linux/arch/x86/xen/mmu_pv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Xen mmu operations
   5 *
   6 * This file contains the various mmu fetch and update operations.
   7 * The most important job they must perform is the mapping between the
   8 * domain's pfn and the overall machine mfns.
   9 *
  10 * Xen allows guests to directly update the pagetable, in a controlled
  11 * fashion.  In other words, the guest modifies the same pagetable
  12 * that the CPU actually uses, which eliminates the overhead of having
  13 * a separate shadow pagetable.
  14 *
  15 * In order to allow this, it falls on the guest domain to map its
  16 * notion of a "physical" pfn - which is just a domain-local linear
  17 * address - into a real "machine address" which the CPU's MMU can
  18 * use.
  19 *
  20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  21 * inserted directly into the pagetable.  When creating a new
  22 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  24 * the mfn back into a pfn.
  25 *
  26 * The other constraint is that all pages which make up a pagetable
  27 * must be mapped read-only in the guest.  This prevents uncontrolled
  28 * guest updates to the pagetable.  Xen strictly enforces this, and
  29 * will disallow any pagetable update which will end up mapping a
  30 * pagetable page RW, and will disallow using any writable page as a
  31 * pagetable.
  32 *
  33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  34 * would need to validate the whole pagetable before going on.
  35 * Naturally, this is quite slow.  The solution is to "pin" a
  36 * pagetable, which enforces all the constraints on the pagetable even
  37 * when it is not actively in use.  This menas that Xen can be assured
  38 * that it is still valid when you do load it into %cr3, and doesn't
  39 * need to revalidate it.
  40 *
  41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  42 */
  43#include <linux/sched/mm.h>
  44#include <linux/debugfs.h>
  45#include <linux/bug.h>
  46#include <linux/vmalloc.h>
  47#include <linux/export.h>
  48#include <linux/init.h>
  49#include <linux/gfp.h>
  50#include <linux/memblock.h>
  51#include <linux/seq_file.h>
  52#include <linux/crash_dump.h>
  53#include <linux/pgtable.h>
  54#ifdef CONFIG_KEXEC_CORE
  55#include <linux/kexec.h>
  56#endif
  57
  58#include <trace/events/xen.h>
  59
  60#include <asm/tlbflush.h>
  61#include <asm/fixmap.h>
  62#include <asm/mmu_context.h>
  63#include <asm/setup.h>
  64#include <asm/paravirt.h>
  65#include <asm/e820/api.h>
  66#include <asm/linkage.h>
  67#include <asm/page.h>
  68#include <asm/init.h>
  69#include <asm/memtype.h>
  70#include <asm/smp.h>
  71#include <asm/tlb.h>
  72
  73#include <asm/xen/hypercall.h>
  74#include <asm/xen/hypervisor.h>
  75
  76#include <xen/xen.h>
  77#include <xen/page.h>
  78#include <xen/interface/xen.h>
  79#include <xen/interface/hvm/hvm_op.h>
  80#include <xen/interface/version.h>
  81#include <xen/interface/memory.h>
  82#include <xen/hvc-console.h>
  83#include <xen/swiotlb-xen.h>
  84
  85#include "multicalls.h"
  86#include "mmu.h"
  87#include "debugfs.h"
  88
  89#ifdef CONFIG_X86_VSYSCALL_EMULATION
  90/* l3 pud for userspace vsyscall mapping */
  91static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  92#endif
  93
  94/*
  95 * Protects atomic reservation decrease/increase against concurrent increases.
  96 * Also protects non-atomic updates of current_pages and balloon lists.
  97 */
  98static DEFINE_SPINLOCK(xen_reservation_lock);
  99
 100/*
 101 * Note about cr3 (pagetable base) values:
 102 *
 103 * xen_cr3 contains the current logical cr3 value; it contains the
 104 * last set cr3.  This may not be the current effective cr3, because
 105 * its update may be being lazily deferred.  However, a vcpu looking
 106 * at its own cr3 can use this value knowing that it everything will
 107 * be self-consistent.
 108 *
 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 110 * hypercall to set the vcpu cr3 is complete (so it may be a little
 111 * out of date, but it will never be set early).  If one vcpu is
 112 * looking at another vcpu's cr3 value, it should use this variable.
 113 */
 114DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 115DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 116
 117static phys_addr_t xen_pt_base, xen_pt_size __initdata;
 118
 119static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
 120
 121/*
 122 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 123 * redzone above it, so round it up to a PGD boundary.
 124 */
 125#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 126
 127void make_lowmem_page_readonly(void *vaddr)
 128{
 129        pte_t *pte, ptev;
 130        unsigned long address = (unsigned long)vaddr;
 131        unsigned int level;
 132
 133        pte = lookup_address(address, &level);
 134        if (pte == NULL)
 135                return;         /* vaddr missing */
 136
 137        ptev = pte_wrprotect(*pte);
 138
 139        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 140                BUG();
 141}
 142
 143void make_lowmem_page_readwrite(void *vaddr)
 144{
 145        pte_t *pte, ptev;
 146        unsigned long address = (unsigned long)vaddr;
 147        unsigned int level;
 148
 149        pte = lookup_address(address, &level);
 150        if (pte == NULL)
 151                return;         /* vaddr missing */
 152
 153        ptev = pte_mkwrite(*pte);
 154
 155        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 156                BUG();
 157}
 158
 159
 160/*
 161 * During early boot all page table pages are pinned, but we do not have struct
 162 * pages, so return true until struct pages are ready.
 163 */
 164static bool xen_page_pinned(void *ptr)
 165{
 166        if (static_branch_likely(&xen_struct_pages_ready)) {
 167                struct page *page = virt_to_page(ptr);
 168
 169                return PagePinned(page);
 170        }
 171        return true;
 172}
 173
 174static void xen_extend_mmu_update(const struct mmu_update *update)
 175{
 176        struct multicall_space mcs;
 177        struct mmu_update *u;
 178
 179        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 180
 181        if (mcs.mc != NULL) {
 182                mcs.mc->args[1]++;
 183        } else {
 184                mcs = __xen_mc_entry(sizeof(*u));
 185                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 186        }
 187
 188        u = mcs.args;
 189        *u = *update;
 190}
 191
 192static void xen_extend_mmuext_op(const struct mmuext_op *op)
 193{
 194        struct multicall_space mcs;
 195        struct mmuext_op *u;
 196
 197        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 198
 199        if (mcs.mc != NULL) {
 200                mcs.mc->args[1]++;
 201        } else {
 202                mcs = __xen_mc_entry(sizeof(*u));
 203                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 204        }
 205
 206        u = mcs.args;
 207        *u = *op;
 208}
 209
 210static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 211{
 212        struct mmu_update u;
 213
 214        preempt_disable();
 215
 216        xen_mc_batch();
 217
 218        /* ptr may be ioremapped for 64-bit pagetable setup */
 219        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 220        u.val = pmd_val_ma(val);
 221        xen_extend_mmu_update(&u);
 222
 223        xen_mc_issue(PARAVIRT_LAZY_MMU);
 224
 225        preempt_enable();
 226}
 227
 228static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 229{
 230        trace_xen_mmu_set_pmd(ptr, val);
 231
 232        /* If page is not pinned, we can just update the entry
 233           directly */
 234        if (!xen_page_pinned(ptr)) {
 235                *ptr = val;
 236                return;
 237        }
 238
 239        xen_set_pmd_hyper(ptr, val);
 240}
 241
 242/*
 243 * Associate a virtual page frame with a given physical page frame
 244 * and protection flags for that frame.
 245 */
 246void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 247{
 248        if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
 249                                         UVMF_INVLPG))
 250                BUG();
 251}
 252
 253static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 254{
 255        struct mmu_update u;
 256
 257        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 258                return false;
 259
 260        xen_mc_batch();
 261
 262        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 263        u.val = pte_val_ma(pteval);
 264        xen_extend_mmu_update(&u);
 265
 266        xen_mc_issue(PARAVIRT_LAZY_MMU);
 267
 268        return true;
 269}
 270
 271static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 272{
 273        if (!xen_batched_set_pte(ptep, pteval)) {
 274                /*
 275                 * Could call native_set_pte() here and trap and
 276                 * emulate the PTE write, but a hypercall is much cheaper.
 277                 */
 278                struct mmu_update u;
 279
 280                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 281                u.val = pte_val_ma(pteval);
 282                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 283        }
 284}
 285
 286static void xen_set_pte(pte_t *ptep, pte_t pteval)
 287{
 288        trace_xen_mmu_set_pte(ptep, pteval);
 289        __xen_set_pte(ptep, pteval);
 290}
 291
 292pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
 293                                 unsigned long addr, pte_t *ptep)
 294{
 295        /* Just return the pte as-is.  We preserve the bits on commit */
 296        trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
 297        return *ptep;
 298}
 299
 300void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
 301                                 pte_t *ptep, pte_t pte)
 302{
 303        struct mmu_update u;
 304
 305        trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
 306        xen_mc_batch();
 307
 308        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 309        u.val = pte_val_ma(pte);
 310        xen_extend_mmu_update(&u);
 311
 312        xen_mc_issue(PARAVIRT_LAZY_MMU);
 313}
 314
 315/* Assume pteval_t is equivalent to all the other *val_t types. */
 316static pteval_t pte_mfn_to_pfn(pteval_t val)
 317{
 318        if (val & _PAGE_PRESENT) {
 319                unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
 320                unsigned long pfn = mfn_to_pfn(mfn);
 321
 322                pteval_t flags = val & PTE_FLAGS_MASK;
 323                if (unlikely(pfn == ~0))
 324                        val = flags & ~_PAGE_PRESENT;
 325                else
 326                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 327        }
 328
 329        return val;
 330}
 331
 332static pteval_t pte_pfn_to_mfn(pteval_t val)
 333{
 334        if (val & _PAGE_PRESENT) {
 335                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 336                pteval_t flags = val & PTE_FLAGS_MASK;
 337                unsigned long mfn;
 338
 339                mfn = __pfn_to_mfn(pfn);
 340
 341                /*
 342                 * If there's no mfn for the pfn, then just create an
 343                 * empty non-present pte.  Unfortunately this loses
 344                 * information about the original pfn, so
 345                 * pte_mfn_to_pfn is asymmetric.
