linux/drivers/crypto/atmel-aes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY      300
  45
  46#define ATMEL_AES_BUFFER_ORDER  2
  47#define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
  49#define CFB8_BLOCK_SIZE         1
  50#define CFB16_BLOCK_SIZE        2
  51#define CFB32_BLOCK_SIZE        4
  52#define CFB64_BLOCK_SIZE        8
  53
  54#define SIZE_IN_WORDS(x)        ((x) >> 2)
  55
  56/* AES flags */
  57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  58#define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
  59#define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
  60#define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  61#define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
  62#define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
  63#define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
  64#define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  65#define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  66#define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  67#define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  68#define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  69#define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
  70#define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
  71#define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
  72
  73#define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
  74                                 AES_FLAGS_ENCRYPT |            \
  75                                 AES_FLAGS_GTAGEN)
  76
  77#define AES_FLAGS_BUSY          BIT(3)
  78#define AES_FLAGS_DUMP_REG      BIT(4)
  79#define AES_FLAGS_OWN_SHA       BIT(5)
  80
  81#define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
  82
  83#define ATMEL_AES_QUEUE_LENGTH  50
  84
  85#define ATMEL_AES_DMA_THRESHOLD         256
  86
  87
  88struct atmel_aes_caps {
  89        bool                    has_dualbuff;
  90        bool                    has_cfb64;
  91        bool                    has_gcm;
  92        bool                    has_xts;
  93        bool                    has_authenc;
  94        u32                     max_burst_size;
  95};
  96
  97struct atmel_aes_dev;
  98
  99
 100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 101
 102
 103struct atmel_aes_base_ctx {
 104        struct atmel_aes_dev    *dd;
 105        atmel_aes_fn_t          start;
 106        int                     keylen;
 107        u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 108        u16                     block_size;
 109        bool                    is_aead;
 110};
 111
 112struct atmel_aes_ctx {
 113        struct atmel_aes_base_ctx       base;
 114};
 115
 116struct atmel_aes_ctr_ctx {
 117        struct atmel_aes_base_ctx       base;
 118
 119        __be32                  iv[AES_BLOCK_SIZE / sizeof(u32)];
 120        size_t                  offset;
 121        struct scatterlist      src[2];
 122        struct scatterlist      dst[2];
 123        u32                     blocks;
 124};
 125
 126struct atmel_aes_gcm_ctx {
 127        struct atmel_aes_base_ctx       base;
 128
 129        struct scatterlist      src[2];
 130        struct scatterlist      dst[2];
 131
 132        __be32                  j0[AES_BLOCK_SIZE / sizeof(u32)];
 133        u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
 134        __be32                  ghash[AES_BLOCK_SIZE / sizeof(u32)];
 135        size_t                  textlen;
 136
 137        const __be32            *ghash_in;
 138        __be32                  *ghash_out;
 139        atmel_aes_fn_t          ghash_resume;
 140};
 141
 142struct atmel_aes_xts_ctx {
 143        struct atmel_aes_base_ctx       base;
 144
 145        u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
 146        struct crypto_skcipher *fallback_tfm;
 147};
 148
 149#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 150struct atmel_aes_authenc_ctx {
 151        struct atmel_aes_base_ctx       base;
 152        struct atmel_sha_authenc_ctx    *auth;
 153};
 154#endif
 155
 156struct atmel_aes_reqctx {
 157        unsigned long           mode;
 158        u8                      lastc[AES_BLOCK_SIZE];
 159        struct skcipher_request fallback_req;
 160};
 161
 162#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 163struct atmel_aes_authenc_reqctx {
 164        struct atmel_aes_reqctx base;
 165
 166        struct scatterlist      src[2];
 167        struct scatterlist      dst[2];
 168        size_t                  textlen;
 169        u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 170
 171        /* auth_req MUST be place last. */
 172        struct ahash_request    auth_req;
 173};
 174#endif
 175
 176struct atmel_aes_dma {
 177        struct dma_chan         *chan;
 178        struct scatterlist      *sg;
 179        int                     nents;
 180        unsigned int            remainder;
 181        unsigned int            sg_len;
 182};
 183
 184struct atmel_aes_dev {
 185        struct list_head        list;
 186        unsigned long           phys_base;
 187        void __iomem            *io_base;
 188
 189        struct crypto_async_request     *areq;
 190        struct atmel_aes_base_ctx       *ctx;
 191
 192        bool                    is_async;
 193        atmel_aes_fn_t          resume;
 194        atmel_aes_fn_t          cpu_transfer_complete;
 195
 196        struct device           *dev;
 197        struct clk              *iclk;
 198        int                     irq;
 199
 200        unsigned long           flags;
 201
 202        spinlock_t              lock;
 203        struct crypto_queue     queue;
 204
 205        struct tasklet_struct   done_task;
 206        struct tasklet_struct   queue_task;
 207
 208        size_t                  total;
 209        size_t                  datalen;
 210        u32                     *data;
 211
 212        struct atmel_aes_dma    src;
 213        struct atmel_aes_dma    dst;
 214
 215        size_t                  buflen;
 216        void                    *buf;
 217        struct scatterlist      aligned_sg;
 218        struct scatterlist      *real_dst;
 219
 220        struct atmel_aes_caps   caps;
 221
 222        u32                     hw_version;
 223};
 224
 225struct atmel_aes_drv {
 226        struct list_head        dev_list;
 227        spinlock_t              lock;
 228};
 229
 230static struct atmel_aes_drv atmel_aes = {
 231        .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 232        .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 233};
 234
 235#ifdef VERBOSE_DEBUG
 236static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 237{
 238        switch (offset) {
 239        case AES_CR:
 240                return "CR";
 241
 242        case AES_MR:
 243                return "MR";
 244
 245        case AES_ISR:
 246                return "ISR";
 247
 248        case AES_IMR:
 249                return "IMR";
 250
 251        case AES_IER:
 252                return "IER";
 253
 254        case AES_IDR:
 255                return "IDR";
 256
 257        case AES_KEYWR(0):
 258        case AES_KEYWR(1):
 259        case AES_KEYWR(2):
 260        case AES_KEYWR(3):
 261        case AES_KEYWR(4):
 262        case AES_KEYWR(5):
 263        case AES_KEYWR(6):
 264        case AES_KEYWR(7):
 265                snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 266                break;
 267
 268        case AES_IDATAR(0):
 269        case AES_IDATAR(1):
 270        case AES_IDATAR(2):
 271        case AES_IDATAR(3):
 272                snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 273                break;
 274
 275        case AES_ODATAR(0):
 276        case AES_ODATAR(1):
 277        case AES_ODATAR(2):
 278        case AES_ODATAR(3):
 279                snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 280                break;
 281
 282        case AES_IVR(0):
 283        case AES_IVR(1):
 284        case AES_IVR(2):
 285        case AES_IVR(3):
 286                snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 287                break;
 288
 289        case AES_AADLENR:
 290                return "AADLENR";
 291
 292        case AES_CLENR:
 293                return "CLENR";
 294
 295        case AES_GHASHR(0):
 296        case AES_GHASHR(1):
 297        case AES_GHASHR(2):
 298        case AES_GHASHR(3):
 299                snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 300                break;
 301
 302        case AES_TAGR(0):
 303        case AES_TAGR(1):
 304        case AES_TAGR(2):
 305        case AES_TAGR(3):
 306                snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 307                break;
 308
 309        case AES_CTRR:
 310                return "CTRR";
 311
 312        case AES_GCMHR(0):
 313        case AES_GCMHR(1):
 314        case AES_GCMHR(2):
 315        case AES_GCMHR(3):
 316                snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 317                break;
 318
 319        case AES_EMR:
 320                return "EMR";
 321
 322        case AES_TWR(0):
 323        case AES_TWR(1):
 324        case AES_TWR(2):
 325        case AES_TWR(3):
 326                snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 327                break;
 328
 329        case AES_ALPHAR(0):
 330        case AES_ALPHAR(1):
 331        case AES_ALPHAR(2):
 332        case AES_ALPHAR(3):
 333                snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 334                break;
 335
 336        default:
 337                snprintf(tmp, sz, "0x%02x", offset);
 338                break;
 339        }
 340
 341        return tmp;
 342}
 343#endif /* VERBOSE_DEBUG */
 344
 345/* Shared functions */
 346
 347static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 348{
 349        u32 value = readl_relaxed(dd->io_base + offset);
 350
 351#ifdef VERBOSE_DEBUG
 352        if (dd->flags & AES_FLAGS_DUMP_REG) {
 353                char tmp[16];
 354
 355                dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 356                         atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 357        }
 358#endif /* VERBOSE_DEBUG */
 359
 360        return value;
 361}
 362
 363static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 364                                        u32 offset, u32 value)
 365{
 366#ifdef VERBOSE_DEBUG
 367        if (dd->flags & AES_FLAGS_DUMP_REG) {
 368                char tmp[16];
 369
 370                dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 371                         atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 372        }
 373#endif /* VERBOSE_DEBUG */
 374
 375        writel_relaxed(value, dd->io_base + offset);
 376}
 377
 378static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 379                                        u32 *value, int count)
 380{
 381        for (; count--; value++, offset += 4)
 382                *value = atmel_aes_read(dd, offset);
 383}
 384
 385static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 386                              const u32 *value, int count)
 387{
 388        for (; count--; value++, offset += 4)
 389                atmel_aes_write(dd, offset, *value);
 390}
 391
 392static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 393                                        void *value)
 394{
 395        atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 396}
 397
 398static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 399                                         const void *value)
 400{
 401        atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 402}
 403
 404static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 405                                                atmel_aes_fn_t resume)
 406{
 407        u32 isr = atmel_aes_read(dd, AES_ISR);
 408
 409        if (unlikely(isr & AES_INT_DATARDY))
 410                return resume(dd);
 411
 412        dd->resume = resume;
 413        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 414        return -EINPROGRESS;
 415}
 416
 417static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 418{
 419        len &= block_size - 1;
 420        return len ? block_size - len : 0;
 421}
 422
