void)
1473{
1474        topology_inited = 1;
1475        return 0;
1476}
1477device_initcall(topology_update_init);
1478#endif /* CONFIG_PPC_SPLPAR */
1479