 346                 */
 347                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 348                        mfn = 0;
 349                        flags = 0;
 350                } else
 351                        mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
 352                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 353        }
 354
 355        return val;
 356}
 357
 358__visible pteval_t xen_pte_val(pte_t pte)
 359{
 360        pteval_t pteval = pte.pte;
 361
 362        return pte_mfn_to_pfn(pteval);
 363}
 364PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 365
 366__visible pgdval_t xen_pgd_val(pgd_t pgd)
 367{
 368        return pte_mfn_to_pfn(pgd.pgd);
 369}
 370PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 371
 372__visible pte_t xen_make_pte(pteval_t pte)
 373{
 374        pte = pte_pfn_to_mfn(pte);
 375
 376        return native_make_pte(pte);
 377}
 378PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 379
 380__visible pgd_t xen_make_pgd(pgdval_t pgd)
 381{
 382        pgd = pte_pfn_to_mfn(pgd);
 383        return native_make_pgd(pgd);
 384}
 385PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 386
 387__visible pmdval_t xen_pmd_val(pmd_t pmd)
 388{
 389        return pte_mfn_to_pfn(pmd.pmd);
 390}
 391PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 392
 393static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 394{
 395        struct mmu_update u;
 396
 397        preempt_disable();
 398
 399        xen_mc_batch();
 400
 401        /* ptr may be ioremapped for 64-bit pagetable setup */
 402        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 403        u.val = pud_val_ma(val);
 404        xen_extend_mmu_update(&u);
 405
 406        xen_mc_issue(PARAVIRT_LAZY_MMU);
 407
 408        preempt_enable();
 409}
 410
 411static void xen_set_pud(pud_t *ptr, pud_t val)
 412{
 413        trace_xen_mmu_set_pud(ptr, val);
 414
 415        /* If page is not pinned, we can just update the entry
 416           directly */
 417        if (!xen_page_pinned(ptr)) {
 418                *ptr = val;
 419                return;
 420        }
 421
 422        xen_set_pud_hyper(ptr, val);
 423}
 424
 425__visible pmd_t xen_make_pmd(pmdval_t pmd)
 426{
 427        pmd = pte_pfn_to_mfn(pmd);
 428        return native_make_pmd(pmd);
 429}
 430PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 431
 432__visible pudval_t xen_pud_val(pud_t pud)
 433{
 434        return pte_mfn_to_pfn(pud.pud);
 435}
 436PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 437
 438__visible pud_t xen_make_pud(pudval_t pud)
 439{
 440        pud = pte_pfn_to_mfn(pud);
 441
 442        return native_make_pud(pud);
 443}
 444PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 445
 446static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 447{
 448        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 449        unsigned offset = pgd - pgd_page;
 450        pgd_t *user_ptr = NULL;
 451
 452        if (offset < pgd_index(USER_LIMIT)) {
 453                struct page *page = virt_to_page(pgd_page);
 454                user_ptr = (pgd_t *)page->private;
 455                if (user_ptr)
 456                        user_ptr += offset;
 457        }
 458
 459        return user_ptr;
 460}
 461
 462static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 463{
 464        struct mmu_update u;
 465
 466        u.ptr = virt_to_machine(ptr).maddr;
 467        u.val = p4d_val_ma(val);
 468        xen_extend_mmu_update(&u);
 469}
 470
 471/*
 472 * Raw hypercall-based set_p4d, intended for in early boot before
 473 * there's a page structure.  This implies:
 474 *  1. The only existing pagetable is the kernel's
 475 *  2. It is always pinned
 476 *  3. It has no user pagetable attached to it
 477 */
 478static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 479{
 480        preempt_disable();
 481
 482        xen_mc_batch();
 483
 484        __xen_set_p4d_hyper(ptr, val);
 485
 486        xen_mc_issue(PARAVIRT_LAZY_MMU);
 487
 488        preempt_enable();
 489}
 490
 491static void xen_set_p4d(p4d_t *ptr, p4d_t val)
 492{
 493        pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
 494        pgd_t pgd_val;
 495
 496        trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
 497
 498        /* If page is not pinned, we can just update the entry
 499           directly */
 500        if (!xen_page_pinned(ptr)) {
 501                *ptr = val;
 502                if (user_ptr) {
 503                        WARN_ON(xen_page_pinned(user_ptr));
 504                        pgd_val.pgd = p4d_val_ma(val);
 505                        *user_ptr = pgd_val;
 506                }
 507                return;
 508        }
 509
 510        /* If it's pinned, then we can at least batch the kernel and
 511           user updates together. */
 512        xen_mc_batch();
 513
 514        __xen_set_p4d_hyper(ptr, val);
 515        if (user_ptr)
 516                __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
 517
 518        xen_mc_issue(PARAVIRT_LAZY_MMU);
 519}
 520
 521#if CONFIG_PGTABLE_LEVELS >= 5
 522__visible p4dval_t xen_p4d_val(p4d_t p4d)
 523{
 524        return pte_mfn_to_pfn(p4d.p4d);
 525}
 526PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
 527
 528__visible p4d_t xen_make_p4d(p4dval_t p4d)
 529{
 530        p4d = pte_pfn_to_mfn(p4d);
 531
 532        return native_make_p4d(p4d);
 533}
 534PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
 535#endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
 536
 537static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
 538                         void (*func)(struct mm_struct *mm, struct page *,
 539                                      enum pt_level),
 540                         bool last, unsigned long limit)
 541{
 542        int i, nr;
 543
 544        nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
 545        for (i = 0; i < nr; i++) {
 546                if (!pmd_none(pmd[i]))
 547                        (*func)(mm, pmd_page(pmd[i]), PT_PTE);
 548        }
 549}
 550
 551static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
 552                         void (*func)(struct mm_struct *mm, struct page *,
 553                                      enum pt_level),
 554                         bool last, unsigned long limit)
 555{
 556        int i, nr;
 557
 558        nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
 559        for (i = 0; i < nr; i++) {
 560                pmd_t *pmd;
 561
 562                if (pud_none(pud[i]))
 563                        continue;
 564
 565                pmd = pmd_offset(&pud[i], 0);
 566                if (PTRS_PER_PMD > 1)
 567                        (*func)(mm, virt_to_page(pmd), PT_PMD);
 568                xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
 569        }
 570}
 571
 572static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
 573                         void (*func)(struct mm_struct *mm, struct page *,
 574                                      enum pt_level),
 575                         bool last, unsigned long limit)
 576{
 577        pud_t *pud;
 578
 579
 580        if (p4d_none(*p4d))
 581                return;
 582
 583        pud = pud_offset(p4d, 0);
 584        if (PTRS_PER_PUD > 1)
 585                (*func)(mm, virt_to_page(pud), PT_PUD);
 586        xen_pud_walk(mm, pud, func, last, limit);
 587}
 588
 589/*
 590 * (Yet another) pagetable walker.  This one is intended for pinning a
 591 * pagetable.  This means that it walks a pagetable and calls the
 592 * callback function on each page it finds making up the page table,
 593 * at every level.  It walks the entire pagetable, but it only bothers
 594 * pinning pte pages which are below limit.  In the normal case this
 595 * will be STACK_TOP_MAX, but at boot we need to pin up to
 596 * FIXADDR_TOP.
 597 *
 598 * We must skip the Xen hole in the middle of the address space, just after
 599 * the big x86-64 virtual hole.
 600 */
 601static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 602                           void (*func)(struct mm_struct *mm, struct page *,
 603                                        enum pt_level),
 604                           unsigned long limit)
 605{
 606        int i, nr;
 607        unsigned hole_low = 0, hole_high = 0;
 608
 609        /* The limit is the last byte to be touched */
 610        limit--;
 611        BUG_ON(limit >= FIXADDR_TOP);
 612
 613        /*
 614         * 64-bit has a great big hole in the middle of the address
 615         * space, which contains the Xen mappings.
