linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/init.h>
   3
   4#include <linux/mm.h>
   5#include <linux/spinlock.h>
   6#include <linux/smp.h>
   7#include <linux/interrupt.h>
   8#include <linux/export.h>
   9#include <linux/cpu.h>
  10#include <linux/debugfs.h>
  11#include <linux/sched/smt.h>
  12#include <linux/task_work.h>
  13
  14#include <asm/tlbflush.h>
  15#include <asm/mmu_context.h>
  16#include <asm/nospec-branch.h>
  17#include <asm/cache.h>
  18#include <asm/cacheflush.h>
  19#include <asm/apic.h>
  20#include <asm/perf_event.h>
  21
  22#include "mm_internal.h"
  23
  24#ifdef CONFIG_PARAVIRT
  25# define STATIC_NOPV
  26#else
  27# define STATIC_NOPV                    static
  28# define __flush_tlb_local              native_flush_tlb_local
  29# define __flush_tlb_global             native_flush_tlb_global
  30# define __flush_tlb_one_user(addr)     native_flush_tlb_one_user(addr)
  31# define __flush_tlb_multi(msk, info)   native_flush_tlb_multi(msk, info)
  32#endif
  33
  34/*
  35 *      TLB flushing, formerly SMP-only
  36 *              c/o Linus Torvalds.
  37 *
  38 *      These mean you can really definitely utterly forget about
  39 *      writing to user space from interrupts. (Its not allowed anyway).
  40 *
  41 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  42 *
  43 *      More scalable flush, from Andi Kleen
  44 *
  45 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  46 */
  47
  48/*
  49 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
  50 * stored in cpu_tlb_state.last_user_mm_spec.
  51 */
  52#define LAST_USER_MM_IBPB       0x1UL
  53#define LAST_USER_MM_L1D_FLUSH  0x2UL
  54#define LAST_USER_MM_SPEC_MASK  (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
  55
  56/* Bits to set when tlbstate and flush is (re)initialized */
  57#define LAST_USER_MM_INIT       LAST_USER_MM_IBPB
  58
  59/*
  60 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  61 * to what is traditionally called ASID on the RISC processors.
  62 *
  63 * We don't use the traditional ASID implementation, where each process/mm gets
  64 * its own ASID and flush/restart when we run out of ASID space.
  65 *
  66 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  67 * that came by on this CPU, allowing cheaper switch_mm between processes on
  68 * this CPU.
  69 *
  70 * We end up with different spaces for different things. To avoid confusion we
  71 * use different names for each of them:
  72 *
  73 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  74 *         the canonical identifier for an mm
  75 *
  76 * kPCID - [1, TLB_NR_DYN_ASIDS]
  77 *         the value we write into the PCID part of CR3; corresponds to the
  78 *         ASID+1, because PCID 0 is special.
  79 *
  80 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  81 *         for KPTI each mm has two address spaces and thus needs two
  82 *         PCID values, but we can still do with a single ASID denomination
  83 *         for each mm. Corresponds to kPCID + 2048.
  84 *
  85 */
  86
  87/* There are 12 bits of space for ASIDS in CR3 */
  88#define CR3_HW_ASID_BITS                12
  89
  90/*
  91 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  92 * user/kernel switches
  93 */
  94#ifdef CONFIG_PAGE_TABLE_ISOLATION
  95# define PTI_CONSUMED_PCID_BITS 1
  96#else
  97# define PTI_CONSUMED_PCID_BITS 0
  98#endif
  99
 100#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
 101
 102/*
 103 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
 104 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
 105 * use by non-PCID-aware users.
 106 */
 107#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
 108
 109/*
 110 * Given @asid, compute kPCID
 111 */
 112static inline u16 kern_pcid(u16 asid)
 113{
 114        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 115
 116#ifdef CONFIG_PAGE_TABLE_ISOLATION
 117        /*
 118         * Make sure that the dynamic ASID space does not conflict with the
 119         * bit we are using to switch between user and kernel ASIDs.
 120         */
 121        BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
 122
 123        /*
 124         * The ASID being passed in here should have respected the
 125         * MAX_ASID_AVAILABLE and thus never have the switch bit set.
 126         */
 127        VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
 128#endif
 129        /*
 130         * The dynamically-assigned ASIDs that get passed in are small
 131         * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
 132         * so do not bother to clear it.
 133         *
 134         * If PCID is on, ASID-aware code paths put the ASID+1 into the
 135         * PCID bits.  This serves two purposes.  It prevents a nasty
 136         * situation in which PCID-unaware code saves CR3, loads some other
 137         * value (with PCID == 0), and then restores CR3, thus corrupting
 138         * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 139         * that any bugs involving loading a PCID-enabled CR3 with
 140         * CR4.PCIDE off will trigger deterministically.
