linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Performance event support - powerpc architecture code
   4 *
   5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   6 */
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/sched/clock.h>
  10#include <linux/perf_event.h>
  11#include <linux/percpu.h>
  12#include <linux/hardirq.h>
  13#include <linux/uaccess.h>
  14#include <asm/reg.h>
  15#include <asm/pmc.h>
  16#include <asm/machdep.h>
  17#include <asm/firmware.h>
  18#include <asm/ptrace.h>
  19#include <asm/code-patching.h>
  20#include <asm/hw_irq.h>
  21#include <asm/interrupt.h>
  22
  23#ifdef CONFIG_PPC64
  24#include "internal.h"
  25#endif
  26
  27#define BHRB_MAX_ENTRIES        32
  28#define BHRB_TARGET             0x0000000000000002
  29#define BHRB_PREDICTION         0x0000000000000001
  30#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  31
  32struct cpu_hw_events {
  33        int n_events;
  34        int n_percpu;
  35        int disabled;
  36        int n_added;
  37        int n_limited;
  38        u8  pmcs_enabled;
  39        struct perf_event *event[MAX_HWEVENTS];
  40        u64 events[MAX_HWEVENTS];
  41        unsigned int flags[MAX_HWEVENTS];
  42        struct mmcr_regs mmcr;
  43        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  44        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  45        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  46        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  47        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48
  49        unsigned int txn_flags;
  50        int n_txn_start;
  51
  52        /* BHRB bits */
  53        u64                             bhrb_filter;    /* BHRB HW branch filter */
  54        unsigned int                    bhrb_users;
  55        void                            *bhrb_context;
  56        struct  perf_branch_stack       bhrb_stack;
  57        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  58        u64                             ic_init;
  59
  60        /* Store the PMC values */
  61        unsigned long pmcs[MAX_HWEVENTS];
  62};
  63
  64static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  65
  66static struct power_pmu *ppmu;
  67
  68/*
  69 * Normally, to ignore kernel events we set the FCS (freeze counters
  70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  71 * hypervisor bit set in the MSR, or if we are running on a processor
  72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  73 * then we need to use the FCHV bit to ignore kernel events.
  74 */
  75static unsigned int freeze_events_kernel = MMCR0_FCS;
  76
  77/*
  78 * 32-bit doesn't have MMCRA but does have an MMCR2,
  79 * and a few other names are different.
  80 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
  81 * Define them as zero knowing that any code path accessing
  82 * these registers (via mtspr/mfspr) are done under ppmu flag
  83 * check for PPMU_ARCH_31 and we will not enter that code path
  84 * for 32-bit.
  85 */
  86#ifdef CONFIG_PPC32
  87
  88#define MMCR0_FCHV              0
  89#define MMCR0_PMCjCE            MMCR0_PMCnCE
  90#define MMCR0_FC56              0
  91#define MMCR0_PMAO              0
  92#define MMCR0_EBE               0
  93#define MMCR0_BHRBA             0
  94#define MMCR0_PMCC              0
  95#define MMCR0_PMCC_U6           0
  96
  97#define SPRN_MMCRA              SPRN_MMCR2
  98#define SPRN_MMCR3              0
  99#define SPRN_SIER2              0
 100#define SPRN_SIER3              0
 101#define MMCRA_SAMPLE_ENABLE     0
 102#define MMCRA_BHRB_DISABLE     0
 103#define MMCR0_PMCCEXT           0
 104
 105static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 106{
 107        return 0;
 108}
 109static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
 110static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 111{
 112        return 0;
 113}
 114static inline void perf_read_regs(struct pt_regs *regs)
 115{
 116        regs->result = 0;
 117}
 118
 119static inline int siar_valid(struct pt_regs *regs)
 120{
 121        return 1;
 122}
 123
 124static bool is_ebb_event(struct perf_event *event) { return false; }
 125static int ebb_event_check(struct perf_event *event) { return 0; }
 126static void ebb_event_add(struct perf_event *event) { }
 127static void ebb_switch_out(unsigned long mmcr0) { }
 128static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 129{
 130        return cpuhw->mmcr.mmcr0;
 131}
 132
 133static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 134static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 135static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 136static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
 137static void pmao_restore_workaround(bool ebb) { }
 138#endif /* CONFIG_PPC32 */
 139
 140bool is_sier_available(void)
 141{
 142        if (!ppmu)
 143                return false;
 144
 145        if (ppmu->flags & PPMU_HAS_SIER)
 146                return true;
 147
 148        return false;
 149}
 150
 151/*
 152 * Return PMC value corresponding to the
 153 * index passed.
 154 */
 155unsigned long get_pmcs_ext_regs(int idx)
 156{
 157        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 158
 159        return cpuhw->pmcs[idx];
 160}
 161
 162static bool regs_use_siar(struct pt_regs *regs)
 163{
 164        /*
 165         * When we take a performance monitor exception the regs are setup
 166         * using perf_read_regs() which overloads some fields, in particular
 167         * regs->result to tell us whether to use SIAR.
 168         *
 169         * However if the regs are from another exception, eg. a syscall, then
 170         * they have not been setup using perf_read_regs() and so regs->result
 171         * is something random.
 172         */
 173        return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
 174}
 175
 176/*
 177 * Things that are specific to 64-bit implementations.
 178 */
 179#ifdef CONFIG_PPC64
 180
 181static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 182{
 183        unsigned long mmcra = regs->dsisr;
 184
 185        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 186                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 187                if (slot > 1)
 188                        return 4 * (slot - 1);
 189        }
 190
 191        return 0;
 192}
 193
 194/*
 195 * The user wants a data address recorded.
 196 * If we're not doing instruction sampling, give them the SDAR
 197 * (sampled data address).  If we are doing instruction sampling, then
 198 * only give them the SDAR if it corresponds to the instruction
 199 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 200 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 201 */
 202static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
 203{
 204        unsigned long mmcra = regs->dsisr;
 205        bool sdar_valid;
 206
 207        if (ppmu->flags & PPMU_HAS_SIER)
 208                sdar_valid = regs->dar & SIER_SDAR_VALID;
 209        else {
 210                unsigned long sdsync;
 211
 212                if (ppmu->flags & PPMU_SIAR_VALID)
 213                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 214                else if (ppmu->flags & PPMU_ALT_SIPR)
 215                        sdsync = POWER6_MMCRA_SDSYNC;
 216                else if (ppmu->flags & PPMU_NO_SIAR)
 217                        sdsync = MMCRA_SAMPLE_ENABLE;
 218                else
 219                        sdsync = MMCRA_SDSYNC;
 220
 221                sdar_valid = mmcra & sdsync;
 222        }
 223
 224        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 225                *addrp = mfspr(SPRN_SDAR);
 226
 227        if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
 228                *addrp = 0;
 229}
 230
 231static bool regs_sihv(struct pt_regs *regs)
 232{
 233        unsigned long sihv = MMCRA_SIHV;
 234
 235        if (ppmu->flags & PPMU_HAS_SIER)
 236                return !!(regs->dar & SIER_SIHV);
 237
 238        if (ppmu->flags & PPMU_ALT_SIPR)
 239                sihv = POWER6_MMCRA_SIHV;
 240
 241        return !!(regs->dsisr & sihv);
 242}
 243
 244static bool regs_sipr(struct pt_regs *regs)
 245{
 246        unsigned long sipr = MMCRA_SIPR;
 247
 248        if (ppmu->flags & PPMU_HAS_SIER)
 249                return !!(regs->dar & SIER_SIPR);
 250
 251        if (ppmu->flags & PPMU_ALT_SIPR)
 252                sipr = POWER6_MMCRA_SIPR;
 253
 254        return !!(regs->dsisr & sipr);
 255}
 256
 257static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 258{
 259        if (regs->msr & MSR_PR)
 260                return PERF_RECORD_MISC_USER;
 261        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 262                return PERF_RECORD_MISC_HYPERVISOR;
 263        return PERF_RECORD_MISC_KERNEL;
 264}
 265
 266static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 267{
 268        bool use_siar = regs_use_siar(regs);
 269        unsigned long mmcra = regs->dsisr;
 270        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 271
 272        if (!use_siar)
 273                return perf_flags_from_msr(regs);
 274
 275        /*
 276         * Check the address in SIAR to identify the
 277         * privilege levels since the SIER[MSR_HV, MSR_PR]
 278         * bits are not set for marked events in power10
 279         * DD1.
 280         */
 281        if (marked && (ppmu->flags & PPMU_P10_DD1)) {
 282                unsigned long siar = mfspr(SPRN_SIAR);
 283                if (siar) {
 284                        if (is_kernel_addr(siar))
 285                                return PERF_RECORD_MISC_KERNEL;
 286                        return PERF_RECORD_MISC_USER;
 287                } else {
 288                        if (is_kernel_addr(regs->nip))
 289                                return PERF_RECORD_MISC_KERNEL;
 290                        return PERF_RECORD_MISC_USER;
 291                }
 292        }
 293
 294        /*
 295         * If we don't have flags in MMCRA, rather than using
 296         * the MSR, we intuit the flags from the address in
 297         * SIAR which should give slightly more reliable
 298         * results
 299         */
 300        if (ppmu->flags & PPMU_NO_SIPR) {
 301                unsigned long siar = mfspr(SPRN_SIAR);
 302                if (is_kernel_addr(siar))
 303                        return PERF_RECORD_MISC_KERNEL;
 304                return PERF_RECORD_MISC_USER;
 305        }
 306
 307        /* PR has priority over HV, so order below is important */
 308        if (regs_sipr(regs))
 309                return PERF_RECORD_MISC_USER;
 310
 311        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 312                return PERF_RECORD_MISC_HYPERVISOR;
 313
 314        return PERF_RECORD_MISC_KERNEL;
 315}
 316
 317/*
 318 * Overload regs->dsisr to store MMCRA so we only need to read it once
 319 * on each interrupt.
 320 * Overload regs->dar to store SIER if we have it.
 321 * Overload regs->result to specify whether we should use the MSR (result
 322 * is zero) or the SIAR (result is non zero).
 323 */
 324static inline void perf_read_regs(struct pt_regs *regs)
 325{
 326        unsigned long mmcra = mfspr(SPRN_MMCRA);
 327        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 328        int use_siar;
 329
 330        regs->dsisr = mmcra;
 331
 332        if (ppmu->flags & PPMU_HAS_SIER)
 333                regs->dar = mfspr(SPRN_SIER);
 334
 335        /*
 336         * If this isn't a PMU exception (eg a software event) the SIAR is
 337         * not valid. Use pt_regs.
