linux/arch/s390/kernel/ptrace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
  27#include <asm/page.h>
  28#include <linux/uaccess.h>
  29#include <asm/unistd.h>
  30#include <asm/switch_to.h>
  31#include <asm/runtime_instr.h>
  32#include <asm/facility.h>
  33
  34#include "entry.h"
  35
  36#ifdef CONFIG_COMPAT
  37#include "compat_ptrace.h"
  38#endif
  39
  40void update_cr_regs(struct task_struct *task)
  41{
  42        struct pt_regs *regs = task_pt_regs(task);
  43        struct thread_struct *thread = &task->thread;
  44        struct per_regs old, new;
  45        union ctlreg0 cr0_old, cr0_new;
  46        union ctlreg2 cr2_old, cr2_new;
  47        int cr0_changed, cr2_changed;
  48
  49        __ctl_store(cr0_old.val, 0, 0);
  50        __ctl_store(cr2_old.val, 2, 2);
  51        cr0_new = cr0_old;
  52        cr2_new = cr2_old;
  53        /* Take care of the enable/disable of transactional execution. */
  54        if (MACHINE_HAS_TE) {
  55                /* Set or clear transaction execution TXC bit 8. */
  56                cr0_new.tcx = 1;
  57                if (task->thread.per_flags & PER_FLAG_NO_TE)
  58                        cr0_new.tcx = 0;
  59                /* Set or clear transaction execution TDC bits 62 and 63. */
  60                cr2_new.tdc = 0;
  61                if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  62                        if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  63                                cr2_new.tdc = 1;
  64                        else
  65                                cr2_new.tdc = 2;
  66                }
  67        }
  68        /* Take care of enable/disable of guarded storage. */
  69        if (MACHINE_HAS_GS) {
  70                cr2_new.gse = 0;
  71                if (task->thread.gs_cb)
  72                        cr2_new.gse = 1;
  73        }
  74        /* Load control register 0/2 iff changed */
  75        cr0_changed = cr0_new.val != cr0_old.val;
  76        cr2_changed = cr2_new.val != cr2_old.val;
  77        if (cr0_changed)
  78                __ctl_load(cr0_new.val, 0, 0);
  79        if (cr2_changed)
  80                __ctl_load(cr2_new.val, 2, 2);
  81        /* Copy user specified PER registers */
  82        new.control = thread->per_user.control;
  83        new.start = thread->per_user.start;
  84        new.end = thread->per_user.end;
  85
  86        /* merge TIF_SINGLE_STEP into user specified PER registers. */
  87        if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  88            test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  89                if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  90                        new.control |= PER_EVENT_BRANCH;
  91                else
  92                        new.control |= PER_EVENT_IFETCH;
  93                new.control |= PER_CONTROL_SUSPENSION;
  94                new.control |= PER_EVENT_TRANSACTION_END;
  95                if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  96                        new.control |= PER_EVENT_IFETCH;
  97                new.start = 0;
  98                new.end = -1UL;
  99        }
 100
 101        /* Take care of the PER enablement bit in the PSW. */
 102        if (!(new.control & PER_EVENT_MASK)) {
 103                regs->psw.mask &= ~PSW_MASK_PER;
 104                return;
 105        }
 106        regs->psw.mask |= PSW_MASK_PER;
 107        __ctl_store(old, 9, 11);
 108        if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 109                __ctl_load(new, 9, 11);
 110}
 111
 112void user_enable_single_step(struct task_struct *task)
 113{
 114        clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 115        set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 116}
 117
 118void user_disable_single_step(struct task_struct *task)
 119{
 120        clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 121        clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 122}
 123
 124void user_enable_block_step(struct task_struct *task)
 125{
 126        set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 127        set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 128}
 129
 130/*
 131 * Called by kernel/ptrace.c when detaching..
 132 *
 133 * Clear all debugging related fields.
 134 */
 135void ptrace_disable(struct task_struct *task)
 136{
 137        memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 138        memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 139        clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 140        clear_tsk_thread_flag(task, TIF_PER_TRAP);
 141        task->thread.per_flags = 0;
 142}
 143
 144#define __ADDR_MASK 7
 145
 146static inline unsigned long __peek_user_per(struct task_struct *child,
 147                                            addr_t addr)
 148{
 149        if (addr == offsetof(struct per_struct_kernel, cr9))
 150                /* Control bits of the active per set. */
 151                return test_thread_flag(TIF_SINGLE_STEP) ?
 152                        PER_EVENT_IFETCH : child->thread.per_user.control;
 153        else if (addr == offsetof(struct per_struct_kernel, cr10))
 154                /* Start address of the active per set. */
 155                return test_thread_flag(TIF_SINGLE_STEP) ?
 156                        0 : child->thread.per_user.start;
 157        else if (addr == offsetof(struct per_struct_kernel, cr11))
 158                /* End address of the active per set. */
 159                return test_thread_flag(TIF_SINGLE_STEP) ?
 160                        -1UL : child->thread.per_user.end;
 161        else if (addr == offsetof(struct per_struct_kernel, bits))
 162                /* Single-step bit. */
 163                return test_thread_flag(TIF_SINGLE_STEP) ?
 164                        (1UL << (BITS_PER_LONG - 1)) : 0;
 165        else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 166                /* Start address of the user specified per set. */
 167                return child->thread.per_user.start;
 168        else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 169                /* End address of the user specified per set. */
 170                return child->thread.per_user.end;
 171        else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
 172                /* PER code, ATMID and AI of the last PER trap */
 173                return (unsigned long)
 174                        child->thread.per_event.cause << (BITS_PER_LONG - 16);
 175        else if (addr == offsetof(struct per_struct_kernel, address))
 176                /* Address of the last PER trap */
 177                return child->thread.per_event.address;
 178        else if (addr == offsetof(struct per_struct_kernel, access_id))
 179                /* Access id of the last PER trap */
 180                return (unsigned long)
 181                        child->thread.per_event.paid << (BITS_PER_LONG - 8);
 182        return 0;
 183}
 184
 185/*
 186 * Read the word at offset addr from the user area of a process. The
 187 * trouble here is that the information is littered over different
 188 * locations. The process registers are found on the kernel stack,
 189 * the floating point stuff and the trace settings are stored in
 190 * the task structure. In addition the different structures in
 191 * struct user contain pad bytes that should be read as zeroes.
 192 * Lovely...
