linux/arch/x86/mm/init_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/x86_64/mm/init.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   7 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   8 */
   9
  10#include <linux/signal.h>
  11#include <linux/sched.h>
  12#include <linux/kernel.h>
  13#include <linux/errno.h>
  14#include <linux/string.h>
  15#include <linux/types.h>
  16#include <linux/ptrace.h>
  17#include <linux/mman.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/smp.h>
  21#include <linux/init.h>
  22#include <linux/initrd.h>
  23#include <linux/pagemap.h>
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/memory.h>
  31#include <linux/memory_hotplug.h>
  32#include <linux/memremap.h>
  33#include <linux/nmi.h>
  34#include <linux/gfp.h>
  35#include <linux/kcore.h>
  36#include <linux/bootmem_info.h>
  37
  38#include <asm/processor.h>
  39#include <asm/bios_ebda.h>
  40#include <linux/uaccess.h>
  41#include <asm/pgalloc.h>
  42#include <asm/dma.h>
  43#include <asm/fixmap.h>
  44#include <asm/e820/api.h>
  45#include <asm/apic.h>
  46#include <asm/tlb.h>
  47#include <asm/mmu_context.h>
  48#include <asm/proto.h>
  49#include <asm/smp.h>
  50#include <asm/sections.h>
  51#include <asm/kdebug.h>
  52#include <asm/numa.h>
  53#include <asm/set_memory.h>
  54#include <asm/init.h>
  55#include <asm/uv/uv.h>
  56#include <asm/setup.h>
  57#include <asm/ftrace.h>
  58
  59#include "mm_internal.h"
  60
  61#include "ident_map.c"
  62
  63#define DEFINE_POPULATE(fname, type1, type2, init)              \
  64static inline void fname##_init(struct mm_struct *mm,           \
  65                type1##_t *arg1, type2##_t *arg2, bool init)    \
  66{                                                               \
  67        if (init)                                               \
  68                fname##_safe(mm, arg1, arg2);                   \
  69        else                                                    \
  70                fname(mm, arg1, arg2);                          \
  71}
  72
  73DEFINE_POPULATE(p4d_populate, p4d, pud, init)
  74DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
  75DEFINE_POPULATE(pud_populate, pud, pmd, init)
  76DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
  77
  78#define DEFINE_ENTRY(type1, type2, init)                        \
  79static inline void set_##type1##_init(type1##_t *arg1,          \
  80                        type2##_t arg2, bool init)              \
  81{                                                               \
  82        if (init)                                               \
  83                set_##type1##_safe(arg1, arg2);                 \
  84        else                                                    \
  85                set_##type1(arg1, arg2);                        \
  86}
  87
  88DEFINE_ENTRY(p4d, p4d, init)
  89DEFINE_ENTRY(pud, pud, init)
  90DEFINE_ENTRY(pmd, pmd, init)
  91DEFINE_ENTRY(pte, pte, init)
  92
  93
  94/*
  95 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  96 * physical space so we can cache the place of the first one and move
  97 * around without checking the pgd every time.
  98 */
  99
 100/* Bits supported by the hardware: */
 101pteval_t __supported_pte_mask __read_mostly = ~0;
 102/* Bits allowed in normal kernel mappings: */
 103pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 104EXPORT_SYMBOL_GPL(__supported_pte_mask);
 105/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
 106EXPORT_SYMBOL(__default_kernel_pte_mask);
 107
 108int force_personality32;
 109
 110/*
 111 * noexec32=on|off
 112 * Control non executable heap for 32bit processes.
 113 *
 114 * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 115 * off  PROT_READ implies PROT_EXEC
 116 */
 117static int __init nonx32_setup(char *str)
 118{
 119        if (!strcmp(str, "on"))
 120                force_personality32 &= ~READ_IMPLIES_EXEC;
 121        else if (!strcmp(str, "off"))
 122                force_personality32 |= READ_IMPLIES_EXEC;
 123        return 1;
 124}
 125__setup("noexec32=", nonx32_setup);
 126
 127static void sync_global_pgds_l5(unsigned long start, unsigned long end)
 128{
 129        unsigned long addr;
 130
 131        for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 132                const pgd_t *pgd_ref = pgd_offset_k(addr);
 133                struct page *page;
 134
 135                /* Check for overflow */
 136                if (addr < start)
 137                        break;
 138
 139                if (pgd_none(*pgd_ref))
 140                        continue;
 141
 142                spin_lock(&pgd_lock);
 143                list_for_each_entry(page, &pgd_list, lru) {
 144                        pgd_t *pgd;
 145                        spinlock_t *pgt_lock;
 146
 147                        pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 148                        /* the pgt_lock only for Xen */
 149                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 150                        spin_lock(pgt_lock);
 151
 152                        if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 153                                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 154
 155                        if (pgd_none(*pgd))
 156                                set_pgd(pgd, *pgd_ref);
 157
 158                        spin_unlock(pgt_lock);
 159                }
 160                spin_unlock(&pgd_lock);
 161        }
 162}
 163
 164static void sync_global_pgds_l4(unsigned long start, unsigned long end)
 165{
 166        unsigned long addr;
 167
 168        for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 169                pgd_t *pgd_ref = pgd_offset_k(addr);
 170                const p4d_t *p4d_ref;
 171                struct page *page;
 172
 173                /*
 174                 * With folded p4d, pgd_none() is always false, we need to
 175                 * handle synchronization on p4d level.
 176                 */
 177                MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
 178                p4d_ref = p4d_offset(pgd_ref, addr);
 179
 180                if (p4d_none(*p4d_ref))
 181                        continue;
 182
 183                spin_lock(&pgd_lock);
 184                list_for_each_entry(page, &pgd_list, lru) {
 185                        pgd_t *pgd;
 186                        p4d_t *p4d;
 187                        spinlock_t *pgt_lock;
 188
 189                        pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 190                        p4d = p4d_offset(pgd, addr);
 191                        /* the pgt_lock only for Xen */
 192                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 193                        spin_lock(pgt_lock);
 194
 195                        if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
 196                                BUG_ON(p4d_pgtable(*p4d)
 197                                       != p4d_pgtable(*p4d_ref));
 198
 199                        if (p4d_none(*p4d))
 200                                set_p4d(p4d, *p4d_ref);
 201
 202                        spin_unlock(pgt_lock);
 203                }
 204                spin_unlock(&pgd_lock);
 205        }
 206}
 207
 208/*
 209 * When memory was added make sure all the processes MM have
 210 * suitable PGD entries in the local PGD level page.