 338         *
 339         * If it is a marked event use the SIAR.
 340         *
 341         * If the PMU doesn't update the SIAR for non marked events use
 342         * pt_regs.
 343         *
 344         * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
 345         * issue with regs_sipr not being in synch with SIAR in interrupt entry
 346         * and return sequences, which can result in regs_sipr being true for
 347         * kernel interrupts and SIAR, which has the effect of causing samples
 348         * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
 349         * interrupt entry/exit.
 350         *
 351         * If the PMU has HV/PR flags then check to see if they
 352         * place the exception in userspace. If so, use pt_regs. In
 353         * continuous sampling mode the SIAR and the PMU exception are
 354         * not synchronised, so they may be many instructions apart.
 355         * This can result in confusing backtraces. We still want
 356         * hypervisor samples as well as samples in the kernel with
 357         * interrupts off hence the userspace check.
 358         */
 359        if (TRAP(regs) != INTERRUPT_PERFMON)
 360                use_siar = 0;
 361        else if ((ppmu->flags & PPMU_NO_SIAR))
 362                use_siar = 0;
 363        else if (marked)
 364                use_siar = 1;
 365        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 366                use_siar = 0;
 367        else if (!user_mode(regs))
 368                use_siar = 1;
 369        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 370                use_siar = 0;
 371        else
 372                use_siar = 1;
 373
 374        regs->result = use_siar;
 375}
 376
 377/*
 378 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 379 * must be sampled only if the SIAR-valid bit is set.
 380 *
 381 * For unmarked instructions and for processors that don't have the SIAR-Valid
 382 * bit, assume that SIAR is valid.
 383 */
 384static inline int siar_valid(struct pt_regs *regs)
 385{
 386        unsigned long mmcra = regs->dsisr;
 387        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 388
 389        if (marked) {
 390                /*
 391                 * SIER[SIAR_VALID] is not set for some
 392                 * marked events on power10 DD1, so drop
 393                 * the check for SIER[SIAR_VALID] and return true.
 394                 */
 395                if (ppmu->flags & PPMU_P10_DD1)
 396                        return 0x1;
 397                else if (ppmu->flags & PPMU_HAS_SIER)
 398                        return regs->dar & SIER_SIAR_VALID;
 399
 400                if (ppmu->flags & PPMU_SIAR_VALID)
 401                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 402        }
 403
 404        return 1;
 405}
 406
 407
 408/* Reset all possible BHRB entries */
 409static void power_pmu_bhrb_reset(void)
 410{
 411        asm volatile(PPC_CLRBHRB);
 412}
 413
 414static void power_pmu_bhrb_enable(struct perf_event *event)
 415{
 416        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 417
 418        if (!ppmu->bhrb_nr)
 419                return;
 420
 421        /* Clear BHRB if we changed task context to avoid data leaks */
 422        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 423                power_pmu_bhrb_reset();
 424                cpuhw->bhrb_context = event->ctx;
 425        }
 426        cpuhw->bhrb_users++;
 427        perf_sched_cb_inc(event->ctx->pmu);
 428}
 429
 430static void power_pmu_bhrb_disable(struct perf_event *event)
 431{
 432        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 433
 434        if (!ppmu->bhrb_nr)
 435                return;
 436
 437        WARN_ON_ONCE(!cpuhw->bhrb_users);
 438        cpuhw->bhrb_users--;
 439        perf_sched_cb_dec(event->ctx->pmu);
 440
 441        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 442                /* BHRB cannot be turned off when other
 443                 * events are active on the PMU.
 444                 */
 445
 446                /* avoid stale pointer */
 447                cpuhw->bhrb_context = NULL;
 448        }
 449}
 450
 451/* Called from ctxsw to prevent one process's branch entries to
 452 * mingle with the other process's entries during context switch.
 453 */
 454static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 455{
 456        if (!ppmu->bhrb_nr)
 457                return;
 458
 459        if (sched_in)
 460                power_pmu_bhrb_reset();
 461}
 462/* Calculate the to address for a branch */
 463static __u64 power_pmu_bhrb_to(u64 addr)
 464{
 465        unsigned int instr;
 466        __u64 target;
 467
 468        if (is_kernel_addr(addr)) {
 469                if (copy_from_kernel_nofault(&instr, (void *)addr,
 470                                sizeof(instr)))
 471                        return 0;
 472
 473                return branch_target(&instr);
 474        }
 475
 476        /* Userspace: need copy instruction here then translate it */
 477        if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
 478                        sizeof(instr)))
 479                return 0;
 480
 481        target = branch_target(&instr);
 482        if ((!target) || (instr & BRANCH_ABSOLUTE))
 483                return target;
 484
 485        /* Translate relative branch target from kernel to user address */
 486        return target - (unsigned long)&instr + addr;
 487}
 488
 489/* Processing BHRB entries */
 490static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
 491{
 492        u64 val;
 493        u64 addr;
 494        int r_index, u_index, pred;
 495
 496        r_index = 0;
 497        u_index = 0;
 498        while (r_index < ppmu->bhrb_nr) {
 499                /* Assembly read function */
 500                val = read_bhrb(r_index++);
 501                if (!val)
 502                        /* Terminal marker: End of valid BHRB entries */
 503                        break;
 504                else {
 505                        addr = val & BHRB_EA;
 506                        pred = val & BHRB_PREDICTION;
 507
 508                        if (!addr)
 509                                /* invalid entry */
 510                                continue;
 511
 512                        /*
 513                         * BHRB rolling buffer could very much contain the kernel
 514                         * addresses at this point. Check the privileges before
 515                         * exporting it to userspace (avoid exposure of regions
 516                         * where we could have speculative execution)
 517                         * Incase of ISA v3.1, BHRB will capture only user-space
 518                         * addresses, hence include a check before filtering code
 519                         */
 520                        if (!(ppmu->flags & PPMU_ARCH_31) &&
 521                            is_kernel_addr(addr) && event->attr.exclude_kernel)
 522                                continue;
 523
 524                        /* Branches are read most recent first (ie. mfbhrb 0 is
 525                         * the most recent branch).
 526                         * There are two types of valid entries:
 527                         * 1) a target entry which is the to address of a
 528                         *    computed goto like a blr,bctr,btar.  The next
 529                         *    entry read from the bhrb will be branch
 530                         *    corresponding to this target (ie. the actual
 531                         *    blr/bctr/btar instruction).
 532                         * 2) a from address which is an actual branch.  If a
 533                         *    target entry proceeds this, then this is the
 534                         *    matching branch for that target.  If this is not
 535                         *    following a target entry, then this is a branch
 536                         *    where the target is given as an immediate field
 537                         *    in the instruction (ie. an i or b form branch).
 538                         *    In this case we need to read the instruction from
 539                         *    memory to determine the target/to address.
 540                         */
 541
 542                        if (val & BHRB_TARGET) {
 543                                /* Target branches use two entries
 544                                 * (ie. computed gotos/XL form)
 545                                 */
 546                                cpuhw->bhrb_entries[u_index].to = addr;
 547                                cpuhw->bhrb_entries[u_index].mispred = pred;
 548                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 549
 550                                /* Get from address in next entry */
 551                                val = read_bhrb(r_index++);
 552                                addr = val & BHRB_EA;
 553                                if (val & BHRB_TARGET) {
 554                                        /* Shouldn't have two targets in a
 555                                           row.. Reset index and try again */
 556                                        r_index--;
 557                                        addr = 0;
 558                                }
 559                                cpuhw->bhrb_entries[u_index].from = addr;
 560                        } else {
 561                                /* Branches to immediate field 
 562                                   (ie I or B form) */
 563                                cpuhw->bhrb_entries[u_index].from = addr;
 564                                cpuhw->bhrb_entries[u_index].to =
 565                                        power_pmu_bhrb_to(addr);
 566                                cpuhw->bhrb_entries[u_index].mispred = pred;
 567                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 568                        }
 569                        u_index++;
 570
 571                }
 572        }
 573        cpuhw->bhrb_stack.nr = u_index;
 574        cpuhw->bhrb_stack.hw_idx = -1ULL;
 575        return;
 576}
 577
 578static bool is_ebb_event(struct perf_event *event)
 579{
 580        /*
 581         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 582         * check that the PMU supports EBB, meaning those that don't can still
 583         * use bit 63 of the event code for something else if they wish.
 584         */
 585        return (ppmu->flags & PPMU_ARCH_207S) &&
 586               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 587}
 588
 589static int ebb_event_check(struct perf_event *event)
 590{
 591        struct perf_event *leader = event->group_leader;
 592
 593        /* Event and group leader must agree on EBB */
 594        if (is_ebb_event(leader) != is_ebb_event(event))
 595                return -EINVAL;
 596
 597        if (is_ebb_event(event)) {
 598                if (!(event->attach_state & PERF_ATTACH_TASK))
 599                        return -EINVAL;
 600
 601                if (!leader->attr.pinned || !leader->attr.exclusive)
 602                        return -EINVAL;
 603
 604                if (event->attr.freq ||
 605                    event->attr.inherit ||
 606                    event->attr.sample_type ||
 607                    event->attr.sample_period ||
 608                    event->attr.enable_on_exec)
 609                        return -EINVAL;
 610        }
 611
 612        return 0;
 613}
 614
 615static void ebb_event_add(struct perf_event *event)
 616{
 617        if (!is_ebb_event(event) || current->thread.used_ebb)
 618                return;
 619
 620        /*
 621         * IFF this is the first time we've added an EBB event, set
 622         * PMXE in the user MMCR0 so we can detect when it's cleared by
 623         * userspace. We need this so that we can context switch while
 624         * userspace is in the EBB handler (where PMXE is 0).
 625         */
 626        current->thread.used_ebb = 1;
 627        current->thread.mmcr0 |= MMCR0_PMXE;
 628}
 629
 630static void ebb_switch_out(unsigned long mmcr0)
 631{
 632        if (!(mmcr0 & MMCR0_EBE))
 633                return;
 634
 635        current->thread.siar  = mfspr(SPRN_SIAR);
 636        current->thread.sier  = mfspr(SPRN_SIER);
 637        current->thread.sdar  = mfspr(SPRN_SDAR);
 638        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 639        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 640        if (ppmu->flags & PPMU_ARCH_31) {
 641                current->thread.mmcr3 = mfspr(SPRN_MMCR3);
 642                current->thread.sier2 = mfspr(SPRN_SIER2);
 643                current->thread.sier3 = mfspr(SPRN_SIER3);
 644        }
 645}
 646
 647static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 648{
 649        unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
 650
 651        if (!ebb)
 652                goto out;
 653
 654        /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 655        mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 656
 657        /*
 658         * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 659         * with pmao_restore_workaround() because we may add PMAO but we never
 660         * clear it here.
