linux/drivers/gpu/drm/i915/gvt/cmd_parser.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21 * SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ke Yu
  25 *    Kevin Tian <kevin.tian@intel.com>
  26 *    Zhiyuan Lv <zhiyuan.lv@intel.com>
  27 *
  28 * Contributors:
  29 *    Min He <min.he@intel.com>
  30 *    Ping Gao <ping.a.gao@intel.com>
  31 *    Tina Zhang <tina.zhang@intel.com>
  32 *    Yulei Zhang <yulei.zhang@intel.com>
  33 *    Zhi Wang <zhi.a.wang@intel.com>
  34 *
  35 */
  36
  37#include <linux/slab.h>
  38
  39#include "i915_drv.h"
  40#include "gt/intel_engine_regs.h"
  41#include "gt/intel_gpu_commands.h"
  42#include "gt/intel_gt_regs.h"
  43#include "gt/intel_lrc.h"
  44#include "gt/intel_ring.h"
  45#include "gt/intel_gt_requests.h"
  46#include "gt/shmem_utils.h"
  47#include "gvt.h"
  48#include "i915_pvinfo.h"
  49#include "trace.h"
  50
  51#include "gem/i915_gem_context.h"
  52#include "gem/i915_gem_pm.h"
  53#include "gt/intel_context.h"
  54
  55#define INVALID_OP    (~0U)
  56
  57#define OP_LEN_MI           9
  58#define OP_LEN_2D           10
  59#define OP_LEN_3D_MEDIA     16
  60#define OP_LEN_MFX_VC       16
  61#define OP_LEN_VEBOX        16
  62
  63#define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
  64
  65struct sub_op_bits {
  66        int hi;
  67        int low;
  68};
  69struct decode_info {
  70        const char *name;
  71        int op_len;
  72        int nr_sub_op;
  73        const struct sub_op_bits *sub_op;
  74};
  75
  76#define   MAX_CMD_BUDGET                        0x7fffffff
  77#define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
  78#define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
  79#define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
  80
  81#define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
  82#define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
  83#define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
  84
  85/* Render Command Map */
  86
  87/* MI_* command Opcode (28:23) */
  88#define OP_MI_NOOP                          0x0
  89#define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
  90#define OP_MI_USER_INTERRUPT                0x2
  91#define OP_MI_WAIT_FOR_EVENT                0x3
  92#define OP_MI_FLUSH                         0x4
  93#define OP_MI_ARB_CHECK                     0x5
  94#define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
  95#define OP_MI_REPORT_HEAD                   0x7
  96#define OP_MI_ARB_ON_OFF                    0x8
  97#define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
  98#define OP_MI_BATCH_BUFFER_END              0xA
  99#define OP_MI_SUSPEND_FLUSH                 0xB
 100#define OP_MI_PREDICATE                     0xC  /* IVB+ */
 101#define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
 102#define OP_MI_SET_APPID                     0xE  /* IVB+ */
 103#define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
 104#define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
 105#define OP_MI_DISPLAY_FLIP                  0x14
 106#define OP_MI_SEMAPHORE_MBOX                0x16
 107#define OP_MI_SET_CONTEXT                   0x18
 108#define OP_MI_MATH                          0x1A
 109#define OP_MI_URB_CLEAR                     0x19
 110#define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
 111#define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
 112
 113#define OP_MI_STORE_DATA_IMM                0x20
 114#define OP_MI_STORE_DATA_INDEX              0x21
 115#define OP_MI_LOAD_REGISTER_IMM             0x22
 116#define OP_MI_UPDATE_GTT                    0x23
 117#define OP_MI_STORE_REGISTER_MEM            0x24
 118#define OP_MI_FLUSH_DW                      0x26
 119#define OP_MI_CLFLUSH                       0x27
 120#define OP_MI_REPORT_PERF_COUNT             0x28
 121#define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
 122#define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
 123#define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
 124#define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
 125#define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
 126#define OP_MI_2E                            0x2E  /* BDW+ */
 127#define OP_MI_2F                            0x2F  /* BDW+ */
 128#define OP_MI_BATCH_BUFFER_START            0x31
 129
 130/* Bit definition for dword 0 */
 131#define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
 132
 133#define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
 134
 135#define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
 136#define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
 137#define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
 138#define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
 139
 140/* 2D command: Opcode (28:22) */
 141#define OP_2D(x)    ((2<<7) | x)
 142
 143#define OP_XY_SETUP_BLT                             OP_2D(0x1)
 144#define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
 145#define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
 146#define OP_XY_PIXEL_BLT                             OP_2D(0x24)
 147#define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
 148#define OP_XY_TEXT_BLT                              OP_2D(0x26)
 149#define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
 150#define OP_XY_COLOR_BLT                             OP_2D(0x50)
 151#define OP_XY_PAT_BLT                               OP_2D(0x51)
 152#define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
 153#define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
 154#define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
 155#define OP_XY_FULL_BLT                              OP_2D(0x55)
 156#define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
 157#define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
 158#define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
 159#define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
 160#define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
 161#define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
 162#define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
 163#define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
 164#define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
 165#define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
 166#define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
 167
 168/* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
 169#define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
 170        ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
 171
 172#define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
 173
 174#define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
 175#define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
 176#define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
 177#define OP_SWTESS_BASE_ADDRESS                  OP_3D_MEDIA(0x0, 0x1, 0x03)
 178
 179#define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
 180
 181#define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
 182
 183#define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
 184#define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
 185#define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
 186#define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
 187#define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
 188#define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
 189
 190#define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
 191#define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
 192#define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
 193#define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
 194
 195#define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
 196#define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
 197#define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
 198#define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
 199#define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
 200#define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
 201#define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
 202#define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
 203#define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
 204#define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
 205#define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
 206#define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
 207#define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
 208#define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
 209#define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
 210#define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
 211#define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
 212#define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
 213#define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
 214#define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
 215#define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
 216#define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
 217#define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
 218#define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
 219#define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
 220#define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
 221#define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
 222#define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
 223#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
 224#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
 225#define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
 226#define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
 227#define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
 228#define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
 229#define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
 230#define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
 231#define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
 232#define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
 233#define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
 234#define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
 235#define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