 193 */
 194static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 195{
 196        addr_t offset, tmp;
 197
 198        if (addr < offsetof(struct user, regs.acrs)) {
 199                /*
 200                 * psw and gprs are stored on the stack
 201                 */
 202                tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 203                if (addr == offsetof(struct user, regs.psw.mask)) {
 204                        /* Return a clean psw mask. */
 205                        tmp &= PSW_MASK_USER | PSW_MASK_RI;
 206                        tmp |= PSW_USER_BITS;
 207                }
 208
 209        } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 210                /*
 211                 * access registers are stored in the thread structure
 212                 */
 213                offset = addr - offsetof(struct user, regs.acrs);
 214                /*
 215                 * Very special case: old & broken 64 bit gdb reading
 216                 * from acrs[15]. Result is a 64 bit value. Read the
 217                 * 32 bit acrs[15] value and shift it by 32. Sick...
 218                 */
 219                if (addr == offsetof(struct user, regs.acrs[15]))
 220                        tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 221                else
 222                        tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 223
 224        } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 225                /*
 226                 * orig_gpr2 is stored on the kernel stack
 227                 */
 228                tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 229
 230        } else if (addr < offsetof(struct user, regs.fp_regs)) {
 231                /*
 232                 * prevent reads of padding hole between
 233                 * orig_gpr2 and fp_regs on s390.
 234                 */
 235                tmp = 0;
 236
 237        } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 238                /*
 239                 * floating point control reg. is in the thread structure
 240                 */
 241                tmp = child->thread.fpu.fpc;
 242                tmp <<= BITS_PER_LONG - 32;
 243
 244        } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 245                /*
 246                 * floating point regs. are either in child->thread.fpu
 247                 * or the child->thread.fpu.vxrs array
 248                 */
 249                offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 250                if (MACHINE_HAS_VX)
 251                        tmp = *(addr_t *)
 252                               ((addr_t) child->thread.fpu.vxrs + 2*offset);
 253                else
 254                        tmp = *(addr_t *)
 255                               ((addr_t) child->thread.fpu.fprs + offset);
 256
 257        } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 258                /*
 259                 * Handle access to the per_info structure.
 260                 */
 261                addr -= offsetof(struct user, regs.per_info);
 262                tmp = __peek_user_per(child, addr);
 263
 264        } else
 265                tmp = 0;
 266
 267        return tmp;
 268}
 269
 270static int
 271peek_user(struct task_struct *child, addr_t addr, addr_t data)
 272{
 273        addr_t tmp, mask;
 274
 275        /*
 276         * Stupid gdb peeks/pokes the access registers in 64 bit with
 277         * an alignment of 4. Programmers from hell...
 278         */
 279        mask = __ADDR_MASK;
 280        if (addr >= offsetof(struct user, regs.acrs) &&
 281            addr < offsetof(struct user, regs.orig_gpr2))
 282                mask = 3;
 283        if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 284                return -EIO;
 285
 286        tmp = __peek_user(child, addr);
 287        return put_user(tmp, (addr_t __user *) data);
 288}
 289
 290static inline void __poke_user_per(struct task_struct *child,
 291                                   addr_t addr, addr_t data)
 292{
 293        /*
 294         * There are only three fields in the per_info struct that the
 295         * debugger user can write to.
 296         * 1) cr9: the debugger wants to set a new PER event mask
 297         * 2) starting_addr: the debugger wants to set a new starting
 298         *    address to use with the PER event mask.
 299         * 3) ending_addr: the debugger wants to set a new ending
 300         *    address to use with the PER event mask.
 301         * The user specified PER event mask and the start and end
 302         * addresses are used only if single stepping is not in effect.
 303         * Writes to any other field in per_info are ignored.
 304         */
 305        if (addr == offsetof(struct per_struct_kernel, cr9))
 306                /* PER event mask of the user specified per set. */
 307                child->thread.per_user.control =
 308                        data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 309        else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 310                /* Starting address of the user specified per set. */
 311                child->thread.per_user.start = data;
 312        else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 313                /* Ending address of the user specified per set. */
 314                child->thread.per_user.end = data;
 315}
 316
 317/*
 318 * Write a word to the user area of a process at location addr. This
 319 * operation does have an additional problem compared to peek_user.
 320 * Stores to the program status word and on the floating point
 321 * control register needs to get checked for validity.
 322 */
 323static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 324{
 325        addr_t offset;
 326
 327
 328        if (addr < offsetof(struct user, regs.acrs)) {
 329                struct pt_regs *regs = task_pt_regs(child);
 330                /*
 331                 * psw and gprs are stored on the stack
 332                 */
 333                if (addr == offsetof(struct user, regs.psw.mask)) {
 334                        unsigned long mask = PSW_MASK_USER;
 335
 336                        mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 337                        if ((data ^ PSW_USER_BITS) & ~mask)
 338                                /* Invalid psw mask. */
 339                                return -EINVAL;
 340                        if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 341                                /* Invalid address-space-control bits */
 342                                return -EINVAL;
 343                        if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 344                                /* Invalid addressing mode bits */
 345                                return -EINVAL;
 346                }
 347
 348                if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 349                        addr == offsetof(struct user, regs.gprs[2])) {
 350                        struct pt_regs *regs = task_pt_regs(child);
 351
 352                        regs->int_code = 0x20000 | (data & 0xffff);
 353                }
 354                *(addr_t *)((addr_t) &regs->psw + addr) = data;
 355        } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 356                /*
 357                 * access registers are stored in the thread structure
 358                 */
 359                offset = addr - offsetof(struct user, regs.acrs);
 360                /*
 361                 * Very special case: old & broken 64 bit gdb writing
 362                 * to acrs[15] with a 64 bit value. Ignore the lower
 363                 * half of the value and write the upper 32 bit to
 364                 * acrs[15]. Sick...
 365                 */
 366                if (addr == offsetof(struct user, regs.acrs[15]))
 367                        child->thread.acrs[15] = (unsigned int) (data >> 32);
 368                else
 369                        *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 370
 371        } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 372                /*
 373                 * orig_gpr2 is stored on the kernel stack
 374                 */
 375                task_pt_regs(child)->orig_gpr2 = data;
 376
 377        } else if (addr < offsetof(struct user, regs.fp_regs)) {
 378                /*
 379                 * prevent writes of padding hole between
 380                 * orig_gpr2 and fp_regs on s390.