 141         */
 142        return asid + 1;
 143}
 144
 145/*
 146 * Given @asid, compute uPCID
 147 */
 148static inline u16 user_pcid(u16 asid)
 149{
 150        u16 ret = kern_pcid(asid);
 151#ifdef CONFIG_PAGE_TABLE_ISOLATION
 152        ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 153#endif
 154        return ret;
 155}
 156
 157static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 158{
 159        if (static_cpu_has(X86_FEATURE_PCID)) {
 160                return __sme_pa(pgd) | kern_pcid(asid);
 161        } else {
 162                VM_WARN_ON_ONCE(asid != 0);
 163                return __sme_pa(pgd);
 164        }
 165}
 166
 167static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 168{
 169        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 170        /*
 171         * Use boot_cpu_has() instead of this_cpu_has() as this function
 172         * might be called during early boot. This should work even after
 173         * boot because all CPU's the have same capabilities:
 174         */
 175        VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 176        return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 177}
 178
 179/*
 180 * We get here when we do something requiring a TLB invalidation
 181 * but could not go invalidate all of the contexts.  We do the
 182 * necessary invalidation by clearing out the 'ctx_id' which
 183 * forces a TLB flush when the context is loaded.
 184 */
 185static void clear_asid_other(void)
 186{
 187        u16 asid;
 188
 189        /*
 190         * This is only expected to be set if we have disabled
 191         * kernel _PAGE_GLOBAL pages.
 192         */
 193        if (!static_cpu_has(X86_FEATURE_PTI)) {
 194                WARN_ON_ONCE(1);
 195                return;
 196        }
 197
 198        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 199                /* Do not need to flush the current asid */
 200                if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 201                        continue;
 202                /*
 203                 * Make sure the next time we go to switch to
 204                 * this asid, we do a flush:
 205                 */
 206                this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 207        }
 208        this_cpu_write(cpu_tlbstate.invalidate_other, false);
 209}
 210
 211atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 212
 213
 214static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 215                            u16 *new_asid, bool *need_flush)
 216{
 217        u16 asid;
 218
 219        if (!static_cpu_has(X86_FEATURE_PCID)) {
 220                *new_asid = 0;
 221                *need_flush = true;
 222                return;
 223        }
 224
 225        if (this_cpu_read(cpu_tlbstate.invalidate_other))
 226                clear_asid_other();
 227
 228        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 229                if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 230                    next->context.ctx_id)
 231                        continue;
 232
 233                *new_asid = asid;
 234                *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 235                               next_tlb_gen);
 236                return;
 237        }
 238
 239        /*
 240         * We don't currently own an ASID slot on this CPU.
 241         * Allocate a slot.
 242         */
 243        *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 244        if (*new_asid >= TLB_NR_DYN_ASIDS) {
 245                *new_asid = 0;
 246                this_cpu_write(cpu_tlbstate.next_asid, 1);
 247        }
 248        *need_flush = true;
 249}
 250
 251/*
 252 * Given an ASID, flush the corresponding user ASID.  We can delay this
 253 * until the next time we switch to it.
 254 *
 255 * See SWITCH_TO_USER_CR3.
 256 */
 257static inline void invalidate_user_asid(u16 asid)
 258{
 259        /* There is no user ASID if address space separation is off */
 260        if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 261                return;
 262
 263        /*
 264         * We only have a single ASID if PCID is off and the CR3
 265         * write will have flushed it.
 266         */
 267        if (!cpu_feature_enabled(X86_FEATURE_PCID))
 268                return;
 269
 270        if (!static_cpu_has(X86_FEATURE_PTI))
 271                return;
 272
 273        __set_bit(kern_pcid(asid),
 274                  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 275}
 276
 277static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 278{
 279        unsigned long new_mm_cr3;
 280
 281        if (need_flush) {
 282                invalidate_user_asid(new_asid);
 283                new_mm_cr3 = build_cr3(pgdir, new_asid);
 284        } else {
 285                new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 286        }
 287
 288        /*
 289         * Caution: many callers of this function expect
 290         * that load_cr3() is serializing and orders TLB
 291         * fills with respect to the mm_cpumask writes.
 292         */
 293        write_cr3(new_mm_cr3);
 294}
 295
 296void leave_mm(int cpu)
 297{
 298        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 299
 300        /*
 301         * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 302         * If so, our callers still expect us to flush the TLB, but there
 303         * aren't any user TLB entries in init_mm to worry about.
 304         *
 305         * This needs to happen before any other sanity checks due to
 306         * intel_idle's shenanigans.
 307         */
 308        if (loaded_mm == &init_mm)
 309                return;
 310
 311        /* Warn if we're not lazy. */
 312        WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
 313
 314        switch_mm(NULL, &init_mm, NULL);
 315}
 316EXPORT_SYMBOL_GPL(leave_mm);
 317
 318void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 319               struct task_struct *tsk)
 320{
 321        unsigned long flags;
 322
 323        local_irq_save(flags);
 324        switch_mm_irqs_off(prev, next, tsk);
 325        local_irq_restore(flags);
 326}
 327
 328/*
 329 * Invoked from return to user/guest by a task that opted-in to L1D
 330 * flushing but ended up running on an SMT enabled core due to wrong
 331 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
 332 * contract which this task requested.