 236#define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
 237#define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
 238#define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
 239#define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
 240#define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
 241#define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
 242#define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
 243#define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
 244#define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
 245#define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
 246#define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
 247#define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
 248#define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
 249#define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
 250#define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
 251#define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
 252#define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
 253#define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
 254#define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
 255#define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
 256#define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
 257#define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
 258#define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
 259#define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
 260#define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
 261
 262#define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
 263#define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
 264#define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
 265#define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
 266#define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
 267#define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
 268#define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
 269#define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
 270#define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
 271#define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
 272#define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
 273
 274#define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
 275#define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
 276#define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
 277#define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
 278#define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
 279#define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
 280#define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
 281#define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
 282#define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
 283#define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
 284#define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
 285#define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
 286#define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
 287#define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
 288#define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
 289#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
 290#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
 291#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
 292#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
 293#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
 294#define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
 295#define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
 296#define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
 297#define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
 298#define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
 299#define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
 300#define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
 301#define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
 302
 303/* VCCP Command Parser */
 304
 305/*
 306 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
 307 * git://anongit.freedesktop.org/vaapi/intel-driver
 308 * src/i965_defines.h
 309 *
 310 */
 311
 312#define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
 313        (3 << 13 | \
 314         (pipeline) << 11 | \
 315         (op) << 8 | \
 316         (sub_opa) << 5 | \
 317         (sub_opb))
 318
 319#define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
 320#define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
 321#define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
 322#define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
 323#define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
 324#define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
 325#define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
 326#define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
 327#define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
 328#define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
 329#define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
 330
 331#define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
 332
 333#define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
 334#define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
 335#define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
 336#define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
 337#define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
 338#define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
 339#define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
 340#define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
 341#define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
 342#define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
 343#define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
 344#define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
 345
 346#define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
 347#define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
 348#define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
 349#define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
 350#define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
 351
 352#define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
 353#define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
 354#define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
 355#define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
 356#define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
 357
 358#define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
 359#define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
 360#define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
 361
 362#define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
 363#define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
 364#define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
 365
 366#define OP_VEB(pipeline, op, sub_opa, sub_opb) \
 367        (3 << 13 | \
 368         (pipeline) << 11 | \
 369         (op) << 8 | \
 370         (sub_opa) << 5 | \
 371         (sub_opb))
 372
 373#define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
 374#define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
 375#define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
 376
 377struct parser_exec_state;
 378
 379typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
 380
 381#define GVT_CMD_HASH_BITS   7
 382
 383/* which DWords need address fix */
 384#define ADDR_FIX_1(x1)                  (1 << (x1))
 385#define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
 386#define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
 387#define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
 388#define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
 389
 390#define DWORD_FIELD(dword, end, start) \
 391        FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
 392
 393#define OP_LENGTH_BIAS 2
 394#define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
 395
 396static int gvt_check_valid_cmd_length(int len, int valid_len)
 397{
 398        if (valid_len != len) {
 399                gvt_err("len is not valid:  len=%u  valid_len=%u\n",
 400                        len, valid_len);
 401                return -EFAULT;
 402        }
 403        return 0;
 404}
 405
 406struct cmd_info {
 407        const char *name;
 408        u32 opcode;
 409
 410#define F_LEN_MASK      3U
 411#define F_LEN_CONST  1U
 412#define F_LEN_VAR    0U
 413/* value is const although LEN maybe variable */
 414#define F_LEN_VAR_FIXED    (1<<1)
 415
 416/*
 417 * command has its own ip advance logic
 418 * e.g. MI_BATCH_START, MI_BATCH_END
 419 */
 420#define F_IP_ADVANCE_CUSTOM (1<<2)
 421        u32 flag;
 422
 423#define R_RCS   BIT(RCS0)
 424#define R_VCS1  BIT(VCS0)
 425#define R_VCS2  BIT(VCS1)
 426#define R_VCS   (R_VCS1 | R_VCS2)
 427#define R_BCS   BIT(BCS0)
 428#define R_VECS  BIT(VECS0)
 429#define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
 430        /* rings that support this cmd: BLT/RCS/VCS/VECS */
 431        u16 rings;
 432
 433        /* devices that support this cmd: SNB/IVB/HSW/... */
 434        u16 devices;
 435
 436        /* which DWords are address that need fix up.
 437         * bit 0 means a 32-bit non address operand in command
 438         * bit 1 means address operand, which could be 32-bit
 439         * or 64-bit depending on different architectures.(
 440         * defined by "gmadr_bytes_in_cmd" in intel_gvt.
 441         * No matter the address length, each address only takes
 442         * one bit in the bitmap.
 443         */
 444        u16 addr_bitmap;
 445
 446        /* flag == F_LEN_CONST : command length
 447         * flag == F_LEN_VAR : length bias bits
 448         * Note: length is in DWord
 449         */
 450        u32 len;
 451
 452        parser_cmd_handler handler;
 453
 454        /* valid length in DWord */
 455        u32 valid_len;
 456};
 457
 458struct cmd_entry {
 459        struct hlist_node hlist;
 460        const struct cmd_info *info;
 461};
 462
 463enum {
 464        RING_BUFFER_INSTRUCTION,
 465        BATCH_BUFFER_INSTRUCTION,
 466        BATCH_BUFFER_2ND_LEVEL,