 423static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
 424{
 425        struct atmel_aes_dev *aes_dd;
 426
 427        spin_lock_bh(&atmel_aes.lock);
 428        /* One AES IP per SoC. */
 429        aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
 430                                          struct atmel_aes_dev, list);
 431        spin_unlock_bh(&atmel_aes.lock);
 432        return aes_dd;
 433}
 434
 435static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 436{
 437        int err;
 438
 439        err = clk_enable(dd->iclk);
 440        if (err)
 441                return err;
 442
 443        atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 444        atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 445
 446        return 0;
 447}
 448
 449static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 450{
 451        return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 452}
 453
 454static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 455{
 456        int err;
 457
 458        err = atmel_aes_hw_init(dd);
 459        if (err)
 460                return err;
 461
 462        dd->hw_version = atmel_aes_get_version(dd);
 463
 464        dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 465
 466        clk_disable(dd->iclk);
 467        return 0;
 468}
 469
 470static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 471                                      const struct atmel_aes_reqctx *rctx)
 472{
 473        /* Clear all but persistent flags and set request flags. */
 474        dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 475}
 476
 477static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 478{
 479        return (dd->flags & AES_FLAGS_ENCRYPT);
 480}
 481
 482#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 483static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 484#endif
 485
 486static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 487{
 488        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 489        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 490        struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 491        unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 492
 493        if (req->cryptlen < ivsize)
 494                return;
 495
 496        if (rctx->mode & AES_FLAGS_ENCRYPT) {
 497                scatterwalk_map_and_copy(req->iv, req->dst,
 498                                         req->cryptlen - ivsize, ivsize, 0);
 499        } else {
 500                if (req->src == req->dst)
 501                        memcpy(req->iv, rctx->lastc, ivsize);
 502                else
 503                        scatterwalk_map_and_copy(req->iv, req->src,
 504                                                 req->cryptlen - ivsize,
 505                                                 ivsize, 0);
 506        }
 507}
 508
 509static inline struct atmel_aes_ctr_ctx *
 510atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 511{
 512        return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 513}
 514
 515static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 516{
 517        struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 518        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 519        struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 520        unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 521        int i;
 522
 523        /*
 524         * The CTR transfer works in fragments of data of maximum 1 MByte
 525         * because of the 16 bit CTR counter embedded in the IP. When reaching
 526         * here, ctx->blocks contains the number of blocks of the last fragment
 527         * processed, there is no need to explicit cast it to u16.
 528         */
 529        for (i = 0; i < ctx->blocks; i++)
 530                crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 531
 532        memcpy(req->iv, ctx->iv, ivsize);
 533}
 534
 535static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 536{
 537        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 538        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 539
 540#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 541        if (dd->ctx->is_aead)
 542                atmel_aes_authenc_complete(dd, err);
 543#endif
 544
 545        clk_disable(dd->iclk);
 546        dd->flags &= ~AES_FLAGS_BUSY;
 547
 548        if (!err && !dd->ctx->is_aead &&
 549            (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 550                if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 551                        atmel_aes_set_iv_as_last_ciphertext_block(dd);
 552                else
 553                        atmel_aes_ctr_update_req_iv(dd);
 554        }
 555
 556        if (dd->is_async)
 557                dd->areq->complete(dd->areq, err);
 558
 559        tasklet_schedule(&dd->queue_task);
 560
 561        return err;
 562}
 563
 564static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 565                                     const __be32 *iv, const u32 *key, int keylen)
 566{
 567        u32 valmr = 0;
 568
 569        /* MR register must be set before IV registers */
 570        if (keylen == AES_KEYSIZE_128)
 571                valmr |= AES_MR_KEYSIZE_128;
 572        else if (keylen == AES_KEYSIZE_192)
 573                valmr |= AES_MR_KEYSIZE_192;
 574        else
 575                valmr |= AES_MR_KEYSIZE_256;
 576
 577        valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 578
 579        if (use_dma) {
 580                valmr |= AES_MR_SMOD_IDATAR0;
 581                if (dd->caps.has_dualbuff)
 582                        valmr |= AES_MR_DUALBUFF;
 583        } else {
 584                valmr |= AES_MR_SMOD_AUTO;
 585        }
 586
 587        atmel_aes_write(dd, AES_MR, valmr);
 588
 589        atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 590
 591        if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 592                atmel_aes_write_block(dd, AES_IVR(0), iv);
 593}
 594
 595static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 596                                        const __be32 *iv)
 597
 598{
 599        atmel_aes_write_ctrl_key(dd, use_dma, iv,
 600                                 dd->ctx->key, dd->ctx->keylen);
 601}
 602
 603/* CPU transfer */
 604
 605static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 606{
 607        int err = 0;
 608        u32 isr;
 609
 610        for (;;) {
 611                atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 612                dd->data += 4;
 613                dd->datalen -= AES_BLOCK_SIZE;
 614
 615                if (dd->datalen < AES_BLOCK_SIZE)
 616                        break;
 617
 618                atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 619
 620                isr = atmel_aes_read(dd, AES_ISR);
 621                if (!(isr & AES_INT_DATARDY)) {
 622                        dd->resume = atmel_aes_cpu_transfer;
 623                        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 624                        return -EINPROGRESS;
 625                }
 626        }
 627
 628        if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 629                                 dd->buf, dd->total))
 630                err = -EINVAL;
 631
 632        if (err)
 633                return atmel_aes_complete(dd, err);
 634
 635        return dd->cpu_transfer_complete(dd);
 636}
 637
 638static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 639                               struct scatterlist *src,
 640                               struct scatterlist *dst,
 641                               size_t len,
 642                               atmel_aes_fn_t resume)
 643{
 644        size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 645
 646        if (unlikely(len == 0))
 647                return -EINVAL;
 648
 649        sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 650
 651        dd->total = len;
 652        dd->real_dst = dst;
 653        dd->cpu_transfer_complete = resume;
 654        dd->datalen = len + padlen;
 655        dd->data = (u32 *)dd->buf;
 656        atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 657        return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 658}
 659
 660
 661/* DMA transfer */
 662
 663static void atmel_aes_dma_callback(void *data);
 664
 665static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 666                                    struct scatterlist *sg,
 667                                    size_t len,
 668                                    struct atmel_aes_dma *dma)
 669{
 670        int nents;
 671
 672        if (!IS_ALIGNED(len, dd->ctx->block_size))
 673                return false;
 674
 675        for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 676                if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 677                        return false;
 678
 679                if (len <= sg->length) {
 680                        if (!IS_ALIGNED(len, dd->ctx->block_size))
 681                                return false;
 682
 683                        dma->nents = nents+1;
 684                        dma->remainder = sg->length - len;
 685                        sg->length = len;
 686                        return true;
 687                }
 688
 689                if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 690                        return false;
 691
 692                len -= sg->length;
 693        }
 694
 695        return false;
 696}
 697
 698static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 699{
 700        struct scatterlist *sg = dma->sg;
 701        int nents = dma->nents;
 702
 703        if (!dma->remainder)
 704                return;
 705
 706        while (--nents > 0 && sg)
 707                sg = sg_next(sg);
 708
 709        if (!sg)
 710                return;
 711
 712        sg->length += dma->remainder;
 713}
 714
 715static int atmel_aes_map(struct atmel_aes_dev *dd,
 716                         struct scatterlist *src,
 717                         struct scatterlist *dst,
 718                         size_t len)
 719{
 720        bool src_aligned, dst_aligned;
 721        size_t padlen;
 722
 723        dd->total = len;
 724        dd->src.sg = src;
 725        dd->dst.sg = dst;
 726        dd->real_dst = dst;
 727
 728        src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 729        if (src == dst)
 730                dst_aligned = src_aligned;
 731        else
 732                dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 733        if (!src_aligned || !dst_aligned) {
 734                padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 735
 736                if (dd->buflen < len + padlen)
 737                        return -ENOMEM;
 738
 739                if (!src_aligned) {
 740                        sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 741                        dd->src.sg = &dd->aligned_sg;
 742                        dd->src.nents = 1;
 743                        dd->src.remainder = 0;
 744                }
 745
 746                if (!dst_aligned) {
 747                        dd->dst.sg = &dd->aligned_sg;
 748                        dd->dst.nents = 1;
 749                        dd->dst.remainder = 0;
 750                }
 751
 752                sg_init_table(&dd->aligned_sg, 1);
 753                sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 754        }
 755
 756        if (dd->src.sg == dd->dst.sg) {
 757                dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 758                                            DMA_BIDIRECTIONAL);
 759                dd->dst.sg_len = dd->src.sg_len;
 760                if (!dd->src.sg_len)
 761                        return -EFAULT;
 762        } else {
 763                dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 764                                            DMA_TO_DEVICE);
 765                if (!dd->src.sg_len)
 766                        return -EFAULT;
 767
 768                dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 769                                            DMA_FROM_DEVICE);
 770                if (!dd->dst.sg_len) {
 771                        dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 772                                     DMA_TO_DEVICE);