 333 */
 334static void l1d_flush_force_sigbus(struct callback_head *ch)
 335{
 336        force_sig(SIGBUS);
 337}
 338
 339static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
 340                                struct task_struct *next)
 341{
 342        /* Flush L1D if the outgoing task requests it */
 343        if (prev_mm & LAST_USER_MM_L1D_FLUSH)
 344                wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
 345
 346        /* Check whether the incoming task opted in for L1D flush */
 347        if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
 348                return;
 349
 350        /*
 351         * Validate that it is not running on an SMT sibling as this would
 352         * make the excercise pointless because the siblings share L1D. If
 353         * it runs on a SMT sibling, notify it with SIGBUS on return to
 354         * user/guest
 355         */
 356        if (this_cpu_read(cpu_info.smt_active)) {
 357                clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
 358                next->l1d_flush_kill.func = l1d_flush_force_sigbus;
 359                task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
 360        }
 361}
 362
 363static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
 364{
 365        unsigned long next_tif = read_task_thread_flags(next);
 366        unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
 367
 368        /*
 369         * Ensure that the bit shift above works as expected and the two flags
 370         * end up in bit 0 and 1.
 371         */
 372        BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
 373
 374        return (unsigned long)next->mm | spec_bits;
 375}
 376
 377static void cond_mitigation(struct task_struct *next)
 378{
 379        unsigned long prev_mm, next_mm;
 380
 381        if (!next || !next->mm)
 382                return;
 383
 384        next_mm = mm_mangle_tif_spec_bits(next);
 385        prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
 386
 387        /*
 388         * Avoid user/user BTB poisoning by flushing the branch predictor
 389         * when switching between processes. This stops one process from
 390         * doing Spectre-v2 attacks on another.
 391         *
 392         * Both, the conditional and the always IBPB mode use the mm
 393         * pointer to avoid the IBPB when switching between tasks of the
 394         * same process. Using the mm pointer instead of mm->context.ctx_id
 395         * opens a hypothetical hole vs. mm_struct reuse, which is more or
 396         * less impossible to control by an attacker. Aside of that it
 397         * would only affect the first schedule so the theoretically
 398         * exposed data is not really interesting.
 399         */
 400        if (static_branch_likely(&switch_mm_cond_ibpb)) {
 401                /*
 402                 * This is a bit more complex than the always mode because
 403                 * it has to handle two cases:
 404                 *
 405                 * 1) Switch from a user space task (potential attacker)
 406                 *    which has TIF_SPEC_IB set to a user space task
 407                 *    (potential victim) which has TIF_SPEC_IB not set.
 408                 *
 409                 * 2) Switch from a user space task (potential attacker)
 410                 *    which has TIF_SPEC_IB not set to a user space task
 411                 *    (potential victim) which has TIF_SPEC_IB set.
 412                 *
 413                 * This could be done by unconditionally issuing IBPB when
 414                 * a task which has TIF_SPEC_IB set is either scheduled in
 415                 * or out. Though that results in two flushes when:
 416                 *
 417                 * - the same user space task is scheduled out and later
 418                 *   scheduled in again and only a kernel thread ran in
 419                 *   between.
 420                 *
 421                 * - a user space task belonging to the same process is
 422                 *   scheduled in after a kernel thread ran in between
 423                 *
 424                 * - a user space task belonging to the same process is
 425                 *   scheduled in immediately.
 426                 *
 427                 * Optimize this with reasonably small overhead for the
 428                 * above cases. Mangle the TIF_SPEC_IB bit into the mm
 429                 * pointer of the incoming task which is stored in
 430                 * cpu_tlbstate.last_user_mm_spec for comparison.
 431                 *
 432                 * Issue IBPB only if the mm's are different and one or
 433                 * both have the IBPB bit set.
 434                 */
 435                if (next_mm != prev_mm &&
 436                    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 437                        indirect_branch_prediction_barrier();
 438        }
 439
 440        if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 441                /*
 442                 * Only flush when switching to a user space task with a
 443                 * different context than the user space task which ran
 444                 * last on this CPU.
 445                 */
 446                if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
 447                                        (unsigned long)next->mm)
 448                        indirect_branch_prediction_barrier();
 449        }
 450
 451        if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
 452                /*
 453                 * Flush L1D when the outgoing task requested it and/or
 454                 * check whether the incoming task requested L1D flushing
 455                 * and ended up on an SMT sibling.
 456                 */
 457                if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
 458                        l1d_flush_evaluate(prev_mm, next_mm, next);
 459        }
 460
 461        this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
 462}
 463
 464#ifdef CONFIG_PERF_EVENTS
 465static inline void cr4_update_pce_mm(struct mm_struct *mm)
 466{
 467        if (static_branch_unlikely(&rdpmc_always_available_key) ||
 468            (!static_branch_unlikely(&rdpmc_never_available_key) &&
 469             atomic_read(&mm->context.perf_rdpmc_allowed))) {
 470                /*
 471                 * Clear the existing dirty counters to
 472                 * prevent the leak for an RDPMC task.
