linux/arch/x86/crypto/sha512-ssse3-asm.S
<<
>>
Prefs
   1########################################################################
   2# Implement fast SHA-512 with SSSE3 instructions. (x86_64)
   3#
   4# Copyright (C) 2013 Intel Corporation.
   5#
   6# Authors:
   7#     James Guilford <james.guilford@intel.com>
   8#     Kirk Yap <kirk.s.yap@intel.com>
   9#     David Cote <david.m.cote@intel.com>
  10#     Tim Chen <tim.c.chen@linux.intel.com>
  11#
  12# This software is available to you under a choice of one of two
  13# licenses.  You may choose to be licensed under the terms of the GNU
  14# General Public License (GPL) Version 2, available from the file
  15# COPYING in the main directory of this source tree, or the
  16# OpenIB.org BSD license below:
  17#
  18#     Redistribution and use in source and binary forms, with or
  19#     without modification, are permitted provided that the following
  20#     conditions are met:
  21#
  22#      - Redistributions of source code must retain the above
  23#        copyright notice, this list of conditions and the following
  24#        disclaimer.
  25#
  26#      - Redistributions in binary form must reproduce the above
  27#        copyright notice, this list of conditions and the following
  28#        disclaimer in the documentation and/or other materials
  29#        provided with the distribution.
  30#
  31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38# SOFTWARE.
  39#
  40########################################################################
  41#
  42# This code is described in an Intel White-Paper:
  43# "Fast SHA-512 Implementations on Intel Architecture Processors"
  44#
  45# To find it, surf to http://www.intel.com/p/en_US/embedded
  46# and search for that title.
  47#
  48########################################################################
  49
  50#include <linux/linkage.h>
  51
  52.text
  53
  54# Virtual Registers
  55# ARG1
  56digest =        %rdi
  57# ARG2
  58msg =           %rsi
  59# ARG3
  60msglen =        %rdx
  61T1 =            %rcx
  62T2 =            %r8
  63a_64 =          %r9
  64b_64 =          %r10
  65c_64 =          %r11
  66d_64 =          %r12
  67e_64 =          %r13
  68f_64 =          %r14
  69g_64 =          %r15
  70h_64 =          %rbx
  71tmp0 =          %rax
  72
  73# Local variables (stack frame)
  74
  75W_SIZE = 80*8
  76WK_SIZE = 2*8
  77
  78frame_W = 0
  79frame_WK = frame_W + W_SIZE
  80frame_size = frame_WK + WK_SIZE
  81
  82# Useful QWORD "arrays" for simpler memory references
  83# MSG, DIGEST, K_t, W_t are arrays
  84# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
  85
  86# Input message (arg1)
  87#define MSG(i)    8*i(msg)
  88
  89# Output Digest (arg2)
  90#define DIGEST(i) 8*i(digest)
  91
  92# SHA Constants (static mem)
  93#define K_t(i)    8*i+K512(%rip)
  94
  95# Message Schedule (stack frame)
  96#define W_t(i)    8*i+frame_W(%rsp)
  97
  98# W[t]+K[t] (stack frame)
  99#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
 100
 101.macro RotateState
 102        # Rotate symbols a..h right
 103        TMP   = h_64
 104        h_64  = g_64
 105        g_64  = f_64
 106        f_64  = e_64
 107        e_64  = d_64
 108        d_64  = c_64
 109        c_64  = b_64
 110        b_64  = a_64
 111        a_64  = TMP
 112.endm
 113
 114.macro SHA512_Round rnd
 115
 116        # Compute Round %%t
 117        mov     f_64, T1          # T1 = f
 118        mov     e_64, tmp0        # tmp = e
 119        xor     g_64, T1          # T1 = f ^ g
 120        ror     $23, tmp0 # 41    # tmp = e ror 23
 121        and     e_64, T1          # T1 = (f ^ g) & e
 122        xor     e_64, tmp0        # tmp = (e ror 23) ^ e
 123        xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
 124        idx = \rnd
 125        add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
 126        ror     $4, tmp0  # 18    # tmp = ((e ror 23) ^ e) ror 4
 127        xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
 128        mov     a_64, T2          # T2 = a
 129        add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
 130        ror     $14, tmp0 # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
 131        add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
 132        mov     a_64, tmp0        # tmp = a
 133        xor     c_64, T2          # T2 = a ^ c
 134        and     c_64, tmp0        # tmp = a & c
 135        and     b_64, T2          # T2 = (a ^ c) & b
 136        xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
 137        mov     a_64, tmp0        # tmp = a
 138        ror     $5, tmp0 # 39     # tmp = a ror 5
 139        xor     a_64, tmp0        # tmp = (a ror 5) ^ a
 140        add     T1, d_64          # e(next_state) = d + T1
 141        ror     $6, tmp0 # 34     # tmp = ((a ror 5) ^ a) ror 6
 142        xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
 143        lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
 144        ror     $28, tmp0 # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
 145        add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
 146        RotateState
 147.endm
 148
 149.macro SHA512_2Sched_2Round_sse rnd
 150
 151        # Compute rounds t-2 and t-1
 152        # Compute message schedule QWORDS t and t+1
 153
 154        #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
 155        # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
 156        # scheduler.