 616         */
 617        hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
 618        hole_high = pgd_index(GUARD_HOLE_END_ADDR);
 619
 620        nr = pgd_index(limit) + 1;
 621        for (i = 0; i < nr; i++) {
 622                p4d_t *p4d;
 623
 624                if (i >= hole_low && i < hole_high)
 625                        continue;
 626
 627                if (pgd_none(pgd[i]))
 628                        continue;
 629
 630                p4d = p4d_offset(&pgd[i], 0);
 631                xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
 632        }
 633
 634        /* Do the top level last, so that the callbacks can use it as
 635           a cue to do final things like tlb flushes. */
 636        (*func)(mm, virt_to_page(pgd), PT_PGD);
 637}
 638
 639static void xen_pgd_walk(struct mm_struct *mm,
 640                         void (*func)(struct mm_struct *mm, struct page *,
 641                                      enum pt_level),
 642                         unsigned long limit)
 643{
 644        __xen_pgd_walk(mm, mm->pgd, func, limit);
 645}
 646
 647/* If we're using split pte locks, then take the page's lock and
 648   return a pointer to it.  Otherwise return NULL. */
 649static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 650{
 651        spinlock_t *ptl = NULL;
 652
 653#if USE_SPLIT_PTE_PTLOCKS
 654        ptl = ptlock_ptr(page);
 655        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 656#endif
 657
 658        return ptl;
 659}
 660
 661static void xen_pte_unlock(void *v)
 662{
 663        spinlock_t *ptl = v;
 664        spin_unlock(ptl);
 665}
 666
 667static void xen_do_pin(unsigned level, unsigned long pfn)
 668{
 669        struct mmuext_op op;
 670
 671        op.cmd = level;
 672        op.arg1.mfn = pfn_to_mfn(pfn);
 673
 674        xen_extend_mmuext_op(&op);
 675}
 676
 677static void xen_pin_page(struct mm_struct *mm, struct page *page,
 678                         enum pt_level level)
 679{
 680        unsigned pgfl = TestSetPagePinned(page);
 681
 682        if (!pgfl) {
 683                void *pt = lowmem_page_address(page);
 684                unsigned long pfn = page_to_pfn(page);
 685                struct multicall_space mcs = __xen_mc_entry(0);
 686                spinlock_t *ptl;
 687
 688                /*
 689                 * We need to hold the pagetable lock between the time
 690                 * we make the pagetable RO and when we actually pin
 691                 * it.  If we don't, then other users may come in and
 692                 * attempt to update the pagetable by writing it,
 693                 * which will fail because the memory is RO but not
 694                 * pinned, so Xen won't do the trap'n'emulate.
 695                 *
 696                 * If we're using split pte locks, we can't hold the
 697                 * entire pagetable's worth of locks during the
 698                 * traverse, because we may wrap the preempt count (8
 699                 * bits).  The solution is to mark RO and pin each PTE
 700                 * page while holding the lock.  This means the number
 701                 * of locks we end up holding is never more than a
 702                 * batch size (~32 entries, at present).
 703                 *
 704                 * If we're not using split pte locks, we needn't pin
 705                 * the PTE pages independently, because we're
 706                 * protected by the overall pagetable lock.
 707                 */
 708                ptl = NULL;
 709                if (level == PT_PTE)
 710                        ptl = xen_pte_lock(page, mm);
 711
 712                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 713                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 714                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 715
 716                if (ptl) {
 717                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 718
 719                        /* Queue a deferred unlock for when this batch
 720                           is completed. */
 721                        xen_mc_callback(xen_pte_unlock, ptl);
 722                }
 723        }
 724}
 725
 726/* This is called just after a mm has been created, but it has not
 727   been used yet.  We need to make sure that its pagetable is all
 728   read-only, and can be pinned. */
 729static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 730{
 731        pgd_t *user_pgd = xen_get_user_pgd(pgd);
 732
 733        trace_xen_mmu_pgd_pin(mm, pgd);
 734
 735        xen_mc_batch();
 736
 737        __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
 738
 739        xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 740
 741        if (user_pgd) {
 742                xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 743                xen_do_pin(MMUEXT_PIN_L4_TABLE,
 744                           PFN_DOWN(__pa(user_pgd)));
 745        }
 746
 747        xen_mc_issue(0);
 748}
 749
 750static void xen_pgd_pin(struct mm_struct *mm)
 751{
 752        __xen_pgd_pin(mm, mm->pgd);
 753}
 754
 755/*
 756 * On save, we need to pin all pagetables to make sure they get their
 757 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 758 * them (unpinned pgds are not currently in use, probably because the
 759 * process is under construction or destruction).
 760 *
 761 * Expected to be called in stop_machine() ("equivalent to taking
 762 * every spinlock in the system"), so the locking doesn't really
 763 * matter all that much.
 764 */
 765void xen_mm_pin_all(void)
 766{
 767        struct page *page;
 768
 769        spin_lock(&pgd_lock);
 770
 771        list_for_each_entry(page, &pgd_list, lru) {
 772                if (!PagePinned(page)) {
 773                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 774                        SetPageSavePinned(page);
 775                }
 776        }
 777
 778        spin_unlock(&pgd_lock);
 779}
 780
 781static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 782                                   enum pt_level level)
 783{
 784        SetPagePinned(page);
 785}
 786
 787/*
 788 * The init_mm pagetable is really pinned as soon as its created, but
 789 * that's before we have page structures to store the bits.  So do all
 790 * the book-keeping now once struct pages for allocated pages are
 791 * initialized. This happens only after memblock_free_all() is called.
 792 */
 793static void __init xen_after_bootmem(void)
 794{
 795        static_branch_enable(&xen_struct_pages_ready);
 796#ifdef CONFIG_X86_VSYSCALL_EMULATION
 797        SetPagePinned(virt_to_page(level3_user_vsyscall));
 798#endif
 799        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 800}
 801
 802static void xen_unpin_page(struct mm_struct *mm, struct page *page,
 803                           enum pt_level level)
 804{
 805        unsigned pgfl = TestClearPagePinned(page);
 806
 807        if (pgfl) {
 808                void *pt = lowmem_page_address(page);
 809                unsigned long pfn = page_to_pfn(page);
 810                spinlock_t *ptl = NULL;
 811                struct multicall_space mcs;
 812
 813                /*
 814                 * Do the converse to pin_page.  If we're using split
 815                 * pte locks, we must be holding the lock for while
 816                 * the pte page is unpinned but still RO to prevent
 817                 * concurrent updates from seeing it in this
 818                 * partially-pinned state.
 819                 */
 820                if (level == PT_PTE) {
 821                        ptl = xen_pte_lock(page, mm);
 822
 823                        if (ptl)
 824                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 825                }
 826
 827                mcs = __xen_mc_entry(0);
 828
 829                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 830                                        pfn_pte(pfn, PAGE_KERNEL),
 831                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 832
 833                if (ptl) {
 834                        /* unlock when batch completed */
 835                        xen_mc_callback(xen_pte_unlock, ptl);
 836                }
 837        }
 838}
 839
 840/* Release a pagetables pages back as normal RW */
 841static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 842{
 843        pgd_t *user_pgd = xen_get_user_pgd(pgd);
 844
 845        trace_xen_mmu_pgd_unpin(mm, pgd);
 846
 847        xen_mc_batch();
 848
 849        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 850
 851        if (user_pgd) {
 852                xen_do_pin(MMUEXT_UNPIN_TABLE,
 853                           PFN_DOWN(__pa(user_pgd)));
 854                xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 855        }
 856
 857        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 858
 859        xen_mc_issue(0);
 860}
 861
 862static void xen_pgd_unpin(struct mm_struct *mm)
 863{
 864        __xen_pgd_unpin(mm, mm->pgd);
 865}
 866
 867/*
 868 * On resume, undo any pinning done at save, so that the rest of the
 869 * kernel doesn't see any unexpected pinned pagetables.
 870 */
 871void xen_mm_unpin_all(void)
 872{
 873        struct page *page;
 874
 875        spin_lock(&pgd_lock);
 876
 877        list_for_each_entry(page, &pgd_list, lru) {
 878                if (PageSavePinned(page)) {
 879                        BUG_ON(!PagePinned(page));
 880                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 881                        ClearPageSavePinned(page);
 882                }
 883        }
 884
 885        spin_unlock(&pgd_lock);
 886}
 887
 888static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
 889{
 890        spin_lock(&next->page_table_lock);
 891        xen_pgd_pin(next);
 892        spin_unlock(&next->page_table_lock);
 893}
 894
 895static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 896{
 897        spin_lock(&mm->page_table_lock);
 898        xen_pgd_pin(mm);
 899        spin_unlock(&mm->page_table_lock);
 900}
 901
 902static void drop_mm_ref_this_cpu(void *info)
 903{
 904        struct mm_struct *mm = info;
 905
 906        if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
 907                leave_mm(smp_processor_id());
 908
 909        /*
 910         * If this cpu still has a stale cr3 reference, then make sure
 911         * it has been flushed.
 912         */
 913        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
 914                xen_mc_flush();
 915}
 916
 917#ifdef CONFIG_SMP
 918/*
 919 * Another cpu may still have their %cr3 pointing at the pagetable, so
 920 * we need to repoint it somewhere else before we can unpin it.
 921 */
 922static void xen_drop_mm_ref(struct mm_struct *mm)
 923{
 924        cpumask_var_t mask;
 925        unsigned cpu;
 926
 927        drop_mm_ref_this_cpu(mm);
 928
 929        /* Get the "official" set of cpus referring to our pagetable. */
 930        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
 931                for_each_online_cpu(cpu) {
 932                        if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
 933                                continue;
 934                        smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
 935                }
 936                return;
 937        }
 938
 939        /*
 940         * It's possible that a vcpu may have a stale reference to our
 941         * cr3, because its in lazy mode, and it hasn't yet flushed
 942         * its set of pending hypercalls yet.  In this case, we can
 943         * look at its actual current cr3 value, and force it to flush
 944         * if needed.