 661         */
 662        mmcr0 |= current->thread.mmcr0;
 663
 664        /*
 665         * Be careful not to set PMXE if userspace had it cleared. This is also
 666         * compatible with pmao_restore_workaround() because it has already
 667         * cleared PMXE and we leave PMAO alone.
 668         */
 669        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 670                mmcr0 &= ~MMCR0_PMXE;
 671
 672        mtspr(SPRN_SIAR, current->thread.siar);
 673        mtspr(SPRN_SIER, current->thread.sier);
 674        mtspr(SPRN_SDAR, current->thread.sdar);
 675
 676        /*
 677         * Merge the kernel & user values of MMCR2. The semantics we implement
 678         * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 679         * but not clear bits. If a task wants to be able to clear bits, ie.
 680         * unfreeze counters, it should not set exclude_xxx in its events and
 681         * instead manage the MMCR2 entirely by itself.
 682         */
 683        mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
 684
 685        if (ppmu->flags & PPMU_ARCH_31) {
 686                mtspr(SPRN_MMCR3, current->thread.mmcr3);
 687                mtspr(SPRN_SIER2, current->thread.sier2);
 688                mtspr(SPRN_SIER3, current->thread.sier3);
 689        }
 690out:
 691        return mmcr0;
 692}
 693
 694static void pmao_restore_workaround(bool ebb)
 695{
 696        unsigned pmcs[6];
 697
 698        if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 699                return;
 700
 701        /*
 702         * On POWER8E there is a hardware defect which affects the PMU context
 703         * switch logic, ie. power_pmu_disable/enable().
 704         *
 705         * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 706         * by the hardware. Sometime later the actual PMU exception is
 707         * delivered.
 708         *
 709         * If we context switch, or simply disable/enable, the PMU prior to the
 710         * exception arriving, the exception will be lost when we clear PMAO.
 711         *
 712         * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 713         * set, and this _should_ generate an exception. However because of the
 714         * defect no exception is generated when we write PMAO, and we get
 715         * stuck with no counters counting but no exception delivered.
 716         *
 717         * The workaround is to detect this case and tweak the hardware to
 718         * create another pending PMU exception.
 719         *
 720         * We do that by setting up PMC6 (cycles) for an imminent overflow and
 721         * enabling the PMU. That causes a new exception to be generated in the
 722         * chip, but we don't take it yet because we have interrupts hard
 723         * disabled. We then write back the PMU state as we want it to be seen
 724         * by the exception handler. When we reenable interrupts the exception
 725         * handler will be called and see the correct state.
 726         *
 727         * The logic is the same for EBB, except that the exception is gated by
 728         * us having interrupts hard disabled as well as the fact that we are
 729         * not in userspace. The exception is finally delivered when we return
 730         * to userspace.
 731         */
 732
 733        /* Only if PMAO is set and PMAO_SYNC is clear */
 734        if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 735                return;
 736
 737        /* If we're doing EBB, only if BESCR[GE] is set */
 738        if (ebb && !(current->thread.bescr & BESCR_GE))
 739                return;
 740
 741        /*
 742         * We are already soft-disabled in power_pmu_enable(). We need to hard
 743         * disable to actually prevent the PMU exception from firing.
 744         */
 745        hard_irq_disable();
 746
 747        /*
 748         * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 749         * Using read/write_pmc() in a for loop adds 12 function calls and
 750         * almost doubles our code size.
 751         */
 752        pmcs[0] = mfspr(SPRN_PMC1);
 753        pmcs[1] = mfspr(SPRN_PMC2);
 754        pmcs[2] = mfspr(SPRN_PMC3);
 755        pmcs[3] = mfspr(SPRN_PMC4);
 756        pmcs[4] = mfspr(SPRN_PMC5);
 757        pmcs[5] = mfspr(SPRN_PMC6);
 758
 759        /* Ensure all freeze bits are unset */
 760        mtspr(SPRN_MMCR2, 0);
 761
 762        /* Set up PMC6 to overflow in one cycle */
 763        mtspr(SPRN_PMC6, 0x7FFFFFFE);
 764
 765        /* Enable exceptions and unfreeze PMC6 */
 766        mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 767
 768        /* Now we need to refreeze and restore the PMCs */
 769        mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 770
 771        mtspr(SPRN_PMC1, pmcs[0]);
 772        mtspr(SPRN_PMC2, pmcs[1]);
 773        mtspr(SPRN_PMC3, pmcs[2]);
 774        mtspr(SPRN_PMC4, pmcs[3]);
 775        mtspr(SPRN_PMC5, pmcs[4]);
 776        mtspr(SPRN_PMC6, pmcs[5]);
 777}
 778
 779/*
 780 * If the perf subsystem wants performance monitor interrupts as soon as
 781 * possible (e.g., to sample the instruction address and stack chain),
 782 * this should return true. The IRQ masking code can then enable MSR[EE]
 783 * in some places (e.g., interrupt handlers) that allows PMI interrupts
 784 * through to improve accuracy of profiles, at the cost of some performance.
 785 *
 786 * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
 787 * access), but in that case there is no need for prompt PMI handling.
 788 *
 789 * This currently returns true if any perf counter is being used. It
 790 * could possibly return false if only events are being counted rather than
 791 * samples being taken, but for now this is good enough.
 792 */
 793bool power_pmu_wants_prompt_pmi(void)
 794{
 795        struct cpu_hw_events *cpuhw;
 796
 797        /*
 798         * This could simply test local_paca->pmcregs_in_use if that were not
 799         * under ifdef KVM.
 800         */
 801        if (!ppmu)
 802                return false;
 803
 804        cpuhw = this_cpu_ptr(&cpu_hw_events);
 805        return cpuhw->n_events;
 806}
 807#endif /* CONFIG_PPC64 */
 808
 809static void perf_event_interrupt(struct pt_regs *regs);
 810
 811/*
 812 * Read one performance monitor counter (PMC).
 813 */
 814static unsigned long read_pmc(int idx)
 815{
 816        unsigned long val;
 817
 818        switch (idx) {
 819        case 1:
 820                val = mfspr(SPRN_PMC1);
 821                break;
 822        case 2:
 823                val = mfspr(SPRN_PMC2);
 824                break;
 825        case 3:
 826                val = mfspr(SPRN_PMC3);
 827                break;
 828        case 4:
 829                val = mfspr(SPRN_PMC4);
 830                break;
 831        case 5:
 832                val = mfspr(SPRN_PMC5);
 833                break;
 834        case 6:
 835                val = mfspr(SPRN_PMC6);
 836                break;
 837#ifdef CONFIG_PPC64
 838        case 7:
 839                val = mfspr(SPRN_PMC7);
 840                break;
 841        case 8:
 842                val = mfspr(SPRN_PMC8);
 843                break;
 844#endif /* CONFIG_PPC64 */
 845        default:
 846                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 847                val = 0;
 848        }
 849        return val;
 850}
 851
 852/*
 853 * Write one PMC.
 854 */
 855static void write_pmc(int idx, unsigned long val)
 856{
 857        switch (idx) {
 858        case 1:
 859                mtspr(SPRN_PMC1, val);
 860                break;
 861        case 2:
 862                mtspr(SPRN_PMC2, val);
 863                break;
 864        case 3:
 865                mtspr(SPRN_PMC3, val);
 866                break;
 867        case 4:
 868                mtspr(SPRN_PMC4, val);
 869                break;
 870        case 5:
 871                mtspr(SPRN_PMC5, val);
 872                break;
 873        case 6:
 874                mtspr(SPRN_PMC6, val);
 875                break;
 876#ifdef CONFIG_PPC64
 877        case 7:
 878                mtspr(SPRN_PMC7, val);
 879                break;
 880        case 8:
 881                mtspr(SPRN_PMC8, val);
 882                break;
 883#endif /* CONFIG_PPC64 */
 884        default:
 885                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 886        }
 887}
 888
 889static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
 890{
 891        int i, idx;
 892
 893        for (i = 0; i < cpuhw->n_events; i++) {
 894                idx = cpuhw->event[i]->hw.idx;
 895                if ((idx) && ((int)read_pmc(idx) < 0))
 896                        return idx;
 897        }
 898
 899        return 0;
 900}
 901
 902/* Called from sysrq_handle_showregs() */
 903void perf_event_print_debug(void)
 904{
 905        unsigned long sdar, sier, flags;
 906        u32 pmcs[MAX_HWEVENTS];
 907        int i;
 908
 909        if (!ppmu) {
 910                pr_info("Performance monitor hardware not registered.\n");
 911                return;
 912        }
 913
 914        if (!ppmu->n_counter)
 915                return;
 916
 917        local_irq_save(flags);
 918
 919        pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 920                 smp_processor_id(), ppmu->name, ppmu->n_counter);
 921
 922        for (i = 0; i < ppmu->n_counter; i++)
 923                pmcs[i] = read_pmc(i + 1);
 924
 925        for (; i < MAX_HWEVENTS; i++)
 926                pmcs[i] = 0xdeadbeef;
 927
 928        pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 929                 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 930
 931        if (ppmu->n_counter > 4)
 932                pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 933                         pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 934
 935        pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 936                mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 937
 938        sdar = sier = 0;
 939#ifdef CONFIG_PPC64
 940        sdar = mfspr(SPRN_SDAR);
 941
 942        if (ppmu->flags & PPMU_HAS_SIER)
 943                sier = mfspr(SPRN_SIER);
 944
 945        if (ppmu->flags & PPMU_ARCH_207S) {
 946                pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 947                        mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 948                pr_info("EBBRR: %016lx BESCR: %016lx\n",
 949                        mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 950        }
 951
 952        if (ppmu->flags & PPMU_ARCH_31) {
 953                pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
 954                        mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
 955        }
 956#endif
 957        pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 958                mfspr(SPRN_SIAR), sdar, sier);
 959
 960        local_irq_restore(flags);
 961}
 962
 963/*
 964 * Check if a set of events can all go on the PMU at once.