 157        #   The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
 158        # They are then added to their respective SHA512 constants at
 159        # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
 160        #   For brievity, the comments following vectored instructions only refer to
 161        # the first of a pair of QWORDS.
 162        # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
 163        #   The computation of the message schedule and the rounds are tightly
 164        # stitched to take advantage of instruction-level parallelism.
 165        # For clarity, integer instructions (for the rounds calculation) are indented
 166        # by one tab. Vectored instructions (for the message scheduler) are indented
 167        # by two tabs.
 168
 169        mov     f_64, T1
 170        idx = \rnd -2
 171        movdqa  W_t(idx), %xmm2             # XMM2 = W[t-2]
 172        xor     g_64, T1
 173        and     e_64, T1
 174        movdqa  %xmm2, %xmm0                # XMM0 = W[t-2]
 175        xor     g_64, T1
 176        idx = \rnd
 177        add     WK_2(idx), T1
 178        idx = \rnd - 15
 179        movdqu  W_t(idx), %xmm5             # XMM5 = W[t-15]
 180        mov     e_64, tmp0
 181        ror     $23, tmp0 # 41
 182        movdqa  %xmm5, %xmm3                # XMM3 = W[t-15]
 183        xor     e_64, tmp0
 184        ror     $4, tmp0 # 18
 185        psrlq   $61-19, %xmm0               # XMM0 = W[t-2] >> 42
 186        xor     e_64, tmp0
 187        ror     $14, tmp0 # 14
 188        psrlq   $(8-7), %xmm3               # XMM3 = W[t-15] >> 1
 189        add     tmp0, T1
 190        add     h_64, T1
 191        pxor    %xmm2, %xmm0                # XMM0 = (W[t-2] >> 42) ^ W[t-2]
 192        mov     a_64, T2
 193        xor     c_64, T2
 194        pxor    %xmm5, %xmm3                # XMM3 = (W[t-15] >> 1) ^ W[t-15]
 195        and     b_64, T2
 196        mov     a_64, tmp0
 197        psrlq   $(19-6), %xmm0              # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
 198        and     c_64, tmp0
 199        xor     tmp0, T2
 200        psrlq   $(7-1), %xmm3               # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
 201        mov     a_64, tmp0
 202        ror     $5, tmp0 # 39
 203        pxor    %xmm2, %xmm0                # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
 204        xor     a_64, tmp0
 205        ror     $6, tmp0 # 34
 206        pxor    %xmm5, %xmm3                # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
 207        xor     a_64, tmp0
 208        ror     $28, tmp0 # 28
 209        psrlq   $6, %xmm0                   # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
 210        add     tmp0, T2
 211        add     T1, d_64
 212        psrlq   $1, %xmm3                   # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
 213        lea     (T1, T2), h_64
 214        RotateState
 215        movdqa  %xmm2, %xmm1                # XMM1 = W[t-2]
 216        mov     f_64, T1
 217        xor     g_64, T1
 218        movdqa  %xmm5, %xmm4                # XMM4 = W[t-15]
 219        and     e_64, T1
 220        xor     g_64, T1
 221        psllq   $(64-19)-(64-61) , %xmm1    # XMM1 = W[t-2] << 42
 222        idx = \rnd + 1
 223        add     WK_2(idx), T1
 224        mov     e_64, tmp0
 225        psllq   $(64-1)-(64-8), %xmm4       # XMM4 = W[t-15] << 7
 226        ror     $23, tmp0 # 41
 227        xor     e_64, tmp0
 228        pxor    %xmm2, %xmm1                # XMM1 = (W[t-2] << 42)^W[t-2]
 229        ror     $4, tmp0 # 18
 230        xor     e_64, tmp0
 231        pxor    %xmm5, %xmm4                # XMM4 = (W[t-15]<<7)^W[t-15]
 232        ror     $14, tmp0 # 14
 233        add     tmp0, T1
 234        psllq   $(64-61), %xmm1             # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
 235        add     h_64, T1
 236        mov     a_64, T2
 237        psllq   $(64-8), %xmm4              # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
 238        xor     c_64, T2
 239        and     b_64, T2