 945         */
 946        cpumask_clear(mask);
 947        for_each_online_cpu(cpu) {
 948                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
 949                        cpumask_set_cpu(cpu, mask);
 950        }
 951
 952        smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
 953        free_cpumask_var(mask);
 954}
 955#else
 956static void xen_drop_mm_ref(struct mm_struct *mm)
 957{
 958        drop_mm_ref_this_cpu(mm);
 959}
 960#endif
 961
 962/*
 963 * While a process runs, Xen pins its pagetables, which means that the
 964 * hypervisor forces it to be read-only, and it controls all updates
 965 * to it.  This means that all pagetable updates have to go via the
 966 * hypervisor, which is moderately expensive.
 967 *
 968 * Since we're pulling the pagetable down, we switch to use init_mm,
 969 * unpin old process pagetable and mark it all read-write, which
 970 * allows further operations on it to be simple memory accesses.
 971 *
 972 * The only subtle point is that another CPU may be still using the
 973 * pagetable because of lazy tlb flushing.  This means we need need to
 974 * switch all CPUs off this pagetable before we can unpin it.
 975 */
 976static void xen_exit_mmap(struct mm_struct *mm)
 977{
 978        get_cpu();              /* make sure we don't move around */
 979        xen_drop_mm_ref(mm);
 980        put_cpu();
 981
 982        spin_lock(&mm->page_table_lock);
 983
 984        /* pgd may not be pinned in the error exit path of execve */
 985        if (xen_page_pinned(mm->pgd))
 986                xen_pgd_unpin(mm);
 987
 988        spin_unlock(&mm->page_table_lock);
 989}
 990
 991static void xen_post_allocator_init(void);
 992
 993static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
 994{
 995        struct mmuext_op op;
 996
 997        op.cmd = cmd;
 998        op.arg1.mfn = pfn_to_mfn(pfn);
 999        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1000                BUG();
1001}
1002
1003static void __init xen_cleanhighmap(unsigned long vaddr,
1004                                    unsigned long vaddr_end)
1005{
1006        unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1007        pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1008
1009        /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1010         * We include the PMD passed in on _both_ boundaries. */
1011        for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1012                        pmd++, vaddr += PMD_SIZE) {
1013                if (pmd_none(*pmd))
1014                        continue;
1015                if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1016                        set_pmd(pmd, __pmd(0));
1017        }
1018        /* In case we did something silly, we should crash in this function
1019         * instead of somewhere later and be confusing. */
1020        xen_mc_flush();
1021}
1022
1023/*
1024 * Make a page range writeable and free it.
1025 */
1026static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1027{
1028        void *vaddr = __va(paddr);
1029        void *vaddr_end = vaddr + size;
1030
1031        for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1032                make_lowmem_page_readwrite(vaddr);
1033
1034        memblock_phys_free(paddr, size);
1035}
1036
1037static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1038{
1039        unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1040
1041        if (unpin)
1042                pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1043        ClearPagePinned(virt_to_page(__va(pa)));
1044        xen_free_ro_pages(pa, PAGE_SIZE);
1045}
1046
1047static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1048{
1049        unsigned long pa;
1050        pte_t *pte_tbl;
1051        int i;
1052
1053        if (pmd_large(*pmd)) {
1054                pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1055                xen_free_ro_pages(pa, PMD_SIZE);
1056                return;
1057        }
1058
1059        pte_tbl = pte_offset_kernel(pmd, 0);
1060        for (i = 0; i < PTRS_PER_PTE; i++) {
1061                if (pte_none(pte_tbl[i]))
1062                        continue;
1063                pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1064                xen_free_ro_pages(pa, PAGE_SIZE);
1065        }
1066        set_pmd(pmd, __pmd(0));
1067        xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1068}
1069
1070static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1071{
1072        unsigned long pa;
1073        pmd_t *pmd_tbl;
1074        int i;
1075
1076        if (pud_large(*pud)) {
1077                pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1078                xen_free_ro_pages(pa, PUD_SIZE);
1079                return;
1080        }
1081
1082        pmd_tbl = pmd_offset(pud, 0);
1083        for (i = 0; i < PTRS_PER_PMD; i++) {
1084                if (pmd_none(pmd_tbl[i]))
1085                        continue;
1086                xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1087        }
1088        set_pud(pud, __pud(0));
1089        xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1090}
1091
1092static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1093{
1094        unsigned long pa;
1095        pud_t *pud_tbl;
1096        int i;
1097
1098        if (p4d_large(*p4d)) {
1099                pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1100                xen_free_ro_pages(pa, P4D_SIZE);
1101                return;
1102        }
1103
1104        pud_tbl = pud_offset(p4d, 0);
1105        for (i = 0; i < PTRS_PER_PUD; i++) {
1106                if (pud_none(pud_tbl[i]))
1107                        continue;
1108                xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1109        }
1110        set_p4d(p4d, __p4d(0));
1111        xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1112}
1113
1114/*
1115 * Since it is well isolated we can (and since it is perhaps large we should)
1116 * also free the page tables mapping the initial P->M table.
1117 */
1118static void __init xen_cleanmfnmap(unsigned long vaddr)
1119{
1120        pgd_t *pgd;
1121        p4d_t *p4d;
1122        bool unpin;
1123
1124        unpin = (vaddr == 2 * PGDIR_SIZE);
1125        vaddr &= PMD_MASK;
1126        pgd = pgd_offset_k(vaddr);
1127        p4d = p4d_offset(pgd, 0);
1128        if (!p4d_none(*p4d))
1129                xen_cleanmfnmap_p4d(p4d, unpin);
1130}
1131
1132static void __init xen_pagetable_p2m_free(void)
1133{
1134        unsigned long size;
1135        unsigned long addr;
1136
1137        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1138
1139        /* No memory or already called. */
1140        if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1141                return;
1142
1143        /* using __ka address and sticking INVALID_P2M_ENTRY! */
1144        memset((void *)xen_start_info->mfn_list, 0xff, size);
1145
1146        addr = xen_start_info->mfn_list;
1147        /*
1148         * We could be in __ka space.
1149         * We roundup to the PMD, which means that if anybody at this stage is
1150         * using the __ka address of xen_start_info or
1151         * xen_start_info->shared_info they are in going to crash. Fortunately
1152         * we have already revectored in xen_setup_kernel_pagetable.
1153         */
1154        size = roundup(size, PMD_SIZE);
1155
1156        if (addr >= __START_KERNEL_map) {
1157                xen_cleanhighmap(addr, addr + size);
1158                size = PAGE_ALIGN(xen_start_info->nr_pages *
1159                                  sizeof(unsigned long));
1160                memblock_free((void *)addr, size);
1161        } else {
1162                xen_cleanmfnmap(addr);
1163        }
1164}
1165
1166static void __init xen_pagetable_cleanhighmap(void)
1167{
1168        unsigned long size;
1169        unsigned long addr;
1170
1171        /* At this stage, cleanup_highmap has already cleaned __ka space
1172         * from _brk_limit way up to the max_pfn_mapped (which is the end of
1173         * the ramdisk). We continue on, erasing PMD entries that point to page
1174         * tables - do note that they are accessible at this stage via __va.
1175         * As Xen is aligning the memory end to a 4MB boundary, for good
1176         * measure we also round up to PMD_SIZE * 2 - which means that if
1177         * anybody is using __ka address to the initial boot-stack - and try
1178         * to use it - they are going to crash. The xen_start_info has been
1179         * taken care of already in xen_setup_kernel_pagetable. */
1180        addr = xen_start_info->pt_base;
1181        size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1182
1183        xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1184        xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1185}
1186
1187static void __init xen_pagetable_p2m_setup(void)
1188{
1189        xen_vmalloc_p2m_tree();
1190
1191        xen_pagetable_p2m_free();
1192
1193        xen_pagetable_cleanhighmap();
1194
1195        /* And revector! Bye bye old array */
1196        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1197}
1198
1199static void __init xen_pagetable_init(void)
1200{
1201        /*
1202         * The majority of further PTE writes is to pagetables already
1203         * announced as such to Xen. Hence it is more efficient to use
1204         * hypercalls for these updates.