 773                        return -EFAULT;
 774                }
 775        }
 776
 777        return 0;
 778}
 779
 780static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 781{
 782        if (dd->src.sg == dd->dst.sg) {
 783                dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 784                             DMA_BIDIRECTIONAL);
 785
 786                if (dd->src.sg != &dd->aligned_sg)
 787                        atmel_aes_restore_sg(&dd->src);
 788        } else {
 789                dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 790                             DMA_FROM_DEVICE);
 791
 792                if (dd->dst.sg != &dd->aligned_sg)
 793                        atmel_aes_restore_sg(&dd->dst);
 794
 795                dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 796                             DMA_TO_DEVICE);
 797
 798                if (dd->src.sg != &dd->aligned_sg)
 799                        atmel_aes_restore_sg(&dd->src);
 800        }
 801
 802        if (dd->dst.sg == &dd->aligned_sg)
 803                sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 804                                    dd->buf, dd->total);
 805}
 806
 807static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 808                                        enum dma_slave_buswidth addr_width,
 809                                        enum dma_transfer_direction dir,
 810                                        u32 maxburst)
 811{
 812        struct dma_async_tx_descriptor *desc;
 813        struct dma_slave_config config;
 814        dma_async_tx_callback callback;
 815        struct atmel_aes_dma *dma;
 816        int err;
 817
 818        memset(&config, 0, sizeof(config));
 819        config.src_addr_width = addr_width;
 820        config.dst_addr_width = addr_width;
 821        config.src_maxburst = maxburst;
 822        config.dst_maxburst = maxburst;
 823
 824        switch (dir) {
 825        case DMA_MEM_TO_DEV:
 826                dma = &dd->src;
 827                callback = NULL;
 828                config.dst_addr = dd->phys_base + AES_IDATAR(0);
 829                break;
 830
 831        case DMA_DEV_TO_MEM:
 832                dma = &dd->dst;
 833                callback = atmel_aes_dma_callback;
 834                config.src_addr = dd->phys_base + AES_ODATAR(0);
 835                break;
 836
 837        default:
 838                return -EINVAL;
 839        }
 840
 841        err = dmaengine_slave_config(dma->chan, &config);
 842        if (err)
 843                return err;
 844
 845        desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 846                                       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 847        if (!desc)
 848                return -ENOMEM;
 849
 850        desc->callback = callback;
 851        desc->callback_param = dd;
 852        dmaengine_submit(desc);
 853        dma_async_issue_pending(dma->chan);
 854
 855        return 0;
 856}
 857
 858static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 859                               struct scatterlist *src,
 860                               struct scatterlist *dst,
 861                               size_t len,
 862                               atmel_aes_fn_t resume)
 863{
 864        enum dma_slave_buswidth addr_width;
 865        u32 maxburst;
 866        int err;
 867
 868        switch (dd->ctx->block_size) {
 869        case CFB8_BLOCK_SIZE:
 870                addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 871                maxburst = 1;
 872                break;
 873
 874        case CFB16_BLOCK_SIZE:
 875                addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 876                maxburst = 1;
 877                break;
 878
 879        case CFB32_BLOCK_SIZE:
 880        case CFB64_BLOCK_SIZE:
 881                addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 882                maxburst = 1;
 883                break;
 884
 885        case AES_BLOCK_SIZE:
 886                addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 887                maxburst = dd->caps.max_burst_size;
 888                break;
 889
 890        default:
 891                err = -EINVAL;
 892                goto exit;
 893        }
 894
 895        err = atmel_aes_map(dd, src, dst, len);
 896        if (err)
 897                goto exit;
 898
 899        dd->resume = resume;
 900
 901        /* Set output DMA transfer first */
 902        err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 903                                           maxburst);
 904        if (err)
 905                goto unmap;
 906
 907        /* Then set input DMA transfer */
 908        err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 909                                           maxburst);
 910        if (err)
 911                goto output_transfer_stop;
 912
 913        return -EINPROGRESS;
 914
 915output_transfer_stop:
 916        dmaengine_terminate_sync(dd->dst.chan);
 917unmap:
 918        atmel_aes_unmap(dd);
 919exit:
 920        return atmel_aes_complete(dd, err);
 921}
 922
 923static void atmel_aes_dma_callback(void *data)
 924{
 925        struct atmel_aes_dev *dd = data;
 926
 927        atmel_aes_unmap(dd);
 928        dd->is_async = true;
 929        (void)dd->resume(dd);
 930}
 931
 932static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 933                                  struct crypto_async_request *new_areq)
 934{
 935        struct crypto_async_request *areq, *backlog;
 936        struct atmel_aes_base_ctx *ctx;
 937        unsigned long flags;
 938        bool start_async;
 939        int err, ret = 0;
 940
 941        spin_lock_irqsave(&dd->lock, flags);
 942        if (new_areq)
 943                ret = crypto_enqueue_request(&dd->queue, new_areq);
 944        if (dd->flags & AES_FLAGS_BUSY) {
 945                spin_unlock_irqrestore(&dd->lock, flags);
 946                return ret;
 947        }
 948        backlog = crypto_get_backlog(&dd->queue);
 949        areq = crypto_dequeue_request(&dd->queue);
 950        if (areq)
 951                dd->flags |= AES_FLAGS_BUSY;
 952        spin_unlock_irqrestore(&dd->lock, flags);
 953
 954        if (!areq)
 955                return ret;
 956
 957        if (backlog)
 958                backlog->complete(backlog, -EINPROGRESS);
 959
 960        ctx = crypto_tfm_ctx(areq->tfm);
 961
 962        dd->areq = areq;
 963        dd->ctx = ctx;
 964        start_async = (areq != new_areq);
 965        dd->is_async = start_async;
 966
 967        /* WARNING: ctx->start() MAY change dd->is_async. */
 968        err = ctx->start(dd);
 969        return (start_async) ? ret : err;
 970}
 971
 972
 973/* AES async block ciphers */
 974
 975static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 976{
 977        return atmel_aes_complete(dd, 0);
 978}
 979
 980static int atmel_aes_start(struct atmel_aes_dev *dd)
 981{
 982        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 983        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 984        bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 985                        dd->ctx->block_size != AES_BLOCK_SIZE);
 986        int err;
 987
 988        atmel_aes_set_mode(dd, rctx);
 989
 990        err = atmel_aes_hw_init(dd);
 991        if (err)
 992                return atmel_aes_complete(dd, err);
 993
 994        atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
 995        if (use_dma)
 996                return atmel_aes_dma_start(dd, req->src, req->dst,
 997                                           req->cryptlen,
 998                                           atmel_aes_transfer_complete);
 999
1000        return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1001                                   atmel_aes_transfer_complete);
1002}
1003
1004static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1005{
1006        struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1007        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1008        struct scatterlist *src, *dst;
1009        size_t datalen;
1010        u32 ctr;
1011        u16 start, end;
1012        bool use_dma, fragmented = false;
1013
1014        /* Check for transfer completion. */
1015        ctx->offset += dd->total;
1016        if (ctx->offset >= req->cryptlen)
1017                return atmel_aes_transfer_complete(dd);
1018
1019        /* Compute data length. */
1020        datalen = req->cryptlen - ctx->offset;
1021        ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1022        ctr = be32_to_cpu(ctx->iv[3]);
1023
1024        /* Check 16bit counter overflow. */
1025        start = ctr & 0xffff;
1026        end = start + ctx->blocks - 1;
1027
1028        if (ctx->blocks >> 16 || end < start) {
1029                ctr |= 0xffff;
1030                datalen = AES_BLOCK_SIZE * (0x10000 - start);
1031                fragmented = true;
1032        }
1033
1034        use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1035
1036        /* Jump to offset. */
1037        src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1038        dst = ((req->src == req->dst) ? src :
1039               scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1040
1041        /* Configure hardware. */
1042        atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1043        if (unlikely(fragmented)) {
1044                /*
1045                 * Increment the counter manually to cope with the hardware
1046                 * counter overflow.
1047                 */
1048                ctx->iv[3] = cpu_to_be32(ctr);
1049                crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1050        }
1051
1052        if (use_dma)
1053                return atmel_aes_dma_start(dd, src, dst, datalen,
1054                                           atmel_aes_ctr_transfer);
1055
1056        return atmel_aes_cpu_start(dd, src, dst, datalen,
1057                                   atmel_aes_ctr_transfer);
1058}
1059
1060static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1061{
1062        struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1063        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1064        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1065        int err;
1066
1067        atmel_aes_set_mode(dd, rctx);
1068
1069        err = atmel_aes_hw_init(dd);
1070        if (err)
1071                return atmel_aes_complete(dd, err);
1072
1073        memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1074        ctx->offset = 0;
1075        dd->total = 0;
1076        return atmel_aes_ctr_transfer(dd);
1077}
1078
1079static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1080{
1081        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1082        struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1083                        crypto_skcipher_reqtfm(req));
1084
1085        skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1086        skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1087                                      req->base.complete, req->base.data);
1088        skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1089                                   req->cryptlen, req->iv);
1090
1091        return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1092                     crypto_skcipher_decrypt(&rctx->fallback_req);
1093}
1094
1095static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1096{
1097        struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1098        struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1099        struct atmel_aes_reqctx *rctx;
1100        u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1101
1102        if (opmode == AES_FLAGS_XTS) {
1103                if (req->cryptlen < XTS_BLOCK_SIZE)
1104                        return -EINVAL;
1105
1106                if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1107                        return atmel_aes_xts_fallback(req,
1108                                                      mode & AES_FLAGS_ENCRYPT);
1109        }
1110
1111        /*
1112         * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1113         * to have a positve integer length.