 473                 */
 474                perf_clear_dirty_counters();
 475                cr4_set_bits_irqsoff(X86_CR4_PCE);
 476        } else
 477                cr4_clear_bits_irqsoff(X86_CR4_PCE);
 478}
 479
 480void cr4_update_pce(void *ignored)
 481{
 482        cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
 483}
 484
 485#else
 486static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
 487#endif
 488
 489void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 490                        struct task_struct *tsk)
 491{
 492        struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 493        u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 494        bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
 495        unsigned cpu = smp_processor_id();
 496        u64 next_tlb_gen;
 497        bool need_flush;
 498        u16 new_asid;
 499
 500        /*
 501         * NB: The scheduler will call us with prev == next when switching
 502         * from lazy TLB mode to normal mode if active_mm isn't changing.
 503         * When this happens, we don't assume that CR3 (and hence
 504         * cpu_tlbstate.loaded_mm) matches next.
 505         *
 506         * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 507         */
 508
 509        /* We don't want flush_tlb_func() to run concurrently with us. */
 510        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 511                WARN_ON_ONCE(!irqs_disabled());
 512
 513        /*
 514         * Verify that CR3 is what we think it is.  This will catch
 515         * hypothetical buggy code that directly switches to swapper_pg_dir
 516         * without going through leave_mm() / switch_mm_irqs_off() or that
 517         * does something like write_cr3(read_cr3_pa()).
 518         *
 519         * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 520         * isn't free.
 521         */
 522#ifdef CONFIG_DEBUG_VM
 523        if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 524                /*
 525                 * If we were to BUG here, we'd be very likely to kill
 526                 * the system so hard that we don't see the call trace.
 527                 * Try to recover instead by ignoring the error and doing
 528                 * a global flush to minimize the chance of corruption.
 529                 *
 530                 * (This is far from being a fully correct recovery.
 531                 *  Architecturally, the CPU could prefetch something
 532                 *  back into an incorrect ASID slot and leave it there
 533                 *  to cause trouble down the road.  It's better than
 534                 *  nothing, though.)
 535                 */
 536                __flush_tlb_all();
 537        }
 538#endif
 539        if (was_lazy)
 540                this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
 541
 542        /*
 543         * The membarrier system call requires a full memory barrier and
 544         * core serialization before returning to user-space, after
 545         * storing to rq->curr, when changing mm.  This is because
 546         * membarrier() sends IPIs to all CPUs that are in the target mm
 547         * to make them issue memory barriers.  However, if another CPU
 548         * switches to/from the target mm concurrently with
 549         * membarrier(), it can cause that CPU not to receive an IPI
 550         * when it really should issue a memory barrier.  Writing to CR3
 551         * provides that full memory barrier and core serializing
 552         * instruction.
 553         */
 554        if (real_prev == next) {
 555                VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 556                           next->context.ctx_id);
 557
 558                /*
 559                 * Even in lazy TLB mode, the CPU should stay set in the
 560                 * mm_cpumask. The TLB shootdown code can figure out from
 561                 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
 562                 */
 563                if (WARN_ON_ONCE(real_prev != &init_mm &&
 564                                 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 565                        cpumask_set_cpu(cpu, mm_cpumask(next));
 566
 567                /*
 568                 * If the CPU is not in lazy TLB mode, we are just switching
 569                 * from one thread in a process to another thread in the same
 570                 * process. No TLB flush required.
 571                 */
 572                if (!was_lazy)
 573                        return;
 574
 575                /*
 576                 * Read the tlb_gen to check whether a flush is needed.
 577                 * If the TLB is up to date, just use it.
 578                 * The barrier synchronizes with the tlb_gen increment in
 579                 * the TLB shootdown code.
 580                 */
 581                smp_mb();
 582                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 583                if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
 584                                next_tlb_gen)
 585                        return;
 586
 587                /*
 588                 * TLB contents went out of date while we were in lazy
 589                 * mode. Fall through to the TLB switching code below.
 590                 */
 591                new_asid = prev_asid;
 592                need_flush = true;
 593        } else {
 594                /*
 595                 * Apply process to process speculation vulnerability
 596                 * mitigations if applicable.
 597                 */
 598                cond_mitigation(tsk);
 599
 600                /*
 601                 * Stop remote flushes for the previous mm.
 602                 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
 603                 * but the bitmap manipulation can cause cache line contention.
 604                 */
 605                if (real_prev != &init_mm) {
 606                        VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
 607                                                mm_cpumask(real_prev)));
 608                        cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 609                }
 610
 611                /*
 612                 * Start remote flushes and then read tlb_gen.