1205         */
1206        pv_ops.mmu.set_pte = __xen_set_pte;
1207
1208        paging_init();
1209        xen_post_allocator_init();
1210
1211        xen_pagetable_p2m_setup();
1212
1213        /* Allocate and initialize top and mid mfn levels for p2m structure */
1214        xen_build_mfn_list_list();
1215
1216        /* Remap memory freed due to conflicts with E820 map */
1217        xen_remap_memory();
1218        xen_setup_mfn_list_list();
1219}
1220
1221static noinstr void xen_write_cr2(unsigned long cr2)
1222{
1223        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1224}
1225
1226static noinline void xen_flush_tlb(void)
1227{
1228        struct mmuext_op *op;
1229        struct multicall_space mcs;
1230
1231        preempt_disable();
1232
1233        mcs = xen_mc_entry(sizeof(*op));
1234
1235        op = mcs.args;
1236        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1237        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1238
1239        xen_mc_issue(PARAVIRT_LAZY_MMU);
1240
1241        preempt_enable();
1242}
1243
1244static void xen_flush_tlb_one_user(unsigned long addr)
1245{
1246        struct mmuext_op *op;
1247        struct multicall_space mcs;
1248
1249        trace_xen_mmu_flush_tlb_one_user(addr);
1250
1251        preempt_disable();
1252
1253        mcs = xen_mc_entry(sizeof(*op));
1254        op = mcs.args;
1255        op->cmd = MMUEXT_INVLPG_LOCAL;
1256        op->arg1.linear_addr = addr & PAGE_MASK;
1257        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1258
1259        xen_mc_issue(PARAVIRT_LAZY_MMU);
1260
1261        preempt_enable();
1262}
1263
1264static void xen_flush_tlb_multi(const struct cpumask *cpus,
1265                                const struct flush_tlb_info *info)
1266{
1267        struct {
1268                struct mmuext_op op;
1269                DECLARE_BITMAP(mask, NR_CPUS);
1270        } *args;
1271        struct multicall_space mcs;
1272        const size_t mc_entry_size = sizeof(args->op) +
1273                sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1274
1275        trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1276
1277        if (cpumask_empty(cpus))
1278                return;         /* nothing to do */
1279
1280        mcs = xen_mc_entry(mc_entry_size);
1281        args = mcs.args;
1282        args->op.arg2.vcpumask = to_cpumask(args->mask);
1283
1284        /* Remove any offline CPUs */
1285        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1286
1287        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1288        if (info->end != TLB_FLUSH_ALL &&
1289            (info->end - info->start) <= PAGE_SIZE) {
1290                args->op.cmd = MMUEXT_INVLPG_MULTI;
1291                args->op.arg1.linear_addr = info->start;
1292        }
1293
1294        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1295
1296        xen_mc_issue(PARAVIRT_LAZY_MMU);
1297}
1298
1299static unsigned long xen_read_cr3(void)
1300{
1301        return this_cpu_read(xen_cr3);
1302}
1303
1304static void set_current_cr3(void *v)
1305{
1306        this_cpu_write(xen_current_cr3, (unsigned long)v);
1307}
1308
1309static void __xen_write_cr3(bool kernel, unsigned long cr3)
1310{
1311        struct mmuext_op op;
1312        unsigned long mfn;
1313
1314        trace_xen_mmu_write_cr3(kernel, cr3);
1315
1316        if (cr3)
1317                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1318        else
1319                mfn = 0;
1320
1321        WARN_ON(mfn == 0 && kernel);
1322
1323        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1324        op.arg1.mfn = mfn;
1325
1326        xen_extend_mmuext_op(&op);
1327
1328        if (kernel) {
1329                this_cpu_write(xen_cr3, cr3);
1330
1331                /* Update xen_current_cr3 once the batch has actually
1332                   been submitted. */
1333                xen_mc_callback(set_current_cr3, (void *)cr3);
1334        }
1335}
1336static void xen_write_cr3(unsigned long cr3)
1337{
1338        pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1339
1340        BUG_ON(preemptible());
1341
1342        xen_mc_batch();  /* disables interrupts */
1343
1344        /* Update while interrupts are disabled, so its atomic with
1345           respect to ipis */
1346        this_cpu_write(xen_cr3, cr3);
1347
1348        __xen_write_cr3(true, cr3);
1349
1350        if (user_pgd)
1351                __xen_write_cr3(false, __pa(user_pgd));
1352        else
1353                __xen_write_cr3(false, 0);
1354
1355        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1356}
1357
1358/*
1359 * At the start of the day - when Xen launches a guest, it has already
1360 * built pagetables for the guest. We diligently look over them
1361 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1362 * init_top_pgt and its friends. Then when we are happy we load
1363 * the new init_top_pgt - and continue on.
1364 *
1365 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1366 * up the rest of the pagetables. When it has completed it loads the cr3.
1367 * N.B. that baremetal would start at 'start_kernel' (and the early
1368 * #PF handler would create bootstrap pagetables) - so we are running
1369 * with the same assumptions as what to do when write_cr3 is executed
1370 * at this point.
1371 *
1372 * Since there are no user-page tables at all, we have two variants
1373 * of xen_write_cr3 - the early bootup (this one), and the late one
1374 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1375 * the Linux kernel and user-space are both in ring 3 while the
1376 * hypervisor is in ring 0.
1377 */
1378static void __init xen_write_cr3_init(unsigned long cr3)
1379{
1380        BUG_ON(preemptible());
1381
1382        xen_mc_batch();  /* disables interrupts */
1383
1384        /* Update while interrupts are disabled, so its atomic with
1385           respect to ipis */
1386        this_cpu_write(xen_cr3, cr3);
1387
1388        __xen_write_cr3(true, cr3);
1389
1390        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1391}
1392
1393static int xen_pgd_alloc(struct mm_struct *mm)
1394{
1395        pgd_t *pgd = mm->pgd;
1396        struct page *page = virt_to_page(pgd);
1397        pgd_t *user_pgd;
1398        int ret = -ENOMEM;
1399
1400        BUG_ON(PagePinned(virt_to_page(pgd)));
1401        BUG_ON(page->private != 0);
1402
1403        user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1404        page->private = (unsigned long)user_pgd;
1405
1406        if (user_pgd != NULL) {
1407#ifdef CONFIG_X86_VSYSCALL_EMULATION
1408                user_pgd[pgd_index(VSYSCALL_ADDR)] =
1409                        __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1410#endif
1411                ret = 0;
1412        }
1413
1414        BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1415
1416        return ret;
1417}
1418
1419static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1420{
1421        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1422
1423        if (user_pgd)
1424                free_page((unsigned long)user_pgd);
1425}
1426
1427/*
1428 * Init-time set_pte while constructing initial pagetables, which
1429 * doesn't allow RO page table pages to be remapped RW.
1430 *
1431 * If there is no MFN for this PFN then this page is initially
1432 * ballooned out so clear the PTE (as in decrease_reservation() in
1433 * drivers/xen/balloon.c).
1434 *
1435 * Many of these PTE updates are done on unpinned and writable pages
1436 * and doing a hypercall for these is unnecessary and expensive.  At
1437 * this point it is rarely possible to tell if a page is pinned, so
1438 * mostly write the PTE directly and rely on Xen trapping and
1439 * emulating any updates as necessary.
1440 */
1441static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1442{
1443        if (unlikely(is_early_ioremap_ptep(ptep)))
1444                __xen_set_pte(ptep, pte);
1445        else
1446                native_set_pte(ptep, pte);
1447}
1448
1449__visible pte_t xen_make_pte_init(pteval_t pte)
1450{
1451        unsigned long pfn;
1452
1453        /*
1454         * Pages belonging to the initial p2m list mapped outside the default
1455         * address range must be mapped read-only. This region contains the
1456         * page tables for mapping the p2m list, too, and page tables MUST be
1457         * mapped read-only.
1458         */
1459        pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1460        if (xen_start_info->mfn_list < __START_KERNEL_map &&
1461            pfn >= xen_start_info->first_p2m_pfn &&
1462            pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1463                pte &= ~_PAGE_RW;
1464
1465        pte = pte_pfn_to_mfn(pte);
1466        return native_make_pte(pte);
1467}
1468PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1469
1470/* Early in boot, while setting up the initial pagetable, assume
1471   everything is pinned. */
1472static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1473{
1474#ifdef CONFIG_FLATMEM
1475        BUG_ON(mem_map);        /* should only be used early */
1476#endif
1477        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1478        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1479}
1480
1481/* Used for pmd and pud */
1482static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1483{
1484#ifdef CONFIG_FLATMEM
1485        BUG_ON(mem_map);        /* should only be used early */
1486#endif
1487        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1488}
1489
1490/* Early release_pte assumes that all pts are pinned, since there's
1491   only init_mm and anything attached to that is pinned. */
1492static void __init xen_release_pte_init(unsigned long pfn)
1493{
1494        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1495        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1496}
1497
1498static void __init xen_release_pmd_init(unsigned long pfn)
1499{
1500        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1501}
1502
1503static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1504{
1505        struct multicall_space mcs;
1506        struct mmuext_op *op;
1507
1508        mcs = __xen_mc_entry(sizeof(*op));
1509        op = mcs.args;
1510        op->cmd = cmd;
1511        op->arg1.mfn = pfn_to_mfn(pfn);
1512
1513        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1514}
1515
1516static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1517{
1518        struct multicall_space mcs;
1519        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1520
1521        mcs = __xen_mc_entry(0);
1522        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1523                                pfn_pte(pfn, prot), 0);
1524}
1525
1526/* This needs to make sure the new pte page is pinned iff its being
1527   attached to a pinned pagetable. */
1528static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1529                                    unsigned level)
1530{
1531        bool pinned = xen_page_pinned(mm->pgd);
1532
1533        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1534
1535        if (pinned) {
1536                struct page *page = pfn_to_page(pfn);
1537
1538                pinned = false;
1539                if (static_branch_likely(&xen_struct_pages_ready)) {
1540                        pinned = PagePinned(page);
1541                        SetPagePinned(page);
1542                }
1543
1544                xen_mc_batch();
1545
1546                __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1547
1548                if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
1549                        __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1550
1551                xen_mc_issue(PARAVIRT_LAZY_MMU);
1552        }
1553}
1554
1555static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1556{
1557        xen_alloc_ptpage(mm, pfn, PT_PTE);
1558}
1559
1560static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1561{
1562        xen_alloc_ptpage(mm, pfn, PT_PMD);
1563}
1564
1565/* This should never happen until we're OK to use struct page */
1566static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1567{
1568        struct page *page = pfn_to_page(pfn);
1569        bool pinned = PagePinned(page);
1570
1571        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1572
1573        if (pinned) {
1574                xen_mc_batch();
1575
1576                if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1577                        __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1578
1579                __set_pfn_prot(pfn, PAGE_KERNEL);
1580
1581                xen_mc_issue(PARAVIRT_LAZY_MMU);
1582
1583                ClearPagePinned(page);
1584        }
1585}
1586
1587static void xen_release_pte(unsigned long pfn)
1588{
1589        xen_release_ptpage(pfn, PT_PTE);
1590}
1591
1592static void xen_release_pmd(unsigned long pfn)
1593{
1594        xen_release_ptpage(pfn, PT_PMD);
1595}
1596
1597static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1598{
1599        xen_alloc_ptpage(mm, pfn, PT_PUD);
1600}
1601
1602static void xen_release_pud(unsigned long pfn)
1603{
1604        xen_release_ptpage(pfn, PT_PUD);
1605}
1606
1607/*
1608 * Like __va(), but returns address in the kernel mapping (which is
1609 * all we have until the physical memory mapping has been set up.