1114         */
1115        if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1116                return 0;
1117
1118        if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1119            !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1120                return -EINVAL;
1121
1122        switch (mode & AES_FLAGS_OPMODE_MASK) {
1123        case AES_FLAGS_CFB8:
1124                ctx->block_size = CFB8_BLOCK_SIZE;
1125                break;
1126
1127        case AES_FLAGS_CFB16:
1128                ctx->block_size = CFB16_BLOCK_SIZE;
1129                break;
1130
1131        case AES_FLAGS_CFB32:
1132                ctx->block_size = CFB32_BLOCK_SIZE;
1133                break;
1134
1135        case AES_FLAGS_CFB64:
1136                ctx->block_size = CFB64_BLOCK_SIZE;
1137                break;
1138
1139        default:
1140                ctx->block_size = AES_BLOCK_SIZE;
1141                break;
1142        }
1143        ctx->is_aead = false;
1144
1145        rctx = skcipher_request_ctx(req);
1146        rctx->mode = mode;
1147
1148        if (opmode != AES_FLAGS_ECB &&
1149            !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1150                unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1151
1152                if (req->cryptlen >= ivsize)
1153                        scatterwalk_map_and_copy(rctx->lastc, req->src,
1154                                                 req->cryptlen - ivsize,
1155                                                 ivsize, 0);
1156        }
1157
1158        return atmel_aes_handle_queue(ctx->dd, &req->base);
1159}
1160
1161static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1162                           unsigned int keylen)
1163{
1164        struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1165
1166        if (keylen != AES_KEYSIZE_128 &&
1167            keylen != AES_KEYSIZE_192 &&
1168            keylen != AES_KEYSIZE_256)
1169                return -EINVAL;
1170
1171        memcpy(ctx->key, key, keylen);
1172        ctx->keylen = keylen;
1173
1174        return 0;
1175}
1176
1177static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1178{
1179        return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1180}
1181
1182static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1183{
1184        return atmel_aes_crypt(req, AES_FLAGS_ECB);
1185}
1186
1187static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1188{
1189        return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1190}
1191
1192static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1193{
1194        return atmel_aes_crypt(req, AES_FLAGS_CBC);
1195}
1196
1197static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1198{
1199        return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1200}
1201
1202static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1203{
1204        return atmel_aes_crypt(req, AES_FLAGS_OFB);
1205}
1206
1207static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1208{
1209        return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1210}
1211
1212static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1213{
1214        return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1215}
1216
1217static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1218{
1219        return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1220}
1221
1222static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1223{
1224        return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1225}
1226
1227static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1228{
1229        return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1230}
1231
1232static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1233{
1234        return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1235}
1236
1237static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1238{
1239        return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1240}
1241
1242static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1243{
1244        return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1245}
1246
1247static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1248{
1249        return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1250}
1251
1252static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1253{
1254        return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1255}
1256
1257static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1258{
1259        return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1260}
1261
1262static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1263{
1264        return atmel_aes_crypt(req, AES_FLAGS_CTR);
1265}
1266
1267static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1268{
1269        struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1270        struct atmel_aes_dev *dd;
1271
1272        dd = atmel_aes_dev_alloc(&ctx->base);
1273        if (!dd)
1274                return -ENODEV;
1275
1276        crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1277        ctx->base.dd = dd;
1278        ctx->base.start = atmel_aes_start;
1279
1280        return 0;
1281}
1282
1283static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1284{
1285        struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1286        struct atmel_aes_dev *dd;
1287
1288        dd = atmel_aes_dev_alloc(&ctx->base);
1289        if (!dd)
1290                return -ENODEV;
1291
1292        crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1293        ctx->base.dd = dd;
1294        ctx->base.start = atmel_aes_ctr_start;
1295
1296        return 0;
1297}
1298
1299static struct skcipher_alg aes_algs[] = {
1300{
1301        .base.cra_name          = "ecb(aes)",
1302        .base.cra_driver_name   = "atmel-ecb-aes",
1303        .base.cra_blocksize     = AES_BLOCK_SIZE,
1304        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1305
1306        .init                   = atmel_aes_init_tfm,
1307        .min_keysize            = AES_MIN_KEY_SIZE,
1308        .max_keysize            = AES_MAX_KEY_SIZE,
1309        .setkey                 = atmel_aes_setkey,
1310        .encrypt                = atmel_aes_ecb_encrypt,
1311        .decrypt                = atmel_aes_ecb_decrypt,
1312},
1313{
1314        .base.cra_name          = "cbc(aes)",
1315        .base.cra_driver_name   = "atmel-cbc-aes",
1316        .base.cra_blocksize     = AES_BLOCK_SIZE,
1317        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1318
1319        .init                   = atmel_aes_init_tfm,
1320        .min_keysize            = AES_MIN_KEY_SIZE,
1321        .max_keysize            = AES_MAX_KEY_SIZE,
1322        .setkey                 = atmel_aes_setkey,
1323        .encrypt                = atmel_aes_cbc_encrypt,
1324        .decrypt                = atmel_aes_cbc_decrypt,
1325        .ivsize                 = AES_BLOCK_SIZE,
1326},
1327{
1328        .base.cra_name          = "ofb(aes)",
1329        .base.cra_driver_name   = "atmel-ofb-aes",
1330        .base.cra_blocksize     = 1,
1331        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1332
1333        .init                   = atmel_aes_init_tfm,
1334        .min_keysize            = AES_MIN_KEY_SIZE,
1335        .max_keysize            = AES_MAX_KEY_SIZE,
1336        .setkey                 = atmel_aes_setkey,
1337        .encrypt                = atmel_aes_ofb_encrypt,
1338        .decrypt                = atmel_aes_ofb_decrypt,
1339        .ivsize                 = AES_BLOCK_SIZE,
1340},
1341{
1342        .base.cra_name          = "cfb(aes)",
1343        .base.cra_driver_name   = "atmel-cfb-aes",
1344        .base.cra_blocksize     = AES_BLOCK_SIZE,
1345        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1346
1347        .init                   = atmel_aes_init_tfm,
1348        .min_keysize            = AES_MIN_KEY_SIZE,
1349        .max_keysize            = AES_MAX_KEY_SIZE,
1350        .setkey                 = atmel_aes_setkey,
1351        .encrypt                = atmel_aes_cfb_encrypt,
1352        .decrypt                = atmel_aes_cfb_decrypt,
1353        .ivsize                 = AES_BLOCK_SIZE,
1354},
1355{
1356        .base.cra_name          = "cfb32(aes)",
1357        .base.cra_driver_name   = "atmel-cfb32-aes",
1358        .base.cra_blocksize     = CFB32_BLOCK_SIZE,
1359        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1360
1361        .init                   = atmel_aes_init_tfm,
1362        .min_keysize            = AES_MIN_KEY_SIZE,
1363        .max_keysize            = AES_MAX_KEY_SIZE,
1364        .setkey                 = atmel_aes_setkey,
1365        .encrypt                = atmel_aes_cfb32_encrypt,
1366        .decrypt                = atmel_aes_cfb32_decrypt,
1367        .ivsize                 = AES_BLOCK_SIZE,
1368},
1369{
1370        .base.cra_name          = "cfb16(aes)",
1371        .base.cra_driver_name   = "atmel-cfb16-aes",
1372        .base.cra_blocksize     = CFB16_BLOCK_SIZE,
1373        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1374
1375        .init                   = atmel_aes_init_tfm,
1376        .min_keysize            = AES_MIN_KEY_SIZE,
1377        .max_keysize            = AES_MAX_KEY_SIZE,
1378        .setkey                 = atmel_aes_setkey,
1379        .encrypt                = atmel_aes_cfb16_encrypt,
1380        .decrypt                = atmel_aes_cfb16_decrypt,
1381        .ivsize                 = AES_BLOCK_SIZE,
1382},
1383{
1384        .base.cra_name          = "cfb8(aes)",
1385        .base.cra_driver_name   = "atmel-cfb8-aes",
1386        .base.cra_blocksize     = CFB8_BLOCK_SIZE,
1387        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1388
1389        .init                   = atmel_aes_init_tfm,
1390        .min_keysize            = AES_MIN_KEY_SIZE,
1391        .max_keysize            = AES_MAX_KEY_SIZE,
1392        .setkey                 = atmel_aes_setkey,
1393        .encrypt                = atmel_aes_cfb8_encrypt,
1394        .decrypt                = atmel_aes_cfb8_decrypt,
1395        .ivsize                 = AES_BLOCK_SIZE,
1396},
1397{
1398        .base.cra_name          = "ctr(aes)",
1399        .base.cra_driver_name   = "atmel-ctr-aes",
1400        .base.cra_blocksize     = 1,
1401        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctr_ctx),
1402
1403        .init                   = atmel_aes_ctr_init_tfm,
1404        .min_keysize            = AES_MIN_KEY_SIZE,
1405        .max_keysize            = AES_MAX_KEY_SIZE,
1406        .setkey                 = atmel_aes_setkey,
1407        .encrypt                = atmel_aes_ctr_encrypt,
1408        .decrypt                = atmel_aes_ctr_decrypt,
1409        .ivsize                 = AES_BLOCK_SIZE,
1410},
1411};
1412
1413static struct skcipher_alg aes_cfb64_alg = {
1414        .base.cra_name          = "cfb64(aes)",
1415        .base.cra_driver_name   = "atmel-cfb64-aes",