 965 * If they can't, this will look at alternative codes for the events
 966 * and see if any combination of alternative codes is feasible.
 967 * The feasible set is returned in event_id[].
 968 */
 969static int power_check_constraints(struct cpu_hw_events *cpuhw,
 970                                   u64 event_id[], unsigned int cflags[],
 971                                   int n_ev, struct perf_event **event)
 972{
 973        unsigned long mask, value, nv;
 974        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 975        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 976        int i, j;
 977        unsigned long addf = ppmu->add_fields;
 978        unsigned long tadd = ppmu->test_adder;
 979        unsigned long grp_mask = ppmu->group_constraint_mask;
 980        unsigned long grp_val = ppmu->group_constraint_val;
 981
 982        if (n_ev > ppmu->n_counter)
 983                return -1;
 984
 985        /* First see if the events will go on as-is */
 986        for (i = 0; i < n_ev; ++i) {
 987                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 988                    && !ppmu->limited_pmc_event(event_id[i])) {
 989                        ppmu->get_alternatives(event_id[i], cflags[i],
 990                                               cpuhw->alternatives[i]);
 991                        event_id[i] = cpuhw->alternatives[i][0];
 992                }
 993                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 994                                         &cpuhw->avalues[i][0], event[i]->attr.config1))
 995                        return -1;
 996        }
 997        value = mask = 0;
 998        for (i = 0; i < n_ev; ++i) {
 999                nv = (value | cpuhw->avalues[i][0]) +
1000                        (value & cpuhw->avalues[i][0] & addf);
1001
1002                if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
1003                        break;
1004
1005                if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
1006                        & (~grp_mask)) != 0)
1007                        break;
1008
1009                value = nv;
1010                mask |= cpuhw->amasks[i][0];
1011        }
1012        if (i == n_ev) {
1013                if ((value & mask & grp_mask) != (mask & grp_val))
1014                        return -1;
1015                else
1016                        return 0;       /* all OK */
1017        }
1018
1019        /* doesn't work, gather alternatives... */
1020        if (!ppmu->get_alternatives)
1021                return -1;
1022        for (i = 0; i < n_ev; ++i) {
1023                choice[i] = 0;
1024                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
1025                                                  cpuhw->alternatives[i]);
1026                for (j = 1; j < n_alt[i]; ++j)
1027                        ppmu->get_constraint(cpuhw->alternatives[i][j],
1028                                             &cpuhw->amasks[i][j],
1029                                             &cpuhw->avalues[i][j],
1030                                             event[i]->attr.config1);
1031        }
1032
1033        /* enumerate all possibilities and see if any will work */
1034        i = 0;
1035        j = -1;
1036        value = mask = nv = 0;
1037        while (i < n_ev) {
1038                if (j >= 0) {
1039                        /* we're backtracking, restore context */
1040                        value = svalues[i];
1041                        mask = smasks[i];
1042                        j = choice[i];
1043                }
1044                /*
1045                 * See if any alternative k for event_id i,
1046                 * where k > j, will satisfy the constraints.
1047                 */
1048                while (++j < n_alt[i]) {
1049                        nv = (value | cpuhw->avalues[i][j]) +
1050                                (value & cpuhw->avalues[i][j] & addf);
1051                        if ((((nv + tadd) ^ value) & mask) == 0 &&
1052                            (((nv + tadd) ^ cpuhw->avalues[i][j])
1053                             & cpuhw->amasks[i][j]) == 0)
1054                                break;
1055                }
1056                if (j >= n_alt[i]) {
1057                        /*
1058                         * No feasible alternative, backtrack
1059                         * to event_id i-1 and continue enumerating its
1060                         * alternatives from where we got up to.
1061                         */
1062                        if (--i < 0)
1063                                return -1;
1064                } else {
1065                        /*
1066                         * Found a feasible alternative for event_id i,
1067                         * remember where we got up to with this event_id,
1068                         * go on to the next event_id, and start with
1069                         * the first alternative for it.
1070                         */
1071                        choice[i] = j;
1072                        svalues[i] = value;
1073                        smasks[i] = mask;
1074                        value = nv;
1075                        mask |= cpuhw->amasks[i][j];
1076                        ++i;
1077                        j = -1;
1078                }
1079        }
1080
1081        /* OK, we have a feasible combination, tell the caller the solution */
1082        for (i = 0; i < n_ev; ++i)
1083                event_id[i] = cpuhw->alternatives[i][choice[i]];
1084        return 0;
1085}
1086
1087/*
1088 * Check if newly-added events have consistent settings for
1089 * exclude_{user,kernel,hv} with each other and any previously
1090 * added events.
1091 */
1092static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1093                          int n_prev, int n_new)
1094{
1095        int eu = 0, ek = 0, eh = 0;
1096        int i, n, first;
1097        struct perf_event *event;
1098
1099        /*
1100         * If the PMU we're on supports per event exclude settings then we
1101         * don't need to do any of this logic. NB. This assumes no PMU has both
1102         * per event exclude and limited PMCs.
1103         */
1104        if (ppmu->flags & PPMU_ARCH_207S)
1105                return 0;
1106
1107        n = n_prev + n_new;
1108        if (n <= 1)
1109                return 0;
1110
1111        first = 1;
1112        for (i = 0; i < n; ++i) {
1113                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1114                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1115                        continue;
1116                }
1117                event = ctrs[i];
1118                if (first) {
1119                        eu = event->attr.exclude_user;
1120                        ek = event->attr.exclude_kernel;
1121                        eh = event->attr.exclude_hv;
1122                        first = 0;
1123                } else if (event->attr.exclude_user != eu ||
1124                           event->attr.exclude_kernel != ek ||
1125                           event->attr.exclude_hv != eh) {
1126                        return -EAGAIN;
1127                }
1128        }
1129
1130        if (eu || ek || eh)
1131                for (i = 0; i < n; ++i)
1132                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
1133                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
1134
1135        return 0;
1136}
1137
1138static u64 check_and_compute_delta(u64 prev, u64 val)
1139{
1140        u64 delta = (val - prev) & 0xfffffffful;
1141
1142        /*
1143         * POWER7 can roll back counter values, if the new value is smaller
1144         * than the previous value it will cause the delta and the counter to
1145         * have bogus values unless we rolled a counter over.  If a counter is
1146         * rolled back, it will be smaller, but within 256, which is the maximum
1147         * number of events to rollback at once.  If we detect a rollback
1148         * return 0.  This can lead to a small lack of precision in the
1149         * counters.
1150         */
1151        if (prev > val && (prev - val) < 256)
1152                delta = 0;
1153
1154        return delta;
1155}
1156
1157static void power_pmu_read(struct perf_event *event)
1158{
1159        s64 val, delta, prev;
1160
1161        if (event->hw.state & PERF_HES_STOPPED)
1162                return;
1163
1164        if (!event->hw.idx)
1165                return;
1166
1167        if (is_ebb_event(event)) {
1168                val = read_pmc(event->hw.idx);
1169                local64_set(&event->hw.prev_count, val);
1170                return;
1171        }
1172
1173        /*
1174         * Performance monitor interrupts come even when interrupts
1175         * are soft-disabled, as long as interrupts are hard-enabled.
1176         * Therefore we treat them like NMIs.
1177         */
1178        do {
1179                prev = local64_read(&event->hw.prev_count);
1180                barrier();
1181                val = read_pmc(event->hw.idx);
1182                delta = check_and_compute_delta(prev, val);
1183                if (!delta)
1184                        return;
1185        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1186
1187        local64_add(delta, &event->count);
1188
1189        /*
1190         * A number of places program the PMC with (0x80000000 - period_left).
1191         * We never want period_left to be less than 1 because we will program
1192         * the PMC with a value >= 0x800000000 and an edge detected PMC will
1193         * roll around to 0 before taking an exception. We have seen this
1194         * on POWER8.
1195         *
1196         * To fix this, clamp the minimum value of period_left to 1.
1197         */
1198        do {
1199                prev = local64_read(&event->hw.period_left);
1200                val = prev - delta;
1201                if (val < 1)
1202                        val = 1;
1203        } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1204}
1205
1206/*
1207 * On some machines, PMC5 and PMC6 can't be written, don't respect
1208 * the freeze conditions, and don't generate interrupts.  This tells
1209 * us if `event' is using such a PMC.
1210 */
1211static int is_limited_pmc(int pmcnum)
1212{
1213        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1214                && (pmcnum == 5 || pmcnum == 6);
1215}
1216
1217static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1218                                    unsigned long pmc5, unsigned long pmc6)
1219{
1220        struct perf_event *event;
1221        u64 val, prev, delta;
1222        int i;
1223
1224        for (i = 0; i < cpuhw->n_limited; ++i) {
1225                event = cpuhw->limited_counter[i];
1226                if (!event->hw.idx)
1227                        continue;
1228                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1229                prev = local64_read(&event->hw.prev_count);
1230                event->hw.idx = 0;
1231                delta = check_and_compute_delta(prev, val);
1232                if (delta)
1233                        local64_add(delta, &event->count);
1234        }
1235}
1236
1237static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1238                                  unsigned long pmc5, unsigned long pmc6)
1239{
1240        struct perf_event *event;
1241        u64 val, prev;
1242        int i;
1243
1244        for (i = 0; i < cpuhw->n_limited; ++i) {
1245                event = cpuhw->limited_counter[i];
1246                event->hw.idx = cpuhw->limited_hwidx[i];
1247                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1248                prev = local64_read(&event->hw.prev_count);
1249                if (check_and_compute_delta(prev, val))
1250                        local64_set(&event->hw.prev_count, val);
1251                perf_event_update_userpage(event);
1252        }
1253}
1254
1255/*
1256 * Since limited events don't respect the freeze conditions, we
1257 * have to read them immediately after freezing or unfreezing the
1258 * other events.  We try to keep the values from the limited
1259 * events as consistent as possible by keeping the delay (in
1260 * cycles and instructions) between freezing/unfreezing and reading
1261 * the limited events as small and consistent as possible.
1262 * Therefore, if any limited events are in use, we read them
1263 * both, and always in the same order, to minimize variability,
1264 * and do it inside the same asm that writes MMCR0.