 211 */
 212static void sync_global_pgds(unsigned long start, unsigned long end)
 213{
 214        if (pgtable_l5_enabled())
 215                sync_global_pgds_l5(start, end);
 216        else
 217                sync_global_pgds_l4(start, end);
 218}
 219
 220/*
 221 * NOTE: This function is marked __ref because it calls __init function
 222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 223 */
 224static __ref void *spp_getpage(void)
 225{
 226        void *ptr;
 227
 228        if (after_bootmem)
 229                ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 230        else
 231                ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 232
 233        if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 234                panic("set_pte_phys: cannot allocate page data %s\n",
 235                        after_bootmem ? "after bootmem" : "");
 236        }
 237
 238        pr_debug("spp_getpage %p\n", ptr);
 239
 240        return ptr;
 241}
 242
 243static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
 244{
 245        if (pgd_none(*pgd)) {
 246                p4d_t *p4d = (p4d_t *)spp_getpage();
 247                pgd_populate(&init_mm, pgd, p4d);
 248                if (p4d != p4d_offset(pgd, 0))
 249                        printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 250                               p4d, p4d_offset(pgd, 0));
 251        }
 252        return p4d_offset(pgd, vaddr);
 253}
 254
 255static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
 256{
 257        if (p4d_none(*p4d)) {
 258                pud_t *pud = (pud_t *)spp_getpage();
 259                p4d_populate(&init_mm, p4d, pud);
 260                if (pud != pud_offset(p4d, 0))
 261                        printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 262                               pud, pud_offset(p4d, 0));
 263        }
 264        return pud_offset(p4d, vaddr);
 265}
 266
 267static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 268{
 269        if (pud_none(*pud)) {
 270                pmd_t *pmd = (pmd_t *) spp_getpage();
 271                pud_populate(&init_mm, pud, pmd);
 272                if (pmd != pmd_offset(pud, 0))
 273                        printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
 274                               pmd, pmd_offset(pud, 0));
 275        }
 276        return pmd_offset(pud, vaddr);
 277}
 278
 279static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 280{
 281        if (pmd_none(*pmd)) {
 282                pte_t *pte = (pte_t *) spp_getpage();
 283                pmd_populate_kernel(&init_mm, pmd, pte);
 284                if (pte != pte_offset_kernel(pmd, 0))
 285                        printk(KERN_ERR "PAGETABLE BUG #03!\n");
 286        }
 287        return pte_offset_kernel(pmd, vaddr);
 288}
 289
 290static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
 291{
 292        pmd_t *pmd = fill_pmd(pud, vaddr);
 293        pte_t *pte = fill_pte(pmd, vaddr);
 294
 295        set_pte(pte, new_pte);
 296
 297        /*
 298         * It's enough to flush this one mapping.
 299         * (PGE mappings get flushed as well)
 300         */
 301        flush_tlb_one_kernel(vaddr);
 302}
 303
 304void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
 305{
 306        p4d_t *p4d = p4d_page + p4d_index(vaddr);
 307        pud_t *pud = fill_pud(p4d, vaddr);
 308
 309        __set_pte_vaddr(pud, vaddr, new_pte);
 310}
 311
 312void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 313{
 314        pud_t *pud = pud_page + pud_index(vaddr);
 315
 316        __set_pte_vaddr(pud, vaddr, new_pte);
 317}
 318
 319void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 320{
 321        pgd_t *pgd;
 322        p4d_t *p4d_page;
 323
 324        pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 325
 326        pgd = pgd_offset_k(vaddr);
 327        if (pgd_none(*pgd)) {
 328                printk(KERN_ERR
 329                        "PGD FIXMAP MISSING, it should be setup in head.S!\n");
 330                return;
 331        }
 332
 333        p4d_page = p4d_offset(pgd, 0);
 334        set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
 335}
 336
 337pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 338{
 339        pgd_t *pgd;
 340        p4d_t *p4d;
 341        pud_t *pud;
 342
 343        pgd = pgd_offset_k(vaddr);
 344        p4d = fill_p4d(pgd, vaddr);
 345        pud = fill_pud(p4d, vaddr);
 346        return fill_pmd(pud, vaddr);
 347}
 348
 349pte_t * __init populate_extra_pte(unsigned long vaddr)
 350{
 351        pmd_t *pmd;
 352
 353        pmd = populate_extra_pmd(vaddr);
 354        return fill_pte(pmd, vaddr);
 355}
 356
 357/*
 358 * Create large page table mappings for a range of physical addresses.
 359 */
 360static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 361                                        enum page_cache_mode cache)
 362{
 363        pgd_t *pgd;
 364        p4d_t *p4d;
 365        pud_t *pud;
 366        pmd_t *pmd;
 367        pgprot_t prot;
 368
 369        pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 370                protval_4k_2_large(cachemode2protval(cache));
 371        BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 372        for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 373                pgd = pgd_offset_k((unsigned long)__va(phys));
 374                if (pgd_none(*pgd)) {
 375                        p4d = (p4d_t *) spp_getpage();
 376                        set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
 377                                                _PAGE_USER));
 378                }
 379                p4d = p4d_offset(pgd, (unsigned long)__va(phys));
 380                if (p4d_none(*p4d)) {
 381                        pud = (pud_t *) spp_getpage();
 382                        set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
 383                                                _PAGE_USER));
 384                }
 385                pud = pud_offset(p4d, (unsigned long)__va(phys));
 386                if (pud_none(*pud)) {
 387                        pmd = (pmd_t *) spp_getpage();
 388                        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 389                                                _PAGE_USER));
 390                }
 391                pmd = pmd_offset(pud, phys);
 392                BUG_ON(!pmd_none(*pmd));
 393                set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 394        }
 395}
 396
 397void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 398{
 399        __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 400}
 401
 402void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 403{
 404        __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 405}
 406
 407/*
 408 * The head.S code sets up the kernel high mapping:
 409 *
 410 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 411 *
 412 * phys_base holds the negative offset to the kernel, which is added
 413 * to the compile time generated pmds. This results in invalid pmds up
 414 * to the point where we hit the physaddr 0 mapping.
 415 *
 416 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 418 * well, as they are located before _text:
 419 */
 420void __init cleanup_highmap(void)
 421{
 422        unsigned long vaddr = __START_KERNEL_map;
 423        unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 424        unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 425        pmd_t *pmd = level2_kernel_pgt;
 426
 427        /*
 428         * Native path, max_pfn_mapped is not set yet.
 429         * Xen has valid max_pfn_mapped set in
 430         *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 431         */
 432        if (max_pfn_mapped)
 433                vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 434
 435        for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 436                if (pmd_none(*pmd))
 437                        continue;
 438                if (vaddr < (unsigned long) _text || vaddr > end)
 439                        set_pmd(pmd, __pmd(0));
 440        }
 441}
 442
 443/*
 444 * Create PTE level page table mapping for physical addresses.