 381                 */
 382                return 0;
 383
 384        } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 385                /*
 386                 * floating point control reg. is in the thread structure
 387                 */
 388                if ((unsigned int) data != 0 ||
 389                    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 390                        return -EINVAL;
 391                child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 392
 393        } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 394                /*
 395                 * floating point regs. are either in child->thread.fpu
 396                 * or the child->thread.fpu.vxrs array
 397                 */
 398                offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 399                if (MACHINE_HAS_VX)
 400                        *(addr_t *)((addr_t)
 401                                child->thread.fpu.vxrs + 2*offset) = data;
 402                else
 403                        *(addr_t *)((addr_t)
 404                                child->thread.fpu.fprs + offset) = data;
 405
 406        } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 407                /*
 408                 * Handle access to the per_info structure.
 409                 */
 410                addr -= offsetof(struct user, regs.per_info);
 411                __poke_user_per(child, addr, data);
 412
 413        }
 414
 415        return 0;
 416}
 417
 418static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 419{
 420        addr_t mask;
 421
 422        /*
 423         * Stupid gdb peeks/pokes the access registers in 64 bit with
 424         * an alignment of 4. Programmers from hell indeed...
 425         */
 426        mask = __ADDR_MASK;
 427        if (addr >= offsetof(struct user, regs.acrs) &&
 428            addr < offsetof(struct user, regs.orig_gpr2))
 429                mask = 3;
 430        if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 431                return -EIO;
 432
 433        return __poke_user(child, addr, data);
 434}
 435
 436long arch_ptrace(struct task_struct *child, long request,
 437                 unsigned long addr, unsigned long data)
 438{
 439        ptrace_area parea; 
 440        int copied, ret;
 441
 442        switch (request) {
 443        case PTRACE_PEEKUSR:
 444                /* read the word at location addr in the USER area. */
 445                return peek_user(child, addr, data);
 446
 447        case PTRACE_POKEUSR:
 448                /* write the word at location addr in the USER area */
 449                return poke_user(child, addr, data);
 450
 451        case PTRACE_PEEKUSR_AREA:
 452        case PTRACE_POKEUSR_AREA:
 453                if (copy_from_user(&parea, (void __force __user *) addr,
 454                                                        sizeof(parea)))
 455                        return -EFAULT;
 456                addr = parea.kernel_addr;
 457                data = parea.process_addr;
 458                copied = 0;
 459                while (copied < parea.len) {
 460                        if (request == PTRACE_PEEKUSR_AREA)
 461                                ret = peek_user(child, addr, data);
 462                        else {
 463                                addr_t utmp;
 464                                if (get_user(utmp,
 465                                             (addr_t __force __user *) data))
 466                                        return -EFAULT;
 467                                ret = poke_user(child, addr, utmp);
 468                        }
 469                        if (ret)
 470                                return ret;
 471                        addr += sizeof(unsigned long);
 472                        data += sizeof(unsigned long);
 473                        copied += sizeof(unsigned long);
 474                }
 475                return 0;
 476        case PTRACE_GET_LAST_BREAK:
 477                put_user(child->thread.last_break,
 478                         (unsigned long __user *) data);
 479                return 0;
 480        case PTRACE_ENABLE_TE:
 481                if (!MACHINE_HAS_TE)
 482                        return -EIO;
 483                child->thread.per_flags &= ~PER_FLAG_NO_TE;
 484                return 0;
 485        case PTRACE_DISABLE_TE:
 486                if (!MACHINE_HAS_TE)
 487                        return -EIO;
 488                child->thread.per_flags |= PER_FLAG_NO_TE;
 489                child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 490                return 0;
 491        case PTRACE_TE_ABORT_RAND:
 492                if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 493                        return -EIO;
 494                switch (data) {
 495                case 0UL:
 496                        child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 497                        break;
 498                case 1UL:
 499                        child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 500                        child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 501                        break;
 502                case 2UL:
 503                        child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 504                        child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 505                        break;
 506                default:
 507                        return -EINVAL;
 508                }
 509                return 0;
 510        default:
 511                return ptrace_request(child, request, addr, data);
 512        }
 513}
 514
 515#ifdef CONFIG_COMPAT
 516/*
 517 * Now the fun part starts... a 31 bit program running in the
 518 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 519 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 520 * to handle, the difference to the 64 bit versions of the requests
 521 * is that the access is done in multiples of 4 byte instead of
 522 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 523 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 524 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 525 * is a 31 bit program too, the content of struct user can be
 526 * emulated. A 31 bit program peeking into the struct user of
 527 * a 64 bit program is a no-no.
 528 */
 529
 530/*
 531 * Same as peek_user_per but for a 31 bit program.
 532 */
 533static inline __u32 __peek_user_per_compat(struct task_struct *child,
 534                                           addr_t addr)
 535{
 536        if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 537                /* Control bits of the active per set. */
 538                return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 539                        PER_EVENT_IFETCH : child->thread.per_user.control;
 540        else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
 541                /* Start address of the active per set. */
 542                return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 543                        0 : child->thread.per_user.start;
 544        else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
 545                /* End address of the active per set. */
 546                return test_thread_flag(TIF_SINGLE_STEP) ?
 547                        PSW32_ADDR_INSN : child->thread.per_user.end;
 548        else if (addr == offsetof(struct compat_per_struct_kernel, bits))
 549                /* Single-step bit. */
 550                return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 551                        0x80000000 : 0;
 552        else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 553                /* Start address of the user specified per set. */
 554                return (__u32) child->thread.per_user.start;
 555        else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 556                /* End address of the user specified per set. */
 557                return (__u32) child->thread.per_user.end;
 558        else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
 559                /* PER code, ATMID and AI of the last PER trap */
 560                return (__u32) child->thread.per_event.cause << 16;
 561        else if (addr == offsetof(struct compat_per_struct_kernel, address))
 562                /* Address of the last PER trap */
 563                return (__u32) child->thread.per_event.address;
 564        else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
 565                /* Access id of the last PER trap */
 566                return (__u32) child->thread.per_event.paid << 24;
 567        return 0;
 568}
 569
 570/*
 571 * Same as peek_user but for a 31 bit program.