1610 */
1611static void * __init __ka(phys_addr_t paddr)
1612{
1613        return (void *)(paddr + __START_KERNEL_map);
1614}
1615
1616/* Convert a machine address to physical address */
1617static unsigned long __init m2p(phys_addr_t maddr)
1618{
1619        phys_addr_t paddr;
1620
1621        maddr &= XEN_PTE_MFN_MASK;
1622        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1623
1624        return paddr;
1625}
1626
1627/* Convert a machine address to kernel virtual */
1628static void * __init m2v(phys_addr_t maddr)
1629{
1630        return __ka(m2p(maddr));
1631}
1632
1633/* Set the page permissions on an identity-mapped pages */
1634static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1635                                       unsigned long flags)
1636{
1637        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1638        pte_t pte = pfn_pte(pfn, prot);
1639
1640        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1641                BUG();
1642}
1643static void __init set_page_prot(void *addr, pgprot_t prot)
1644{
1645        return set_page_prot_flags(addr, prot, UVMF_NONE);
1646}
1647
1648void __init xen_setup_machphys_mapping(void)
1649{
1650        struct xen_machphys_mapping mapping;
1651
1652        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1653                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1654                machine_to_phys_nr = mapping.max_mfn + 1;
1655        } else {
1656                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1657        }
1658}
1659
1660static void __init convert_pfn_mfn(void *v)
1661{
1662        pte_t *pte = v;
1663        int i;
1664
1665        /* All levels are converted the same way, so just treat them
1666           as ptes. */
1667        for (i = 0; i < PTRS_PER_PTE; i++)
1668                pte[i] = xen_make_pte(pte[i].pte);
1669}
1670static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1671                                 unsigned long addr)
1672{
1673        if (*pt_base == PFN_DOWN(__pa(addr))) {
1674                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1675                clear_page((void *)addr);
1676                (*pt_base)++;
1677        }
1678        if (*pt_end == PFN_DOWN(__pa(addr))) {
1679                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1680                clear_page((void *)addr);
1681                (*pt_end)--;
1682        }
1683}
1684/*
1685 * Set up the initial kernel pagetable.
1686 *
1687 * We can construct this by grafting the Xen provided pagetable into
1688 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1689 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1690 * kernel has a physical mapping to start with - but that's enough to
1691 * get __va working.  We need to fill in the rest of the physical
1692 * mapping once some sort of allocator has been set up.
1693 */
1694void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1695{
1696        pud_t *l3;
1697        pmd_t *l2;
1698        unsigned long addr[3];
1699        unsigned long pt_base, pt_end;
1700        unsigned i;
1701
1702        /* max_pfn_mapped is the last pfn mapped in the initial memory
1703         * mappings. Considering that on Xen after the kernel mappings we
1704         * have the mappings of some pages that don't exist in pfn space, we
1705         * set max_pfn_mapped to the last real pfn mapped. */
1706        if (xen_start_info->mfn_list < __START_KERNEL_map)
1707                max_pfn_mapped = xen_start_info->first_p2m_pfn;
1708        else
1709                max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1710
1711        pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1712        pt_end = pt_base + xen_start_info->nr_pt_frames;
1713
1714        /* Zap identity mapping */
1715        init_top_pgt[0] = __pgd(0);
1716
1717        /* Pre-constructed entries are in pfn, so convert to mfn */
1718        /* L4[273] -> level3_ident_pgt  */
1719        /* L4[511] -> level3_kernel_pgt */
1720        convert_pfn_mfn(init_top_pgt);
1721
1722        /* L3_i[0] -> level2_ident_pgt */
1723        convert_pfn_mfn(level3_ident_pgt);
1724        /* L3_k[510] -> level2_kernel_pgt */
1725        /* L3_k[511] -> level2_fixmap_pgt */
1726        convert_pfn_mfn(level3_kernel_pgt);
1727
1728        /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1729        convert_pfn_mfn(level2_fixmap_pgt);
1730
1731        /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1732        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1733        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1734
1735        addr[0] = (unsigned long)pgd;
1736        addr[1] = (unsigned long)l3;
1737        addr[2] = (unsigned long)l2;
1738        /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1739         * Both L4[273][0] and L4[511][510] have entries that point to the same
1740         * L2 (PMD) tables. Meaning that if you modify it in __va space
1741         * it will be also modified in the __ka space! (But if you just
1742         * modify the PMD table to point to other PTE's or none, then you
1743         * are OK - which is what cleanup_highmap does) */
1744        copy_page(level2_ident_pgt, l2);
1745        /* Graft it onto L4[511][510] */
1746        copy_page(level2_kernel_pgt, l2);
1747
1748        /*
1749         * Zap execute permission from the ident map. Due to the sharing of
1750         * L1 entries we need to do this in the L2.
1751         */
1752        if (__supported_pte_mask & _PAGE_NX) {
1753                for (i = 0; i < PTRS_PER_PMD; ++i) {
1754                        if (pmd_none(level2_ident_pgt[i]))
1755                                continue;
1756                        level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1757                }
1758        }
1759
1760        /* Copy the initial P->M table mappings if necessary. */
1761        i = pgd_index(xen_start_info->mfn_list);
1762        if (i && i < pgd_index(__START_KERNEL_map))
1763                init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1764
1765        /* Make pagetable pieces RO */
1766        set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1767        set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1768        set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1769        set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1770        set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1771        set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1772
1773        for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1774                set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1775                              PAGE_KERNEL_RO);
1776        }
1777
1778        /* Pin down new L4 */
1779        pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1780                          PFN_DOWN(__pa_symbol(init_top_pgt)));
1781
1782        /* Unpin Xen-provided one */
1783        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1784
1785#ifdef CONFIG_X86_VSYSCALL_EMULATION
1786        /* Pin user vsyscall L3 */
1787        set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1788        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1789                          PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1790#endif
1791
1792        /*
1793         * At this stage there can be no user pgd, and no page structure to
1794         * attach it to, so make sure we just set kernel pgd.
1795         */
1796        xen_mc_batch();
1797        __xen_write_cr3(true, __pa(init_top_pgt));
1798        xen_mc_issue(PARAVIRT_LAZY_CPU);
1799
1800        /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1801         * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1802         * the initial domain. For guests using the toolstack, they are in:
1803         * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1804         * rip out the [L4] (pgd), but for guests we shave off three pages.
1805         */
1806        for (i = 0; i < ARRAY_SIZE(addr); i++)
1807                check_pt_base(&pt_base, &pt_end, addr[i]);
1808
1809        /* Our (by three pages) smaller Xen pagetable that we are using */
1810        xen_pt_base = PFN_PHYS(pt_base);
1811        xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1812        memblock_reserve(xen_pt_base, xen_pt_size);
1813
1814        /* Revector the xen_start_info */
1815        xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1816}
1817
1818/*
1819 * Read a value from a physical address.
1820 */
1821static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1822{
1823        unsigned long *vaddr;
1824        unsigned long val;
1825
1826        vaddr = early_memremap_ro(addr, sizeof(val));
1827        val = *vaddr;
1828        early_memunmap(vaddr, sizeof(val));
1829        return val;
1830}
1831
1832/*
1833 * Translate a virtual address to a physical one without relying on mapped
1834 * page tables. Don't rely on big pages being aligned in (guest) physical
1835 * space!
1836 */
1837static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1838{
1839        phys_addr_t pa;
1840        pgd_t pgd;
1841        pud_t pud;
1842        pmd_t pmd;
1843        pte_t pte;
1844
1845        pa = read_cr3_pa();
1846        pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1847                                                       sizeof(pgd)));
1848        if (!pgd_present(pgd))
1849                return 0;
1850
1851        pa = pgd_val(pgd) & PTE_PFN_MASK;
1852        pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1853                                                       sizeof(pud)));
1854        if (!pud_present(pud))
1855                return 0;
1856        pa = pud_val(pud) & PTE_PFN_MASK;
1857        if (pud_large(pud))
1858                return pa + (vaddr & ~PUD_MASK);
1859
1860        pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1861                                                       sizeof(pmd)));
1862        if (!pmd_present(pmd))
1863                return 0;
1864        pa = pmd_val(pmd) & PTE_PFN_MASK;
1865        if (pmd_large(pmd))
1866                return pa + (vaddr & ~PMD_MASK);
1867
1868        pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1869                                                       sizeof(pte)));
1870        if (!pte_present(pte))
1871                return 0;
1872        pa = pte_pfn(pte) << PAGE_SHIFT;
1873
1874        return pa | (vaddr & ~PAGE_MASK);
1875}
1876
1877/*
1878 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1879 * this area.
1880 */
1881void __init xen_relocate_p2m(void)
1882{
1883        phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1884        unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1885        int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1886        pte_t *pt;
1887        pmd_t *pmd;
1888        pud_t *pud;
1889        pgd_t *pgd;
1890        unsigned long *new_p2m;
1891
1892        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1893        n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1894        n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1895        n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1896        n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1897        n_frames = n_pte + n_pt + n_pmd + n_pud;
1898
1899        new_area = xen_find_free_area(PFN_PHYS(n_frames));
1900        if (!new_area) {
1901                xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1902                BUG();
1903        }
1904
1905        /*
1906         * Setup the page tables for addressing the new p2m list.