 613                 */
 614                if (next != &init_mm)
 615                        cpumask_set_cpu(cpu, mm_cpumask(next));
 616                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 617
 618                choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 619
 620                /* Let nmi_uaccess_okay() know that we're changing CR3. */
 621                this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 622                barrier();
 623        }
 624
 625        if (need_flush) {
 626                this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 627                this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 628                load_new_mm_cr3(next->pgd, new_asid, true);
 629
 630                trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 631        } else {
 632                /* The new ASID is already up to date. */
 633                load_new_mm_cr3(next->pgd, new_asid, false);
 634
 635                trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
 636        }
 637
 638        /* Make sure we write CR3 before loaded_mm. */
 639        barrier();
 640
 641        this_cpu_write(cpu_tlbstate.loaded_mm, next);
 642        this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 643
 644        if (next != real_prev) {
 645                cr4_update_pce_mm(next);
 646                switch_ldt(real_prev, next);
 647        }
 648}
 649
 650/*
 651 * Please ignore the name of this function.  It should be called
 652 * switch_to_kernel_thread().
 653 *
 654 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 655 * kernel thread or other context without an mm.  Acceptable implementations
 656 * include doing nothing whatsoever, switching to init_mm, or various clever
 657 * lazy tricks to try to minimize TLB flushes.
 658 *
 659 * The scheduler reserves the right to call enter_lazy_tlb() several times
 660 * in a row.  It will notify us that we're going back to a real mm by
 661 * calling switch_mm_irqs_off().
 662 */
 663void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 664{
 665        if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 666                return;
 667
 668        this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
 669}
 670
 671/*
 672 * Call this when reinitializing a CPU.  It fixes the following potential
 673 * problems:
 674 *
 675 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 676 *   because the CPU was taken down and came back up with CR3's PCID
 677 *   bits clear.  CPU hotplug can do this.
 678 *
 679 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 680 *
 681 * - The CPU went so far out to lunch that it may have missed a TLB
 682 *   flush.
 683 */
 684void initialize_tlbstate_and_flush(void)
 685{
 686        int i;
 687        struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 688        u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 689        unsigned long cr3 = __read_cr3();
 690
 691        /* Assert that CR3 already references the right mm. */
 692        WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 693
 694        /*
 695         * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 696         * doesn't work like other CR4 bits because it can only be set from
 697         * long mode.)
 698         */
 699        WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 700                !(cr4_read_shadow() & X86_CR4_PCIDE));
 701
 702        /* Force ASID 0 and force a TLB flush. */
 703        write_cr3(build_cr3(mm->pgd, 0));
 704
 705        /* Reinitialize tlbstate. */
 706        this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
 707        this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 708        this_cpu_write(cpu_tlbstate.next_asid, 1);
 709        this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 710        this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 711
 712        for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 713                this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 714}
 715
 716/*
 717 * flush_tlb_func()'s memory ordering requirement is that any
 718 * TLB fills that happen after we flush the TLB are ordered after we
 719 * read active_mm's tlb_gen.  We don't need any explicit barriers
 720 * because all x86 flush operations are serializing and the
 721 * atomic64_read operation won't be reordered by the compiler.
 722 */
 723static void flush_tlb_func(void *info)
 724{
 725        /*
 726         * We have three different tlb_gen values in here.  They are:
 727         *
 728         * - mm_tlb_gen:     the latest generation.
 729         * - local_tlb_gen:  the generation that this CPU has already caught
 730         *                   up to.
 731         * - f->new_tlb_gen: the generation that the requester of the flush
 732         *                   wants us to catch up to.
 733         */
 734        const struct flush_tlb_info *f = info;
 735        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 736        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 737        u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 738        u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 739        bool local = smp_processor_id() == f->initiating_cpu;
 740        unsigned long nr_invalidate = 0;
 741
 742        /* This code cannot presently handle being reentered. */
 743        VM_WARN_ON(!irqs_disabled());
 744
 745        if (!local) {
 746                inc_irq_stat(irq_tlb_count);
 747                count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 748
 749                /* Can only happen on remote CPUs */
 750                if (f->mm && f->mm != loaded_mm)
 751                        return;
 752        }
 753
 754        if (unlikely(loaded_mm == &init_mm))
 755                return;
 756
 757        VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 758                   loaded_mm->context.ctx_id);
 759
 760        if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
 761                /*
 762                 * We're in lazy mode.  We need to at least flush our
 763                 * paging-structure cache to avoid speculatively reading
 764                 * garbage into our TLB.  Since switching to init_mm is barely
 765                 * slower than a minimal flush, just switch to init_mm.
 766                 *
 767                 * This should be rare, with native_flush_tlb_multi() skipping
 768                 * IPIs to lazy TLB mode CPUs.
 769                 */
 770                switch_mm_irqs_off(NULL, &init_mm, NULL);
 771                return;
 772        }
 773
 774        if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 775                /*
 776                 * There's nothing to do: we're already up to date.  This can
 777                 * happen if two concurrent flushes happen -- the first flush to
 778                 * be handled can catch us all the way up, leaving no work for
 779                 * the second flush.
 780                 */
 781                goto done;
 782        }
 783
 784        WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 785        WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 786
 787        /*
 788         * If we get to this point, we know that our TLB is out of date.
 789         * This does not strictly imply that we need to flush (it's
 790         * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 791         * going to need to flush in the very near future, so we might
 792         * as well get it over with.