 572 */
 573static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 574{
 575        addr_t offset;
 576        __u32 tmp;
 577
 578        if (addr < offsetof(struct compat_user, regs.acrs)) {
 579                struct pt_regs *regs = task_pt_regs(child);
 580                /*
 581                 * psw and gprs are stored on the stack
 582                 */
 583                if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 584                        /* Fake a 31 bit psw mask. */
 585                        tmp = (__u32)(regs->psw.mask >> 32);
 586                        tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 587                        tmp |= PSW32_USER_BITS;
 588                } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 589                        /* Fake a 31 bit psw address. */
 590                        tmp = (__u32) regs->psw.addr |
 591                                (__u32)(regs->psw.mask & PSW_MASK_BA);
 592                } else {
 593                        /* gpr 0-15 */
 594                        tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 595                }
 596        } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 597                /*
 598                 * access registers are stored in the thread structure
 599                 */
 600                offset = addr - offsetof(struct compat_user, regs.acrs);
 601                tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 602
 603        } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 604                /*
 605                 * orig_gpr2 is stored on the kernel stack
 606                 */
 607                tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 608
 609        } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 610                /*
 611                 * prevent reads of padding hole between
 612                 * orig_gpr2 and fp_regs on s390.
 613                 */
 614                tmp = 0;
 615
 616        } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 617                /*
 618                 * floating point control reg. is in the thread structure
 619                 */
 620                tmp = child->thread.fpu.fpc;
 621
 622        } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 623                /*
 624                 * floating point regs. are either in child->thread.fpu
 625                 * or the child->thread.fpu.vxrs array
 626                 */
 627                offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 628                if (MACHINE_HAS_VX)
 629                        tmp = *(__u32 *)
 630                               ((addr_t) child->thread.fpu.vxrs + 2*offset);
 631                else
 632                        tmp = *(__u32 *)
 633                               ((addr_t) child->thread.fpu.fprs + offset);
 634
 635        } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 636                /*
 637                 * Handle access to the per_info structure.
 638                 */
 639                addr -= offsetof(struct compat_user, regs.per_info);
 640                tmp = __peek_user_per_compat(child, addr);
 641
 642        } else
 643                tmp = 0;
 644
 645        return tmp;
 646}
 647
 648static int peek_user_compat(struct task_struct *child,
 649                            addr_t addr, addr_t data)
 650{
 651        __u32 tmp;
 652
 653        if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 654                return -EIO;
 655
 656        tmp = __peek_user_compat(child, addr);
 657        return put_user(tmp, (__u32 __user *) data);
 658}
 659
 660/*
 661 * Same as poke_user_per but for a 31 bit program.
 662 */
 663static inline void __poke_user_per_compat(struct task_struct *child,
 664                                          addr_t addr, __u32 data)
 665{
 666        if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 667                /* PER event mask of the user specified per set. */
 668                child->thread.per_user.control =
 669                        data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 670        else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 671                /* Starting address of the user specified per set. */
 672                child->thread.per_user.start = data;
 673        else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 674                /* Ending address of the user specified per set. */
 675                child->thread.per_user.end = data;
 676}
 677
 678/*
 679 * Same as poke_user but for a 31 bit program.
 680 */
 681static int __poke_user_compat(struct task_struct *child,
 682                              addr_t addr, addr_t data)
 683{
 684        __u32 tmp = (__u32) data;
 685        addr_t offset;
 686
 687        if (addr < offsetof(struct compat_user, regs.acrs)) {
 688                struct pt_regs *regs = task_pt_regs(child);
 689                /*
 690                 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 691                 */
 692                if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 693                        __u32 mask = PSW32_MASK_USER;
 694
 695                        mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 696                        /* Build a 64 bit psw mask from 31 bit mask. */
 697                        if ((tmp ^ PSW32_USER_BITS) & ~mask)
 698                                /* Invalid psw mask. */
 699                                return -EINVAL;
 700                        if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 701                                /* Invalid address-space-control bits */
 702                                return -EINVAL;
 703                        regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 704                                (regs->psw.mask & PSW_MASK_BA) |
 705                                (__u64)(tmp & mask) << 32;
 706                } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 707                        /* Build a 64 bit psw address from 31 bit address. */
 708                        regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 709                        /* Transfer 31 bit amode bit to psw mask. */
 710                        regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 711                                (__u64)(tmp & PSW32_ADDR_AMODE);
 712                } else {
 713                        if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 714                                addr == offsetof(struct compat_user, regs.gprs[2])) {
 715                                struct pt_regs *regs = task_pt_regs(child);
 716
 717                                regs->int_code = 0x20000 | (data & 0xffff);
 718                        }
 719                        /* gpr 0-15 */
 720                        *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 721                }
 722        } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 723                /*
 724                 * access registers are stored in the thread structure
 725                 */
 726                offset = addr - offsetof(struct compat_user, regs.acrs);
 727                *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 728
 729        } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 730                /*
 731                 * orig_gpr2 is stored on the kernel stack
 732                 */
 733                *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 734
 735        } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 736                /*
 737                 * prevent writess of padding hole between
 738                 * orig_gpr2 and fp_regs on s390.
 739                 */
 740                return 0;
 741
 742        } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 743                /*
 744                 * floating point control reg. is in the thread structure
 745                 */
 746                if (test_fp_ctl(tmp))
 747                        return -EINVAL;
 748                child->thread.fpu.fpc = data;
 749
 750        } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 751                /*
 752                 * floating point regs. are either in child->thread.fpu
 753                 * or the child->thread.fpu.vxrs array
 754                 */
 755                offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 756                if (MACHINE_HAS_VX)
 757                        *(__u32 *)((addr_t)
 758                                child->thread.fpu.vxrs + 2*offset) = tmp;
 759                else
 760                        *(__u32 *)((addr_t)
 761                                child->thread.fpu.fprs + offset) = tmp;
 762
 763        } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 764                /*
 765                 * Handle access to the per_info structure.