1265 */
1266static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1267{
1268        unsigned long pmc5, pmc6;
1269
1270        if (!cpuhw->n_limited) {
1271                mtspr(SPRN_MMCR0, mmcr0);
1272                return;
1273        }
1274
1275        /*
1276         * Write MMCR0, then read PMC5 and PMC6 immediately.
1277         * To ensure we don't get a performance monitor interrupt
1278         * between writing MMCR0 and freezing/thawing the limited
1279         * events, we first write MMCR0 with the event overflow
1280         * interrupt enable bits turned off.
1281         */
1282        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1283                     : "=&r" (pmc5), "=&r" (pmc6)
1284                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1285                       "i" (SPRN_MMCR0),
1286                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1287
1288        if (mmcr0 & MMCR0_FC)
1289                freeze_limited_counters(cpuhw, pmc5, pmc6);
1290        else
1291                thaw_limited_counters(cpuhw, pmc5, pmc6);
1292
1293        /*
1294         * Write the full MMCR0 including the event overflow interrupt
1295         * enable bits, if necessary.
1296         */
1297        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1298                mtspr(SPRN_MMCR0, mmcr0);
1299}
1300
1301/*
1302 * Disable all events to prevent PMU interrupts and to allow
1303 * events to be added or removed.
1304 */
1305static void power_pmu_disable(struct pmu *pmu)
1306{
1307        struct cpu_hw_events *cpuhw;
1308        unsigned long flags, mmcr0, val, mmcra;
1309
1310        if (!ppmu)
1311                return;
1312        local_irq_save(flags);
1313        cpuhw = this_cpu_ptr(&cpu_hw_events);
1314
1315        if (!cpuhw->disabled) {
1316                /*
1317                 * Check if we ever enabled the PMU on this cpu.
1318                 */
1319                if (!cpuhw->pmcs_enabled) {
1320                        ppc_enable_pmcs();
1321                        cpuhw->pmcs_enabled = 1;
1322                }
1323
1324                /*
1325                 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1326                 * Also clear PMXE to disable PMI's getting triggered in some
1327                 * corner cases during PMU disable.
1328                 */
1329                val  = mmcr0 = mfspr(SPRN_MMCR0);
1330                val |= MMCR0_FC;
1331                val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1332                         MMCR0_PMXE | MMCR0_FC56);
1333                /* Set mmcr0 PMCCEXT for p10 */
1334                if (ppmu->flags & PPMU_ARCH_31)
1335                        val |= MMCR0_PMCCEXT;
1336
1337                /*
1338                 * The barrier is to make sure the mtspr has been
1339                 * executed and the PMU has frozen the events etc.
1340                 * before we return.
1341                 */
1342                write_mmcr0(cpuhw, val);
1343                mb();
1344                isync();
1345
1346                /*
1347                 * Some corner cases could clear the PMU counter overflow
1348                 * while a masked PMI is pending. One such case is when
1349                 * a PMI happens during interrupt replay and perf counter
1350                 * values are cleared by PMU callbacks before replay.
1351                 *
1352                 * If any PMC corresponding to the active PMU events are
1353                 * overflown, disable the interrupt by clearing the paca
1354                 * bit for PMI since we are disabling the PMU now.
1355                 * Otherwise provide a warning if there is PMI pending, but
1356                 * no counter is found overflown.
1357                 */
1358                if (any_pmc_overflown(cpuhw)) {
1359                        /*
1360                         * Since power_pmu_disable runs under local_irq_save, it
1361                         * could happen that code hits a PMC overflow without PMI
1362                         * pending in paca. Hence only clear PMI pending if it was
1363                         * set.
1364                         *
1365                         * If a PMI is pending, then MSR[EE] must be disabled (because
1366                         * the masked PMI handler disabling EE). So it is safe to
1367                         * call clear_pmi_irq_pending().
1368                         */
1369                        if (pmi_irq_pending())
1370                                clear_pmi_irq_pending();
1371                } else
1372                        WARN_ON(pmi_irq_pending());
1373
1374                val = mmcra = cpuhw->mmcr.mmcra;
1375
1376                /*
1377                 * Disable instruction sampling if it was enabled
1378                 */
1379                if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1380                        val &= ~MMCRA_SAMPLE_ENABLE;
1381
1382                /* Disable BHRB via mmcra (BHRBRD) for p10 */
1383                if (ppmu->flags & PPMU_ARCH_31)
1384                        val |= MMCRA_BHRB_DISABLE;
1385
1386                /*
1387                 * Write SPRN_MMCRA if mmcra has either disabled
1388                 * instruction sampling or BHRB.
1389                 */
1390                if (val != mmcra) {
1391                        mtspr(SPRN_MMCRA, mmcra);
1392                        mb();
1393                        isync();
1394                }
1395
1396                cpuhw->disabled = 1;
1397                cpuhw->n_added = 0;
1398
1399                ebb_switch_out(mmcr0);
1400
1401#ifdef CONFIG_PPC64
1402                /*
1403                 * These are readable by userspace, may contain kernel
1404                 * addresses and are not switched by context switch, so clear
1405                 * them now to avoid leaking anything to userspace in general
1406                 * including to another process.
1407                 */
1408                if (ppmu->flags & PPMU_ARCH_207S) {
1409                        mtspr(SPRN_SDAR, 0);
1410                        mtspr(SPRN_SIAR, 0);
1411                }
1412#endif
1413        }
1414
1415        local_irq_restore(flags);
1416}
1417
1418/*
1419 * Re-enable all events if disable == 0.
1420 * If we were previously disabled and events were added, then
1421 * put the new config on the PMU.
1422 */
1423static void power_pmu_enable(struct pmu *pmu)
1424{
1425        struct perf_event *event;
1426        struct cpu_hw_events *cpuhw;
1427        unsigned long flags;
1428        long i;
1429        unsigned long val, mmcr0;
1430        s64 left;
1431        unsigned int hwc_index[MAX_HWEVENTS];
1432        int n_lim;
1433        int idx;
1434        bool ebb;
1435
1436        if (!ppmu)
1437                return;
1438        local_irq_save(flags);
1439
1440        cpuhw = this_cpu_ptr(&cpu_hw_events);
1441        if (!cpuhw->disabled)
1442                goto out;
1443
1444        if (cpuhw->n_events == 0) {
1445                ppc_set_pmu_inuse(0);
1446                goto out;
1447        }
1448
1449        cpuhw->disabled = 0;
1450
1451        /*
1452         * EBB requires an exclusive group and all events must have the EBB
1453         * flag set, or not set, so we can just check a single event. Also we
1454         * know we have at least one event.
1455         */
1456        ebb = is_ebb_event(cpuhw->event[0]);
1457
1458        /*
1459         * If we didn't change anything, or only removed events,
1460         * no need to recalculate MMCR* settings and reset the PMCs.
1461         * Just reenable the PMU with the current MMCR* settings
1462         * (possibly updated for removal of events).
1463         */
1464        if (!cpuhw->n_added) {
1465                /*
1466                 * If there is any active event with an overflown PMC
1467                 * value, set back PACA_IRQ_PMI which would have been
1468                 * cleared in power_pmu_disable().
1469                 */
1470                hard_irq_disable();
1471                if (any_pmc_overflown(cpuhw))
1472                        set_pmi_irq_pending();
1473
1474                mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1475                mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1476                if (ppmu->flags & PPMU_ARCH_31)
1477                        mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1478                goto out_enable;
1479        }
1480
1481        /*
1482         * Clear all MMCR settings and recompute them for the new set of events.
1483         */
1484        memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1485
1486        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1487                               &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1488                /* shouldn't ever get here */
1489                printk(KERN_ERR "oops compute_mmcr failed\n");
1490                goto out;
1491        }
1492
1493        if (!(ppmu->flags & PPMU_ARCH_207S)) {
1494                /*
1495                 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1496                 * bits for the first event. We have already checked that all
1497                 * events have the same value for these bits as the first event.
1498                 */
1499                event = cpuhw->event[0];
1500                if (event->attr.exclude_user)
1501                        cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1502                if (event->attr.exclude_kernel)
1503                        cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1504                if (event->attr.exclude_hv)
1505                        cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1506        }
1507
1508        /*
1509         * Write the new configuration to MMCR* with the freeze
1510         * bit set and set the hardware events to their initial values.
1511         * Then unfreeze the events.
1512         */
1513        ppc_set_pmu_inuse(1);
1514        mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1515        mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1516        mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1517                                | MMCR0_FC);
1518        if (ppmu->flags & PPMU_ARCH_207S)
1519                mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1520
1521        if (ppmu->flags & PPMU_ARCH_31)
1522                mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1523
1524        /*
1525         * Read off any pre-existing events that need to move
1526         * to another PMC.
1527         */
1528        for (i = 0; i < cpuhw->n_events; ++i) {
1529                event = cpuhw->event[i];
1530                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1531                        power_pmu_read(event);
1532                        write_pmc(event->hw.idx, 0);
1533                        event->hw.idx = 0;
1534                }
1535        }
1536
1537        /*
1538         * Initialize the PMCs for all the new and moved events.
1539         */
1540        cpuhw->n_limited = n_lim = 0;
1541        for (i = 0; i < cpuhw->n_events; ++i) {
1542                event = cpuhw->event[i];
1543                if (event->hw.idx)
1544                        continue;
1545                idx = hwc_index[i] + 1;
1546                if (is_limited_pmc(idx)) {
1547                        cpuhw->limited_counter[n_lim] = event;
1548                        cpuhw->limited_hwidx[n_lim] = idx;
1549                        ++n_lim;
1550                        continue;
1551                }
1552
1553                if (ebb)
1554                        val = local64_read(&event->hw.prev_count);
1555                else {
1556                        val = 0;
1557                        if (event->hw.sample_period) {
1558                                left = local64_read(&event->hw.period_left);
1559                                if (left < 0x80000000L)
1560                                        val = 0x80000000L - left;
1561                        }
1562                        local64_set(&event->hw.prev_count, val);
1563                }
1564
1565                event->hw.idx = idx;
1566                if (event->hw.state & PERF_HES_STOPPED)
1567                        val = 0;
1568                write_pmc(idx, val);
1569
1570                perf_event_update_userpage(event);
1571        }
1572        cpuhw->n_limited = n_lim;
1573        cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1574
1575 out_enable:
1576        pmao_restore_workaround(ebb);
1577
1578        mmcr0 = ebb_switch_in(ebb, cpuhw);
1579
1580        mb();
1581        if (cpuhw->bhrb_users)
1582                ppmu->config_bhrb(cpuhw->bhrb_filter);
1583
1584        write_mmcr0(cpuhw, mmcr0);
1585
1586        /*
1587         * Enable instruction sampling if necessary
1588         */
1589        if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1590                mb();
1591                mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1592        }
1593
1594 out:
1595
1596        local_irq_restore(flags);
1597}
1598
1599static int collect_events(struct perf_event *group, int max_count,
1600                          struct perf_event *ctrs[], u64 *events,
1601                          unsigned int *flags)
1602{
1603        int n = 0;
1604        struct perf_event *event;
1605
1606        if (group->pmu->task_ctx_nr == perf_hw_context) {
1607                if (n >= max_count)
1608                        return -1;
1609                ctrs[n] = group;
1610                flags[n] = group->hw.event_base;
1611                events[n++] = group->hw.config;
1612        }
1613        for_each_sibling_event(event, group) {
1614                if (event->pmu->task_ctx_nr == perf_hw_context &&
1615                    event->state != PERF_EVENT_STATE_OFF) {
1616                        if (n >= max_count)
1617                                return -1;
1618                        ctrs[n] = event;
1619                        flags[n] = event->hw.event_base;
1620                        events[n++] = event->hw.config;
1621                }
1622        }
1623        return n;
1624}
1625
1626/*
1627 * Add an event to the PMU.