1416        .base.cra_blocksize     = CFB64_BLOCK_SIZE,
1417        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1418
1419        .init                   = atmel_aes_init_tfm,
1420        .min_keysize            = AES_MIN_KEY_SIZE,
1421        .max_keysize            = AES_MAX_KEY_SIZE,
1422        .setkey                 = atmel_aes_setkey,
1423        .encrypt                = atmel_aes_cfb64_encrypt,
1424        .decrypt                = atmel_aes_cfb64_decrypt,
1425        .ivsize                 = AES_BLOCK_SIZE,
1426};
1427
1428
1429/* gcm aead functions */
1430
1431static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1432                               const u32 *data, size_t datalen,
1433                               const __be32 *ghash_in, __be32 *ghash_out,
1434                               atmel_aes_fn_t resume);
1435static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1436static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1437
1438static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1439static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1440static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1441static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1442static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1443static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1444static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1445
1446static inline struct atmel_aes_gcm_ctx *
1447atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1448{
1449        return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1450}
1451
1452static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1453                               const u32 *data, size_t datalen,
1454                               const __be32 *ghash_in, __be32 *ghash_out,
1455                               atmel_aes_fn_t resume)
1456{
1457        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1458
1459        dd->data = (u32 *)data;
1460        dd->datalen = datalen;
1461        ctx->ghash_in = ghash_in;
1462        ctx->ghash_out = ghash_out;
1463        ctx->ghash_resume = resume;
1464
1465        atmel_aes_write_ctrl(dd, false, NULL);
1466        return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1467}
1468
1469static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1470{
1471        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1472
1473        /* Set the data length. */
1474        atmel_aes_write(dd, AES_AADLENR, dd->total);
1475        atmel_aes_write(dd, AES_CLENR, 0);
1476
1477        /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1478        if (ctx->ghash_in)
1479                atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1480
1481        return atmel_aes_gcm_ghash_finalize(dd);
1482}
1483
1484static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1485{
1486        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1487        u32 isr;
1488
1489        /* Write data into the Input Data Registers. */
1490        while (dd->datalen > 0) {
1491                atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1492                dd->data += 4;
1493                dd->datalen -= AES_BLOCK_SIZE;
1494
1495                isr = atmel_aes_read(dd, AES_ISR);
1496                if (!(isr & AES_INT_DATARDY)) {
1497                        dd->resume = atmel_aes_gcm_ghash_finalize;
1498                        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1499                        return -EINPROGRESS;
1500                }
1501        }
1502
1503        /* Read the computed hash from GHASHRx. */
1504        atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1505
1506        return ctx->ghash_resume(dd);
1507}
1508
1509
1510static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1511{
1512        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513        struct aead_request *req = aead_request_cast(dd->areq);
1514        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515        struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1516        size_t ivsize = crypto_aead_ivsize(tfm);
1517        size_t datalen, padlen;
1518        const void *iv = req->iv;
1519        u8 *data = dd->buf;
1520        int err;
1521
1522        atmel_aes_set_mode(dd, rctx);
1523
1524        err = atmel_aes_hw_init(dd);
1525        if (err)
1526                return atmel_aes_complete(dd, err);
1527
1528        if (likely(ivsize == GCM_AES_IV_SIZE)) {
1529                memcpy(ctx->j0, iv, ivsize);
1530                ctx->j0[3] = cpu_to_be32(1);
1531                return atmel_aes_gcm_process(dd);
1532        }
1533
1534        padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1535        datalen = ivsize + padlen + AES_BLOCK_SIZE;
1536        if (datalen > dd->buflen)
1537                return atmel_aes_complete(dd, -EINVAL);
1538
1539        memcpy(data, iv, ivsize);
1540        memset(data + ivsize, 0, padlen + sizeof(u64));
1541        ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1542
1543        return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1544                                   NULL, ctx->j0, atmel_aes_gcm_process);
1545}
1546
1547static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1548{
1549        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1550        struct aead_request *req = aead_request_cast(dd->areq);
1551        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1552        bool enc = atmel_aes_is_encrypt(dd);
1553        u32 authsize;
1554
1555        /* Compute text length. */
1556        authsize = crypto_aead_authsize(tfm);
1557        ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1558
1559        /*
1560         * According to tcrypt test suite, the GCM Automatic Tag Generation
1561         * fails when both the message and its associated data are empty.
1562         */
1563        if (likely(req->assoclen != 0 || ctx->textlen != 0))
1564                dd->flags |= AES_FLAGS_GTAGEN;
1565
1566        atmel_aes_write_ctrl(dd, false, NULL);
1567        return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1568}
1569
1570static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1571{
1572        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1573        struct aead_request *req = aead_request_cast(dd->areq);
1574        __be32 j0_lsw, *j0 = ctx->j0;
1575        size_t padlen;
1576
1577        /* Write incr32(J0) into IV. */
1578        j0_lsw = j0[3];
1579        be32_add_cpu(&j0[3], 1);
1580        atmel_aes_write_block(dd, AES_IVR(0), j0);
1581        j0[3] = j0_lsw;
1582
1583        /* Set aad and text lengths. */
1584        atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1585        atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1586
1587        /* Check whether AAD are present. */
1588        if (unlikely(req->assoclen == 0)) {
1589                dd->datalen = 0;
1590                return atmel_aes_gcm_data(dd);
1591        }
1592
1593        /* Copy assoc data and add padding. */
1594        padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1595        if (unlikely(req->assoclen + padlen > dd->buflen))
1596                return atmel_aes_complete(dd, -EINVAL);
1597        sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1598
1599        /* Write assoc data into the Input Data register. */
1600        dd->data = (u32 *)dd->buf;
1601        dd->datalen = req->assoclen + padlen;
1602        return atmel_aes_gcm_data(dd);
1603}
1604
1605static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1606{
1607        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1608        struct aead_request *req = aead_request_cast(dd->areq);
1609        bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1610        struct scatterlist *src, *dst;
1611        u32 isr, mr;
1612
1613        /* Write AAD first. */
1614        while (dd->datalen > 0) {
1615                atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1616                dd->data += 4;
1617                dd->datalen -= AES_BLOCK_SIZE;
1618
1619                isr = atmel_aes_read(dd, AES_ISR);
1620                if (!(isr & AES_INT_DATARDY)) {
1621                        dd->resume = atmel_aes_gcm_data;
1622                        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1623                        return -EINPROGRESS;
1624                }
1625        }
1626
1627        /* GMAC only. */
1628        if (unlikely(ctx->textlen == 0))
1629                return atmel_aes_gcm_tag_init(dd);
1630
1631        /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1632        src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1633        dst = ((req->src == req->dst) ? src :
1634               scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1635
1636        if (use_dma) {
1637                /* Update the Mode Register for DMA transfers. */
1638                mr = atmel_aes_read(dd, AES_MR);
1639                mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1640                mr |= AES_MR_SMOD_IDATAR0;
1641                if (dd->caps.has_dualbuff)
1642                        mr |= AES_MR_DUALBUFF;
1643                atmel_aes_write(dd, AES_MR, mr);
1644
1645                return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1646                                           atmel_aes_gcm_tag_init);
1647        }
1648
1649        return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1650                                   atmel_aes_gcm_tag_init);
1651}
1652
1653static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1654{
1655        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1656        struct aead_request *req = aead_request_cast(dd->areq);
1657        __be64 *data = dd->buf;
1658
1659        if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1660                if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1661                        dd->resume = atmel_aes_gcm_tag_init;
1662                        atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1663                        return -EINPROGRESS;
1664                }
1665
1666                return atmel_aes_gcm_finalize(dd);
1667        }
1668
1669        /* Read the GCM Intermediate Hash Word Registers. */
1670        atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1671
1672        data[0] = cpu_to_be64(req->assoclen * 8);
1673        data[1] = cpu_to_be64(ctx->textlen * 8);
1674
1675        return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1676                                   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1677}
1678
1679static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1680{
1681        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1682        unsigned long flags;
1683
1684        /*
1685         * Change mode to CTR to complete the tag generation.
1686         * Use J0 as Initialization Vector.