 793         *
 794         * The only question is whether to do a full or partial flush.
 795         *
 796         * We do a partial flush if requested and two extra conditions
 797         * are met:
 798         *
 799         * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 800         *    we've always done all needed flushes to catch up to
 801         *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 802         *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 803         *    us up to date for tlb_gen 3 is the partial flush we're
 804         *    processing.
 805         *
 806         *    As an example of why this check is needed, suppose that there
 807         *    are two concurrent flushes.  The first is a full flush that
 808         *    changes context.tlb_gen from 1 to 2.  The second is a partial
 809         *    flush that changes context.tlb_gen from 2 to 3.  If they get
 810         *    processed on this CPU in reverse order, we'll see
 811         *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 812         *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 813         *    3, we'd be break the invariant: we'd update local_tlb_gen above
 814         *    1 without the full flush that's needed for tlb_gen 2.
 815         *
 816         * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
 817         *    Partial TLB flushes are not all that much cheaper than full TLB
 818         *    flushes, so it seems unlikely that it would be a performance win
 819         *    to do a partial flush if that won't bring our TLB fully up to
 820         *    date.  By doing a full flush instead, we can increase
 821         *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 822         *    avoid another flush in the very near future.
 823         */
 824        if (f->end != TLB_FLUSH_ALL &&
 825            f->new_tlb_gen == local_tlb_gen + 1 &&
 826            f->new_tlb_gen == mm_tlb_gen) {
 827                /* Partial flush */
 828                unsigned long addr = f->start;
 829
 830                nr_invalidate = (f->end - f->start) >> f->stride_shift;
 831
 832                while (addr < f->end) {
 833                        flush_tlb_one_user(addr);
 834                        addr += 1UL << f->stride_shift;
 835                }
 836                if (local)
 837                        count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 838        } else {
 839                /* Full flush. */
 840                nr_invalidate = TLB_FLUSH_ALL;
 841
 842                flush_tlb_local();
 843                if (local)
 844                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 845        }
 846
 847        /* Both paths above update our state to mm_tlb_gen. */
 848        this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 849
 850        /* Tracing is done in a unified manner to reduce the code size */
 851done:
 852        trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
 853                                (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
 854                                                  TLB_LOCAL_MM_SHOOTDOWN,
 855                        nr_invalidate);
 856}
 857
 858static bool tlb_is_not_lazy(int cpu, void *data)
 859{
 860        return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
 861}
 862
 863DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
 864EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
 865
 866STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
 867                                         const struct flush_tlb_info *info)
 868{
 869        /*
 870         * Do accounting and tracing. Note that there are (and have always been)
 871         * cases in which a remote TLB flush will be traced, but eventually
 872         * would not happen.
 873         */
 874        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 875        if (info->end == TLB_FLUSH_ALL)
 876                trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 877        else
 878                trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 879                                (info->end - info->start) >> PAGE_SHIFT);
 880
 881        /*
 882         * If no page tables were freed, we can skip sending IPIs to
 883         * CPUs in lazy TLB mode. They will flush the CPU themselves
 884         * at the next context switch.
 885         *
 886         * However, if page tables are getting freed, we need to send the
 887         * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
 888         * up on the new contents of what used to be page tables, while
 889         * doing a speculative memory access.
 890         */
 891        if (info->freed_tables)
 892                on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
 893        else
 894                on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
 895                                (void *)info, 1, cpumask);
 896}
 897
 898void flush_tlb_multi(const struct cpumask *cpumask,
 899                      const struct flush_tlb_info *info)
 900{
 901        __flush_tlb_multi(cpumask, info);
 902}
 903
 904/*
 905 * See Documentation/x86/tlb.rst for details.  We choose 33
 906 * because it is large enough to cover the vast majority (at
 907 * least 95%) of allocations, and is small enough that we are
 908 * confident it will not cause too much overhead.  Each single
 909 * flush is about 100 ns, so this caps the maximum overhead at
 910 * _about_ 3,000 ns.
 911 *
 912 * This is in units of pages.
 913 */
 914unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 915
 916static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
 917
 918#ifdef CONFIG_DEBUG_VM
 919static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
 920#endif
 921
 922static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
 923                        unsigned long start, unsigned long end,
 924                        unsigned int stride_shift, bool freed_tables,
 925                        u64 new_tlb_gen)
 926{
 927        struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
 928
 929#ifdef CONFIG_DEBUG_VM
 930        /*
 931         * Ensure that the following code is non-reentrant and flush_tlb_info
 932         * is not overwritten. This means no TLB flushing is initiated by
 933         * interrupt handlers and machine-check exception handlers.