 240        pxor    %xmm1, %xmm0                # XMM0 = s1(W[t-2])
 241        mov     a_64, tmp0
 242        and     c_64, tmp0
 243        idx = \rnd - 7
 244        movdqu  W_t(idx), %xmm1             # XMM1 = W[t-7]
 245        xor     tmp0, T2
 246        pxor    %xmm4, %xmm3                # XMM3 = s0(W[t-15])
 247        mov     a_64, tmp0
 248        paddq   %xmm3, %xmm0                # XMM0 = s1(W[t-2]) + s0(W[t-15])
 249        ror     $5, tmp0 # 39
 250        idx =\rnd-16
 251        paddq   W_t(idx), %xmm0             # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
 252        xor     a_64, tmp0
 253        paddq   %xmm1, %xmm0                # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
 254        ror     $6, tmp0 # 34
 255        movdqa  %xmm0, W_t(\rnd)            # Store scheduled qwords
 256        xor     a_64, tmp0
 257        paddq   K_t(\rnd), %xmm0            # Compute W[t]+K[t]
 258        ror     $28, tmp0 # 28
 259        idx = \rnd
 260        movdqa  %xmm0, WK_2(idx)            # Store W[t]+K[t] for next rounds
 261        add     tmp0, T2
 262        add     T1, d_64
 263        lea     (T1, T2), h_64
 264        RotateState
 265.endm
 266
 267########################################################################
 268## void sha512_transform_ssse3(struct sha512_state *state, const u8 *data,
 269##                             int blocks);
 270# (struct sha512_state is assumed to begin with u64 state[8])
 271# Purpose: Updates the SHA512 digest stored at "state" with the message
 272# stored in "data".
 273# The size of the message pointed to by "data" must be an integer multiple
 274# of SHA512 message blocks.
 275# "blocks" is the message length in SHA512 blocks.
 276########################################################################
 277SYM_FUNC_START(sha512_transform_ssse3)
 278
 279        test msglen, msglen
 280        je nowork
 281
 282        # Save GPRs
 283        push    %rbx
 284        push    %r12
 285        push    %r13
 286        push    %r14
 287        push    %r15
 288
 289        # Allocate Stack Space
 290        push    %rbp
 291        mov     %rsp, %rbp
 292        sub     $frame_size, %rsp
 293        and     $~(0x20 - 1), %rsp
 294
 295updateblock:
 296
 297# Load state variables
 298        mov     DIGEST(0), a_64
 299        mov     DIGEST(1), b_64
 300        mov     DIGEST(2), c_64
 301        mov     DIGEST(3), d_64
 302        mov     DIGEST(4), e_64
 303        mov     DIGEST(5), f_64
 304        mov     DIGEST(6), g_64
 305        mov     DIGEST(7), h_64
 306
 307        t = 0
 308        .rept 80/2 + 1
 309        # (80 rounds) / (2 rounds/iteration) + (1 iteration)
 310        # +1 iteration because the scheduler leads hashing by 1 iteration
 311                .if t < 2
 312                        # BSWAP 2 QWORDS
 313                        movdqa  XMM_QWORD_BSWAP(%rip), %xmm1
 314                        movdqu  MSG(t), %xmm0
 315                        pshufb  %xmm1, %xmm0    # BSWAP
 316                        movdqa  %xmm0, W_t(t)   # Store Scheduled Pair
 317                        paddq   K_t(t), %xmm0   # Compute W[t]+K[t]
 318                        movdqa  %xmm0, WK_2(t)  # Store into WK for rounds
 319                .elseif t < 16
 320                        # BSWAP 2 QWORDS# Compute 2 Rounds
 321                        movdqu  MSG(t), %xmm0
 322                        pshufb  %xmm1, %xmm0    # BSWAP
 323                        SHA512_Round t-2        # Round t-2
 324                        movdqa  %xmm0, W_t(t)   # Store Scheduled Pair
 325                        paddq   K_t(t), %xmm0   # Compute W[t]+K[t]
 326                        SHA512_Round t-1        # Round t-1
 327                        movdqa  %xmm0, WK_2(t)  # Store W[t]+K[t] into WK
 328                .elseif t < 79
 329                        # Schedule 2 QWORDS# Compute 2 Rounds
 330                        SHA512_2Sched_2Round_sse t
 331                .else
 332                        # Compute 2 Rounds
 333                        SHA512_Round t-2