 766                 */
 767                addr -= offsetof(struct compat_user, regs.per_info);
 768                __poke_user_per_compat(child, addr, data);
 769        }
 770
 771        return 0;
 772}
 773
 774static int poke_user_compat(struct task_struct *child,
 775                            addr_t addr, addr_t data)
 776{
 777        if (!is_compat_task() || (addr & 3) ||
 778            addr > sizeof(struct compat_user) - 3)
 779                return -EIO;
 780
 781        return __poke_user_compat(child, addr, data);
 782}
 783
 784long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 785                        compat_ulong_t caddr, compat_ulong_t cdata)
 786{
 787        unsigned long addr = caddr;
 788        unsigned long data = cdata;
 789        compat_ptrace_area parea;
 790        int copied, ret;
 791
 792        switch (request) {
 793        case PTRACE_PEEKUSR:
 794                /* read the word at location addr in the USER area. */
 795                return peek_user_compat(child, addr, data);
 796
 797        case PTRACE_POKEUSR:
 798                /* write the word at location addr in the USER area */
 799                return poke_user_compat(child, addr, data);
 800
 801        case PTRACE_PEEKUSR_AREA:
 802        case PTRACE_POKEUSR_AREA:
 803                if (copy_from_user(&parea, (void __force __user *) addr,
 804                                                        sizeof(parea)))
 805                        return -EFAULT;
 806                addr = parea.kernel_addr;
 807                data = parea.process_addr;
 808                copied = 0;
 809                while (copied < parea.len) {
 810                        if (request == PTRACE_PEEKUSR_AREA)
 811                                ret = peek_user_compat(child, addr, data);
 812                        else {
 813                                __u32 utmp;
 814                                if (get_user(utmp,
 815                                             (__u32 __force __user *) data))
 816                                        return -EFAULT;
 817                                ret = poke_user_compat(child, addr, utmp);
 818                        }
 819                        if (ret)
 820                                return ret;
 821                        addr += sizeof(unsigned int);
 822                        data += sizeof(unsigned int);
 823                        copied += sizeof(unsigned int);
 824                }
 825                return 0;
 826        case PTRACE_GET_LAST_BREAK:
 827                put_user(child->thread.last_break,
 828                         (unsigned int __user *) data);
 829                return 0;
 830        }
 831        return compat_ptrace_request(child, request, addr, data);
 832}
 833#endif
 834
 835/*
 836 * user_regset definitions.
 837 */
 838
 839static int s390_regs_get(struct task_struct *target,
 840                         const struct user_regset *regset,
 841                         struct membuf to)
 842{
 843        unsigned pos;
 844        if (target == current)
 845                save_access_regs(target->thread.acrs);
 846
 847        for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 848                membuf_store(&to, __peek_user(target, pos));
 849        return 0;
 850}
 851
 852static int s390_regs_set(struct task_struct *target,
 853                         const struct user_regset *regset,
 854                         unsigned int pos, unsigned int count,
 855                         const void *kbuf, const void __user *ubuf)
 856{
 857        int rc = 0;
 858
 859        if (target == current)
 860                save_access_regs(target->thread.acrs);
 861
 862        if (kbuf) {
 863                const unsigned long *k = kbuf;
 864                while (count > 0 && !rc) {
 865                        rc = __poke_user(target, pos, *k++);
 866                        count -= sizeof(*k);
 867                        pos += sizeof(*k);
 868                }
 869        } else {
 870                const unsigned long  __user *u = ubuf;
 871                while (count > 0 && !rc) {
 872                        unsigned long word;
 873                        rc = __get_user(word, u++);
 874                        if (rc)
 875                                break;
 876                        rc = __poke_user(target, pos, word);
 877                        count -= sizeof(*u);
 878                        pos += sizeof(*u);
 879                }
 880        }
 881
 882        if (rc == 0 && target == current)
 883                restore_access_regs(target->thread.acrs);
 884
 885        return rc;
 886}
 887
 888static int s390_fpregs_get(struct task_struct *target,
 889                           const struct user_regset *regset,
 890                           struct membuf to)
 891{
 892        _s390_fp_regs fp_regs;
 893
 894        if (target == current)
 895                save_fpu_regs();
 896
 897        fp_regs.fpc = target->thread.fpu.fpc;
 898        fpregs_store(&fp_regs, &target->thread.fpu);
 899
 900        return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 901}
 902
 903static int s390_fpregs_set(struct task_struct *target,
 904                           const struct user_regset *regset, unsigned int pos,
 905                           unsigned int count, const void *kbuf,
 906                           const void __user *ubuf)
 907{
 908        int rc = 0;
 909        freg_t fprs[__NUM_FPRS];
 910
 911        if (target == current)
 912                save_fpu_regs();
 913
 914        if (MACHINE_HAS_VX)
 915                convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 916        else
 917                memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 918
 919        /* If setting FPC, must validate it first. */
 920        if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 921                u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 922                rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 923                                        0, offsetof(s390_fp_regs, fprs));
 924                if (rc)
 925                        return rc;
 926                if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 927                        return -EINVAL;
 928                target->thread.fpu.fpc = ufpc[0];
 929        }
 930
 931        if (rc == 0 && count > 0)
 932                rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 933                                        fprs, offsetof(s390_fp_regs, fprs), -1);
 934        if (rc)
 935                return rc;
 936
 937        if (MACHINE_HAS_VX)
 938                convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 939        else
 940                memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 941
 942        return rc;
 943}
 944
 945static int s390_last_break_get(struct task_struct *target,
 946                               const struct user_regset *regset,
 947                               struct membuf to)
 948{
 949        return membuf_store(&to, target->thread.last_break);
 950}
 951
 952static int s390_last_break_set(struct task_struct *target,
 953                               const struct user_regset *regset,
 954                               unsigned int pos, unsigned int count,
 955                               const void *kbuf, const void __user *ubuf)
 956{
 957        return 0;
 958}
 959
 960static int s390_tdb_get(struct task_struct *target,
 961                        const struct user_regset *regset,
 962                        struct membuf to)
 963{
 964        struct pt_regs *regs = task_pt_regs(target);
 965        size_t size;
 966
 967        if (!(regs->int_code & 0x200))
 968                return -ENODATA;
 969        size = sizeof(target->thread.trap_tdb.data);
 970        return membuf_write(&to, target->thread.trap_tdb.data, size);
 971}
 972
 973static int s390_tdb_set(struct task_struct *target,
 974                        const struct user_regset *regset,
 975                        unsigned int pos, unsigned int count,
 976                        const void *kbuf, const void __user *ubuf)
 977{
 978        return 0;
 979}
 980
 981static int s390_vxrs_low_get(struct task_struct *target,
 982                             const struct user_regset *regset,
 983                             struct membuf to)
 984{
 985        __u64 vxrs[__NUM_VXRS_LOW];
 986        int i;
 987
 988        if (!MACHINE_HAS_VX)
 989                return -ENODEV;
 990        if (target == current)
 991                save_fpu_regs();
 992        for (i = 0; i < __NUM_VXRS_LOW; i++)
 993                vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
 994        return membuf_write(&to, vxrs, sizeof(vxrs));
 995}
 996