1687         */
1688        flags = dd->flags;
1689        dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1690        dd->flags |= AES_FLAGS_CTR;
1691        atmel_aes_write_ctrl(dd, false, ctx->j0);
1692        dd->flags = flags;
1693
1694        atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1695        return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1696}
1697
1698static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1699{
1700        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1701        struct aead_request *req = aead_request_cast(dd->areq);
1702        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1703        bool enc = atmel_aes_is_encrypt(dd);
1704        u32 offset, authsize, itag[4], *otag = ctx->tag;
1705        int err;
1706
1707        /* Read the computed tag. */
1708        if (likely(dd->flags & AES_FLAGS_GTAGEN))
1709                atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1710        else
1711                atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1712
1713        offset = req->assoclen + ctx->textlen;
1714        authsize = crypto_aead_authsize(tfm);
1715        if (enc) {
1716                scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1717                err = 0;
1718        } else {
1719                scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1720                err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1721        }
1722
1723        return atmel_aes_complete(dd, err);
1724}
1725
1726static int atmel_aes_gcm_crypt(struct aead_request *req,
1727                               unsigned long mode)
1728{
1729        struct atmel_aes_base_ctx *ctx;
1730        struct atmel_aes_reqctx *rctx;
1731
1732        ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1733        ctx->block_size = AES_BLOCK_SIZE;
1734        ctx->is_aead = true;
1735
1736        rctx = aead_request_ctx(req);
1737        rctx->mode = AES_FLAGS_GCM | mode;
1738
1739        return atmel_aes_handle_queue(ctx->dd, &req->base);
1740}
1741
1742static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1743                                unsigned int keylen)
1744{
1745        struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1746
1747        if (keylen != AES_KEYSIZE_256 &&
1748            keylen != AES_KEYSIZE_192 &&
1749            keylen != AES_KEYSIZE_128)
1750                return -EINVAL;
1751
1752        memcpy(ctx->key, key, keylen);
1753        ctx->keylen = keylen;
1754
1755        return 0;
1756}
1757
1758static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1759                                     unsigned int authsize)
1760{
1761        return crypto_gcm_check_authsize(authsize);
1762}
1763
1764static int atmel_aes_gcm_encrypt(struct aead_request *req)
1765{
1766        return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1767}
1768
1769static int atmel_aes_gcm_decrypt(struct aead_request *req)
1770{
1771        return atmel_aes_gcm_crypt(req, 0);
1772}
1773
1774static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1775{
1776        struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1777        struct atmel_aes_dev *dd;
1778
1779        dd = atmel_aes_dev_alloc(&ctx->base);
1780        if (!dd)
1781                return -ENODEV;
1782
1783        crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1784        ctx->base.dd = dd;
1785        ctx->base.start = atmel_aes_gcm_start;
1786
1787        return 0;
1788}
1789
1790static struct aead_alg aes_gcm_alg = {
1791        .setkey         = atmel_aes_gcm_setkey,
1792        .setauthsize    = atmel_aes_gcm_setauthsize,
1793        .encrypt        = atmel_aes_gcm_encrypt,
1794        .decrypt        = atmel_aes_gcm_decrypt,
1795        .init           = atmel_aes_gcm_init,
1796        .ivsize         = GCM_AES_IV_SIZE,
1797        .maxauthsize    = AES_BLOCK_SIZE,
1798
1799        .base = {
1800                .cra_name               = "gcm(aes)",
1801                .cra_driver_name        = "atmel-gcm-aes",
1802                .cra_blocksize          = 1,
1803                .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1804        },
1805};
1806
1807
1808/* xts functions */
1809
1810static inline struct atmel_aes_xts_ctx *
1811atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1812{
1813        return container_of(ctx, struct atmel_aes_xts_ctx, base);
1814}
1815
1816static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1817
1818static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1819{
1820        struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1821        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1822        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1823        unsigned long flags;
1824        int err;
1825
1826        atmel_aes_set_mode(dd, rctx);
1827
1828        err = atmel_aes_hw_init(dd);
1829        if (err)
1830                return atmel_aes_complete(dd, err);
1831
1832        /* Compute the tweak value from req->iv with ecb(aes). */
1833        flags = dd->flags;
1834        dd->flags &= ~AES_FLAGS_MODE_MASK;
1835        dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1836        atmel_aes_write_ctrl_key(dd, false, NULL,
1837                                 ctx->key2, ctx->base.keylen);
1838        dd->flags = flags;
1839
1840        atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1841        return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1842}
1843
1844static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1845{
1846        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1847        bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1848        u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1849        static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1850        u8 *tweak_bytes = (u8 *)tweak;
1851        int i;
1852
1853        /* Read the computed ciphered tweak value. */
1854        atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1855        /*
1856         * Hardware quirk:
1857         * the order of the ciphered tweak bytes need to be reversed before
1858         * writing them into the ODATARx registers.
1859         */
1860        for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1861                swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1862
1863        /* Process the data. */
1864        atmel_aes_write_ctrl(dd, use_dma, NULL);
1865        atmel_aes_write_block(dd, AES_TWR(0), tweak);
1866        atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1867        if (use_dma)
1868                return atmel_aes_dma_start(dd, req->src, req->dst,
1869                                           req->cryptlen,
1870                                           atmel_aes_transfer_complete);
1871
1872        return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1873                                   atmel_aes_transfer_complete);
1874}
1875
1876static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1877                                unsigned int keylen)
1878{
1879        struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1880        int err;
1881
1882        err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1883        if (err)
1884                return err;
1885
1886        crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1887        crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1888                                  CRYPTO_TFM_REQ_MASK);
1889        err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1890        if (err)
1891                return err;
1892
1893        memcpy(ctx->base.key, key, keylen/2);
1894        memcpy(ctx->key2, key + keylen/2, keylen/2);
1895        ctx->base.keylen = keylen/2;
1896
1897        return 0;
1898}
1899
1900static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1901{
1902        return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1903}
1904
1905static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1906{
1907        return atmel_aes_crypt(req, AES_FLAGS_XTS);
1908}
1909
1910static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1911{
1912        struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1913        struct atmel_aes_dev *dd;
1914        const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1915
1916        dd = atmel_aes_dev_alloc(&ctx->base);
1917        if (!dd)
1918                return -ENODEV;
1919
1920        ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1921                                                  CRYPTO_ALG_NEED_FALLBACK);
1922        if (IS_ERR(ctx->fallback_tfm))
1923                return PTR_ERR(ctx->fallback_tfm);
1924
1925        crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1926                                    crypto_skcipher_reqsize(ctx->fallback_tfm));
1927        ctx->base.dd = dd;
1928        ctx->base.start = atmel_aes_xts_start;
1929
1930        return 0;
1931}
1932
1933static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1934{
1935        struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1936
1937        crypto_free_skcipher(ctx->fallback_tfm);
1938}
1939
1940static struct skcipher_alg aes_xts_alg = {
1941        .base.cra_name          = "xts(aes)",
1942        .base.cra_driver_name   = "atmel-xts-aes",
1943        .base.cra_blocksize     = AES_BLOCK_SIZE,
1944        .base.cra_ctxsize       = sizeof(struct atmel_aes_xts_ctx),
1945        .base.cra_flags         = CRYPTO_ALG_NEED_FALLBACK,
1946
1947        .min_keysize            = 2 * AES_MIN_KEY_SIZE,
1948        .max_keysize            = 2 * AES_MAX_KEY_SIZE,
1949        .ivsize                 = AES_BLOCK_SIZE,
1950        .setkey                 = atmel_aes_xts_setkey,
1951        .encrypt                = atmel_aes_xts_encrypt,
1952        .decrypt                = atmel_aes_xts_decrypt,
1953        .init                   = atmel_aes_xts_init_tfm,
1954        .exit                   = atmel_aes_xts_exit_tfm,
1955};
1956
1957#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1958/* authenc aead functions */
1959
1960static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1961static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1962                                  bool is_async);
1963static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1964                                      bool is_async);
1965static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1966static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1967                                   bool is_async);
1968
1969static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1970{
1971        struct aead_request *req = aead_request_cast(dd->areq);
1972        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1973
1974        if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1975                atmel_sha_authenc_abort(&rctx->auth_req);
1976        dd->flags &= ~AES_FLAGS_OWN_SHA;
1977}
1978
1979static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1980{
1981        struct aead_request *req = aead_request_cast(dd->areq);
1982        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1983        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1984        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1985        int err;
1986
1987        atmel_aes_set_mode(dd, &rctx->base);
1988
1989        err = atmel_aes_hw_init(dd);
1990        if (err)
1991                return atmel_aes_complete(dd, err);
1992
1993        return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1994                                          atmel_aes_authenc_init, dd);
1995}
1996
1997static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1998                                  bool is_async)
1999{
2000        struct aead_request *req = aead_request_cast(dd->areq);
2001        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003        if (is_async)
2004                dd->is_async = true;
2005        if (err)
2006                return atmel_aes_complete(dd, err);
2007
2008        /* If here, we've got the ownership of the SHA device. */
2009        dd->flags |= AES_FLAGS_OWN_SHA;
2010
2011        /* Configure the SHA device. */
2012        return atmel_sha_authenc_init(&rctx->auth_req,
2013                                      req->src, req->assoclen,
2014                                      rctx->textlen,
2015                                      atmel_aes_authenc_transfer, dd);
2016}
2017
2018static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2019                                      bool is_async)
2020{
2021        struct aead_request *req = aead_request_cast(dd->areq);
2022        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2023        bool enc = atmel_aes_is_encrypt(dd);
2024        struct scatterlist *src, *dst;
2025        __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2026        u32 emr;
2027
2028        if (is_async)
2029                dd->is_async = true;
2030        if (err)
2031                return atmel_aes_complete(dd, err);
2032
2033        /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2034        src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2035        dst = src;
2036
2037        if (req->src != req->dst)
2038                dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2039
2040        /* Configure the AES device. */
2041        memcpy(iv, req->iv, sizeof(iv));
2042
2043        /*
2044         * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2045         * 'true' even if the data transfer is actually performed by the CPU (so
2046         * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2047         * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2048         * must be set to *_MR_SMOD_IDATAR0.