 467        RING_BUFFER_CTX,
 468};
 469
 470enum {
 471        GTT_BUFFER,
 472        PPGTT_BUFFER
 473};
 474
 475struct parser_exec_state {
 476        struct intel_vgpu *vgpu;
 477        const struct intel_engine_cs *engine;
 478
 479        int buf_type;
 480
 481        /* batch buffer address type */
 482        int buf_addr_type;
 483
 484        /* graphics memory address of ring buffer start */
 485        unsigned long ring_start;
 486        unsigned long ring_size;
 487        unsigned long ring_head;
 488        unsigned long ring_tail;
 489
 490        /* instruction graphics memory address */
 491        unsigned long ip_gma;
 492
 493        /* mapped va of the instr_gma */
 494        void *ip_va;
 495        void *rb_va;
 496
 497        void *ret_bb_va;
 498        /* next instruction when return from  batch buffer to ring buffer */
 499        unsigned long ret_ip_gma_ring;
 500
 501        /* next instruction when return from 2nd batch buffer to batch buffer */
 502        unsigned long ret_ip_gma_bb;
 503
 504        /* batch buffer address type (GTT or PPGTT)
 505         * used when ret from 2nd level batch buffer
 506         */
 507        int saved_buf_addr_type;
 508        bool is_ctx_wa;
 509        bool is_init_ctx;
 510
 511        const struct cmd_info *info;
 512
 513        struct intel_vgpu_workload *workload;
 514};
 515
 516#define gmadr_dw_number(s)      \
 517        (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
 518
 519static unsigned long bypass_scan_mask = 0;
 520
 521/* ring ALL, type = 0 */
 522static const struct sub_op_bits sub_op_mi[] = {
 523        {31, 29},
 524        {28, 23},
 525};
 526
 527static const struct decode_info decode_info_mi = {
 528        "MI",
 529        OP_LEN_MI,
 530        ARRAY_SIZE(sub_op_mi),
 531        sub_op_mi,
 532};
 533
 534/* ring RCS, command type 2 */
 535static const struct sub_op_bits sub_op_2d[] = {
 536        {31, 29},
 537        {28, 22},
 538};
 539
 540static const struct decode_info decode_info_2d = {
 541        "2D",
 542        OP_LEN_2D,
 543        ARRAY_SIZE(sub_op_2d),
 544        sub_op_2d,
 545};
 546
 547/* ring RCS, command type 3 */
 548static const struct sub_op_bits sub_op_3d_media[] = {
 549        {31, 29},
 550        {28, 27},
 551        {26, 24},
 552        {23, 16},
 553};
 554
 555static const struct decode_info decode_info_3d_media = {
 556        "3D_Media",
 557        OP_LEN_3D_MEDIA,
 558        ARRAY_SIZE(sub_op_3d_media),
 559        sub_op_3d_media,
 560};
 561
 562/* ring VCS, command type 3 */
 563static const struct sub_op_bits sub_op_mfx_vc[] = {
 564        {31, 29},
 565        {28, 27},
 566        {26, 24},
 567        {23, 21},
 568        {20, 16},
 569};
 570
 571static const struct decode_info decode_info_mfx_vc = {
 572        "MFX_VC",
 573        OP_LEN_MFX_VC,
 574        ARRAY_SIZE(sub_op_mfx_vc),
 575        sub_op_mfx_vc,
 576};
 577
 578/* ring VECS, command type 3 */
 579static const struct sub_op_bits sub_op_vebox[] = {
 580        {31, 29},
 581        {28, 27},
 582        {26, 24},
 583        {23, 21},
 584        {20, 16},
 585};
 586
 587static const struct decode_info decode_info_vebox = {
 588        "VEBOX",
 589        OP_LEN_VEBOX,
 590        ARRAY_SIZE(sub_op_vebox),
 591        sub_op_vebox,
 592};
 593
 594static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
 595        [RCS0] = {
 596                &decode_info_mi,
 597                NULL,
 598                NULL,
 599                &decode_info_3d_media,
 600                NULL,
 601                NULL,
 602                NULL,
 603                NULL,
 604        },
 605
 606        [VCS0] = {
 607                &decode_info_mi,
 608                NULL,
 609                NULL,
 610                &decode_info_mfx_vc,
 611                NULL,
 612                NULL,
 613                NULL,
 614                NULL,
 615        },
 616
 617        [BCS0] = {
 618                &decode_info_mi,
 619                NULL,
 620                &decode_info_2d,
 621                NULL,
 622                NULL,
 623                NULL,
 624                NULL,
 625                NULL,
 626        },
 627
 628        [VECS0] = {
 629                &decode_info_mi,
 630                NULL,
 631                NULL,
 632                &decode_info_vebox,
 633                NULL,
 634                NULL,
 635                NULL,
 636                NULL,
 637        },
 638
 639        [VCS1] = {
 640                &decode_info_mi,
 641                NULL,
 642                NULL,
 643                &decode_info_mfx_vc,
 644                NULL,
 645                NULL,
 646                NULL,
 647                NULL,
 648        },
 649};
 650
 651static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
 652{
 653        const struct decode_info *d_info;
 654
 655        d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
 656        if (d_info == NULL)
 657                return INVALID_OP;
 658
 659        return cmd >> (32 - d_info->op_len);
 660}
 661
 662static inline const struct cmd_info *
 663find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
 664               const struct intel_engine_cs *engine)
 665{
 666        struct cmd_entry *e;
 667
 668        hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
 669                if (opcode == e->info->opcode &&
 670                    e->info->rings & engine->mask)
 671                        return e->info;
 672        }
 673        return NULL;
 674}
 675
 676static inline const struct cmd_info *
 677get_cmd_info(struct intel_gvt *gvt, u32 cmd,
 678             const struct intel_engine_cs *engine)
 679{
 680        u32 opcode;
 681
 682        opcode = get_opcode(cmd, engine);
 683        if (opcode == INVALID_OP)
 684                return NULL;
 685
 686        return find_cmd_entry(gvt, opcode, engine);
 687}
 688
 689static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
 690{
 691        return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
 692}
 693
 694static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
 695{
 696        const struct decode_info *d_info;
 697        int i;
 698
 699        d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
 700        if (d_info == NULL)
 701                return;
 702
 703        gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
 704                        cmd >> (32 - d_info->op_len), d_info->name);
 705
 706        for (i = 0; i < d_info->nr_sub_op; i++)
 707                pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
 708                                        d_info->sub_op[i].low));
 709
 710        pr_err("\n");
 711}
 712
 713static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
 714{
 715        return s->ip_va + (index << 2);
 716}
 717
 718static inline u32 cmd_val(struct parser_exec_state *s, int index)
 719{
 720        return *cmd_ptr(s, index);
 721}
 722
 723static inline bool is_init_ctx(struct parser_exec_state *s)
 724{
 725        return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
 726}
 727
 728static void parser_exec_state_dump(struct parser_exec_state *s)
 729{
 730        int cnt = 0;
 731        int i;
 732
 733        gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
 734                    " ring_head(%08lx) ring_tail(%08lx)\n",
 735                    s->vgpu->id, s->engine->name,
 736                    s->ring_start, s->ring_start + s->ring_size,
 737                    s->ring_head, s->ring_tail);
 738
 739        gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
 740                        s->buf_type == RING_BUFFER_INSTRUCTION ?
 741                        "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
 742                                "CTX_BUFFER" : "BATCH_BUFFER"),
 743                        s->buf_addr_type == GTT_BUFFER ?
 744                        "GTT" : "PPGTT", s->ip_gma);
 745
 746        if (s->ip_va == NULL) {
 747                gvt_dbg_cmd(" ip_va(NULL)");
 748                return;
 749        }
 750
 751        gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
 752                        s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
 753                        cmd_val(s, 2), cmd_val(s, 3));
 754
 755        print_opcode(cmd_val(s, 0), s->engine);
 756
 757        s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
 758
 759        while (cnt < 1024) {
 760                gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
 761                for (i = 0; i < 8; i++)
 762                        gvt_dbg_cmd("%08x ", cmd_val(s, i));
 763                gvt_dbg_cmd("\n");
 764
 765                s->ip_va += 8 * sizeof(u32);
 766                cnt += 8;
 767        }
 768}
 769
 770static inline void update_ip_va(struct parser_exec_state *s)
 771{
 772        unsigned long len = 0;
 773
 774        if (WARN_ON(s->ring_head == s->ring_tail))
 775                return;
 776
 777        if (s->buf_type == RING_BUFFER_INSTRUCTION ||
 778                        s->buf_type == RING_BUFFER_CTX) {
 779                unsigned long ring_top = s->ring_start + s->ring_size;
 780
 781                if (s->ring_head > s->ring_tail) {
 782                        if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
 783                                len = (s->ip_gma - s->ring_head);
 784                        else if (s->ip_gma >= s->ring_start &&
 785                                        s->ip_gma <= s->ring_tail)
 786                                len = (ring_top - s->ring_head) +
 787                                        (s->ip_gma - s->ring_start);
 788                } else
 789                        len = (s->ip_gma - s->ring_head);
 790
 791                s->ip_va = s->rb_va + len;
 792        } else {/* shadow batch buffer */
 793                s->ip_va = s->ret_bb_va;
 794        }
 795}
 796
 797static inline int ip_gma_set(struct parser_exec_state *s,
 798                unsigned long ip_gma)
 799{
 800        WARN_ON(!IS_ALIGNED(ip_gma, 4));
 801
 802        s->ip_gma = ip_gma;
 803        update_ip_va(s);
 804        return 0;
 805}
 806
 807static inline int ip_gma_advance(struct parser_exec_state *s,
 808                unsigned int dw_len)
 809{
 810        s->ip_gma += (dw_len << 2);
 811
 812        if (s->buf_type == RING_BUFFER_INSTRUCTION) {