 997static int s390_vxrs_low_set(struct task_struct *target,
 998                             const struct user_regset *regset,
 999                             unsigned int pos, unsigned int count,
1000                             const void *kbuf, const void __user *ubuf)
1001{
1002        __u64 vxrs[__NUM_VXRS_LOW];
1003        int i, rc;
1004
1005        if (!MACHINE_HAS_VX)
1006                return -ENODEV;
1007        if (target == current)
1008                save_fpu_regs();
1009
1010        for (i = 0; i < __NUM_VXRS_LOW; i++)
1011                vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1012
1013        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014        if (rc == 0)
1015                for (i = 0; i < __NUM_VXRS_LOW; i++)
1016                        *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1017
1018        return rc;
1019}
1020
1021static int s390_vxrs_high_get(struct task_struct *target,
1022                              const struct user_regset *regset,
1023                              struct membuf to)
1024{
1025        if (!MACHINE_HAS_VX)
1026                return -ENODEV;
1027        if (target == current)
1028                save_fpu_regs();
1029        return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030                            __NUM_VXRS_HIGH * sizeof(__vector128));
1031}
1032
1033static int s390_vxrs_high_set(struct task_struct *target,
1034                              const struct user_regset *regset,
1035                              unsigned int pos, unsigned int count,
1036                              const void *kbuf, const void __user *ubuf)
1037{
1038        int rc;
1039
1040        if (!MACHINE_HAS_VX)
1041                return -ENODEV;
1042        if (target == current)
1043                save_fpu_regs();
1044
1045        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046                                target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047        return rc;
1048}
1049
1050static int s390_system_call_get(struct task_struct *target,
1051                                const struct user_regset *regset,
1052                                struct membuf to)
1053{
1054        return membuf_store(&to, target->thread.system_call);
1055}
1056
1057static int s390_system_call_set(struct task_struct *target,
1058                                const struct user_regset *regset,
1059                                unsigned int pos, unsigned int count,
1060                                const void *kbuf, const void __user *ubuf)
1061{
1062        unsigned int *data = &target->thread.system_call;
1063        return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064                                  data, 0, sizeof(unsigned int));
1065}
1066
1067static int s390_gs_cb_get(struct task_struct *target,
1068                          const struct user_regset *regset,
1069                          struct membuf to)
1070{
1071        struct gs_cb *data = target->thread.gs_cb;
1072
1073        if (!MACHINE_HAS_GS)
1074                return -ENODEV;
1075        if (!data)
1076                return -ENODATA;
1077        if (target == current)
1078                save_gs_cb(data);
1079        return membuf_write(&to, data, sizeof(struct gs_cb));
1080}
1081
1082static int s390_gs_cb_set(struct task_struct *target,
1083                          const struct user_regset *regset,
1084                          unsigned int pos, unsigned int count,
1085                          const void *kbuf, const void __user *ubuf)
1086{
1087        struct gs_cb gs_cb = { }, *data = NULL;
1088        int rc;
1089
1090        if (!MACHINE_HAS_GS)
1091                return -ENODEV;
1092        if (!target->thread.gs_cb) {
1093                data = kzalloc(sizeof(*data), GFP_KERNEL);
1094                if (!data)
1095                        return -ENOMEM;
1096        }
1097        if (!target->thread.gs_cb)
1098                gs_cb.gsd = 25;
1099        else if (target == current)
1100                save_gs_cb(&gs_cb);
1101        else
1102                gs_cb = *target->thread.gs_cb;
1103        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104                                &gs_cb, 0, sizeof(gs_cb));
1105        if (rc) {
1106                kfree(data);
1107                return -EFAULT;
1108        }
1109        preempt_disable();
1110        if (!target->thread.gs_cb)
1111                target->thread.gs_cb = data;
1112        *target->thread.gs_cb = gs_cb;
1113        if (target == current) {
1114                __ctl_set_bit(2, 4);
1115                restore_gs_cb(target->thread.gs_cb);
1116        }
1117        preempt_enable();
1118        return rc;
1119}
1120
1121static int s390_gs_bc_get(struct task_struct *target,
1122                          const struct user_regset *regset,
1123                          struct membuf to)
1124{
1125        struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127        if (!MACHINE_HAS_GS)
1128                return -ENODEV;
1129        if (!data)
1130                return -ENODATA;
1131        return membuf_write(&to, data, sizeof(struct gs_cb));
1132}
1133
1134static int s390_gs_bc_set(struct task_struct *target,
1135                          const struct user_regset *regset,
1136                          unsigned int pos, unsigned int count,
1137                          const void *kbuf, const void __user *ubuf)
1138{
1139        struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141        if (!MACHINE_HAS_GS)
1142                return -ENODEV;
1143        if (!data) {
1144                data = kzalloc(sizeof(*data), GFP_KERNEL);
1145                if (!data)
1146                        return -ENOMEM;
1147                target->thread.gs_bc_cb = data;
1148        }
1149        return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150                                  data, 0, sizeof(struct gs_cb));
1151}
1152
1153static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154{
1155        return (cb->rca & 0x1f) == 0 &&
1156                (cb->roa & 0xfff) == 0 &&
1157                (cb->rla & 0xfff) == 0xfff &&
1158                cb->s == 1 &&
1159                cb->k == 1 &&
1160                cb->h == 0 &&
1161                cb->reserved1 == 0 &&
1162                cb->ps == 1 &&
1163                cb->qs == 0 &&
1164                cb->pc == 1 &&
1165                cb->qc == 0 &&
1166                cb->reserved2 == 0 &&
1167                cb->reserved3 == 0 &&
1168                cb->reserved4 == 0 &&
1169                cb->reserved5 == 0 &&
1170                cb->reserved6 == 0 &&
1171                cb->reserved7 == 0 &&
1172                cb->reserved8 == 0 &&
1173                cb->rla >= cb->roa &&
1174                cb->rca >= cb->roa &&
1175                cb->rca <= cb->rla+1 &&
1176                cb->m < 3;
1177}
1178
1179static int s390_runtime_instr_get(struct task_struct *target,
1180                                const struct user_regset *regset,
1181                                struct membuf to)
1182{
1183        struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185        if (!test_facility(64))
1186                return -ENODEV;
1187        if (!data)
1188                return -ENODATA;
1189
1190        return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191}
1192
1193static int s390_runtime_instr_set(struct task_struct *target,
1194                                  const struct user_regset *regset,
1195                                  unsigned int pos, unsigned int count,
1196                                  const void *kbuf, const void __user *ubuf)
1197{
1198        struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199        int rc;
1200
1201        if (!test_facility(64))
1202                return -ENODEV;
1203
1204        if (!target->thread.ri_cb) {
1205                data = kzalloc(sizeof(*data), GFP_KERNEL);
1206                if (!data)
1207                        return -ENOMEM;
1208        }
1209
1210        if (target->thread.ri_cb) {
1211                if (target == current)
1212                        store_runtime_instr_cb(&ri_cb);
1213                else
1214                        ri_cb = *target->thread.ri_cb;
1215        }
1216
1217        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218                                &ri_cb, 0, sizeof(struct runtime_instr_cb));
1219        if (rc) {
1220                kfree(data);
1221                return -EFAULT;
1222        }
1223
1224        if (!is_ri_cb_valid(&ri_cb)) {
1225                kfree(data);
1226                return -EINVAL;
1227        }
1228        /*
1229         * Override access key in any case, since user space should
1230         * not be able to set it, nor should it care about it.