 445 * It returns the last physical address mapped.
 446 */
 447static unsigned long __meminit
 448phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 449              pgprot_t prot, bool init)
 450{
 451        unsigned long pages = 0, paddr_next;
 452        unsigned long paddr_last = paddr_end;
 453        pte_t *pte;
 454        int i;
 455
 456        pte = pte_page + pte_index(paddr);
 457        i = pte_index(paddr);
 458
 459        for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 460                paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 461                if (paddr >= paddr_end) {
 462                        if (!after_bootmem &&
 463                            !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 464                                             E820_TYPE_RAM) &&
 465                            !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 466                                             E820_TYPE_RESERVED_KERN))
 467                                set_pte_init(pte, __pte(0), init);
 468                        continue;
 469                }
 470
 471                /*
 472                 * We will re-use the existing mapping.
 473                 * Xen for example has some special requirements, like mapping
 474                 * pagetable pages as RO. So assume someone who pre-setup
 475                 * these mappings are more intelligent.
 476                 */
 477                if (!pte_none(*pte)) {
 478                        if (!after_bootmem)
 479                                pages++;
 480                        continue;
 481                }
 482
 483                if (0)
 484                        pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 485                                pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 486                pages++;
 487                set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
 488                paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 489        }
 490
 491        update_page_count(PG_LEVEL_4K, pages);
 492
 493        return paddr_last;
 494}
 495
 496/*
 497 * Create PMD level page table mapping for physical addresses. The virtual
 498 * and physical address have to be aligned at this level.
 499 * It returns the last physical address mapped.
 500 */
 501static unsigned long __meminit
 502phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 503              unsigned long page_size_mask, pgprot_t prot, bool init)
 504{
 505        unsigned long pages = 0, paddr_next;
 506        unsigned long paddr_last = paddr_end;
 507
 508        int i = pmd_index(paddr);
 509
 510        for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 511                pmd_t *pmd = pmd_page + pmd_index(paddr);
 512                pte_t *pte;
 513                pgprot_t new_prot = prot;
 514
 515                paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 516                if (paddr >= paddr_end) {
 517                        if (!after_bootmem &&
 518                            !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 519                                             E820_TYPE_RAM) &&
 520                            !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 521                                             E820_TYPE_RESERVED_KERN))
 522                                set_pmd_init(pmd, __pmd(0), init);
 523                        continue;
 524                }
 525
 526                if (!pmd_none(*pmd)) {
 527                        if (!pmd_large(*pmd)) {
 528                                spin_lock(&init_mm.page_table_lock);
 529                                pte = (pte_t *)pmd_page_vaddr(*pmd);
 530                                paddr_last = phys_pte_init(pte, paddr,
 531                                                           paddr_end, prot,
 532                                                           init);
 533                                spin_unlock(&init_mm.page_table_lock);
 534                                continue;
 535                        }
 536                        /*
 537                         * If we are ok with PG_LEVEL_2M mapping, then we will
 538                         * use the existing mapping,
 539                         *
 540                         * Otherwise, we will split the large page mapping but
 541                         * use the same existing protection bits except for
 542                         * large page, so that we don't violate Intel's TLB
 543                         * Application note (317080) which says, while changing
 544                         * the page sizes, new and old translations should
 545                         * not differ with respect to page frame and
 546                         * attributes.
 547                         */
 548                        if (page_size_mask & (1 << PG_LEVEL_2M)) {
 549                                if (!after_bootmem)
 550                                        pages++;
 551                                paddr_last = paddr_next;
 552                                continue;
 553                        }
 554                        new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 555                }
 556
 557                if (page_size_mask & (1<<PG_LEVEL_2M)) {
 558                        pages++;
 559                        spin_lock(&init_mm.page_table_lock);
 560                        set_pte_init((pte_t *)pmd,
 561                                     pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
 562                                             __pgprot(pgprot_val(prot) | _PAGE_PSE)),
 563                                     init);
 564                        spin_unlock(&init_mm.page_table_lock);
 565                        paddr_last = paddr_next;
 566                        continue;
 567                }
 568
 569                pte = alloc_low_page();
 570                paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
 571
 572                spin_lock(&init_mm.page_table_lock);
 573                pmd_populate_kernel_init(&init_mm, pmd, pte, init);
 574                spin_unlock(&init_mm.page_table_lock);
 575        }
 576        update_page_count(PG_LEVEL_2M, pages);
 577        return paddr_last;
 578}
 579
 580/*
 581 * Create PUD level page table mapping for physical addresses. The virtual
 582 * and physical address do not have to be aligned at this level. KASLR can
 583 * randomize virtual addresses up to this level.
 584 * It returns the last physical address mapped.
 585 */
 586static unsigned long __meminit
 587phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 588              unsigned long page_size_mask, pgprot_t _prot, bool init)
 589{
 590        unsigned long pages = 0, paddr_next;
 591        unsigned long paddr_last = paddr_end;
 592        unsigned long vaddr = (unsigned long)__va(paddr);
 593        int i = pud_index(vaddr);
 594
 595        for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 596                pud_t *pud;
 597                pmd_t *pmd;
 598                pgprot_t prot = _prot;
 599
 600                vaddr = (unsigned long)__va(paddr);
 601                pud = pud_page + pud_index(vaddr);
 602                paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 603
 604                if (paddr >= paddr_end) {
 605                        if (!after_bootmem &&
 606                            !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 607                                             E820_TYPE_RAM) &&
 608                            !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 609                                             E820_TYPE_RESERVED_KERN))
 610                                set_pud_init(pud, __pud(0), init);
 611                        continue;
 612                }
 613
 614                if (!pud_none(*pud)) {
 615                        if (!pud_large(*pud)) {
 616                                pmd = pmd_offset(pud, 0);
 617                                paddr_last = phys_pmd_init(pmd, paddr,
 618                                                           paddr_end,
 619                                                           page_size_mask,
 620                                                           prot, init);
 621                                continue;
 622                        }
 623                        /*
 624                         * If we are ok with PG_LEVEL_1G mapping, then we will
 625                         * use the existing mapping.
 626                         *
 627                         * Otherwise, we will split the gbpage mapping but use
 628                         * the same existing protection  bits except for large
 629                         * page, so that we don't violate Intel's TLB
 630                         * Application note (317080) which says, while changing
 631                         * the page sizes, new and old translations should
 632                         * not differ with respect to page frame and
 633                         * attributes.