 813                if (s->ip_gma >= s->ring_start + s->ring_size)
 814                        s->ip_gma -= s->ring_size;
 815                update_ip_va(s);
 816        } else {
 817                s->ip_va += (dw_len << 2);
 818        }
 819
 820        return 0;
 821}
 822
 823static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
 824{
 825        if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
 826                return info->len;
 827        else
 828                return (cmd & ((1U << info->len) - 1)) + 2;
 829        return 0;
 830}
 831
 832static inline int cmd_length(struct parser_exec_state *s)
 833{
 834        return get_cmd_length(s->info, cmd_val(s, 0));
 835}
 836
 837/* do not remove this, some platform may need clflush here */
 838#define patch_value(s, addr, val) do { \
 839        *addr = val; \
 840} while (0)
 841
 842static inline bool is_mocs_mmio(unsigned int offset)
 843{
 844        return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
 845                ((offset >= 0xb020) && (offset <= 0xb0a0));
 846}
 847
 848static int is_cmd_update_pdps(unsigned int offset,
 849                              struct parser_exec_state *s)
 850{
 851        u32 base = s->workload->engine->mmio_base;
 852        return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
 853}
 854
 855static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
 856                                       unsigned int offset, unsigned int index)
 857{
 858        struct intel_vgpu *vgpu = s->vgpu;
 859        struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
 860        struct intel_vgpu_mm *mm;
 861        u64 pdps[GEN8_3LVL_PDPES];
 862
 863        if (shadow_mm->ppgtt_mm.root_entry_type ==
 864            GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
 865                pdps[0] = (u64)cmd_val(s, 2) << 32;
 866                pdps[0] |= cmd_val(s, 4);
 867
 868                mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
 869                if (!mm) {
 870                        gvt_vgpu_err("failed to get the 4-level shadow vm\n");
 871                        return -EINVAL;
 872                }
 873                intel_vgpu_mm_get(mm);
 874                list_add_tail(&mm->ppgtt_mm.link,
 875                              &s->workload->lri_shadow_mm);
 876                *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
 877                *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
 878        } else {
 879                /* Currently all guests use PML4 table and now can't
 880                 * have a guest with 3-level table but uses LRI for
 881                 * PPGTT update. So this is simply un-testable. */
 882                GEM_BUG_ON(1);
 883                gvt_vgpu_err("invalid shared shadow vm type\n");
 884                return -EINVAL;
 885        }
 886        return 0;
 887}
 888
 889static int cmd_reg_handler(struct parser_exec_state *s,
 890        unsigned int offset, unsigned int index, char *cmd)
 891{
 892        struct intel_vgpu *vgpu = s->vgpu;
 893        struct intel_gvt *gvt = vgpu->gvt;
 894        u32 ctx_sr_ctl;
 895        u32 *vreg, vreg_old;
 896
 897        if (offset + 4 > gvt->device_info.mmio_size) {
 898                gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
 899                                cmd, offset);
 900                return -EFAULT;
 901        }
 902
 903        if (is_init_ctx(s)) {
 904                struct intel_gvt_mmio_info *mmio_info;
 905
 906                intel_gvt_mmio_set_cmd_accessible(gvt, offset);
 907                mmio_info = intel_gvt_find_mmio_info(gvt, offset);
 908                if (mmio_info && mmio_info->write)
 909                        intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
 910                return 0;
 911        }
 912
 913        if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
 914                gvt_vgpu_err("%s access to non-render register (%x)\n",
 915                                cmd, offset);
 916                return -EBADRQC;
 917        }
 918
 919        if (!strncmp(cmd, "srm", 3) ||
 920                        !strncmp(cmd, "lrm", 3)) {
 921                if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
 922                    offset == 0x21f0 ||
 923                    (IS_BROADWELL(gvt->gt->i915) &&
 924                     offset == i915_mmio_reg_offset(INSTPM)))
 925                        return 0;
 926                else {
 927                        gvt_vgpu_err("%s access to register (%x)\n",
 928                                        cmd, offset);
 929                        return -EPERM;
 930                }
 931        }
 932
 933        if (!strncmp(cmd, "lrr-src", 7) ||
 934                        !strncmp(cmd, "lrr-dst", 7)) {
 935                if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
 936                        return 0;
 937                else {
 938                        gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
 939                        return -EPERM;
 940                }
 941        }
 942
 943        if (!strncmp(cmd, "pipe_ctrl", 9)) {
 944                /* TODO: add LRI POST logic here */
 945                return 0;
 946        }
 947
 948        if (strncmp(cmd, "lri", 3))
 949                return -EPERM;
 950
 951        /* below are all lri handlers */
 952        vreg = &vgpu_vreg(s->vgpu, offset);
 953
 954        if (is_cmd_update_pdps(offset, s) &&
 955            cmd_pdp_mmio_update_handler(s, offset, index))
 956                return -EINVAL;
 957
 958        if (offset == i915_mmio_reg_offset(DERRMR) ||
 959                offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
 960                /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
 961                patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
 962        }
 963
 964        if (is_mocs_mmio(offset))
 965                *vreg = cmd_val(s, index + 1);
 966
 967        vreg_old = *vreg;
 968
 969        if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
 970                u32 cmdval_new, cmdval;
 971                struct intel_gvt_mmio_info *mmio_info;
 972
 973                cmdval = cmd_val(s, index + 1);
 974
 975                mmio_info = intel_gvt_find_mmio_info(gvt, offset);
 976                if (!mmio_info) {
 977                        cmdval_new = cmdval;
 978                } else {
 979                        u64 ro_mask = mmio_info->ro_mask;
 980                        int ret;
 981
 982                        if (likely(!ro_mask))
 983                                ret = mmio_info->write(s->vgpu, offset,
 984                                                &cmdval, 4);
 985                        else {
 986                                gvt_vgpu_err("try to write RO reg %x\n",
 987                                                offset);
 988                                ret = -EBADRQC;
 989                        }
 990                        if (ret)
 991                                return ret;
 992                        cmdval_new = *vreg;
 993                }
 994                if (cmdval_new != cmdval)
 995                        patch_value(s, cmd_ptr(s, index+1), cmdval_new);
 996        }
 997
 998        /* only patch cmd. restore vreg value if changed in mmio write handler*/
 999        *vreg = vreg_old;
1000
1001        /* TODO
1002         * In order to let workload with inhibit context to generate
1003         * correct image data into memory, vregs values will be loaded to
1004         * hw via LRIs in the workload with inhibit context. But as
1005         * indirect context is loaded prior to LRIs in workload, we don't
1006         * want reg values specified in indirect context overwritten by
1007         * LRIs in workloads. So, when scanning an indirect context, we
1008         * update reg values in it into vregs, so LRIs in workload with
1009         * inhibit context will restore with correct values
1010         */
1011        if (GRAPHICS_VER(s->engine->i915) == 9 &&
1012            intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1013            !strncmp(cmd, "lri", 3)) {
1014                intel_gvt_read_gpa(s->vgpu,
1015                        s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1016                /* check inhibit context */
1017                if (ctx_sr_ctl & 1) {
1018                        u32 data = cmd_val(s, index + 1);
1019
1020                        if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1021                                intel_vgpu_mask_mmio_write(vgpu,
1022                                                        offset, &data, 4);
1023                        else
1024                                vgpu_vreg(vgpu, offset) = data;
1025                }
1026        }
1027
1028        return 0;
1029}
1030
1031#define cmd_reg(s, i) \
1032        (cmd_val(s, i) & GENMASK(22, 2))
1033
1034#define cmd_reg_inhibit(s, i) \
1035        (cmd_val(s, i) & GENMASK(22, 18))
1036
1037#define cmd_gma(s, i) \
1038        (cmd_val(s, i) & GENMASK(31, 2))
1039
1040#define cmd_gma_hi(s, i) \
1041        (cmd_val(s, i) & GENMASK(15, 0))
1042
1043static int cmd_handler_lri(struct parser_exec_state *s)
1044{
1045        int i, ret = 0;
1046        int cmd_len = cmd_length(s);
1047
1048        for (i = 1; i < cmd_len; i += 2) {
1049                if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1050                        if (s->engine->id == BCS0 &&
1051                            cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1052                                ret |= 0;
1053                        else
1054                                ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1055                }
1056                if (ret)
1057                        break;
1058                ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1059                if (ret)
1060                        break;
1061        }
1062        return ret;
1063}
1064
1065static int cmd_handler_lrr(struct parser_exec_state *s)
1066{
1067        int i, ret = 0;
1068        int cmd_len = cmd_length(s);
1069
1070        for (i = 1; i < cmd_len; i += 2) {
1071                if (IS_BROADWELL(s->engine->i915))
1072                        ret |= ((cmd_reg_inhibit(s, i) ||
1073                                 (cmd_reg_inhibit(s, i + 1)))) ?