1231         */
1232        ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233        preempt_disable();
1234        if (!target->thread.ri_cb)
1235                target->thread.ri_cb = data;
1236        *target->thread.ri_cb = ri_cb;
1237        if (target == current)
1238                load_runtime_instr_cb(target->thread.ri_cb);
1239        preempt_enable();
1240
1241        return 0;
1242}
1243
1244static const struct user_regset s390_regsets[] = {
1245        {
1246                .core_note_type = NT_PRSTATUS,
1247                .n = sizeof(s390_regs) / sizeof(long),
1248                .size = sizeof(long),
1249                .align = sizeof(long),
1250                .regset_get = s390_regs_get,
1251                .set = s390_regs_set,
1252        },
1253        {
1254                .core_note_type = NT_PRFPREG,
1255                .n = sizeof(s390_fp_regs) / sizeof(long),
1256                .size = sizeof(long),
1257                .align = sizeof(long),
1258                .regset_get = s390_fpregs_get,
1259                .set = s390_fpregs_set,
1260        },
1261        {
1262                .core_note_type = NT_S390_SYSTEM_CALL,
1263                .n = 1,
1264                .size = sizeof(unsigned int),
1265                .align = sizeof(unsigned int),
1266                .regset_get = s390_system_call_get,
1267                .set = s390_system_call_set,
1268        },
1269        {
1270                .core_note_type = NT_S390_LAST_BREAK,
1271                .n = 1,
1272                .size = sizeof(long),
1273                .align = sizeof(long),
1274                .regset_get = s390_last_break_get,
1275                .set = s390_last_break_set,
1276        },
1277        {
1278                .core_note_type = NT_S390_TDB,
1279                .n = 1,
1280                .size = 256,
1281                .align = 1,
1282                .regset_get = s390_tdb_get,
1283                .set = s390_tdb_set,
1284        },
1285        {
1286                .core_note_type = NT_S390_VXRS_LOW,
1287                .n = __NUM_VXRS_LOW,
1288                .size = sizeof(__u64),
1289                .align = sizeof(__u64),
1290                .regset_get = s390_vxrs_low_get,
1291                .set = s390_vxrs_low_set,
1292        },
1293        {
1294                .core_note_type = NT_S390_VXRS_HIGH,
1295                .n = __NUM_VXRS_HIGH,
1296                .size = sizeof(__vector128),
1297                .align = sizeof(__vector128),
1298                .regset_get = s390_vxrs_high_get,
1299                .set = s390_vxrs_high_set,
1300        },
1301        {
1302                .core_note_type = NT_S390_GS_CB,
1303                .n = sizeof(struct gs_cb) / sizeof(__u64),
1304                .size = sizeof(__u64),
1305                .align = sizeof(__u64),
1306                .regset_get = s390_gs_cb_get,
1307                .set = s390_gs_cb_set,
1308        },
1309        {
1310                .core_note_type = NT_S390_GS_BC,
1311                .n = sizeof(struct gs_cb) / sizeof(__u64),
1312                .size = sizeof(__u64),
1313                .align = sizeof(__u64),
1314                .regset_get = s390_gs_bc_get,
1315                .set = s390_gs_bc_set,
1316        },
1317        {
1318                .core_note_type = NT_S390_RI_CB,
1319                .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320                .size = sizeof(__u64),
1321                .align = sizeof(__u64),
1322                .regset_get = s390_runtime_instr_get,
1323                .set = s390_runtime_instr_set,
1324        },
1325};
1326
1327static const struct user_regset_view user_s390_view = {
1328        .name = "s390x",
1329        .e_machine = EM_S390,
1330        .regsets = s390_regsets,
1331        .n = ARRAY_SIZE(s390_regsets)
1332};
1333
1334#ifdef CONFIG_COMPAT
1335static int s390_compat_regs_get(struct task_struct *target,
1336                                const struct user_regset *regset,
1337                                struct membuf to)
1338{
1339        unsigned n;
1340
1341        if (target == current)
1342                save_access_regs(target->thread.acrs);
1343
1344        for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345                membuf_store(&to, __peek_user_compat(target, n));
1346        return 0;
1347}
1348
1349static int s390_compat_regs_set(struct task_struct *target,
1350                                const struct user_regset *regset,
1351                                unsigned int pos, unsigned int count,
1352                                const void *kbuf, const void __user *ubuf)
1353{
1354        int rc = 0;
1355
1356        if (target == current)
1357                save_access_regs(target->thread.acrs);
1358
1359        if (kbuf) {
1360                const compat_ulong_t *k = kbuf;
1361                while (count > 0 && !rc) {
1362                        rc = __poke_user_compat(target, pos, *k++);
1363                        count -= sizeof(*k);
1364                        pos += sizeof(*k);
1365                }
1366        } else {
1367                const compat_ulong_t  __user *u = ubuf;
1368                while (count > 0 && !rc) {
1369                        compat_ulong_t word;
1370                        rc = __get_user(word, u++);
1371                        if (rc)
1372                                break;
1373                        rc = __poke_user_compat(target, pos, word);
1374                        count -= sizeof(*u);
1375                        pos += sizeof(*u);
1376                }
1377        }
1378
1379        if (rc == 0 && target == current)
1380                restore_access_regs(target->thread.acrs);
1381
1382        return rc;
1383}
1384
1385static int s390_compat_regs_high_get(struct task_struct *target,
1386                                     const struct user_regset *regset,
1387                                     struct membuf to)
1388{
1389        compat_ulong_t *gprs_high;
1390        int i;
1391
1392        gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393        for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394                membuf_store(&to, *gprs_high);
1395        return 0;
1396}
1397
1398static int s390_compat_regs_high_set(struct task_struct *target,
1399                                     const struct user_regset *regset,
1400                                     unsigned int pos, unsigned int count,
1401                                     const void *kbuf, const void __user *ubuf)
1402{
1403        compat_ulong_t *gprs_high;
1404        int rc = 0;
1405
1406        gprs_high = (compat_ulong_t *)
1407                &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408        if (kbuf) {
1409                const compat_ulong_t *k = kbuf;
1410                while (count > 0) {
1411                        *gprs_high = *k++;
1412                        *gprs_high += 2;
1413                        count -= sizeof(*k);
1414                }
1415        } else {