 934         */
 935        BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
 936#endif
 937
 938        info->start             = start;
 939        info->end               = end;
 940        info->mm                = mm;
 941        info->stride_shift      = stride_shift;
 942        info->freed_tables      = freed_tables;
 943        info->new_tlb_gen       = new_tlb_gen;
 944        info->initiating_cpu    = smp_processor_id();
 945
 946        return info;
 947}
 948
 949static void put_flush_tlb_info(void)
 950{
 951#ifdef CONFIG_DEBUG_VM
 952        /* Complete reentrancy prevention checks */
 953        barrier();
 954        this_cpu_dec(flush_tlb_info_idx);
 955#endif
 956}
 957
 958void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 959                                unsigned long end, unsigned int stride_shift,
 960                                bool freed_tables)
 961{
 962        struct flush_tlb_info *info;
 963        u64 new_tlb_gen;
 964        int cpu;
 965
 966        cpu = get_cpu();
 967
 968        /* Should we flush just the requested range? */
 969        if ((end == TLB_FLUSH_ALL) ||
 970            ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
 971                start = 0;
 972                end = TLB_FLUSH_ALL;
 973        }
 974
 975        /* This is also a barrier that synchronizes with switch_mm(). */
 976        new_tlb_gen = inc_mm_tlb_gen(mm);
 977
 978        info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
 979                                  new_tlb_gen);
 980
 981        /*
 982         * flush_tlb_multi() is not optimized for the common case in which only
 983         * a local TLB flush is needed. Optimize this use-case by calling
 984         * flush_tlb_func_local() directly in this case.
 985         */
 986        if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
 987                flush_tlb_multi(mm_cpumask(mm), info);
 988        } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 989                lockdep_assert_irqs_enabled();
 990                local_irq_disable();
 991                flush_tlb_func(info);
 992                local_irq_enable();
 993        }
 994
 995        put_flush_tlb_info();
 996        put_cpu();
 997}
 998
 999
1000static void do_flush_tlb_all(void *info)
1001{
1002        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1003        __flush_tlb_all();
1004}
1005
1006void flush_tlb_all(void)
1007{
1008        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1009        on_each_cpu(do_flush_tlb_all, NULL, 1);
1010}
1011
1012static void do_kernel_range_flush(void *info)
1013{
1014        struct flush_tlb_info *f = info;
1015        unsigned long addr;
1016
1017        /* flush range by one by one 'invlpg' */
1018        for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1019                flush_tlb_one_kernel(addr);
1020}
1021
1022void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1023{
1024        /* Balance as user space task's flush, a bit conservative */
1025        if (end == TLB_FLUSH_ALL ||
1026            (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1027                on_each_cpu(do_flush_tlb_all, NULL, 1);
1028        } else {
1029                struct flush_tlb_info *info;
1030
1031                preempt_disable();
1032                info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
1033
1034                on_each_cpu(do_kernel_range_flush, info, 1);
1035
1036                put_flush_tlb_info();
1037                preempt_enable();
1038        }
1039}
1040
1041/*
1042 * This can be used from process context to figure out what the value of
1043 * CR3 is without needing to do a (slow) __read_cr3().
1044 *
1045 * It's intended to be used for code like KVM that sneakily changes CR3
1046 * and needs to restore it.  It needs to be used very carefully.
1047 */
1048unsigned long __get_current_cr3_fast(void)
1049{
1050        unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1051                this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1052
1053        /* For now, be very restrictive about when this can be called. */
1054        VM_WARN_ON(in_nmi() || preemptible());
1055
1056        VM_BUG_ON(cr3 != __read_cr3());
1057        return cr3;
1058}
1059EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1060
1061/*
1062 * Flush one page in the kernel mapping
1063 */
1064void flush_tlb_one_kernel(unsigned long addr)
1065{
1066        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1067
1068        /*
1069         * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1070         * paravirt equivalent.  Even with PCID, this is sufficient: we only
1071         * use PCID if we also use global PTEs for the kernel mapping, and
1072         * INVLPG flushes global translations across all address spaces.
1073         *
1074         * If PTI is on, then the kernel is mapped with non-global PTEs, and
1075         * __flush_tlb_one_user() will flush the given address for the current
1076         * kernel address space and for its usermode counterpart, but it does
1077         * not flush it for other address spaces.
1078         */
1079        flush_tlb_one_user(addr);
1080
1081        if (!static_cpu_has(X86_FEATURE_PTI))
1082                return;
1083
1084        /*
1085         * See above.  We need to propagate the flush to all other address
1086         * spaces.  In principle, we only need to propagate it to kernelmode
1087         * address spaces, but the extra bookkeeping we would need is not
1088         * worth it.
1089         */
1090        this_cpu_write(cpu_tlbstate.invalidate_other, true);
1091}
1092
1093/*
1094 * Flush one page in the user mapping
1095 */
1096STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1097{
1098        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1099
1100        asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1101
1102        if (!static_cpu_has(X86_FEATURE_PTI))
1103                return;
1104
1105        /*
1106         * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1107         * Just use invalidate_user_asid() in case we are called early.
1108         */
1109        if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1110                invalidate_user_asid(loaded_mm_asid);
1111        else
1112                invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1113}
1114
1115void flush_tlb_one_user(unsigned long addr)
1116{
1117        __flush_tlb_one_user(addr);
1118}
1119
1120/*
1121 * Flush everything
1122 */
1123STATIC_NOPV void native_flush_tlb_global(void)
1124{
1125        unsigned long flags;
1126
1127        if (static_cpu_has(X86_FEATURE_INVPCID)) {
1128                /*
1129                 * Using INVPCID is considerably faster than a pair of writes
1130                 * to CR4 sandwiched inside an IRQ flag save/restore.