 634                         */
 635                        if (page_size_mask & (1 << PG_LEVEL_1G)) {
 636                                if (!after_bootmem)
 637                                        pages++;
 638                                paddr_last = paddr_next;
 639                                continue;
 640                        }
 641                        prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 642                }
 643
 644                if (page_size_mask & (1<<PG_LEVEL_1G)) {
 645                        pages++;
 646                        spin_lock(&init_mm.page_table_lock);
 647
 648                        prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
 649
 650                        set_pte_init((pte_t *)pud,
 651                                     pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
 652                                             prot),
 653                                     init);
 654                        spin_unlock(&init_mm.page_table_lock);
 655                        paddr_last = paddr_next;
 656                        continue;
 657                }
 658
 659                pmd = alloc_low_page();
 660                paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 661                                           page_size_mask, prot, init);
 662
 663                spin_lock(&init_mm.page_table_lock);
 664                pud_populate_init(&init_mm, pud, pmd, init);
 665                spin_unlock(&init_mm.page_table_lock);
 666        }
 667
 668        update_page_count(PG_LEVEL_1G, pages);
 669
 670        return paddr_last;
 671}
 672
 673static unsigned long __meminit
 674phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 675              unsigned long page_size_mask, pgprot_t prot, bool init)
 676{
 677        unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
 678
 679        paddr_last = paddr_end;
 680        vaddr = (unsigned long)__va(paddr);
 681        vaddr_end = (unsigned long)__va(paddr_end);
 682
 683        if (!pgtable_l5_enabled())
 684                return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
 685                                     page_size_mask, prot, init);
 686
 687        for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 688                p4d_t *p4d = p4d_page + p4d_index(vaddr);
 689                pud_t *pud;
 690
 691                vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
 692                paddr = __pa(vaddr);
 693
 694                if (paddr >= paddr_end) {
 695                        paddr_next = __pa(vaddr_next);
 696                        if (!after_bootmem &&
 697                            !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 698                                             E820_TYPE_RAM) &&
 699                            !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 700                                             E820_TYPE_RESERVED_KERN))
 701                                set_p4d_init(p4d, __p4d(0), init);
 702                        continue;
 703                }
 704
 705                if (!p4d_none(*p4d)) {
 706                        pud = pud_offset(p4d, 0);
 707                        paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 708                                        page_size_mask, prot, init);
 709                        continue;
 710                }
 711
 712                pud = alloc_low_page();
 713                paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 714                                           page_size_mask, prot, init);
 715
 716                spin_lock(&init_mm.page_table_lock);
 717                p4d_populate_init(&init_mm, p4d, pud, init);
 718                spin_unlock(&init_mm.page_table_lock);
 719        }
 720
 721        return paddr_last;
 722}
 723
 724static unsigned long __meminit
 725__kernel_physical_mapping_init(unsigned long paddr_start,
 726                               unsigned long paddr_end,
 727                               unsigned long page_size_mask,
 728                               pgprot_t prot, bool init)
 729{
 730        bool pgd_changed = false;
 731        unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 732
 733        paddr_last = paddr_end;
 734        vaddr = (unsigned long)__va(paddr_start);
 735        vaddr_end = (unsigned long)__va(paddr_end);
 736        vaddr_start = vaddr;
 737
 738        for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 739                pgd_t *pgd = pgd_offset_k(vaddr);
 740                p4d_t *p4d;
 741
 742                vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 743
 744                if (pgd_val(*pgd)) {
 745                        p4d = (p4d_t *)pgd_page_vaddr(*pgd);
 746                        paddr_last = phys_p4d_init(p4d, __pa(vaddr),
 747                                                   __pa(vaddr_end),
 748                                                   page_size_mask,
 749                                                   prot, init);
 750                        continue;
 751                }
 752
 753                p4d = alloc_low_page();
 754                paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
 755                                           page_size_mask, prot, init);
 756
 757                spin_lock(&init_mm.page_table_lock);
 758                if (pgtable_l5_enabled())
 759                        pgd_populate_init(&init_mm, pgd, p4d, init);
 760                else
 761                        p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
 762                                          (pud_t *) p4d, init);
 763
 764                spin_unlock(&init_mm.page_table_lock);
 765                pgd_changed = true;
 766        }
 767
 768        if (pgd_changed)
 769                sync_global_pgds(vaddr_start, vaddr_end - 1);
 770
 771        return paddr_last;
 772}
 773
 774
 775/*
 776 * Create page table mapping for the physical memory for specific physical
 777 * addresses. Note that it can only be used to populate non-present entries.
 778 * The virtual and physical addresses have to be aligned on PMD level
 779 * down. It returns the last physical address mapped.
 780 */
 781unsigned long __meminit
 782kernel_physical_mapping_init(unsigned long paddr_start,
 783                             unsigned long paddr_end,
 784                             unsigned long page_size_mask, pgprot_t prot)
 785{
 786        return __kernel_physical_mapping_init(paddr_start, paddr_end,
 787                                              page_size_mask, prot, true);
 788}
 789
 790/*
 791 * This function is similar to kernel_physical_mapping_init() above with the
 792 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
 793 * when updating the mapping. The caller is responsible to flush the TLBs after
 794 * the function returns.
 795 */
 796unsigned long __meminit
 797kernel_physical_mapping_change(unsigned long paddr_start,
 798                               unsigned long paddr_end,
 799                               unsigned long page_size_mask)
 800{
 801        return __kernel_physical_mapping_init(paddr_start, paddr_end,
 802                                              page_size_mask, PAGE_KERNEL,
 803                                              false);
 804}
 805
 806#ifndef CONFIG_NUMA
 807void __init initmem_init(void)
 808{
 809        memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
 810}
 811#endif
 812
 813void __init paging_init(void)
 814{
 815        sparse_init();
 816
 817        /*
 818         * clear the default setting with node 0
 819         * note: don't use nodes_clear here, that is really clearing when
 820         *       numa support is not compiled in, and later node_set_state
 821         *       will not set it back.
 822         */
 823        node_clear_state(0, N_MEMORY);
 824        node_clear_state(0, N_NORMAL_MEMORY);
 825
 826        zone_sizes_init();
 827}
 828
 829#ifdef CONFIG_SPARSEMEM_VMEMMAP
 830#define PAGE_UNUSED 0xFD
 831
 832/*
 833 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
 834 * from unused_pmd_start to next PMD_SIZE boundary.
 835 */
 836static unsigned long unused_pmd_start __meminitdata;
 837
 838static void __meminit vmemmap_flush_unused_pmd(void)
 839{
 840        if (!unused_pmd_start)
 841                return;
 842        /*
 843         * Clears (unused_pmd_start, PMD_END]
 844         */
 845        memset((void *)unused_pmd_start, PAGE_UNUSED,
 846               ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
 847        unused_pmd_start = 0;
 848}
 849
 850#ifdef CONFIG_MEMORY_HOTPLUG
 851/* Returns true if the PMD is completely unused and thus it can be freed */
 852static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
 853{
 854        unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
 855
 856        /*
 857         * Flush the unused range cache to ensure that memchr_inv() will work
 858         * for the whole range.