1074                                -EBADRQC : 0;
1075                if (ret)
1076                        break;
1077                ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1078                if (ret)
1079                        break;
1080                ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1081                if (ret)
1082                        break;
1083        }
1084        return ret;
1085}
1086
1087static inline int cmd_address_audit(struct parser_exec_state *s,
1088                unsigned long guest_gma, int op_size, bool index_mode);
1089
1090static int cmd_handler_lrm(struct parser_exec_state *s)
1091{
1092        struct intel_gvt *gvt = s->vgpu->gvt;
1093        int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1094        unsigned long gma;
1095        int i, ret = 0;
1096        int cmd_len = cmd_length(s);
1097
1098        for (i = 1; i < cmd_len;) {
1099                if (IS_BROADWELL(s->engine->i915))
1100                        ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1101                if (ret)
1102                        break;
1103                ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1104                if (ret)
1105                        break;
1106                if (cmd_val(s, 0) & (1 << 22)) {
1107                        gma = cmd_gma(s, i + 1);
1108                        if (gmadr_bytes == 8)
1109                                gma |= (cmd_gma_hi(s, i + 2)) << 32;
1110                        ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1111                        if (ret)
1112                                break;
1113                }
1114                i += gmadr_dw_number(s) + 1;
1115        }
1116        return ret;
1117}
1118
1119static int cmd_handler_srm(struct parser_exec_state *s)
1120{
1121        int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1122        unsigned long gma;
1123        int i, ret = 0;
1124        int cmd_len = cmd_length(s);
1125
1126        for (i = 1; i < cmd_len;) {
1127                ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1128                if (ret)
1129                        break;
1130                if (cmd_val(s, 0) & (1 << 22)) {
1131                        gma = cmd_gma(s, i + 1);
1132                        if (gmadr_bytes == 8)
1133                                gma |= (cmd_gma_hi(s, i + 2)) << 32;
1134                        ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1135                        if (ret)
1136                                break;
1137                }
1138                i += gmadr_dw_number(s) + 1;
1139        }
1140        return ret;
1141}
1142
1143struct cmd_interrupt_event {
1144        int pipe_control_notify;
1145        int mi_flush_dw;
1146        int mi_user_interrupt;
1147};
1148
1149static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1150        [RCS0] = {
1151                .pipe_control_notify = RCS_PIPE_CONTROL,
1152                .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1153                .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1154        },
1155        [BCS0] = {
1156                .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1157                .mi_flush_dw = BCS_MI_FLUSH_DW,
1158                .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1159        },
1160        [VCS0] = {
1161                .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1162                .mi_flush_dw = VCS_MI_FLUSH_DW,
1163                .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1164        },
1165        [VCS1] = {
1166                .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1167                .mi_flush_dw = VCS2_MI_FLUSH_DW,
1168                .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1169        },
1170        [VECS0] = {
1171                .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1172                .mi_flush_dw = VECS_MI_FLUSH_DW,
1173                .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1174        },
1175};
1176
1177static int cmd_handler_pipe_control(struct parser_exec_state *s)
1178{
1179        int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1180        unsigned long gma;
1181        bool index_mode = false;
1182        unsigned int post_sync;
1183        int ret = 0;
1184        u32 hws_pga, val;
1185
1186        post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1187
1188        /* LRI post sync */
1189        if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1190                ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1191        /* post sync */
1192        else if (post_sync) {
1193                if (post_sync == 2)
1194                        ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1195                else if (post_sync == 3)
1196                        ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1197                else if (post_sync == 1) {
1198                        /* check ggtt*/
1199                        if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1200                                gma = cmd_val(s, 2) & GENMASK(31, 3);
1201                                if (gmadr_bytes == 8)
1202                                        gma |= (cmd_gma_hi(s, 3)) << 32;
1203                                /* Store Data Index */
1204                                if (cmd_val(s, 1) & (1 << 21))
1205                                        index_mode = true;
1206                                ret |= cmd_address_audit(s, gma, sizeof(u64),
1207                                                index_mode);
1208                                if (ret)
1209                                        return ret;
1210                                if (index_mode) {
1211                                        hws_pga = s->vgpu->hws_pga[s->engine->id];
1212                                        gma = hws_pga + gma;
1213                                        patch_value(s, cmd_ptr(s, 2), gma);
1214                                        val = cmd_val(s, 1) & (~(1 << 21));
1215                                        patch_value(s, cmd_ptr(s, 1), val);
1216                                }
1217                        }
1218                }
1219        }
1220
1221        if (ret)
1222                return ret;
1223
1224        if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1225                set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1226                        s->workload->pending_events);
1227        return 0;
1228}
1229
1230static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1231{
1232        set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1233                s->workload->pending_events);
1234        patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1235        return 0;
1236}
1237
1238static int cmd_advance_default(struct parser_exec_state *s)
1239{
1240        return ip_gma_advance(s, cmd_length(s));
1241}
1242
1243static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1244{
1245        int ret;
1246
1247        if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1248                s->buf_type = BATCH_BUFFER_INSTRUCTION;
1249                ret = ip_gma_set(s, s->ret_ip_gma_bb);
1250                s->buf_addr_type = s->saved_buf_addr_type;
1251        } else if (s->buf_type == RING_BUFFER_CTX) {
1252                ret = ip_gma_set(s, s->ring_tail);
1253        } else {
1254                s->buf_type = RING_BUFFER_INSTRUCTION;
1255                s->buf_addr_type = GTT_BUFFER;
1256                if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1257                        s->ret_ip_gma_ring -= s->ring_size;
1258                ret = ip_gma_set(s, s->ret_ip_gma_ring);
1259        }
1260        return ret;
1261}
1262
1263struct mi_display_flip_command_info {
1264        int pipe;
1265        int plane;
1266        int event;
1267        i915_reg_t stride_reg;
1268        i915_reg_t ctrl_reg;
1269        i915_reg_t surf_reg;
1270        u64 stride_val;
1271        u64 tile_val;
1272        u64 surf_val;
1273        bool async_flip;
1274};
1275
1276struct plane_code_mapping {
1277        int pipe;
1278        int plane;
1279        int event;
1280};
1281
1282static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1283                struct mi_display_flip_command_info *info)
1284{
1285        struct drm_i915_private *dev_priv = s->engine->i915;
1286        struct plane_code_mapping gen8_plane_code[] = {
1287                [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1288                [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1289                [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1290                [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1291                [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1292                [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1293        };
1294        u32 dword0, dword1, dword2;
1295        u32 v;
1296
1297        dword0 = cmd_val(s, 0);
1298        dword1 = cmd_val(s, 1);
1299        dword2 = cmd_val(s, 2);
1300
1301        v = (dword0 & GENMASK(21, 19)) >> 19;
1302        if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1303                return -EBADRQC;
1304
1305        info->pipe = gen8_plane_code[v].pipe;
1306        info->plane = gen8_plane_code[v].plane;
1307        info->event = gen8_plane_code[v].event;
1308        info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1309        info->tile_val = (dword1 & 0x1);
1310        info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1311        info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1312
1313        if (info->plane == PLANE_A) {
1314                info->ctrl_reg = DSPCNTR(info->pipe);
1315                info->stride_reg = DSPSTRIDE(info->pipe);
1316                info->surf_reg = DSPSURF(info->pipe);
1317        } else if (info->plane == PLANE_B) {
1318                info->ctrl_reg = SPRCTL(info->pipe);
1319                info->stride_reg = SPRSTRIDE(info->pipe);
1320                info->surf_reg = SPRSURF(info->pipe);
1321        } else {
1322                drm_WARN_ON(&dev_priv->drm, 1);
1323                return -EBADRQC;
1324        }
1325        return 0;
1326}
1327
1328static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1329                struct mi_display_flip_command_info *info)
1330{
1331        struct drm_i915_private *dev_priv = s->engine->i915;
1332        struct intel_vgpu *vgpu = s->vgpu;
1333        u32 dword0 = cmd_val(s, 0);
1334        u32 dword1 = cmd_val(s, 1);
1335        u32 dword2 = cmd_val(s, 2);
1336        u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1337
1338        info->plane = PRIMARY_PLANE;
1339
1340        switch (plane) {
1341        case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1342                info->pipe = PIPE_A;