1131                 *
1132                 * Note, this works with CR4.PCIDE=0 or 1.
1133                 */
1134                invpcid_flush_all();
1135                return;
1136        }
1137
1138        /*
1139         * Read-modify-write to CR4 - protect it from preemption and
1140         * from interrupts. (Use the raw variant because this code can
1141         * be called from deep inside debugging code.)
1142         */
1143        raw_local_irq_save(flags);
1144
1145        __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1146
1147        raw_local_irq_restore(flags);
1148}
1149
1150/*
1151 * Flush the entire current user mapping
1152 */
1153STATIC_NOPV void native_flush_tlb_local(void)
1154{
1155        /*
1156         * Preemption or interrupts must be disabled to protect the access
1157         * to the per CPU variable and to prevent being preempted between
1158         * read_cr3() and write_cr3().
1159         */
1160        WARN_ON_ONCE(preemptible());
1161
1162        invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1163
1164        /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1165        native_write_cr3(__native_read_cr3());
1166}
1167
1168void flush_tlb_local(void)
1169{
1170        __flush_tlb_local();
1171}
1172
1173/*
1174 * Flush everything
1175 */
1176void __flush_tlb_all(void)
1177{
1178        /*
1179         * This is to catch users with enabled preemption and the PGE feature
1180         * and don't trigger the warning in __native_flush_tlb().
1181         */
1182        VM_WARN_ON_ONCE(preemptible());
1183
1184        if (boot_cpu_has(X86_FEATURE_PGE)) {
1185                __flush_tlb_global();
1186        } else {
1187                /*
1188                 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1189                 */
1190                flush_tlb_local();
1191        }
1192}
1193EXPORT_SYMBOL_GPL(__flush_tlb_all);
1194
1195void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1196{
1197        struct flush_tlb_info *info;
1198
1199        int cpu = get_cpu();
1200
1201        info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
1202        /*
1203         * flush_tlb_multi() is not optimized for the common case in which only
1204         * a local TLB flush is needed. Optimize this use-case by calling
1205         * flush_tlb_func_local() directly in this case.
1206         */
1207        if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1208                flush_tlb_multi(&batch->cpumask, info);
1209        } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1210                lockdep_assert_irqs_enabled();
1211                local_irq_disable();
1212                flush_tlb_func(info);
1213                local_irq_enable();
1214        }
1215
1216        cpumask_clear(&batch->cpumask);
1217
1218        put_flush_tlb_info();
1219        put_cpu();
1220}
1221
1222/*
1223 * Blindly accessing user memory from NMI context can be dangerous
1224 * if we're in the middle of switching the current user task or
1225 * switching the loaded mm.  It can also be dangerous if we
1226 * interrupted some kernel code that was temporarily using a
1227 * different mm.
1228 */
1229bool nmi_uaccess_okay(void)
1230{
1231        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1232        struct mm_struct *current_mm = current->mm;
1233
1234        VM_WARN_ON_ONCE(!loaded_mm);
1235
1236        /*
1237         * The condition we want to check is
1238         * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1239         * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1240         * is supposed to be reasonably fast.
1241         *
1242         * Instead, we check the almost equivalent but somewhat conservative
1243         * condition below, and we rely on the fact that switch_mm_irqs_off()
1244         * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1245         */
1246        if (loaded_mm != current_mm)
1247                return false;
1248
1249        VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1250
1251        return true;
1252}
1253
1254static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1255                             size_t count, loff_t *ppos)
1256{
1257        char buf[32];
1258        unsigned int len;
1259
1260        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1261        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1262}
1263
1264static ssize_t tlbflush_write_file(struct file *file,
1265                 const char __user *user_buf, size_t count, loff_t *ppos)
1266{
1267        char buf[32];
1268        ssize_t len;
1269        int ceiling;
1270
1271        len = min(count, sizeof(buf) - 1);
1272        if (copy_from_user(buf, user_buf, len))
1273                return -EFAULT;
1274
1275        buf[len] = '\0';
1276        if (kstrtoint(buf, 0, &ceiling))
1277                return -EINVAL;
1278
1279        if (ceiling < 0)
1280                return -EINVAL;
1281
1282        tlb_single_page_flush_ceiling = ceiling;
1283        return count;
1284}
1285
1286static const struct file_operations fops_tlbflush = {
1287        .read = tlbflush_read_file,
1288        .write = tlbflush_write_file,
1289        .llseek = default_llseek,
1290};
1291
1292static int __init create_tlb_single_page_flush_ceiling(void)
1293{
1294        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1295                            arch_debugfs_dir, NULL, &fops_tlbflush);
1296        return 0;
1297}
1298late_initcall(create_tlb_single_page_flush_ceiling);
1299