 859         */
 860        vmemmap_flush_unused_pmd();
 861        memset((void *)addr, PAGE_UNUSED, end - addr);
 862
 863        return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
 864}
 865#endif
 866
 867static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
 868{
 869        /*
 870         * As we expect to add in the same granularity as we remove, it's
 871         * sufficient to mark only some piece used to block the memmap page from
 872         * getting removed when removing some other adjacent memmap (just in
 873         * case the first memmap never gets initialized e.g., because the memory
 874         * block never gets onlined).
 875         */
 876        memset((void *)start, 0, sizeof(struct page));
 877}
 878
 879static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
 880{
 881        /*
 882         * We only optimize if the new used range directly follows the
 883         * previously unused range (esp., when populating consecutive sections).
 884         */
 885        if (unused_pmd_start == start) {
 886                if (likely(IS_ALIGNED(end, PMD_SIZE)))
 887                        unused_pmd_start = 0;
 888                else
 889                        unused_pmd_start = end;
 890                return;
 891        }
 892
 893        /*
 894         * If the range does not contiguously follows previous one, make sure
 895         * to mark the unused range of the previous one so it can be removed.
 896         */
 897        vmemmap_flush_unused_pmd();
 898        __vmemmap_use_sub_pmd(start);
 899}
 900
 901
 902static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
 903{
 904        const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
 905
 906        vmemmap_flush_unused_pmd();
 907
 908        /*
 909         * Could be our memmap page is filled with PAGE_UNUSED already from a
 910         * previous remove. Make sure to reset it.
 911         */
 912        __vmemmap_use_sub_pmd(start);
 913
 914        /*
 915         * Mark with PAGE_UNUSED the unused parts of the new memmap range
 916         */
 917        if (!IS_ALIGNED(start, PMD_SIZE))
 918                memset((void *)page, PAGE_UNUSED, start - page);
 919
 920        /*
 921         * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
 922         * consecutive sections. Remember for the last added PMD where the
 923         * unused range begins.
 924         */
 925        if (!IS_ALIGNED(end, PMD_SIZE))
 926                unused_pmd_start = end;
 927}
 928#endif
 929
 930/*
 931 * Memory hotplug specific functions
 932 */
 933#ifdef CONFIG_MEMORY_HOTPLUG
 934/*
 935 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 936 * updating.
 937 */
 938static void update_end_of_memory_vars(u64 start, u64 size)
 939{
 940        unsigned long end_pfn = PFN_UP(start + size);
 941
 942        if (end_pfn > max_pfn) {
 943                max_pfn = end_pfn;
 944                max_low_pfn = end_pfn;
 945                high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 946        }
 947}
 948
 949int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
 950              struct mhp_params *params)
 951{
 952        int ret;
 953
 954        ret = __add_pages(nid, start_pfn, nr_pages, params);
 955        WARN_ON_ONCE(ret);
 956
 957        /* update max_pfn, max_low_pfn and high_memory */
 958        update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
 959                                  nr_pages << PAGE_SHIFT);
 960
 961        return ret;
 962}
 963
 964int arch_add_memory(int nid, u64 start, u64 size,
 965                    struct mhp_params *params)
 966{
 967        unsigned long start_pfn = start >> PAGE_SHIFT;
 968        unsigned long nr_pages = size >> PAGE_SHIFT;
 969
 970        init_memory_mapping(start, start + size, params->pgprot);
 971
 972        return add_pages(nid, start_pfn, nr_pages, params);
 973}
 974
 975static void __meminit free_pagetable(struct page *page, int order)
 976{
 977        unsigned long magic;
 978        unsigned int nr_pages = 1 << order;
 979
 980        /* bootmem page has reserved flag */
 981        if (PageReserved(page)) {
 982                __ClearPageReserved(page);
 983
 984                magic = page->index;
 985                if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 986                        while (nr_pages--)
 987                                put_page_bootmem(page++);
 988                } else
 989                        while (nr_pages--)
 990                                free_reserved_page(page++);
 991        } else
 992                free_pages((unsigned long)page_address(page), order);
 993}
 994
 995static void __meminit free_hugepage_table(struct page *page,
 996                struct vmem_altmap *altmap)
 997{
 998        if (altmap)
 999                vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1000        else
1001                free_pagetable(page, get_order(PMD_SIZE));
1002}
1003
1004static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1005{
1006        pte_t *pte;
1007        int i;
1008
1009        for (i = 0; i < PTRS_PER_PTE; i++) {
1010                pte = pte_start + i;
1011                if (!pte_none(*pte))
1012                        return;
1013        }
1014
1015        /* free a pte talbe */
1016        free_pagetable(pmd_page(*pmd), 0);
1017        spin_lock(&init_mm.page_table_lock);
1018        pmd_clear(pmd);
1019        spin_unlock(&init_mm.page_table_lock);
1020}
1021
1022static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1023{
1024        pmd_t *pmd;
1025        int i;
1026
1027        for (i = 0; i < PTRS_PER_PMD; i++) {
1028                pmd = pmd_start + i;
1029                if (!pmd_none(*pmd))
1030                        return;
1031        }
1032
1033        /* free a pmd talbe */
1034        free_pagetable(pud_page(*pud), 0);
1035        spin_lock(&init_mm.page_table_lock);
1036        pud_clear(pud);
1037        spin_unlock(&init_mm.page_table_lock);
1038}
1039
1040static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1041{
1042        pud_t *pud;
1043        int i;
1044
1045        for (i = 0; i < PTRS_PER_PUD; i++) {
1046                pud = pud_start + i;
1047                if (!pud_none(*pud))
1048                        return;
1049        }
1050
1051        /* free a pud talbe */
1052        free_pagetable(p4d_page(*p4d), 0);
1053        spin_lock(&init_mm.page_table_lock);
1054        p4d_clear(p4d);
1055        spin_unlock(&init_mm.page_table_lock);
1056}
1057
1058static void __meminit
1059remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1060                 bool direct)
1061{
1062        unsigned long next, pages = 0;
1063        pte_t *pte;
1064        phys_addr_t phys_addr;
1065
1066        pte = pte_start + pte_index(addr);
1067        for (; addr < end; addr = next, pte++) {
1068                next = (addr + PAGE_SIZE) & PAGE_MASK;
1069                if (next > end)
1070                        next = end;
1071
1072                if (!pte_present(*pte))
1073                        continue;
1074
1075                /*
1076                 * We mapped [0,1G) memory as identity mapping when
1077                 * initializing, in arch/x86/kernel/head_64.S. These
1078                 * pagetables cannot be removed.