1343                info->event = PRIMARY_A_FLIP_DONE;
1344                break;
1345        case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1346                info->pipe = PIPE_B;
1347                info->event = PRIMARY_B_FLIP_DONE;
1348                break;
1349        case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1350                info->pipe = PIPE_C;
1351                info->event = PRIMARY_C_FLIP_DONE;
1352                break;
1353
1354        case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1355                info->pipe = PIPE_A;
1356                info->event = SPRITE_A_FLIP_DONE;
1357                info->plane = SPRITE_PLANE;
1358                break;
1359        case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1360                info->pipe = PIPE_B;
1361                info->event = SPRITE_B_FLIP_DONE;
1362                info->plane = SPRITE_PLANE;
1363                break;
1364        case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1365                info->pipe = PIPE_C;
1366                info->event = SPRITE_C_FLIP_DONE;
1367                info->plane = SPRITE_PLANE;
1368                break;
1369
1370        default:
1371                gvt_vgpu_err("unknown plane code %d\n", plane);
1372                return -EBADRQC;
1373        }
1374
1375        info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1376        info->tile_val = (dword1 & GENMASK(2, 0));
1377        info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1378        info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1379
1380        info->ctrl_reg = DSPCNTR(info->pipe);
1381        info->stride_reg = DSPSTRIDE(info->pipe);
1382        info->surf_reg = DSPSURF(info->pipe);
1383
1384        return 0;
1385}
1386
1387static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1388                struct mi_display_flip_command_info *info)
1389{
1390        u32 stride, tile;
1391
1392        if (!info->async_flip)
1393                return 0;
1394
1395        if (GRAPHICS_VER(s->engine->i915) >= 9) {
1396                stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1397                tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1398                                GENMASK(12, 10)) >> 10;
1399        } else {
1400                stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1401                                GENMASK(15, 6)) >> 6;
1402                tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1403        }
1404
1405        if (stride != info->stride_val)
1406                gvt_dbg_cmd("cannot change stride during async flip\n");
1407
1408        if (tile != info->tile_val)
1409                gvt_dbg_cmd("cannot change tile during async flip\n");
1410
1411        return 0;
1412}
1413
1414static int gen8_update_plane_mmio_from_mi_display_flip(
1415                struct parser_exec_state *s,
1416                struct mi_display_flip_command_info *info)
1417{
1418        struct drm_i915_private *dev_priv = s->engine->i915;
1419        struct intel_vgpu *vgpu = s->vgpu;
1420
1421        set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1422                      info->surf_val << 12);
1423        if (GRAPHICS_VER(dev_priv) >= 9) {
1424                set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1425                              info->stride_val);
1426                set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1427                              info->tile_val << 10);
1428        } else {
1429                set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1430                              info->stride_val << 6);
1431                set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1432                              info->tile_val << 10);
1433        }
1434
1435        if (info->plane == PLANE_PRIMARY)
1436                vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1437
1438        if (info->async_flip)
1439                intel_vgpu_trigger_virtual_event(vgpu, info->event);
1440        else
1441                set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1442
1443        return 0;
1444}
1445
1446static int decode_mi_display_flip(struct parser_exec_state *s,
1447                struct mi_display_flip_command_info *info)
1448{
1449        if (IS_BROADWELL(s->engine->i915))
1450                return gen8_decode_mi_display_flip(s, info);
1451        if (GRAPHICS_VER(s->engine->i915) >= 9)
1452                return skl_decode_mi_display_flip(s, info);
1453
1454        return -ENODEV;
1455}
1456
1457static int check_mi_display_flip(struct parser_exec_state *s,
1458                struct mi_display_flip_command_info *info)
1459{
1460        return gen8_check_mi_display_flip(s, info);
1461}
1462
1463static int update_plane_mmio_from_mi_display_flip(
1464                struct parser_exec_state *s,
1465                struct mi_display_flip_command_info *info)
1466{
1467        return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1468}
1469
1470static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1471{
1472        struct mi_display_flip_command_info info;
1473        struct intel_vgpu *vgpu = s->vgpu;
1474        int ret;
1475        int i;
1476        int len = cmd_length(s);
1477        u32 valid_len = CMD_LEN(1);
1478
1479        /* Flip Type == Stereo 3D Flip */
1480        if (DWORD_FIELD(2, 1, 0) == 2)
1481                valid_len++;
1482        ret = gvt_check_valid_cmd_length(cmd_length(s),
1483                        valid_len);
1484        if (ret)
1485                return ret;
1486
1487        ret = decode_mi_display_flip(s, &info);
1488        if (ret) {
1489                gvt_vgpu_err("fail to decode MI display flip command\n");
1490                return ret;
1491        }
1492
1493        ret = check_mi_display_flip(s, &info);
1494        if (ret) {
1495                gvt_vgpu_err("invalid MI display flip command\n");
1496                return ret;
1497        }
1498
1499        ret = update_plane_mmio_from_mi_display_flip(s, &info);
1500        if (ret) {
1501                gvt_vgpu_err("fail to update plane mmio\n");
1502                return ret;
1503        }
1504
1505        for (i = 0; i < len; i++)
1506                patch_value(s, cmd_ptr(s, i), MI_NOOP);
1507        return 0;
1508}
1509
1510static bool is_wait_for_flip_pending(u32 cmd)
1511{
1512        return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1513                        MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1514                        MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1515                        MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1516                        MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1517                        MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1518}
1519
1520static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1521{
1522        u32 cmd = cmd_val(s, 0);
1523
1524        if (!is_wait_for_flip_pending(cmd))
1525                return 0;
1526
1527        patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1528        return 0;
1529}
1530
1531static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1532{
1533        unsigned long addr;
1534        unsigned long gma_high, gma_low;
1535        struct intel_vgpu *vgpu = s->vgpu;
1536        int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1537
1538        if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1539                gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1540                return INTEL_GVT_INVALID_ADDR;
1541        }
1542
1543        gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1544        if (gmadr_bytes == 4) {
1545                addr = gma_low;
1546        } else {
1547                gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1548                addr = (((unsigned long)gma_high) << 32) | gma_low;
1549        }
1550        return addr;
1551}
1552
1553static inline int cmd_address_audit(struct parser_exec_state *s,
1554                unsigned long guest_gma, int op_size, bool index_mode)
1555{
1556        struct intel_vgpu *vgpu = s->vgpu;
1557        u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1558        int i;
1559        int ret;
1560
1561        if (op_size > max_surface_size) {
1562                gvt_vgpu_err("command address audit fail name %s\n",
1563                        s->info->name);
1564                return -EFAULT;
1565        }
1566
1567        if (index_mode) {
1568                if (guest_gma >= I915_GTT_PAGE_SIZE) {
1569                        ret = -EFAULT;
1570                        goto err;
1571                }
1572        } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1573                ret = -EFAULT;
1574                goto err;
1575        }
1576
1577        return 0;
1578
1579err:
1580        gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1581                        s->info->name, guest_gma, op_size);
1582
1583        pr_err("cmd dump: ");
1584        for (i = 0; i < cmd_length(s); i++) {
1585                if (!(i % 4))
1586                        pr_err("\n%08x ", cmd_val(s, i));
1587                else
1588                        pr_err("%08x ", cmd_val(s, i));
1589        }
1590        pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1591                        vgpu->id,
1592                        vgpu_aperture_gmadr_base(vgpu),
1593                        vgpu_aperture_gmadr_end(vgpu),
1594                        vgpu_hidden_gmadr_base(vgpu),
1595                        vgpu_hidden_gmadr_end(vgpu));
1596        return ret;
1597}
1598
1599static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1600{
1601        int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1602        int op_size = (cmd_length(s) - 3) * sizeof(u32);
1603        int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1604        unsigned long gma, gma_low, gma_high;
1605        u32 valid_len = CMD_LEN(2);
1606        int ret = 0;
1607
1608        /* check ppggt */
1609        if (!(cmd_val(s, 0) & (1 << 22)))
1610                return 0;
1611
1612        /* check if QWORD */
1613        if (DWORD_FIELD(0, 21, 21))
1614                valid_len++;
1615        ret = gvt_check_valid_cmd_length(cmd_length(s),
1616                        valid_len);
1617        if (ret)
1618                return ret;
1619
1620        gma = cmd_val(s, 2) & GENMASK(31, 2);
1621
1622        if (gmadr_bytes == 8) {
1623                gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1624                gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1625                gma = (gma_high << 32) | gma_low;
1626                core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1627        }
1628        ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1629        return ret;
1630}
1631
1632static inline int unexpected_cmd(struct parser_exec_state *s)