1628 * If all events are not already frozen, then we disable and
1629 * re-enable the PMU in order to get hw_perf_enable to do the
1630 * actual work of reconfiguring the PMU.
1631 */
1632static int power_pmu_add(struct perf_event *event, int ef_flags)
1633{
1634        struct cpu_hw_events *cpuhw;
1635        unsigned long flags;
1636        int n0;
1637        int ret = -EAGAIN;
1638
1639        local_irq_save(flags);
1640        perf_pmu_disable(event->pmu);
1641
1642        /*
1643         * Add the event to the list (if there is room)
1644         * and check whether the total set is still feasible.
1645         */
1646        cpuhw = this_cpu_ptr(&cpu_hw_events);
1647        n0 = cpuhw->n_events;
1648        if (n0 >= ppmu->n_counter)
1649                goto out;
1650        cpuhw->event[n0] = event;
1651        cpuhw->events[n0] = event->hw.config;
1652        cpuhw->flags[n0] = event->hw.event_base;
1653
1654        /*
1655         * This event may have been disabled/stopped in record_and_restart()
1656         * because we exceeded the ->event_limit. If re-starting the event,
1657         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1658         * notification is re-enabled.
1659         */
1660        if (!(ef_flags & PERF_EF_START))
1661                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1662        else
1663                event->hw.state = 0;
1664
1665        /*
1666         * If group events scheduling transaction was started,
1667         * skip the schedulability test here, it will be performed
1668         * at commit time(->commit_txn) as a whole
1669         */
1670        if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1671                goto nocheck;
1672
1673        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1674                goto out;
1675        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1676                goto out;
1677        event->hw.config = cpuhw->events[n0];
1678
1679nocheck:
1680        ebb_event_add(event);
1681
1682        ++cpuhw->n_events;
1683        ++cpuhw->n_added;
1684
1685        ret = 0;
1686 out:
1687        if (has_branch_stack(event)) {
1688                u64 bhrb_filter = -1;
1689
1690                if (ppmu->bhrb_filter_map)
1691                        bhrb_filter = ppmu->bhrb_filter_map(
1692                                event->attr.branch_sample_type);
1693
1694                if (bhrb_filter != -1) {
1695                        cpuhw->bhrb_filter = bhrb_filter;
1696                        power_pmu_bhrb_enable(event);
1697                }
1698        }
1699
1700        perf_pmu_enable(event->pmu);
1701        local_irq_restore(flags);
1702        return ret;
1703}
1704
1705/*
1706 * Remove an event from the PMU.
1707 */
1708static void power_pmu_del(struct perf_event *event, int ef_flags)
1709{
1710        struct cpu_hw_events *cpuhw;
1711        long i;
1712        unsigned long flags;
1713
1714        local_irq_save(flags);
1715        perf_pmu_disable(event->pmu);
1716
1717        power_pmu_read(event);
1718
1719        cpuhw = this_cpu_ptr(&cpu_hw_events);
1720        for (i = 0; i < cpuhw->n_events; ++i) {
1721                if (event == cpuhw->event[i]) {
1722                        while (++i < cpuhw->n_events) {
1723                                cpuhw->event[i-1] = cpuhw->event[i];
1724                                cpuhw->events[i-1] = cpuhw->events[i];
1725                                cpuhw->flags[i-1] = cpuhw->flags[i];
1726                        }
1727                        --cpuhw->n_events;
1728                        ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1729                        if (event->hw.idx) {
1730                                write_pmc(event->hw.idx, 0);
1731                                event->hw.idx = 0;
1732                        }
1733                        perf_event_update_userpage(event);
1734                        break;
1735                }
1736        }
1737        for (i = 0; i < cpuhw->n_limited; ++i)
1738                if (event == cpuhw->limited_counter[i])
1739                        break;
1740        if (i < cpuhw->n_limited) {
1741                while (++i < cpuhw->n_limited) {
1742                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1743                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1744                }
1745                --cpuhw->n_limited;
1746        }
1747        if (cpuhw->n_events == 0) {
1748                /* disable exceptions if no events are running */
1749                cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1750        }
1751
1752        if (has_branch_stack(event))
1753                power_pmu_bhrb_disable(event);
1754
1755        perf_pmu_enable(event->pmu);
1756        local_irq_restore(flags);
1757}
1758
1759/*
1760 * POWER-PMU does not support disabling individual counters, hence
1761 * program their cycle counter to their max value and ignore the interrupts.
1762 */
1763
1764static void power_pmu_start(struct perf_event *event, int ef_flags)
1765{
1766        unsigned long flags;
1767        s64 left;
1768        unsigned long val;
1769
1770        if (!event->hw.idx || !event->hw.sample_period)
1771                return;
1772
1773        if (!(event->hw.state & PERF_HES_STOPPED))
1774                return;
1775
1776        if (ef_flags & PERF_EF_RELOAD)
1777                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1778
1779        local_irq_save(flags);
1780        perf_pmu_disable(event->pmu);
1781
1782        event->hw.state = 0;
1783        left = local64_read(&event->hw.period_left);
1784
1785        val = 0;
1786        if (left < 0x80000000L)
1787                val = 0x80000000L - left;
1788
1789        write_pmc(event->hw.idx, val);
1790
1791        perf_event_update_userpage(event);
1792        perf_pmu_enable(event->pmu);
1793        local_irq_restore(flags);
1794}
1795
1796static void power_pmu_stop(struct perf_event *event, int ef_flags)
1797{
1798        unsigned long flags;
1799
1800        if (!event->hw.idx || !event->hw.sample_period)
1801                return;
1802
1803        if (event->hw.state & PERF_HES_STOPPED)
1804                return;
1805
1806        local_irq_save(flags);
1807        perf_pmu_disable(event->pmu);
1808
1809        power_pmu_read(event);
1810        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1811        write_pmc(event->hw.idx, 0);
1812
1813        perf_event_update_userpage(event);
1814        perf_pmu_enable(event->pmu);
1815        local_irq_restore(flags);
1816}
1817
1818/*
1819 * Start group events scheduling transaction
1820 * Set the flag to make pmu::enable() not perform the
1821 * schedulability test, it will be performed at commit time
1822 *
1823 * We only support PERF_PMU_TXN_ADD transactions. Save the
1824 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1825 * transactions.
1826 */
1827static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1828{
1829        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1830
1831        WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1832
1833        cpuhw->txn_flags = txn_flags;
1834        if (txn_flags & ~PERF_PMU_TXN_ADD)
1835                return;
1836
1837        perf_pmu_disable(pmu);
1838        cpuhw->n_txn_start = cpuhw->n_events;
1839}
1840
1841/*
1842 * Stop group events scheduling transaction
1843 * Clear the flag and pmu::enable() will perform the
1844 * schedulability test.
1845 */
1846static void power_pmu_cancel_txn(struct pmu *pmu)
1847{
1848        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1849        unsigned int txn_flags;
1850
1851        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1852
1853        txn_flags = cpuhw->txn_flags;
1854        cpuhw->txn_flags = 0;
1855        if (txn_flags & ~PERF_PMU_TXN_ADD)
1856                return;
1857
1858        perf_pmu_enable(pmu);
1859}
1860
1861/*
1862 * Commit group events scheduling transaction
1863 * Perform the group schedulability test as a whole
1864 * Return 0 if success
1865 */
1866static int power_pmu_commit_txn(struct pmu *pmu)
1867{
1868        struct cpu_hw_events *cpuhw;
1869        long i, n;
1870
1871        if (!ppmu)
1872                return -EAGAIN;
1873
1874        cpuhw = this_cpu_ptr(&cpu_hw_events);
1875        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1876
1877        if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1878                cpuhw->txn_flags = 0;
1879                return 0;
1880        }
1881
1882        n = cpuhw->n_events;
1883        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1884                return -EAGAIN;
1885        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1886        if (i < 0)
1887                return -EAGAIN;
1888
1889        for (i = cpuhw->n_txn_start; i < n; ++i)
1890                cpuhw->event[i]->hw.config = cpuhw->events[i];
1891
1892        cpuhw->txn_flags = 0;
1893        perf_pmu_enable(pmu);
1894        return 0;
1895}
1896
1897/*
1898 * Return 1 if we might be able to put event on a limited PMC,
1899 * or 0 if not.
1900 * An event can only go on a limited PMC if it counts something
1901 * that a limited PMC can count, doesn't require interrupts, and
1902 * doesn't exclude any processor mode.
1903 */
1904static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1905                                 unsigned int flags)
1906{
1907        int n;
1908        u64 alt[MAX_EVENT_ALTERNATIVES];
1909
1910        if (event->attr.exclude_user
1911            || event->attr.exclude_kernel
1912            || event->attr.exclude_hv
1913            || event->attr.sample_period)
1914                return 0;
1915
1916        if (ppmu->limited_pmc_event(ev))
1917                return 1;
1918
1919        /*
1920         * The requested event_id isn't on a limited PMC already;
1921         * see if any alternative code goes on a limited PMC.