2049         */
2050        atmel_aes_write_ctrl(dd, true, iv);
2051        emr = AES_EMR_PLIPEN;
2052        if (!enc)
2053                emr |= AES_EMR_PLIPD;
2054        atmel_aes_write(dd, AES_EMR, emr);
2055
2056        /* Transfer data. */
2057        return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2058                                   atmel_aes_authenc_digest);
2059}
2060
2061static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2062{
2063        struct aead_request *req = aead_request_cast(dd->areq);
2064        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2065
2066        /* atmel_sha_authenc_final() releases the SHA device. */
2067        dd->flags &= ~AES_FLAGS_OWN_SHA;
2068        return atmel_sha_authenc_final(&rctx->auth_req,
2069                                       rctx->digest, sizeof(rctx->digest),
2070                                       atmel_aes_authenc_final, dd);
2071}
2072
2073static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2074                                   bool is_async)
2075{
2076        struct aead_request *req = aead_request_cast(dd->areq);
2077        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2078        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2079        bool enc = atmel_aes_is_encrypt(dd);
2080        u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2081        u32 offs, authsize;
2082
2083        if (is_async)
2084                dd->is_async = true;
2085        if (err)
2086                goto complete;
2087
2088        offs = req->assoclen + rctx->textlen;
2089        authsize = crypto_aead_authsize(tfm);
2090        if (enc) {
2091                scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2092        } else {
2093                scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2094                if (crypto_memneq(idigest, odigest, authsize))
2095                        err = -EBADMSG;
2096        }
2097
2098complete:
2099        return atmel_aes_complete(dd, err);
2100}
2101
2102static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2103                                    unsigned int keylen)
2104{
2105        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2106        struct crypto_authenc_keys keys;
2107        int err;
2108
2109        if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2110                goto badkey;
2111
2112        if (keys.enckeylen > sizeof(ctx->base.key))
2113                goto badkey;
2114
2115        /* Save auth key. */
2116        err = atmel_sha_authenc_setkey(ctx->auth,
2117                                       keys.authkey, keys.authkeylen,
2118                                       crypto_aead_get_flags(tfm));
2119        if (err) {
2120                memzero_explicit(&keys, sizeof(keys));
2121                return err;
2122        }
2123
2124        /* Save enc key. */
2125        ctx->base.keylen = keys.enckeylen;
2126        memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2127
2128        memzero_explicit(&keys, sizeof(keys));
2129        return 0;
2130
2131badkey:
2132        memzero_explicit(&keys, sizeof(keys));
2133        return -EINVAL;
2134}
2135
2136static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2137                                      unsigned long auth_mode)
2138{
2139        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2140        unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2141        struct atmel_aes_dev *dd;
2142
2143        dd = atmel_aes_dev_alloc(&ctx->base);
2144        if (!dd)
2145                return -ENODEV;
2146
2147        ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2148        if (IS_ERR(ctx->auth))
2149                return PTR_ERR(ctx->auth);
2150
2151        crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2152                                      auth_reqsize));
2153        ctx->base.dd = dd;
2154        ctx->base.start = atmel_aes_authenc_start;
2155
2156        return 0;
2157}
2158
2159static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2160{
2161        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2162}
2163
2164static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2165{
2166        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2167}
2168
2169static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2170{
2171        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2172}
2173
2174static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2175{
2176        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2177}
2178
2179static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2180{
2181        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2182}
2183
2184static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2185{
2186        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2187
2188        atmel_sha_authenc_free(ctx->auth);
2189}
2190
2191static int atmel_aes_authenc_crypt(struct aead_request *req,
2192                                   unsigned long mode)
2193{
2194        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2195        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2196        struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2197        u32 authsize = crypto_aead_authsize(tfm);
2198        bool enc = (mode & AES_FLAGS_ENCRYPT);
2199
2200        /* Compute text length. */
2201        if (!enc && req->cryptlen < authsize)
2202                return -EINVAL;
2203        rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2204
2205        /*
2206         * Currently, empty messages are not supported yet:
2207         * the SHA auto-padding can be used only on non-empty messages.
2208         * Hence a special case needs to be implemented for empty message.
2209         */
2210        if (!rctx->textlen && !req->assoclen)
2211                return -EINVAL;
2212
2213        rctx->base.mode = mode;
2214        ctx->block_size = AES_BLOCK_SIZE;
2215        ctx->is_aead = true;
2216
2217        return atmel_aes_handle_queue(ctx->dd, &req->base);
2218}
2219
2220static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2221{
2222        return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2223}
2224
2225static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2226{
2227        return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2228}
2229
2230static struct aead_alg aes_authenc_algs[] = {
2231{
2232        .setkey         = atmel_aes_authenc_setkey,
2233        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2234        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2235        .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2236        .exit           = atmel_aes_authenc_exit_tfm,
2237        .ivsize         = AES_BLOCK_SIZE,
2238        .maxauthsize    = SHA1_DIGEST_SIZE,
2239
2240        .base = {
2241                .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2242                .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2243                .cra_blocksize          = AES_BLOCK_SIZE,
2244                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2245        },
2246},
2247{
2248        .setkey         = atmel_aes_authenc_setkey,
2249        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2250        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2251        .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2252        .exit           = atmel_aes_authenc_exit_tfm,
2253        .ivsize         = AES_BLOCK_SIZE,
2254        .maxauthsize    = SHA224_DIGEST_SIZE,
2255
2256        .base = {
2257                .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2258                .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2259                .cra_blocksize          = AES_BLOCK_SIZE,
2260                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2261        },
2262},
2263{
2264        .setkey         = atmel_aes_authenc_setkey,
2265        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2266        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2267        .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2268        .exit           = atmel_aes_authenc_exit_tfm,
2269        .ivsize         = AES_BLOCK_SIZE,
2270        .maxauthsize    = SHA256_DIGEST_SIZE,
2271
2272        .base = {
2273                .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2274                .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2275                .cra_blocksize          = AES_BLOCK_SIZE,
2276                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2277        },
2278},
2279{
2280        .setkey         = atmel_aes_authenc_setkey,
2281        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2282        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2283        .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2284        .exit           = atmel_aes_authenc_exit_tfm,
2285        .ivsize         = AES_BLOCK_SIZE,
2286        .maxauthsize    = SHA384_DIGEST_SIZE,
2287
2288        .base = {
2289                .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2290                .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2291                .cra_blocksize          = AES_BLOCK_SIZE,
2292                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2293        },
2294},
2295{
2296        .setkey         = atmel_aes_authenc_setkey,
2297        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2298        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2299        .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2300        .exit           = atmel_aes_authenc_exit_tfm,
2301        .ivsize         = AES_BLOCK_SIZE,
2302        .maxauthsize    = SHA512_DIGEST_SIZE,
2303
2304        .base = {
2305                .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2306                .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2307                .cra_blocksize          = AES_BLOCK_SIZE,
2308                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2309        },
2310},
2311};
2312#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2313
2314/* Probe functions */
2315
2316static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2317{
2318        dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2319        dd->buflen = ATMEL_AES_BUFFER_SIZE;
2320        dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2321
2322        if (!dd->buf) {
2323                dev_err(dd->dev, "unable to alloc pages.\n");
2324                return -ENOMEM;
2325        }
2326
2327        return 0;
2328}
2329
2330static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2331{
2332        free_page((unsigned long)dd->buf);
2333}
2334
2335static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2336{
2337        int ret;
2338
2339        /* Try to grab 2 DMA channels */
2340        dd->src.chan = dma_request_chan(dd->dev, "tx");
2341        if (IS_ERR(dd->src.chan)) {
2342                ret = PTR_ERR(dd->src.chan);
2343                goto err_dma_in;
2344        }
2345
2346        dd->dst.chan = dma_request_chan(dd->dev, "rx");
2347        if (IS_ERR(dd->dst.chan)) {
2348                ret = PTR_ERR(dd->dst.chan);
2349                goto err_dma_out;
2350        }
2351
2352        return 0;
2353
2354err_dma_out:
2355        dma_release_channel(dd->src.chan);
2356err_dma_in:
2357        dev_err(dd->dev, "no DMA channel available\n");
2358        return ret;
2359}
2360