1633{
1634        struct intel_vgpu *vgpu = s->vgpu;
1635
1636        gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1637
1638        return -EBADRQC;
1639}
1640
1641static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1642{
1643        return unexpected_cmd(s);
1644}
1645
1646static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1647{
1648        return unexpected_cmd(s);
1649}
1650
1651static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1652{
1653        return unexpected_cmd(s);
1654}
1655
1656static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1657{
1658        int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1659        int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1660                        sizeof(u32);
1661        unsigned long gma, gma_high;
1662        u32 valid_len = CMD_LEN(1);
1663        int ret = 0;
1664
1665        if (!(cmd_val(s, 0) & (1 << 22)))
1666                return ret;
1667
1668        /* check inline data */
1669        if (cmd_val(s, 0) & BIT(18))
1670                valid_len = CMD_LEN(9);
1671        ret = gvt_check_valid_cmd_length(cmd_length(s),
1672                        valid_len);
1673        if (ret)
1674                return ret;
1675
1676        gma = cmd_val(s, 1) & GENMASK(31, 2);
1677        if (gmadr_bytes == 8) {
1678                gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1679                gma = (gma_high << 32) | gma;
1680        }
1681        ret = cmd_address_audit(s, gma, op_size, false);
1682        return ret;
1683}
1684
1685static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1686{
1687        return unexpected_cmd(s);
1688}
1689
1690static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1691{
1692        return unexpected_cmd(s);
1693}
1694
1695static int cmd_handler_mi_conditional_batch_buffer_end(
1696                struct parser_exec_state *s)
1697{
1698        return unexpected_cmd(s);
1699}
1700
1701static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1702{
1703        return unexpected_cmd(s);
1704}
1705
1706static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1707{
1708        int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1709        unsigned long gma;
1710        bool index_mode = false;
1711        int ret = 0;
1712        u32 hws_pga, val;
1713        u32 valid_len = CMD_LEN(2);
1714
1715        ret = gvt_check_valid_cmd_length(cmd_length(s),
1716                        valid_len);
1717        if (ret) {
1718                /* Check again for Qword */
1719                ret = gvt_check_valid_cmd_length(cmd_length(s),
1720                        ++valid_len);
1721                return ret;
1722        }
1723
1724        /* Check post-sync and ppgtt bit */
1725        if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1726                gma = cmd_val(s, 1) & GENMASK(31, 3);
1727                if (gmadr_bytes == 8)
1728                        gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1729                /* Store Data Index */
1730                if (cmd_val(s, 0) & (1 << 21))
1731                        index_mode = true;
1732                ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1733                if (ret)
1734                        return ret;
1735                if (index_mode) {
1736                        hws_pga = s->vgpu->hws_pga[s->engine->id];
1737                        gma = hws_pga + gma;
1738                        patch_value(s, cmd_ptr(s, 1), gma);
1739                        val = cmd_val(s, 0) & (~(1 << 21));
1740                        patch_value(s, cmd_ptr(s, 0), val);
1741                }
1742        }
1743        /* Check notify bit */
1744        if ((cmd_val(s, 0) & (1 << 8)))
1745                set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1746                        s->workload->pending_events);
1747        return ret;
1748}
1749
1750static void addr_type_update_snb(struct parser_exec_state *s)
1751{
1752        if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1753                        (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1754                s->buf_addr_type = PPGTT_BUFFER;
1755        }
1756}
1757
1758
1759static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1760                unsigned long gma, unsigned long end_gma, void *va)
1761{
1762        unsigned long copy_len, offset;
1763        unsigned long len = 0;
1764        unsigned long gpa;
1765
1766        while (gma != end_gma) {
1767                gpa = intel_vgpu_gma_to_gpa(mm, gma);
1768                if (gpa == INTEL_GVT_INVALID_ADDR) {
1769                        gvt_vgpu_err("invalid gma address: %lx\n", gma);
1770                        return -EFAULT;
1771                }
1772
1773                offset = gma & (I915_GTT_PAGE_SIZE - 1);
1774
1775                copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1776                        I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1777
1778                intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1779
1780                len += copy_len;
1781                gma += copy_len;
1782        }
1783        return len;
1784}
1785
1786
1787/*
1788 * Check whether a batch buffer needs to be scanned. Currently
1789 * the only criteria is based on privilege.
1790 */
1791static int batch_buffer_needs_scan(struct parser_exec_state *s)
1792{
1793        /* Decide privilege based on address space */
1794        if (cmd_val(s, 0) & BIT(8) &&
1795            !(s->vgpu->scan_nonprivbb & s->engine->mask))
1796                return 0;
1797
1798        return 1;
1799}
1800
1801static const char *repr_addr_type(unsigned int type)
1802{
1803        return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1804}
1805
1806static int find_bb_size(struct parser_exec_state *s,
1807                        unsigned long *bb_size,
1808                        unsigned long *bb_end_cmd_offset)
1809{
1810        unsigned long gma = 0;
1811        const struct cmd_info *info;
1812        u32 cmd_len = 0;
1813        bool bb_end = false;
1814        struct intel_vgpu *vgpu = s->vgpu;
1815        u32 cmd;
1816        struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1817                s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1818
1819        *bb_size = 0;
1820        *bb_end_cmd_offset = 0;
1821
1822        /* get the start gm address of the batch buffer */
1823        gma = get_gma_bb_from_cmd(s, 1);
1824        if (gma == INTEL_GVT_INVALID_ADDR)
1825                return -EFAULT;
1826
1827        cmd = cmd_val(s, 0);
1828        info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1829        if (info == NULL) {
1830                gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1831                             cmd, get_opcode(cmd, s->engine),
1832                             repr_addr_type(s->buf_addr_type),
1833                             s->engine->name, s->workload);
1834                return -EBADRQC;
1835        }
1836        do {
1837                if (copy_gma_to_hva(s->vgpu, mm,
1838                                    gma, gma + 4, &cmd) < 0)
1839                        return -EFAULT;
1840                info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1841                if (info == NULL) {
1842                        gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1843                                     cmd, get_opcode(cmd, s->engine),
1844                                     repr_addr_type(s->buf_addr_type),
1845                                     s->engine->name, s->workload);
1846                        return -EBADRQC;
1847                }
1848
1849                if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1850                        bb_end = true;
1851                } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1852                        if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1853                                /* chained batch buffer */
1854                                bb_end = true;
1855                }
1856
1857                if (bb_end)
1858                        *bb_end_cmd_offset = *bb_size;
1859
1860                cmd_len = get_cmd_length(info, cmd) << 2;
1861                *bb_size += cmd_len;
1862                gma += cmd_len;
1863        } while (!bb_end);
1864
1865        return 0;
1866}
1867
1868static int audit_bb_end(struct parser_exec_state *s, void *va)
1869{
1870        struct intel_vgpu *vgpu = s->vgpu;
1871        u32 cmd = *(u32 *)va;
1872        const struct cmd_info *info;
1873
1874        info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1875        if (info == NULL) {
1876                gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1877                             cmd, get_opcode(cmd, s->engine),
1878                             repr_addr_type(s->buf_addr_type),
1879                             s->engine->name, s->workload);
1880                return -EBADRQC;
1881        }
1882
1883        if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1884            ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1885             (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1886                return 0;
1887
1888        return -EBADRQC;
1889}
1890
1891static int perform_bb_shadow(struct parser_exec_state *s)
1892{
1893        struct intel_vgpu *vgpu = s->vgpu;
1894        struct intel_vgpu_shadow_bb *bb;
1895        unsigned long gma = 0;
1896        unsigned long bb_size;
1897        unsigned long bb_end_cmd_offset;
1898        int ret = 0;
1899        struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1900                s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1901        unsigned long start_offset = 0;
1902
1903        /* get the start gm address of the batch buffer */
1904        gma = get_gma_bb_from_cmd(s, 1);
1905        if (gma == INTEL_GVT_INVALID_ADDR)
1906                return -EFAULT;
1907
1908        ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1909        if (ret)
1910                return ret;
1911
1912        bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1913        if (!bb)
1914                return -ENOMEM;
1915
1916        bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1917
1918        /* the start_offset stores the batch buffer's start gma's
1919         * offset relative to page boundary. so for non-privileged batch
1920         * buffer, the shadowed gem object holds exactly the same page
1921         * layout as original gem object. This is for the convience of
1922         * replacing the whole non-privilged batch buffer page to this
1923         * shadowed one in PPGTT at the same gma address. (this replacing
1924         * action is not implemented yet now, but may be necessary in
1925         * future).
1926         * for prileged batch buffer, we just change start gma address to
1927         * that of shadowed page.