1922         */
1923        if (!ppmu->get_alternatives)
1924                return 0;
1925
1926        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1927        n = ppmu->get_alternatives(ev, flags, alt);
1928
1929        return n > 0;
1930}
1931
1932/*
1933 * Find an alternative event_id that goes on a normal PMC, if possible,
1934 * and return the event_id code, or 0 if there is no such alternative.
1935 * (Note: event_id code 0 is "don't count" on all machines.)
1936 */
1937static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1938{
1939        u64 alt[MAX_EVENT_ALTERNATIVES];
1940        int n;
1941
1942        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1943        n = ppmu->get_alternatives(ev, flags, alt);
1944        if (!n)
1945                return 0;
1946        return alt[0];
1947}
1948
1949/* Number of perf_events counting hardware events */
1950static atomic_t num_events;
1951/* Used to avoid races in calling reserve/release_pmc_hardware */
1952static DEFINE_MUTEX(pmc_reserve_mutex);
1953
1954/*
1955 * Release the PMU if this is the last perf_event.
1956 */
1957static void hw_perf_event_destroy(struct perf_event *event)
1958{
1959        if (!atomic_add_unless(&num_events, -1, 1)) {
1960                mutex_lock(&pmc_reserve_mutex);
1961                if (atomic_dec_return(&num_events) == 0)
1962                        release_pmc_hardware();
1963                mutex_unlock(&pmc_reserve_mutex);
1964        }
1965}
1966
1967/*
1968 * Translate a generic cache event_id config to a raw event_id code.
1969 */
1970static int hw_perf_cache_event(u64 config, u64 *eventp)
1971{
1972        unsigned long type, op, result;
1973        u64 ev;
1974
1975        if (!ppmu->cache_events)
1976                return -EINVAL;
1977
1978        /* unpack config */
1979        type = config & 0xff;
1980        op = (config >> 8) & 0xff;
1981        result = (config >> 16) & 0xff;
1982
1983        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1984            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1985            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1986                return -EINVAL;
1987
1988        ev = (*ppmu->cache_events)[type][op][result];
1989        if (ev == 0)
1990                return -EOPNOTSUPP;
1991        if (ev == -1)
1992                return -EINVAL;
1993        *eventp = ev;
1994        return 0;
1995}
1996
1997static bool is_event_blacklisted(u64 ev)
1998{
1999        int i;
2000
2001        for (i=0; i < ppmu->n_blacklist_ev; i++) {
2002                if (ppmu->blacklist_ev[i] == ev)
2003                        return true;
2004        }
2005
2006        return false;
2007}
2008
2009static int power_pmu_event_init(struct perf_event *event)
2010{
2011        u64 ev;
2012        unsigned long flags, irq_flags;
2013        struct perf_event *ctrs[MAX_HWEVENTS];
2014        u64 events[MAX_HWEVENTS];
2015        unsigned int cflags[MAX_HWEVENTS];
2016        int n;
2017        int err;
2018        struct cpu_hw_events *cpuhw;
2019
2020        if (!ppmu)
2021                return -ENOENT;
2022
2023        if (has_branch_stack(event)) {
2024                /* PMU has BHRB enabled */
2025                if (!(ppmu->flags & PPMU_ARCH_207S))
2026                        return -EOPNOTSUPP;
2027        }
2028
2029        switch (event->attr.type) {
2030        case PERF_TYPE_HARDWARE:
2031                ev = event->attr.config;
2032                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
2033                        return -EOPNOTSUPP;
2034
2035                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2036                        return -EINVAL;
2037                ev = ppmu->generic_events[ev];
2038                break;
2039        case PERF_TYPE_HW_CACHE:
2040                err = hw_perf_cache_event(event->attr.config, &ev);
2041                if (err)
2042                        return err;
2043
2044                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2045                        return -EINVAL;
2046                break;
2047        case PERF_TYPE_RAW:
2048                ev = event->attr.config;
2049
2050                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2051                        return -EINVAL;
2052                break;
2053        default:
2054                return -ENOENT;
2055        }
2056
2057        /*
2058         * PMU config registers have fields that are
2059         * reserved and some specific values for bit fields are reserved.
2060         * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
2061         * and value of 0b11 to this field is reserved.
2062         * Check for invalid values in attr.config.
2063         */
2064        if (ppmu->check_attr_config &&
2065            ppmu->check_attr_config(event))
2066                return -EINVAL;
2067
2068        event->hw.config_base = ev;
2069        event->hw.idx = 0;
2070
2071        /*
2072         * If we are not running on a hypervisor, force the
2073         * exclude_hv bit to 0 so that we don't care what
2074         * the user set it to.
2075         */
2076        if (!firmware_has_feature(FW_FEATURE_LPAR))
2077                event->attr.exclude_hv = 0;
2078
2079        /*
2080         * If this is a per-task event, then we can use
2081         * PM_RUN_* events interchangeably with their non RUN_*
2082         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2083         * XXX we should check if the task is an idle task.
2084         */
2085        flags = 0;
2086        if (event->attach_state & PERF_ATTACH_TASK)
2087                flags |= PPMU_ONLY_COUNT_RUN;
2088
2089        /*
2090         * If this machine has limited events, check whether this
2091         * event_id could go on a limited event.
2092         */
2093        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2094                if (can_go_on_limited_pmc(event, ev, flags)) {
2095                        flags |= PPMU_LIMITED_PMC_OK;
2096                } else if (ppmu->limited_pmc_event(ev)) {
2097                        /*
2098                         * The requested event_id is on a limited PMC,
2099                         * but we can't use a limited PMC; see if any
2100                         * alternative goes on a normal PMC.
2101                         */
2102                        ev = normal_pmc_alternative(ev, flags);
2103                        if (!ev)
2104                                return -EINVAL;
2105                }
2106        }
2107
2108        /* Extra checks for EBB */
2109        err = ebb_event_check(event);
2110        if (err)
2111                return err;
2112
2113        /*
2114         * If this is in a group, check if it can go on with all the
2115         * other hardware events in the group.  We assume the event
2116         * hasn't been linked into its leader's sibling list at this point.
2117         */
2118        n = 0;
2119        if (event->group_leader != event) {
2120                n = collect_events(event->group_leader, ppmu->n_counter - 1,
2121                                   ctrs, events, cflags);
2122                if (n < 0)
2123                        return -EINVAL;
2124        }
2125        events[n] = ev;
2126        ctrs[n] = event;
2127        cflags[n] = flags;
2128        if (check_excludes(ctrs, cflags, n, 1))
2129                return -EINVAL;
2130
2131        local_irq_save(irq_flags);
2132        cpuhw = this_cpu_ptr(&cpu_hw_events);
2133
2134        err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2135
2136        if (has_branch_stack(event)) {
2137                u64 bhrb_filter = -1;
2138
2139                if (ppmu->bhrb_filter_map)
2140                        bhrb_filter = ppmu->bhrb_filter_map(
2141                                        event->attr.branch_sample_type);
2142
2143                if (bhrb_filter == -1) {
2144                        local_irq_restore(irq_flags);
2145                        return -EOPNOTSUPP;
2146                }
2147                cpuhw->bhrb_filter = bhrb_filter;
2148        }
2149
2150        local_irq_restore(irq_flags);
2151        if (err)
2152                return -EINVAL;
2153
2154        event->hw.config = events[n];
2155        event->hw.event_base = cflags[n];
2156        event->hw.last_period = event->hw.sample_period;
2157        local64_set(&event->hw.period_left, event->hw.last_period);
2158
2159        /*
2160         * For EBB events we just context switch the PMC value, we don't do any
2161         * of the sample_period logic. We use hw.prev_count for this.
2162         */
2163        if (is_ebb_event(event))
2164                local64_set(&event->hw.prev_count, 0);
2165
2166        /*
2167         * See if we need to reserve the PMU.
2168         * If no events are currently in use, then we have to take a
2169         * mutex to ensure that we don't race with another task doing
2170         * reserve_pmc_hardware or release_pmc_hardware.
2171         */
2172        err = 0;
2173        if (!atomic_inc_not_zero(&num_events)) {
2174                mutex_lock(&pmc_reserve_mutex);
2175                if (atomic_read(&num_events) == 0 &&
2176                    reserve_pmc_hardware(perf_event_interrupt))
2177                        err = -EBUSY;
2178                else
2179                        atomic_inc(&num_events);
2180                mutex_unlock(&pmc_reserve_mutex);
2181        }
2182        event->destroy = hw_perf_event_destroy;
2183
2184        return err;
2185}
2186
2187static int power_pmu_event_idx(struct perf_event *event)
2188{
2189        return event->hw.idx;
2190}
2191
2192ssize_t power_events_sysfs_show(struct device *dev,
2193                                struct device_attribute *attr, char *page)
2194{
2195        struct perf_pmu_events_attr *pmu_attr;
2196
2197        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2198
2199        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2200}
2201
2202static struct pmu power_pmu = {
2203        .pmu_enable     = power_pmu_enable,
2204        .pmu_disable    = power_pmu_disable,
2205        .event_init     = power_pmu_event_init,
2206        .add            = power_pmu_add,
2207        .del            = power_pmu_del,
2208        .start          = power_pmu_start,
2209        .stop           = power_pmu_stop,
2210        .read           = power_pmu_read,
2211        .start_txn      = power_pmu_start_txn,
2212        .cancel_txn     = power_pmu_cancel_txn,
2213        .commit_txn     = power_pmu_commit_txn,
2214        .event_idx      = power_pmu_event_idx,
2215        .sched_task     = power_pmu_sched_task,
2216};
2217
2218#define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |              \
2219                                PERF_SAMPLE_PHYS_ADDR |         \
2220                                PERF_SAMPLE_DATA_PAGE_SIZE)
2221/*
2222 * A counter has overflowed; update its count and record
2223 * things if requested.  Note that interrupts are hard-disabled
2224 * here so there is no possibility of being interrupted.
2225 */
2226static void record_and_restart(struct perf_event *event, unsigned long val,
2227                               struct pt_regs *regs)
2228{
2229        u64 period = event->hw.sample_period;
2230        s64 prev, delta, left;
2231        int record = 0;
2232
2233        if (event->hw.state & PERF_HES_STOPPED) {
2234                write_pmc(event->hw.idx, 0);
2235                return;
2236        }
2237
2238        /* we don't have to worry about interrupts here */
2239        prev = local64_read(&event->hw.prev_count);
2240        delta = check_and_compute_delta(prev, val);
2241        local64_add(delta, &event->count);
2242
2243        /*
2244         * See if the total period for this event has expired,
2245         * and update for the next period.