1907         * We have asked the hypervisor to map the p2m list at the user address
1908         * PUD_SIZE. It may have done so, or it may have used a kernel space
1909         * address depending on the Xen version.
1910         * To avoid any possible virtual address collision, just use
1911         * 2 * PUD_SIZE for the new area.
1912         */
1913        pud_phys = new_area;
1914        pmd_phys = pud_phys + PFN_PHYS(n_pud);
1915        pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1916        p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1917
1918        pgd = __va(read_cr3_pa());
1919        new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1920        for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1921                pud = early_memremap(pud_phys, PAGE_SIZE);
1922                clear_page(pud);
1923                for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1924                                idx_pmd++) {
1925                        pmd = early_memremap(pmd_phys, PAGE_SIZE);
1926                        clear_page(pmd);
1927                        for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1928                                        idx_pt++) {
1929                                pt = early_memremap(pt_phys, PAGE_SIZE);
1930                                clear_page(pt);
1931                                for (idx_pte = 0;
1932                                     idx_pte < min(n_pte, PTRS_PER_PTE);
1933                                     idx_pte++) {
1934                                        pt[idx_pte] = pfn_pte(p2m_pfn,
1935                                                              PAGE_KERNEL);
1936                                        p2m_pfn++;
1937                                }
1938                                n_pte -= PTRS_PER_PTE;
1939                                early_memunmap(pt, PAGE_SIZE);
1940                                make_lowmem_page_readonly(__va(pt_phys));
1941                                pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1942                                                PFN_DOWN(pt_phys));
1943                                pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1944                                pt_phys += PAGE_SIZE;
1945                        }
1946                        n_pt -= PTRS_PER_PMD;
1947                        early_memunmap(pmd, PAGE_SIZE);
1948                        make_lowmem_page_readonly(__va(pmd_phys));
1949                        pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1950                                        PFN_DOWN(pmd_phys));
1951                        pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1952                        pmd_phys += PAGE_SIZE;
1953                }
1954                n_pmd -= PTRS_PER_PUD;
1955                early_memunmap(pud, PAGE_SIZE);
1956                make_lowmem_page_readonly(__va(pud_phys));
1957                pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1958                set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1959                pud_phys += PAGE_SIZE;
1960        }
1961
1962        /* Now copy the old p2m info to the new area. */
1963        memcpy(new_p2m, xen_p2m_addr, size);
1964        xen_p2m_addr = new_p2m;
1965
1966        /* Release the old p2m list and set new list info. */
1967        p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1968        BUG_ON(!p2m_pfn);
1969        p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1970
1971        if (xen_start_info->mfn_list < __START_KERNEL_map) {
1972                pfn = xen_start_info->first_p2m_pfn;
1973                pfn_end = xen_start_info->first_p2m_pfn +
1974                          xen_start_info->nr_p2m_frames;
1975                set_pgd(pgd + 1, __pgd(0));
1976        } else {
1977                pfn = p2m_pfn;
1978                pfn_end = p2m_pfn_end;
1979        }
1980
1981        memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1982        while (pfn < pfn_end) {
1983                if (pfn == p2m_pfn) {
1984                        pfn = p2m_pfn_end;
1985                        continue;
1986                }
1987                make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1988                pfn++;
1989        }
1990
1991        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1992        xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
1993        xen_start_info->nr_p2m_frames = n_frames;
1994}
1995
1996void __init xen_reserve_special_pages(void)
1997{
1998        phys_addr_t paddr;
1999
2000        memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2001        if (xen_start_info->store_mfn) {
2002                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2003                memblock_reserve(paddr, PAGE_SIZE);
2004        }
2005        if (!xen_initial_domain()) {
2006                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2007                memblock_reserve(paddr, PAGE_SIZE);
2008        }
2009}
2010
2011void __init xen_pt_check_e820(void)
2012{
2013        if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2014                xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2015                BUG();
2016        }
2017}
2018
2019static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2020
2021static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2022{
2023        pte_t pte;
2024        unsigned long vaddr;
2025
2026        phys >>= PAGE_SHIFT;
2027
2028        switch (idx) {
2029        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2030#ifdef CONFIG_X86_VSYSCALL_EMULATION
2031        case VSYSCALL_PAGE:
2032#endif
2033                /* All local page mappings */
2034                pte = pfn_pte(phys, prot);
2035                break;
2036
2037#ifdef CONFIG_X86_LOCAL_APIC
2038        case FIX_APIC_BASE:     /* maps dummy local APIC */
2039                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2040                break;
2041#endif
2042
2043#ifdef CONFIG_X86_IO_APIC
2044        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2045                /*
2046                 * We just don't map the IO APIC - all access is via
2047                 * hypercalls.  Keep the address in the pte for reference.
2048                 */
2049                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2050                break;
2051#endif
2052
2053        case FIX_PARAVIRT_BOOTMAP:
2054                /* This is an MFN, but it isn't an IO mapping from the
2055                   IO domain */
2056                pte = mfn_pte(phys, prot);
2057                break;
2058
2059        default:
2060                /* By default, set_fixmap is used for hardware mappings */
2061                pte = mfn_pte(phys, prot);
2062                break;
2063        }
2064
2065        vaddr = __fix_to_virt(idx);
2066        if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2067                BUG();
2068
2069#ifdef CONFIG_X86_VSYSCALL_EMULATION
2070        /* Replicate changes to map the vsyscall page into the user
2071           pagetable vsyscall mapping. */
2072        if (idx == VSYSCALL_PAGE)
2073                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2074#endif
2075}
2076
2077static void __init xen_post_allocator_init(void)
2078{
2079        pv_ops.mmu.set_pte = xen_set_pte;
2080        pv_ops.mmu.set_pmd = xen_set_pmd;
2081        pv_ops.mmu.set_pud = xen_set_pud;
2082        pv_ops.mmu.set_p4d = xen_set_p4d;
2083
2084        /* This will work as long as patching hasn't happened yet
2085           (which it hasn't) */
2086        pv_ops.mmu.alloc_pte = xen_alloc_pte;
2087        pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2088        pv_ops.mmu.release_pte = xen_release_pte;
2089        pv_ops.mmu.release_pmd = xen_release_pmd;
2090        pv_ops.mmu.alloc_pud = xen_alloc_pud;
2091        pv_ops.mmu.release_pud = xen_release_pud;
2092        pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2093
2094        pv_ops.mmu.write_cr3 = &xen_write_cr3;
2095}
2096
2097static void xen_leave_lazy_mmu(void)
2098{
2099        preempt_disable();
2100        xen_mc_flush();
2101        paravirt_leave_lazy_mmu();
2102        preempt_enable();
2103}
2104
2105static const typeof(pv_ops) xen_mmu_ops __initconst = {
2106        .mmu = {
2107                .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2108                .write_cr2 = xen_write_cr2,
2109
2110                .read_cr3 = xen_read_cr3,
2111                .write_cr3 = xen_write_cr3_init,
2112
2113                .flush_tlb_user = xen_flush_tlb,
2114                .flush_tlb_kernel = xen_flush_tlb,
2115                .flush_tlb_one_user = xen_flush_tlb_one_user,
2116                .flush_tlb_multi = xen_flush_tlb_multi,
2117                .tlb_remove_table = tlb_remove_table,
2118
2119                .pgd_alloc = xen_pgd_alloc,
2120                .pgd_free = xen_pgd_free,
2121
2122                .alloc_pte = xen_alloc_pte_init,
2123                .release_pte = xen_release_pte_init,
2124                .alloc_pmd = xen_alloc_pmd_init,
2125                .release_pmd = xen_release_pmd_init,
2126
2127                .set_pte = xen_set_pte_init,
2128                .set_pmd = xen_set_pmd_hyper,
2129
2130                .ptep_modify_prot_start = xen_ptep_modify_prot_start,
2131                .ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2132
2133                .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2134                .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2135
2136                .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2137                .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2138
2139                .set_pud = xen_set_pud_hyper,
2140
2141                .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2142                .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2143
2144                .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2145                .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2146                .set_p4d = xen_set_p4d_hyper,
2147
2148                .alloc_pud = xen_alloc_pmd_init,
2149                .release_pud = xen_release_pmd_init,
2150
2151#if CONFIG_PGTABLE_LEVELS >= 5
2152                .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2153                .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2154#endif
2155
2156                .activate_mm = xen_activate_mm,
2157                .dup_mmap = xen_dup_mmap,
2158                .exit_mmap = xen_exit_mmap,
2159
2160                .lazy_mode = {
2161                        .enter = paravirt_enter_lazy_mmu,
2162                        .leave = xen_leave_lazy_mmu,
2163                        .flush = paravirt_flush_lazy_mmu,
2164                },
2165
2166                .set_fixmap = xen_set_fixmap,
2167        },
2168};
2169
2170void __init xen_init_mmu_ops(void)
2171{
2172        x86_init.paging.pagetable_init = xen_pagetable_init;
2173        x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2174
2175        pv_ops.mmu = xen_mmu_ops.mmu;
2176
2177        memset(dummy_mapping, 0xff, PAGE_SIZE);
2178}
2179
2180/* Protected by xen_reservation_lock. */
2181#define MAX_CONTIG_ORDER 9 /* 2MB */
2182static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2183
2184#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2185static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2186                                unsigned long *in_frames,
2187                                unsigned long *out_frames)
2188{
2189        int i;
2190        struct multicall_space mcs;
2191
2192        xen_mc_batch();
2193        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2194                mcs = __xen_mc_entry(0);
2195
2196                if (in_frames)
2197                        in_frames[i] = virt_to_mfn(vaddr);
2198
2199                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2200                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2201
2202                if (out_frames)
2203                        out_frames[i] = virt_to_pfn(vaddr);
2204        }
2205        xen_mc_issue(0);
2206}
2207
2208/*
2209 * Update the pfn-to-mfn mappings for a virtual address range, either to
2210 * point to an array of mfns, or contiguously from a single starting
2211 * mfn.