 334                        SHA512_Round t-1
 335                .endif
 336                t = t+2
 337        .endr
 338
 339        # Update digest
 340        add     a_64, DIGEST(0)
 341        add     b_64, DIGEST(1)
 342        add     c_64, DIGEST(2)
 343        add     d_64, DIGEST(3)
 344        add     e_64, DIGEST(4)
 345        add     f_64, DIGEST(5)
 346        add     g_64, DIGEST(6)
 347        add     h_64, DIGEST(7)
 348
 349        # Advance to next message block
 350        add     $16*8, msg
 351        dec     msglen
 352        jnz     updateblock
 353
 354        # Restore Stack Pointer
 355        mov     %rbp, %rsp
 356        pop     %rbp
 357
 358        # Restore GPRs
 359        pop     %r15
 360        pop     %r14
 361        pop     %r13
 362        pop     %r12
 363        pop     %rbx
 364
 365nowork:
 366        RET
 367SYM_FUNC_END(sha512_transform_ssse3)
 368
 369########################################################################
 370### Binary Data
 371
 372.section        .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
 373.align 16
 374# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
 375XMM_QWORD_BSWAP:
 376        .octa 0x08090a0b0c0d0e0f0001020304050607
 377
 378# Mergeable 640-byte rodata section. This allows linker to merge the table
 379# with other, exactly the same 640-byte fragment of another rodata section
 380# (if such section exists).
 381.section        .rodata.cst640.K512, "aM", @progbits, 640
 382.align 64
 383# K[t] used in SHA512 hashing
 384K512:
 385        .quad 0x428a2f98d728ae22,0x7137449123ef65cd
 386        .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
 387        .quad 0x3956c25bf348b538,0x59f111f1b605d019
 388        .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
 389        .quad 0xd807aa98a3030242,0x12835b0145706fbe
 390        .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
 391        .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
 392        .quad 0x9bdc06a725c71235,0xc19bf174cf692694
 393        .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
 394        .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
 395        .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
 396        .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
 397        .quad 0x983e5152ee66dfab,0xa831c66d2db43210
 398        .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
 399        .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
 400        .quad 0x06ca6351e003826f,0x142929670a0e6e70
 401        .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
 402        .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
 403        .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
 404        .quad 0x81c2c92e47edaee6,0x92722c851482353b
 405        .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
 406        .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
 407        .quad 0xd192e819d6ef5218,0xd69906245565a910
 408        .quad 0xf40e35855771202a,0x106aa07032bbd1b8
 409        .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
 410        .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
 411        .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
 412        .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
 413        .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
 414        .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
 415        .quad 0x90befffa23631e28,0xa4506cebde82bde9
 416        .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
 417        .quad 0xca273eceea26619c,0xd186b8c721c0c207
 418        .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
 419        .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
 420        .quad 0x113f9804bef90dae,0x1b710b35131c471b
 421        .quad 0x28db77f523047d84,0x32caab7b40c72493
 422        .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
 423        .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
 424        .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
 425