2361static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2362{
2363        dma_release_channel(dd->dst.chan);
2364        dma_release_channel(dd->src.chan);
2365}
2366
2367static void atmel_aes_queue_task(unsigned long data)
2368{
2369        struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2370
2371        atmel_aes_handle_queue(dd, NULL);
2372}
2373
2374static void atmel_aes_done_task(unsigned long data)
2375{
2376        struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2377
2378        dd->is_async = true;
2379        (void)dd->resume(dd);
2380}
2381
2382static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2383{
2384        struct atmel_aes_dev *aes_dd = dev_id;
2385        u32 reg;
2386
2387        reg = atmel_aes_read(aes_dd, AES_ISR);
2388        if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2389                atmel_aes_write(aes_dd, AES_IDR, reg);
2390                if (AES_FLAGS_BUSY & aes_dd->flags)
2391                        tasklet_schedule(&aes_dd->done_task);
2392                else
2393                        dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2394                return IRQ_HANDLED;
2395        }
2396
2397        return IRQ_NONE;
2398}
2399
2400static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2401{
2402        int i;
2403
2404#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2405        if (dd->caps.has_authenc)
2406                for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2407                        crypto_unregister_aead(&aes_authenc_algs[i]);
2408#endif
2409
2410        if (dd->caps.has_xts)
2411                crypto_unregister_skcipher(&aes_xts_alg);
2412
2413        if (dd->caps.has_gcm)
2414                crypto_unregister_aead(&aes_gcm_alg);
2415
2416        if (dd->caps.has_cfb64)
2417                crypto_unregister_skcipher(&aes_cfb64_alg);
2418
2419        for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2420                crypto_unregister_skcipher(&aes_algs[i]);
2421}
2422
2423static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2424{
2425        alg->cra_flags |= CRYPTO_ALG_ASYNC;
2426        alg->cra_alignmask = 0xf;
2427        alg->cra_priority = ATMEL_AES_PRIORITY;
2428        alg->cra_module = THIS_MODULE;
2429}
2430
2431static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2432{
2433        int err, i, j;
2434
2435        for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2436                atmel_aes_crypto_alg_init(&aes_algs[i].base);
2437
2438                err = crypto_register_skcipher(&aes_algs[i]);
2439                if (err)
2440                        goto err_aes_algs;
2441        }
2442
2443        if (dd->caps.has_cfb64) {
2444                atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2445
2446                err = crypto_register_skcipher(&aes_cfb64_alg);
2447                if (err)
2448                        goto err_aes_cfb64_alg;
2449        }
2450
2451        if (dd->caps.has_gcm) {
2452                atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2453
2454                err = crypto_register_aead(&aes_gcm_alg);
2455                if (err)
2456                        goto err_aes_gcm_alg;
2457        }
2458
2459        if (dd->caps.has_xts) {
2460                atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2461
2462                err = crypto_register_skcipher(&aes_xts_alg);
2463                if (err)
2464                        goto err_aes_xts_alg;
2465        }
2466
2467#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2468        if (dd->caps.has_authenc) {
2469                for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2470                        atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2471
2472                        err = crypto_register_aead(&aes_authenc_algs[i]);
2473                        if (err)
2474                                goto err_aes_authenc_alg;
2475                }
2476        }
2477#endif
2478
2479        return 0;
2480
2481#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2482        /* i = ARRAY_SIZE(aes_authenc_algs); */
2483err_aes_authenc_alg:
2484        for (j = 0; j < i; j++)
2485                crypto_unregister_aead(&aes_authenc_algs[j]);
2486        crypto_unregister_skcipher(&aes_xts_alg);
2487#endif
2488err_aes_xts_alg:
2489        crypto_unregister_aead(&aes_gcm_alg);
2490err_aes_gcm_alg:
2491        crypto_unregister_skcipher(&aes_cfb64_alg);
2492err_aes_cfb64_alg:
2493        i = ARRAY_SIZE(aes_algs);
2494err_aes_algs:
2495        for (j = 0; j < i; j++)
2496                crypto_unregister_skcipher(&aes_algs[j]);
2497
2498        return err;
2499}
2500
2501static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2502{
2503        dd->caps.has_dualbuff = 0;
2504        dd->caps.has_cfb64 = 0;
2505        dd->caps.has_gcm = 0;
2506        dd->caps.has_xts = 0;
2507        dd->caps.has_authenc = 0;
2508        dd->caps.max_burst_size = 1;
2509
2510        /* keep only major version number */
2511        switch (dd->hw_version & 0xff0) {
2512        case 0x700:
2513        case 0x500:
2514                dd->caps.has_dualbuff = 1;
2515                dd->caps.has_cfb64 = 1;
2516                dd->caps.has_gcm = 1;
2517                dd->caps.has_xts = 1;
2518                dd->caps.has_authenc = 1;
2519                dd->caps.max_burst_size = 4;
2520                break;
2521        case 0x200:
2522                dd->caps.has_dualbuff = 1;
2523                dd->caps.has_cfb64 = 1;
2524                dd->caps.has_gcm = 1;
2525                dd->caps.max_burst_size = 4;
2526                break;
2527        case 0x130:
2528                dd->caps.has_dualbuff = 1;
2529                dd->caps.has_cfb64 = 1;
2530                dd->caps.max_burst_size = 4;
2531                break;
2532        case 0x120:
2533                break;
2534        default:
2535                dev_warn(dd->dev,
2536                                "Unmanaged aes version, set minimum capabilities\n");
2537                break;
2538        }
2539}
2540
2541#if defined(CONFIG_OF)
2542static const struct of_device_id atmel_aes_dt_ids[] = {
2543        { .compatible = "atmel,at91sam9g46-aes" },
2544        { /* sentinel */ }
2545};
2546MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2547#endif
2548
2549static int atmel_aes_probe(struct platform_device *pdev)
2550{
2551        struct atmel_aes_dev *aes_dd;
2552        struct device *dev = &pdev->dev;
2553        struct resource *aes_res;
2554        int err;
2555
2556        aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2557        if (!aes_dd)
2558                return -ENOMEM;
2559
2560        aes_dd->dev = dev;
2561
2562        platform_set_drvdata(pdev, aes_dd);
2563
2564        INIT_LIST_HEAD(&aes_dd->list);
2565        spin_lock_init(&aes_dd->lock);
2566
2567        tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2568                                        (unsigned long)aes_dd);
2569        tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2570                                        (unsigned long)aes_dd);
2571
2572        crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2573
2574        /* Get the base address */
2575        aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2576        if (!aes_res) {
2577                dev_err(dev, "no MEM resource info\n");
2578                err = -ENODEV;
2579                goto err_tasklet_kill;
2580        }
2581        aes_dd->phys_base = aes_res->start;
2582
2583        /* Get the IRQ */
2584        aes_dd->irq = platform_get_irq(pdev,  0);
2585        if (aes_dd->irq < 0) {
2586                err = aes_dd->irq;
2587                goto err_tasklet_kill;
2588        }
2589
2590        err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2591                               IRQF_SHARED, "atmel-aes", aes_dd);
2592        if (err) {
2593                dev_err(dev, "unable to request aes irq.\n");
2594                goto err_tasklet_kill;
2595        }
2596
2597        /* Initializing the clock */
2598        aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2599        if (IS_ERR(aes_dd->iclk)) {
2600                dev_err(dev, "clock initialization failed.\n");
2601                err = PTR_ERR(aes_dd->iclk);
2602                goto err_tasklet_kill;
2603        }
2604
2605        aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2606        if (IS_ERR(aes_dd->io_base)) {
2607                dev_err(dev, "can't ioremap\n");
2608                err = PTR_ERR(aes_dd->io_base);
2609                goto err_tasklet_kill;
2610        }
2611
2612        err = clk_prepare(aes_dd->iclk);
2613        if (err)
2614                goto err_tasklet_kill;
2615
2616        err = atmel_aes_hw_version_init(aes_dd);
2617        if (err)
2618                goto err_iclk_unprepare;
2619
2620        atmel_aes_get_cap(aes_dd);
2621
2622#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2623        if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2624                err = -EPROBE_DEFER;
2625                goto err_iclk_unprepare;
2626        }
2627#endif
2628
2629        err = atmel_aes_buff_init(aes_dd);
2630        if (err)
2631                goto err_iclk_unprepare;
2632
2633        err = atmel_aes_dma_init(aes_dd);
2634        if (err)
2635                goto err_buff_cleanup;
2636
2637        spin_lock(&atmel_aes.lock);
2638        list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2639        spin_unlock(&atmel_aes.lock);
2640
2641        err = atmel_aes_register_algs(aes_dd);
2642        if (err)
2643                goto err_algs;
2644
2645        dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2646                        dma_chan_name(aes_dd->src.chan),
2647                        dma_chan_name(aes_dd->dst.chan));
2648
2649        return 0;
2650
2651err_algs:
2652        spin_lock(&atmel_aes.lock);
2653        list_del(&aes_dd->list);
2654        spin_unlock(&atmel_aes.lock);
2655        atmel_aes_dma_cleanup(aes_dd);
2656err_buff_cleanup:
2657        atmel_aes_buff_cleanup(aes_dd);
2658err_iclk_unprepare:
2659        clk_unprepare(aes_dd->iclk);
2660err_tasklet_kill:
2661        tasklet_kill(&aes_dd->done_task);
2662        tasklet_kill(&aes_dd->queue_task);
2663
2664        return err;
2665}
2666
2667static int atmel_aes_remove(struct platform_device *pdev)
2668{
2669        struct atmel_aes_dev *aes_dd;
2670
2671        aes_dd = platform_get_drvdata(pdev);
2672        if (!aes_dd)
2673                return -ENODEV;
2674        spin_lock(&atmel_aes.lock);
2675        list_del(&aes_dd->list);
2676        spin_unlock(&atmel_aes.lock);
2677
2678        atmel_aes_unregister_algs(aes_dd);
2679
2680        tasklet_kill(&aes_dd->done_task);
2681        tasklet_kill(&aes_dd->queue_task);
2682
2683        atmel_aes_dma_cleanup(aes_dd);
2684        atmel_aes_buff_cleanup(aes_dd);
2685
2686        clk_unprepare(aes_dd->iclk);
2687
2688        return 0;
2689}
2690
2691static struct platform_driver atmel_aes_driver = {
2692        .probe          = atmel_aes_probe,
2693        .remove         = atmel_aes_remove,
2694        .driver         = {
2695                .name   = "atmel_aes",
2696                .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2697        },
2698};
2699
2700module_platform_driver(atmel_aes_driver);
2701
2702MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2703MODULE_LICENSE("GPL v2");
2704MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2705