1079                 */
1080                phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1081                if (phys_addr < (phys_addr_t)0x40000000)
1082                        return;
1083
1084                if (!direct)
1085                        free_pagetable(pte_page(*pte), 0);
1086
1087                spin_lock(&init_mm.page_table_lock);
1088                pte_clear(&init_mm, addr, pte);
1089                spin_unlock(&init_mm.page_table_lock);
1090
1091                /* For non-direct mapping, pages means nothing. */
1092                pages++;
1093        }
1094
1095        /* Call free_pte_table() in remove_pmd_table(). */
1096        flush_tlb_all();
1097        if (direct)
1098                update_page_count(PG_LEVEL_4K, -pages);
1099}
1100
1101static void __meminit
1102remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1103                 bool direct, struct vmem_altmap *altmap)
1104{
1105        unsigned long next, pages = 0;
1106        pte_t *pte_base;
1107        pmd_t *pmd;
1108
1109        pmd = pmd_start + pmd_index(addr);
1110        for (; addr < end; addr = next, pmd++) {
1111                next = pmd_addr_end(addr, end);
1112
1113                if (!pmd_present(*pmd))
1114                        continue;
1115
1116                if (pmd_large(*pmd)) {
1117                        if (IS_ALIGNED(addr, PMD_SIZE) &&
1118                            IS_ALIGNED(next, PMD_SIZE)) {
1119                                if (!direct)
1120                                        free_hugepage_table(pmd_page(*pmd),
1121                                                            altmap);
1122
1123                                spin_lock(&init_mm.page_table_lock);
1124                                pmd_clear(pmd);
1125                                spin_unlock(&init_mm.page_table_lock);
1126                                pages++;
1127                        }
1128#ifdef CONFIG_SPARSEMEM_VMEMMAP
1129                        else if (vmemmap_pmd_is_unused(addr, next)) {
1130                                        free_hugepage_table(pmd_page(*pmd),
1131                                                            altmap);
1132                                        spin_lock(&init_mm.page_table_lock);
1133                                        pmd_clear(pmd);
1134                                        spin_unlock(&init_mm.page_table_lock);
1135                        }
1136#endif
1137                        continue;
1138                }
1139
1140                pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1141                remove_pte_table(pte_base, addr, next, direct);
1142                free_pte_table(pte_base, pmd);
1143        }
1144
1145        /* Call free_pmd_table() in remove_pud_table(). */
1146        if (direct)
1147                update_page_count(PG_LEVEL_2M, -pages);
1148}
1149
1150static void __meminit
1151remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1152                 struct vmem_altmap *altmap, bool direct)
1153{
1154        unsigned long next, pages = 0;
1155        pmd_t *pmd_base;
1156        pud_t *pud;
1157
1158        pud = pud_start + pud_index(addr);
1159        for (; addr < end; addr = next, pud++) {
1160                next = pud_addr_end(addr, end);
1161
1162                if (!pud_present(*pud))
1163                        continue;
1164
1165                if (pud_large(*pud) &&
1166                    IS_ALIGNED(addr, PUD_SIZE) &&
1167                    IS_ALIGNED(next, PUD_SIZE)) {
1168                        spin_lock(&init_mm.page_table_lock);
1169                        pud_clear(pud);
1170                        spin_unlock(&init_mm.page_table_lock);
1171                        pages++;
1172                        continue;
1173                }
1174
1175                pmd_base = pmd_offset(pud, 0);
1176                remove_pmd_table(pmd_base, addr, next, direct, altmap);
1177                free_pmd_table(pmd_base, pud);
1178        }
1179
1180        if (direct)
1181                update_page_count(PG_LEVEL_1G, -pages);
1182}
1183
1184static void __meminit
1185remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1186                 struct vmem_altmap *altmap, bool direct)
1187{
1188        unsigned long next, pages = 0;
1189        pud_t *pud_base;
1190        p4d_t *p4d;
1191
1192        p4d = p4d_start + p4d_index(addr);
1193        for (; addr < end; addr = next, p4d++) {
1194                next = p4d_addr_end(addr, end);
1195
1196                if (!p4d_present(*p4d))
1197                        continue;
1198
1199                BUILD_BUG_ON(p4d_large(*p4d));
1200
1201                pud_base = pud_offset(p4d, 0);
1202                remove_pud_table(pud_base, addr, next, altmap, direct);
1203                /*
1204                 * For 4-level page tables we do not want to free PUDs, but in the
1205                 * 5-level case we should free them. This code will have to change
1206                 * to adapt for boot-time switching between 4 and 5 level page tables.
1207                 */
1208                if (pgtable_l5_enabled())
1209                        free_pud_table(pud_base, p4d);
1210        }
1211
1212        if (direct)
1213                update_page_count(PG_LEVEL_512G, -pages);
1214}
1215
1216/* start and end are both virtual address. */
1217static void __meminit
1218remove_pagetable(unsigned long start, unsigned long end, bool direct,
1219                struct vmem_altmap *altmap)
1220{
1221        unsigned long next;
1222        unsigned long addr;
1223        pgd_t *pgd;
1224        p4d_t *p4d;
1225
1226        for (addr = start; addr < end; addr = next) {
1227                next = pgd_addr_end(addr, end);
1228
1229                pgd = pgd_offset_k(addr);
1230                if (!pgd_present(*pgd))
1231                        continue;
1232
1233                p4d = p4d_offset(pgd, 0);
1234                remove_p4d_table(p4d, addr, next, altmap, direct);
1235        }
1236
1237        flush_tlb_all();
1238}
1239
1240void __ref vmemmap_free(unsigned long start, unsigned long end,
1241                struct vmem_altmap *altmap)
1242{
1243        VM_BUG_ON(!PAGE_ALIGNED(start));
1244        VM_BUG_ON(!PAGE_ALIGNED(end));
1245
1246        remove_pagetable(start, end, false, altmap);
1247}
1248
1249static void __meminit
1250kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1251{
1252        start = (unsigned long)__va(start);
1253        end = (unsigned long)__va(end);
1254
1255        remove_pagetable(start, end, true, NULL);
1256}
1257
1258void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1259{
1260        unsigned long start_pfn = start >> PAGE_SHIFT;
1261        unsigned long nr_pages = size >> PAGE_SHIFT;
1262
1263        __remove_pages(start_pfn, nr_pages, altmap);
1264        kernel_physical_mapping_remove(start, start + size);
1265}
1266#endif /* CONFIG_MEMORY_HOTPLUG */
1267
1268static struct kcore_list kcore_vsyscall;
1269
1270static void __init register_page_bootmem_info(void)
1271{
1272#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1273        int i;
1274
1275        for_each_online_node(i)
1276                register_page_bootmem_info_node(NODE_DATA(i));
1277#endif
1278}
1279
1280/*
1281 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1282 * Only the level which needs to be synchronized between all page-tables is
1283 * allocated because the synchronization can be expensive.