1416                const compat_ulong_t  __user *u = ubuf;
1417                while (count > 0 && !rc) {
1418                        unsigned long word;
1419                        rc = __get_user(word, u++);
1420                        if (rc)
1421                                break;
1422                        *gprs_high = word;
1423                        *gprs_high += 2;
1424                        count -= sizeof(*u);
1425                }
1426        }
1427
1428        return rc;
1429}
1430
1431static int s390_compat_last_break_get(struct task_struct *target,
1432                                      const struct user_regset *regset,
1433                                      struct membuf to)
1434{
1435        compat_ulong_t last_break = target->thread.last_break;
1436
1437        return membuf_store(&to, (unsigned long)last_break);
1438}
1439
1440static int s390_compat_last_break_set(struct task_struct *target,
1441                                      const struct user_regset *regset,
1442                                      unsigned int pos, unsigned int count,
1443                                      const void *kbuf, const void __user *ubuf)
1444{
1445        return 0;
1446}
1447
1448static const struct user_regset s390_compat_regsets[] = {
1449        {
1450                .core_note_type = NT_PRSTATUS,
1451                .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452                .size = sizeof(compat_long_t),
1453                .align = sizeof(compat_long_t),
1454                .regset_get = s390_compat_regs_get,
1455                .set = s390_compat_regs_set,
1456        },
1457        {
1458                .core_note_type = NT_PRFPREG,
1459                .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460                .size = sizeof(compat_long_t),
1461                .align = sizeof(compat_long_t),
1462                .regset_get = s390_fpregs_get,
1463                .set = s390_fpregs_set,
1464        },
1465        {
1466                .core_note_type = NT_S390_SYSTEM_CALL,
1467                .n = 1,
1468                .size = sizeof(compat_uint_t),
1469                .align = sizeof(compat_uint_t),
1470                .regset_get = s390_system_call_get,
1471                .set = s390_system_call_set,
1472        },
1473        {
1474                .core_note_type = NT_S390_LAST_BREAK,
1475                .n = 1,
1476                .size = sizeof(long),
1477                .align = sizeof(long),
1478                .regset_get = s390_compat_last_break_get,
1479                .set = s390_compat_last_break_set,
1480        },
1481        {
1482                .core_note_type = NT_S390_TDB,
1483                .n = 1,
1484                .size = 256,
1485                .align = 1,
1486                .regset_get = s390_tdb_get,
1487                .set = s390_tdb_set,
1488        },
1489        {
1490                .core_note_type = NT_S390_VXRS_LOW,
1491                .n = __NUM_VXRS_LOW,
1492                .size = sizeof(__u64),
1493                .align = sizeof(__u64),
1494                .regset_get = s390_vxrs_low_get,
1495                .set = s390_vxrs_low_set,
1496        },
1497        {
1498                .core_note_type = NT_S390_VXRS_HIGH,
1499                .n = __NUM_VXRS_HIGH,
1500                .size = sizeof(__vector128),
1501                .align = sizeof(__vector128),
1502                .regset_get = s390_vxrs_high_get,
1503                .set = s390_vxrs_high_set,
1504        },
1505        {
1506                .core_note_type = NT_S390_HIGH_GPRS,
1507                .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508                .size = sizeof(compat_long_t),
1509                .align = sizeof(compat_long_t),
1510                .regset_get = s390_compat_regs_high_get,
1511                .set = s390_compat_regs_high_set,
1512        },
1513        {
1514                .core_note_type = NT_S390_GS_CB,
1515                .n = sizeof(struct gs_cb) / sizeof(__u64),
1516                .size = sizeof(__u64),
1517                .align = sizeof(__u64),
1518                .regset_get = s390_gs_cb_get,
1519                .set = s390_gs_cb_set,
1520        },
1521        {
1522                .core_note_type = NT_S390_GS_BC,
1523                .n = sizeof(struct gs_cb) / sizeof(__u64),
1524                .size = sizeof(__u64),
1525                .align = sizeof(__u64),
1526                .regset_get = s390_gs_bc_get,
1527                .set = s390_gs_bc_set,
1528        },
1529        {
1530                .core_note_type = NT_S390_RI_CB,
1531                .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532                .size = sizeof(__u64),
1533                .align = sizeof(__u64),
1534                .regset_get = s390_runtime_instr_get,
1535                .set = s390_runtime_instr_set,
1536        },
1537};
1538
1539static const struct user_regset_view user_s390_compat_view = {
1540        .name = "s390",
1541        .e_machine = EM_S390,
1542        .regsets = s390_compat_regsets,
1543        .n = ARRAY_SIZE(s390_compat_regsets)
1544};
1545#endif
1546
1547const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548{
1549#ifdef CONFIG_COMPAT
1550        if (test_tsk_thread_flag(task, TIF_31BIT))
1551                return &user_s390_compat_view;
1552#endif
1553        return &user_s390_view;
1554}
1555
1556static const char *gpr_names[NUM_GPRS] = {
1557        "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1558        "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559};
1560
1561unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562{
1563        if (offset >= NUM_GPRS)
1564                return 0;
1565        return regs->gprs[offset];
1566}
1567
1568int regs_query_register_offset(const char *name)
1569{
1570        unsigned long offset;
1571
1572        if (!name || *name != 'r')
1573                return -EINVAL;
1574        if (kstrtoul(name + 1, 10, &offset))
1575                return -EINVAL;
1576        if (offset >= NUM_GPRS)
1577                return -EINVAL;
1578        return offset;
1579}
1580
1581const char *regs_query_register_name(unsigned int offset)
1582{
1583        if (offset >= NUM_GPRS)
1584                return NULL;
1585        return gpr_names[offset];
1586}
1587
1588static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589{
1590        unsigned long ksp = kernel_stack_pointer(regs);
1591
1592        return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593}
1594
1595/**
1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597 * @regs:pt_regs which contains kernel stack pointer.
1598 * @n:stack entry number.
1599 *
1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602 * this returns 0.
1603 */
1604unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605{
1606        unsigned long addr;
1607
1608        addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609        if (!regs_within_kernel_stack(regs, addr))
1610                return 0;
1611        return *(unsigned long *)addr;
1612}
1613