2246         */
2247        val = 0;
2248        left = local64_read(&event->hw.period_left) - delta;
2249        if (delta == 0)
2250                left++;
2251        if (period) {
2252                if (left <= 0) {
2253                        left += period;
2254                        if (left <= 0)
2255                                left = period;
2256
2257                        /*
2258                         * If address is not requested in the sample via
2259                         * PERF_SAMPLE_IP, just record that sample irrespective
2260                         * of SIAR valid check.
2261                         */
2262                        if (event->attr.sample_type & PERF_SAMPLE_IP)
2263                                record = siar_valid(regs);
2264                        else
2265                                record = 1;
2266
2267                        event->hw.last_period = event->hw.sample_period;
2268                }
2269                if (left < 0x80000000LL)
2270                        val = 0x80000000LL - left;
2271        }
2272
2273        write_pmc(event->hw.idx, val);
2274        local64_set(&event->hw.prev_count, val);
2275        local64_set(&event->hw.period_left, left);
2276        perf_event_update_userpage(event);
2277
2278        /*
2279         * Due to hardware limitation, sometimes SIAR could sample a kernel
2280         * address even when freeze on supervisor state (kernel) is set in
2281         * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2282         * these cases.
2283         */
2284        if (event->attr.exclude_kernel &&
2285            (event->attr.sample_type & PERF_SAMPLE_IP) &&
2286            is_kernel_addr(mfspr(SPRN_SIAR)))
2287                record = 0;
2288
2289        /*
2290         * Finally record data if requested.
2291         */
2292        if (record) {
2293                struct perf_sample_data data;
2294
2295                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2296
2297                if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2298                        perf_get_data_addr(event, regs, &data.addr);
2299
2300                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2301                        struct cpu_hw_events *cpuhw;
2302                        cpuhw = this_cpu_ptr(&cpu_hw_events);
2303                        power_pmu_bhrb_read(event, cpuhw);
2304                        data.br_stack = &cpuhw->bhrb_stack;
2305                }
2306
2307                if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2308                                                ppmu->get_mem_data_src)
2309                        ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2310
2311                if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2312                                                ppmu->get_mem_weight)
2313                        ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2314
2315                if (perf_event_overflow(event, &data, regs))
2316                        power_pmu_stop(event, 0);
2317        } else if (period) {
2318                /* Account for interrupt in case of invalid SIAR */
2319                if (perf_event_account_interrupt(event))
2320                        power_pmu_stop(event, 0);
2321        }
2322}
2323
2324/*
2325 * Called from generic code to get the misc flags (i.e. processor mode)
2326 * for an event_id.
2327 */
2328unsigned long perf_misc_flags(struct pt_regs *regs)
2329{
2330        u32 flags = perf_get_misc_flags(regs);
2331
2332        if (flags)
2333                return flags;
2334        return user_mode(regs) ? PERF_RECORD_MISC_USER :
2335                PERF_RECORD_MISC_KERNEL;
2336}
2337
2338/*
2339 * Called from generic code to get the instruction pointer
2340 * for an event_id.
2341 */
2342unsigned long perf_instruction_pointer(struct pt_regs *regs)
2343{
2344        unsigned long siar = mfspr(SPRN_SIAR);
2345
2346        if (regs_use_siar(regs) && siar_valid(regs) && siar)
2347                return siar + perf_ip_adjust(regs);
2348        else
2349                return regs->nip;
2350}
2351
2352static bool pmc_overflow_power7(unsigned long val)
2353{
2354        /*
2355         * Events on POWER7 can roll back if a speculative event doesn't
2356         * eventually complete. Unfortunately in some rare cases they will
2357         * raise a performance monitor exception. We need to catch this to
2358         * ensure we reset the PMC. In all cases the PMC will be 256 or less
2359         * cycles from overflow.
2360         *
2361         * We only do this if the first pass fails to find any overflowing
2362         * PMCs because a user might set a period of less than 256 and we
2363         * don't want to mistakenly reset them.
2364         */
2365        if ((0x80000000 - val) <= 256)
2366                return true;
2367
2368        return false;
2369}
2370
2371static bool pmc_overflow(unsigned long val)
2372{
2373        if ((int)val < 0)
2374                return true;
2375
2376        return false;
2377}
2378
2379/*
2380 * Performance monitor interrupt stuff
2381 */
2382static void __perf_event_interrupt(struct pt_regs *regs)
2383{
2384        int i, j;
2385        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2386        struct perf_event *event;
2387        int found, active;
2388
2389        if (cpuhw->n_limited)
2390                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2391                                        mfspr(SPRN_PMC6));
2392
2393        perf_read_regs(regs);
2394
2395        /* Read all the PMCs since we'll need them a bunch of times */
2396        for (i = 0; i < ppmu->n_counter; ++i)
2397                cpuhw->pmcs[i] = read_pmc(i + 1);
2398
2399        /* Try to find what caused the IRQ */
2400        found = 0;
2401        for (i = 0; i < ppmu->n_counter; ++i) {
2402                if (!pmc_overflow(cpuhw->pmcs[i]))
2403                        continue;
2404                if (is_limited_pmc(i + 1))
2405                        continue; /* these won't generate IRQs */
2406                /*
2407                 * We've found one that's overflowed.  For active
2408                 * counters we need to log this.  For inactive
2409                 * counters, we need to reset it anyway
2410                 */
2411                found = 1;
2412                active = 0;
2413                for (j = 0; j < cpuhw->n_events; ++j) {
2414                        event = cpuhw->event[j];
2415                        if (event->hw.idx == (i + 1)) {
2416                                active = 1;
2417                                record_and_restart(event, cpuhw->pmcs[i], regs);
2418                                break;
2419                        }
2420                }
2421
2422                /*
2423                 * Clear PACA_IRQ_PMI in case it was set by
2424                 * set_pmi_irq_pending() when PMU was enabled
2425                 * after accounting for interrupts.
2426                 */
2427                clear_pmi_irq_pending();
2428
2429                if (!active)
2430                        /* reset non active counters that have overflowed */
2431                        write_pmc(i + 1, 0);
2432        }
2433        if (!found && pvr_version_is(PVR_POWER7)) {
2434                /* check active counters for special buggy p7 overflow */
2435                for (i = 0; i < cpuhw->n_events; ++i) {
2436                        event = cpuhw->event[i];
2437                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2438                                continue;
2439                        if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2440                                /* event has overflowed in a buggy way*/
2441                                found = 1;
2442                                record_and_restart(event,
2443                                                   cpuhw->pmcs[event->hw.idx - 1],
2444                                                   regs);
2445                        }
2446                }
2447        }
2448
2449        /*
2450         * During system wide profiling or while specific CPU is monitored for an
2451         * event, some corner cases could cause PMC to overflow in idle path. This
2452         * will trigger a PMI after waking up from idle. Since counter values are _not_
2453         * saved/restored in idle path, can lead to below "Can't find PMC" message.
2454         */
2455        if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2456                printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2457
2458        /*
2459         * Reset MMCR0 to its normal value.  This will set PMXE and
2460         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2461         * and thus allow interrupts to occur again.
2462         * XXX might want to use MSR.PM to keep the events frozen until
2463         * we get back out of this interrupt.
2464         */
2465        write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2466
2467        /* Clear the cpuhw->pmcs */
2468        memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2469
2470}
2471
2472static void perf_event_interrupt(struct pt_regs *regs)
2473{
2474        u64 start_clock = sched_clock();
2475
2476        __perf_event_interrupt(regs);
2477        perf_sample_event_took(sched_clock() - start_clock);
2478}
2479
2480static int power_pmu_prepare_cpu(unsigned int cpu)
2481{
2482        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2483
2484        if (ppmu) {
2485                memset(cpuhw, 0, sizeof(*cpuhw));
2486                cpuhw->mmcr.mmcr0 = MMCR0_FC;
2487        }
2488        return 0;
2489}
2490
2491int __init register_power_pmu(struct power_pmu *pmu)
2492{
2493        if (ppmu)
2494                return -EBUSY;          /* something's already registered */
2495
2496        ppmu = pmu;
2497        pr_info("%s performance monitor hardware support registered\n",
2498                pmu->name);
2499
2500        power_pmu.attr_groups = ppmu->attr_groups;
2501        power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2502
2503#ifdef MSR_HV
2504        /*
2505         * Use FCHV to ignore kernel events if MSR.HV is set.
2506         */
2507        if (mfmsr() & MSR_HV)
2508                freeze_events_kernel = MMCR0_FCHV;
2509#endif /* CONFIG_PPC64 */
2510
2511        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2512        cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2513                          power_pmu_prepare_cpu, NULL);
2514        return 0;
2515}
2516
2517#ifdef CONFIG_PPC64
2518static bool pmu_override = false;
2519static unsigned long pmu_override_val;
2520static void do_pmu_override(void *data)
2521{
2522        ppc_set_pmu_inuse(1);
2523        if (pmu_override_val)
2524                mtspr(SPRN_MMCR1, pmu_override_val);
2525        mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2526}
2527
2528static int __init init_ppc64_pmu(void)
2529{
2530        if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2531                pr_warn("disabling perf due to pmu_override= command line option.\n");
2532                on_each_cpu(do_pmu_override, NULL, 1);
2533                return 0;
2534        }
2535
2536        /* run through all the pmu drivers one at a time */
2537        if (!init_power5_pmu())
2538                return 0;
2539        else if (!init_power5p_pmu())
2540                return 0;
2541        else if (!init_power6_pmu())
2542                return 0;
2543        else if (!init_power7_pmu())
2544                return 0;
2545        else if (!init_power8_pmu())
2546                return 0;
2547        else if (!init_power9_pmu())
2548                return 0;
2549        else if (!init_power10_pmu())
2550                return 0;
2551        else if (!init_ppc970_pmu())
2552                return 0;
2553        else
2554                return init_generic_compat_pmu();
2555}
2556early_initcall(init_ppc64_pmu);
2557
2558static int __init pmu_setup(char *str)
2559{
2560        unsigned long val;
2561
2562        if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2563                return 0;
2564
2565        pmu_override = true;
2566
2567        if (kstrtoul(str, 0, &val))
2568                val = 0;
2569
2570        pmu_override_val = val;
2571
2572        return 1;
2573}
2574__setup("pmu_override=", pmu_setup);
2575
2576#endif
2577