1284 */
1285static void __init preallocate_vmalloc_pages(void)
1286{
1287        unsigned long addr;
1288        const char *lvl;
1289
1290        for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1291                pgd_t *pgd = pgd_offset_k(addr);
1292                p4d_t *p4d;
1293                pud_t *pud;
1294
1295                lvl = "p4d";
1296                p4d = p4d_alloc(&init_mm, pgd, addr);
1297                if (!p4d)
1298                        goto failed;
1299
1300                if (pgtable_l5_enabled())
1301                        continue;
1302
1303                /*
1304                 * The goal here is to allocate all possibly required
1305                 * hardware page tables pointed to by the top hardware
1306                 * level.
1307                 *
1308                 * On 4-level systems, the P4D layer is folded away and
1309                 * the above code does no preallocation.  Below, go down
1310                 * to the pud _software_ level to ensure the second
1311                 * hardware level is allocated on 4-level systems too.
1312                 */
1313                lvl = "pud";
1314                pud = pud_alloc(&init_mm, p4d, addr);
1315                if (!pud)
1316                        goto failed;
1317        }
1318
1319        return;
1320
1321failed:
1322
1323        /*
1324         * The pages have to be there now or they will be missing in
1325         * process page-tables later.
1326         */
1327        panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1328}
1329
1330void __init mem_init(void)
1331{
1332        pci_iommu_alloc();
1333
1334        /* clear_bss() already clear the empty_zero_page */
1335
1336        /* this will put all memory onto the freelists */
1337        memblock_free_all();
1338        after_bootmem = 1;
1339        x86_init.hyper.init_after_bootmem();
1340
1341        /*
1342         * Must be done after boot memory is put on freelist, because here we
1343         * might set fields in deferred struct pages that have not yet been
1344         * initialized, and memblock_free_all() initializes all the reserved
1345         * deferred pages for us.
1346         */
1347        register_page_bootmem_info();
1348
1349        /* Register memory areas for /proc/kcore */
1350        if (get_gate_vma(&init_mm))
1351                kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1352
1353        preallocate_vmalloc_pages();
1354}
1355
1356#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1357int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1358{
1359        /*
1360         * More CPUs always led to greater speedups on tested systems, up to
1361         * all the nodes' CPUs.  Use all since the system is otherwise idle
1362         * now.
1363         */
1364        return max_t(int, cpumask_weight(node_cpumask), 1);
1365}
1366#endif
1367
1368int kernel_set_to_readonly;
1369
1370void mark_rodata_ro(void)
1371{
1372        unsigned long start = PFN_ALIGN(_text);
1373        unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1374        unsigned long end = (unsigned long)__end_rodata_hpage_align;
1375        unsigned long text_end = PFN_ALIGN(_etext);
1376        unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1377        unsigned long all_end;
1378
1379        printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1380               (end - start) >> 10);
1381        set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1382
1383        kernel_set_to_readonly = 1;
1384
1385        /*
1386         * The rodata/data/bss/brk section (but not the kernel text!)
1387         * should also be not-executable.
1388         *
1389         * We align all_end to PMD_SIZE because the existing mapping
1390         * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1391         * split the PMD and the reminder between _brk_end and the end
1392         * of the PMD will remain mapped executable.
1393         *
1394         * Any PMD which was setup after the one which covers _brk_end
1395         * has been zapped already via cleanup_highmem().
1396         */
1397        all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1398        set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1399
1400        set_ftrace_ops_ro();
1401
1402#ifdef CONFIG_CPA_DEBUG
1403        printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1404        set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1405
1406        printk(KERN_INFO "Testing CPA: again\n");
1407        set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1408#endif
1409
1410        free_kernel_image_pages("unused kernel image (text/rodata gap)",
1411                                (void *)text_end, (void *)rodata_start);
1412        free_kernel_image_pages("unused kernel image (rodata/data gap)",
1413                                (void *)rodata_end, (void *)_sdata);
1414
1415        debug_checkwx();
1416}
1417
1418int kern_addr_valid(unsigned long addr)
1419{
1420        unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1421        pgd_t *pgd;
1422        p4d_t *p4d;
1423        pud_t *pud;
1424        pmd_t *pmd;
1425        pte_t *pte;
1426
1427        if (above != 0 && above != -1UL)
1428                return 0;
1429
1430        pgd = pgd_offset_k(addr);
1431        if (pgd_none(*pgd))
1432                return 0;
1433
1434        p4d = p4d_offset(pgd, addr);
1435        if (!p4d_present(*p4d))
1436                return 0;
1437
1438        pud = pud_offset(p4d, addr);
1439        if (!pud_present(*pud))
1440                return 0;
1441
1442        if (pud_large(*pud))
1443                return pfn_valid(pud_pfn(*pud));
1444
1445        pmd = pmd_offset(pud, addr);
1446        if (!pmd_present(*pmd))
1447                return 0;
1448
1449        if (pmd_large(*pmd))
1450                return pfn_valid(pmd_pfn(*pmd));
1451
1452        pte = pte_offset_kernel(pmd, addr);
1453        if (pte_none(*pte))
1454                return 0;
1455
1456        return pfn_valid(pte_pfn(*pte));
1457}
1458
1459/*
1460 * Block size is the minimum amount of memory which can be hotplugged or
1461 * hotremoved. It must be power of two and must be equal or larger than
1462 * MIN_MEMORY_BLOCK_SIZE.
1463 */
1464#define MAX_BLOCK_SIZE (2UL << 30)
1465
1466/* Amount of ram needed to start using large blocks */
1467#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1468
1469/* Adjustable memory block size */
1470static unsigned long set_memory_block_size;
1471int __init set_memory_block_size_order(unsigned int order)
1472{
1473        unsigned long size = 1UL << order;
1474
1475        if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1476                return -EINVAL;
1477
1478        set_memory_block_size = size;
1479        return 0;
1480}
1481
1482static unsigned long probe_memory_block_size(void)
1483{
1484        unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1485        unsigned long bz;
1486
1487        /* If memory block size has been set, then use it */
1488        bz = set_memory_block_size;
1489        if (bz)
1490                goto done;
1491
1492        /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1493        if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1494                bz = MIN_MEMORY_BLOCK_SIZE;
1495                goto done;
1496        }
1497
1498        /*
1499         * Use max block size to minimize overhead on bare metal, where
1500         * alignment for memory hotplug isn't a concern.