2212 */
2213static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2214                                     unsigned long *mfns,
2215                                     unsigned long first_mfn)
2216{
2217        unsigned i, limit;
2218        unsigned long mfn;
2219
2220        xen_mc_batch();
2221
2222        limit = 1u << order;
2223        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2224                struct multicall_space mcs;
2225                unsigned flags;
2226
2227                mcs = __xen_mc_entry(0);
2228                if (mfns)
2229                        mfn = mfns[i];
2230                else
2231                        mfn = first_mfn + i;
2232
2233                if (i < (limit - 1))
2234                        flags = 0;
2235                else {
2236                        if (order == 0)
2237                                flags = UVMF_INVLPG | UVMF_ALL;
2238                        else
2239                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2240                }
2241
2242                MULTI_update_va_mapping(mcs.mc, vaddr,
2243                                mfn_pte(mfn, PAGE_KERNEL), flags);
2244
2245                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2246        }
2247
2248        xen_mc_issue(0);
2249}
2250
2251/*
2252 * Perform the hypercall to exchange a region of our pfns to point to
2253 * memory with the required contiguous alignment.  Takes the pfns as
2254 * input, and populates mfns as output.
2255 *
2256 * Returns a success code indicating whether the hypervisor was able to
2257 * satisfy the request or not.
2258 */
2259static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2260                               unsigned long *pfns_in,
2261                               unsigned long extents_out,
2262                               unsigned int order_out,
2263                               unsigned long *mfns_out,
2264                               unsigned int address_bits)
2265{
2266        long rc;
2267        int success;
2268
2269        struct xen_memory_exchange exchange = {
2270                .in = {
2271                        .nr_extents   = extents_in,
2272                        .extent_order = order_in,
2273                        .extent_start = pfns_in,
2274                        .domid        = DOMID_SELF
2275                },
2276                .out = {
2277                        .nr_extents   = extents_out,
2278                        .extent_order = order_out,
2279                        .extent_start = mfns_out,
2280                        .address_bits = address_bits,
2281                        .domid        = DOMID_SELF
2282                }
2283        };
2284
2285        BUG_ON(extents_in << order_in != extents_out << order_out);
2286
2287        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2288        success = (exchange.nr_exchanged == extents_in);
2289
2290        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2291        BUG_ON(success && (rc != 0));
2292
2293        return success;
2294}
2295
2296int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2297                                 unsigned int address_bits,
2298                                 dma_addr_t *dma_handle)
2299{
2300        unsigned long *in_frames = discontig_frames, out_frame;
2301        unsigned long  flags;
2302        int            success;
2303        unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2304
2305        /*
2306         * Currently an auto-translated guest will not perform I/O, nor will
2307         * it require PAE page directories below 4GB. Therefore any calls to
2308         * this function are redundant and can be ignored.
2309         */
2310
2311        if (unlikely(order > MAX_CONTIG_ORDER))
2312                return -ENOMEM;
2313
2314        memset((void *) vstart, 0, PAGE_SIZE << order);
2315
2316        spin_lock_irqsave(&xen_reservation_lock, flags);
2317
2318        /* 1. Zap current PTEs, remembering MFNs. */
2319        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2320
2321        /* 2. Get a new contiguous memory extent. */
2322        out_frame = virt_to_pfn(vstart);
2323        success = xen_exchange_memory(1UL << order, 0, in_frames,
2324                                      1, order, &out_frame,
2325                                      address_bits);
2326
2327        /* 3. Map the new extent in place of old pages. */
2328        if (success)
2329                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2330        else
2331                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2332
2333        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2334
2335        *dma_handle = virt_to_machine(vstart).maddr;
2336        return success ? 0 : -ENOMEM;
2337}
2338
2339void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2340{
2341        unsigned long *out_frames = discontig_frames, in_frame;
2342        unsigned long  flags;
2343        int success;
2344        unsigned long vstart;
2345
2346        if (unlikely(order > MAX_CONTIG_ORDER))
2347                return;
2348
2349        vstart = (unsigned long)phys_to_virt(pstart);
2350        memset((void *) vstart, 0, PAGE_SIZE << order);
2351
2352        spin_lock_irqsave(&xen_reservation_lock, flags);
2353
2354        /* 1. Find start MFN of contiguous extent. */
2355        in_frame = virt_to_mfn(vstart);
2356
2357        /* 2. Zap current PTEs. */
2358        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2359
2360        /* 3. Do the exchange for non-contiguous MFNs. */
2361        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2362                                        0, out_frames, 0);
2363
2364        /* 4. Map new pages in place of old pages. */
2365        if (success)
2366                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2367        else
2368                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2369
2370        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2371}
2372
2373static noinline void xen_flush_tlb_all(void)
2374{
2375        struct mmuext_op *op;
2376        struct multicall_space mcs;
2377
2378        preempt_disable();
2379
2380        mcs = xen_mc_entry(sizeof(*op));
2381
2382        op = mcs.args;
2383        op->cmd = MMUEXT_TLB_FLUSH_ALL;
2384        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2385
2386        xen_mc_issue(PARAVIRT_LAZY_MMU);
2387
2388        preempt_enable();
2389}
2390
2391#define REMAP_BATCH_SIZE 16
2392
2393struct remap_data {
2394        xen_pfn_t *pfn;
2395        bool contiguous;
2396        bool no_translate;
2397        pgprot_t prot;
2398        struct mmu_update *mmu_update;
2399};
2400
2401static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2402{
2403        struct remap_data *rmd = data;
2404        pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2405
2406        /*
2407         * If we have a contiguous range, just update the pfn itself,
2408         * else update pointer to be "next pfn".
2409         */
2410        if (rmd->contiguous)
2411                (*rmd->pfn)++;
2412        else
2413                rmd->pfn++;
2414
2415        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2416        rmd->mmu_update->ptr |= rmd->no_translate ?
2417                MMU_PT_UPDATE_NO_TRANSLATE :
2418                MMU_NORMAL_PT_UPDATE;
2419        rmd->mmu_update->val = pte_val_ma(pte);
2420        rmd->mmu_update++;
2421
2422        return 0;
2423}
2424
2425int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2426                  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2427                  unsigned int domid, bool no_translate)
2428{
2429        int err = 0;
2430        struct remap_data rmd;
2431        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2432        unsigned long range;
2433        int mapped = 0;
2434
2435        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2436
2437        rmd.pfn = pfn;
2438        rmd.prot = prot;
2439        /*
2440         * We use the err_ptr to indicate if there we are doing a contiguous
2441         * mapping or a discontiguous mapping.
2442         */
2443        rmd.contiguous = !err_ptr;
2444        rmd.no_translate = no_translate;
2445
2446        while (nr) {
2447                int index = 0;
2448                int done = 0;
2449                int batch = min(REMAP_BATCH_SIZE, nr);
2450                int batch_left = batch;
2451
2452                range = (unsigned long)batch << PAGE_SHIFT;
2453
2454                rmd.mmu_update = mmu_update;
2455                err = apply_to_page_range(vma->vm_mm, addr, range,
2456                                          remap_area_pfn_pte_fn, &rmd);
2457                if (err)
2458                        goto out;
2459
2460                /*
2461                 * We record the error for each page that gives an error, but
2462                 * continue mapping until the whole set is done
2463                 */
2464                do {
2465                        int i;
2466
2467                        err = HYPERVISOR_mmu_update(&mmu_update[index],
2468                                                    batch_left, &done, domid);
2469
2470                        /*
2471                         * @err_ptr may be the same buffer as @gfn, so
2472                         * only clear it after each chunk of @gfn is
2473                         * used.
2474                         */
2475                        if (err_ptr) {
2476                                for (i = index; i < index + done; i++)
2477                                        err_ptr[i] = 0;
2478                        }
2479                        if (err < 0) {
2480                                if (!err_ptr)
2481                                        goto out;
2482                                err_ptr[i] = err;
2483                                done++; /* Skip failed frame. */
2484                        } else
2485                                mapped += done;
2486                        batch_left -= done;
2487                        index += done;
2488                } while (batch_left);
2489
2490                nr -= batch;
2491                addr += range;
2492                if (err_ptr)
2493                        err_ptr += batch;
2494                cond_resched();
2495        }
2496out:
2497
2498        xen_flush_tlb_all();
2499
2500        return err < 0 ? err : mapped;
2501}
2502EXPORT_SYMBOL_GPL(xen_remap_pfn);
2503
2504#ifdef CONFIG_KEXEC_CORE
2505phys_addr_t paddr_vmcoreinfo_note(void)
2506{
2507        if (xen_pv_domain())
2508                return virt_to_machine(vmcoreinfo_note).maddr;
2509        else
2510                return __pa(vmcoreinfo_note);
2511}
2512#endif /* CONFIG_KEXEC_CORE */
2513