1501         */
1502        if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1503                bz = MAX_BLOCK_SIZE;
1504                goto done;
1505        }
1506
1507        /* Find the largest allowed block size that aligns to memory end */
1508        for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1509                if (IS_ALIGNED(boot_mem_end, bz))
1510                        break;
1511        }
1512done:
1513        pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1514
1515        return bz;
1516}
1517
1518static unsigned long memory_block_size_probed;
1519unsigned long memory_block_size_bytes(void)
1520{
1521        if (!memory_block_size_probed)
1522                memory_block_size_probed = probe_memory_block_size();
1523
1524        return memory_block_size_probed;
1525}
1526
1527#ifdef CONFIG_SPARSEMEM_VMEMMAP
1528/*
1529 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1530 */
1531static long __meminitdata addr_start, addr_end;
1532static void __meminitdata *p_start, *p_end;
1533static int __meminitdata node_start;
1534
1535static int __meminit vmemmap_populate_hugepages(unsigned long start,
1536                unsigned long end, int node, struct vmem_altmap *altmap)
1537{
1538        unsigned long addr;
1539        unsigned long next;
1540        pgd_t *pgd;
1541        p4d_t *p4d;
1542        pud_t *pud;
1543        pmd_t *pmd;
1544
1545        for (addr = start; addr < end; addr = next) {
1546                next = pmd_addr_end(addr, end);
1547
1548                pgd = vmemmap_pgd_populate(addr, node);
1549                if (!pgd)
1550                        return -ENOMEM;
1551
1552                p4d = vmemmap_p4d_populate(pgd, addr, node);
1553                if (!p4d)
1554                        return -ENOMEM;
1555
1556                pud = vmemmap_pud_populate(p4d, addr, node);
1557                if (!pud)
1558                        return -ENOMEM;
1559
1560                pmd = pmd_offset(pud, addr);
1561                if (pmd_none(*pmd)) {
1562                        void *p;
1563
1564                        p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1565                        if (p) {
1566                                pte_t entry;
1567
1568                                entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1569                                                PAGE_KERNEL_LARGE);
1570                                set_pmd(pmd, __pmd(pte_val(entry)));
1571
1572                                /* check to see if we have contiguous blocks */
1573                                if (p_end != p || node_start != node) {
1574                                        if (p_start)
1575                                                pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1576                                                       addr_start, addr_end-1, p_start, p_end-1, node_start);
1577                                        addr_start = addr;
1578                                        node_start = node;
1579                                        p_start = p;
1580                                }
1581
1582                                addr_end = addr + PMD_SIZE;
1583                                p_end = p + PMD_SIZE;
1584
1585                                if (!IS_ALIGNED(addr, PMD_SIZE) ||
1586                                    !IS_ALIGNED(next, PMD_SIZE))
1587                                        vmemmap_use_new_sub_pmd(addr, next);
1588
1589                                continue;
1590                        } else if (altmap)
1591                                return -ENOMEM; /* no fallback */
1592                } else if (pmd_large(*pmd)) {
1593                        vmemmap_verify((pte_t *)pmd, node, addr, next);
1594                        vmemmap_use_sub_pmd(addr, next);
1595                        continue;
1596                }
1597                if (vmemmap_populate_basepages(addr, next, node, NULL))
1598                        return -ENOMEM;
1599        }
1600        return 0;
1601}
1602
1603int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1604                struct vmem_altmap *altmap)
1605{
1606        int err;
1607
1608        VM_BUG_ON(!PAGE_ALIGNED(start));
1609        VM_BUG_ON(!PAGE_ALIGNED(end));
1610
1611        if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1612                err = vmemmap_populate_basepages(start, end, node, NULL);
1613        else if (boot_cpu_has(X86_FEATURE_PSE))
1614                err = vmemmap_populate_hugepages(start, end, node, altmap);
1615        else if (altmap) {
1616                pr_err_once("%s: no cpu support for altmap allocations\n",
1617                                __func__);
1618                err = -ENOMEM;
1619        } else
1620                err = vmemmap_populate_basepages(start, end, node, NULL);
1621        if (!err)
1622                sync_global_pgds(start, end - 1);
1623        return err;
1624}
1625
1626#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1627void register_page_bootmem_memmap(unsigned long section_nr,
1628                                  struct page *start_page, unsigned long nr_pages)
1629{
1630        unsigned long addr = (unsigned long)start_page;
1631        unsigned long end = (unsigned long)(start_page + nr_pages);
1632        unsigned long next;
1633        pgd_t *pgd;
1634        p4d_t *p4d;
1635        pud_t *pud;
1636        pmd_t *pmd;
1637        unsigned int nr_pmd_pages;
1638        struct page *page;
1639
1640        for (; addr < end; addr = next) {
1641                pte_t *pte = NULL;
1642
1643                pgd = pgd_offset_k(addr);
1644                if (pgd_none(*pgd)) {
1645                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1646                        continue;
1647                }
1648                get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1649
1650                p4d = p4d_offset(pgd, addr);
1651                if (p4d_none(*p4d)) {
1652                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1653                        continue;
1654                }
1655                get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1656
1657                pud = pud_offset(p4d, addr);
1658                if (pud_none(*pud)) {
1659                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1660                        continue;
1661                }
1662                get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1663
1664                if (!boot_cpu_has(X86_FEATURE_PSE)) {
1665                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1666                        pmd = pmd_offset(pud, addr);
1667                        if (pmd_none(*pmd))
1668                                continue;
1669                        get_page_bootmem(section_nr, pmd_page(*pmd),
1670                                         MIX_SECTION_INFO);
1671
1672                        pte = pte_offset_kernel(pmd, addr);
1673                        if (pte_none(*pte))
1674                                continue;
1675                        get_page_bootmem(section_nr, pte_page(*pte),
1676                                         SECTION_INFO);
1677                } else {
1678                        next = pmd_addr_end(addr, end);
1679
1680                        pmd = pmd_offset(pud, addr);
1681                        if (pmd_none(*pmd))
1682                                continue;
1683
1684                        nr_pmd_pages = 1 << get_order(PMD_SIZE);
1685                        page = pmd_page(*pmd);
1686                        while (nr_pmd_pages--)
1687                                get_page_bootmem(section_nr, page++,
1688                                                 SECTION_INFO);
1689                }
1690        }
1691}
1692#endif
1693
1694void __meminit vmemmap_populate_print_last(void)
1695{
1696        if (p_start) {
1697                pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1698                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1699                p_start = NULL;
1700                p_end = NULL;
1701                node_start = 0;
1702        }
1703}
1704#endif
1705