1928         */
1929        if (bb->ppgtt)
1930                start_offset = gma & ~I915_GTT_PAGE_MASK;
1931
1932        bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1933                                               round_up(bb_size + start_offset,
1934                                                        PAGE_SIZE));
1935        if (IS_ERR(bb->obj)) {
1936                ret = PTR_ERR(bb->obj);
1937                goto err_free_bb;
1938        }
1939
1940        bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1941        if (IS_ERR(bb->va)) {
1942                ret = PTR_ERR(bb->va);
1943                goto err_free_obj;
1944        }
1945
1946        ret = copy_gma_to_hva(s->vgpu, mm,
1947                              gma, gma + bb_size,
1948                              bb->va + start_offset);
1949        if (ret < 0) {
1950                gvt_vgpu_err("fail to copy guest ring buffer\n");
1951                ret = -EFAULT;
1952                goto err_unmap;
1953        }
1954
1955        ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1956        if (ret)
1957                goto err_unmap;
1958
1959        i915_gem_object_unlock(bb->obj);
1960        INIT_LIST_HEAD(&bb->list);
1961        list_add(&bb->list, &s->workload->shadow_bb);
1962
1963        bb->bb_start_cmd_va = s->ip_va;
1964
1965        if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1966                bb->bb_offset = s->ip_va - s->rb_va;
1967        else
1968                bb->bb_offset = 0;
1969
1970        /*
1971         * ip_va saves the virtual address of the shadow batch buffer, while
1972         * ip_gma saves the graphics address of the original batch buffer.
1973         * As the shadow batch buffer is just a copy from the originial one,
1974         * it should be right to use shadow batch buffer'va and original batch
1975         * buffer's gma in pair. After all, we don't want to pin the shadow
1976         * buffer here (too early).
1977         */
1978        s->ip_va = bb->va + start_offset;
1979        s->ip_gma = gma;
1980        return 0;
1981err_unmap:
1982        i915_gem_object_unpin_map(bb->obj);
1983err_free_obj:
1984        i915_gem_object_put(bb->obj);
1985err_free_bb:
1986        kfree(bb);
1987        return ret;
1988}
1989
1990static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1991{
1992        bool second_level;
1993        int ret = 0;
1994        struct intel_vgpu *vgpu = s->vgpu;
1995
1996        if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1997                gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1998                return -EFAULT;
1999        }
2000
2001        second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2002        if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2003                gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2004                return -EFAULT;
2005        }
2006
2007        s->saved_buf_addr_type = s->buf_addr_type;
2008        addr_type_update_snb(s);
2009        if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2010                s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2011                s->buf_type = BATCH_BUFFER_INSTRUCTION;
2012        } else if (second_level) {
2013                s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2014                s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2015                s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2016        }
2017
2018        if (batch_buffer_needs_scan(s)) {
2019                ret = perform_bb_shadow(s);
2020                if (ret < 0)
2021                        gvt_vgpu_err("invalid shadow batch buffer\n");
2022        } else {
2023                /* emulate a batch buffer end to do return right */
2024                ret = cmd_handler_mi_batch_buffer_end(s);
2025                if (ret < 0)
2026                        return ret;
2027        }
2028        return ret;
2029}
2030
2031static int mi_noop_index;
2032
2033static const struct cmd_info cmd_info[] = {
2034        {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2035
2036        {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2037                0, 1, NULL},
2038
2039        {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2040                0, 1, cmd_handler_mi_user_interrupt},
2041
2042        {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2043                D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2044
2045        {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2046
2047        {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2048                NULL},
2049
2050        {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2051                NULL},
2052
2053        {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2054                NULL},
2055
2056        {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2057                NULL},
2058
2059        {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2060                D_ALL, 0, 1, NULL},
2061
2062        {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2063                F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2064                cmd_handler_mi_batch_buffer_end},
2065
2066        {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2067                0, 1, NULL},
2068
2069        {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2070                NULL},
2071
2072        {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2073                D_ALL, 0, 1, NULL},
2074
2075        {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2076                NULL},
2077
2078        {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2079                NULL},
2080
2081        {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2082                R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2083
2084        {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2085                R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2086
2087        {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2088
2089        {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2090                D_ALL, 0, 8, NULL, CMD_LEN(0)},
2091
2092        {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2093                F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2094                NULL, CMD_LEN(0)},
2095
2096        {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2097                F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2098                8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2099
2100        {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2101                ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2102
2103        {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2104                0, 8, cmd_handler_mi_store_data_index},
2105
2106        {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2107                D_ALL, 0, 8, cmd_handler_lri},
2108
2109        {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2110                cmd_handler_mi_update_gtt},
2111
2112        {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2113                F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2114                cmd_handler_srm, CMD_LEN(2)},
2115
2116        {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2117                cmd_handler_mi_flush_dw},
2118
2119        {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2120                10, cmd_handler_mi_clflush},
2121
2122        {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2123                F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2124                cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2125
2126        {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2127                F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2128                cmd_handler_lrm, CMD_LEN(2)},
2129
2130        {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2131                F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2132                cmd_handler_lrr, CMD_LEN(1)},
2133
2134        {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2135                F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2136                8, NULL, CMD_LEN(2)},
2137
2138        {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2139                R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2140
2141        {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2142                ADDR_FIX_1(2), 8, NULL},
2143
2144        {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2145                ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2146
2147        {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2148                8, cmd_handler_mi_op_2f},
2149
2150        {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2151                F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2152                cmd_handler_mi_batch_buffer_start},
2153
2154        {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2155                F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2156                cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2157
2158        {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2159                R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2160
2161        {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2162                ADDR_FIX_2(4, 7), 8, NULL},
2163
2164        {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2165                0, 8, NULL},
2166
2167        {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2168                F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2169
2170        {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2171
2172        {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2173                0, 8, NULL},
2174
2175        {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2176                ADDR_FIX_1(3), 8, NULL},
2177
2178        {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2179                D_ALL, 0, 8, NULL},
2180
2181        {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2182                ADDR_FIX_1(4), 8, NULL},
2183
2184        {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2185                ADDR_FIX_2(4, 5), 8, NULL},
2186
2187        {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2188                ADDR_FIX_1(4), 8, NULL},
2189
2190        {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2191                ADDR_FIX_2(4, 7), 8, NULL},
2192
2193        {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2194                D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2195
2196        {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2197
2198        {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2199                D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2200
2201        {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2202                R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2203
2204        {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2205                OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2206                F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2207
2208        {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2209                D_ALL, ADDR_FIX_1(4), 8, NULL},
2210
2211        {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2212                F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2213
2214        {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2215                D_ALL, ADDR_FIX_1(4), 8, NULL},
2216
2217        {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2218                D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2219
2220        {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2221                F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2222
2223        {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2224                OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2225                F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2226
2227        {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2228                ADDR_FIX_2(4, 5), 8, NULL},
2229
2230        {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2231                F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2232
2233        {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2234                OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2235                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236
2237        {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2238                OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2239                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2240
2241        {"3DSTATE_BLEND_STATE_POINTERS",
2242                OP_3DSTATE_BLEND_STATE_POINTERS,
2243                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2244
2245        {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2246                OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2247                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248
2249        {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2250                OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2251                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252
2253        {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2254                OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2255                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256
2257        {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2258                OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2259                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2260
2261        {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2262                OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2263                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2264
2265        {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2266                OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2267                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268
2269        {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2270                OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2271                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2272
2273        {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2274                OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2275                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276
2277        {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2278                OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2279                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280
2281        {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2282                OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2283                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284
2285        {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2286                OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2287                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2288
2289        {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2290                0, 8, NULL},
2291
2292        {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2293                0, 8, NULL},
2294
2295        {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2296                0, 8, NULL},
2297
2298        {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2299                0, 8, NULL},
2300
2301        {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2302                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2303
2304        {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2305                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2306
2307        {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2308                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2309
2310        {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2311                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2312
2313        {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2314                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2315
2316        {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2317                F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2318
2319        {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2320                F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2321
2322        {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2323                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2324
2325        {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2326                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2327
2328        {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2329                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2330
2331        {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2332                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2333
2334        {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2335                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336
2337        {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2338                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2339
2340        {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2341                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2342
2343        {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2344                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2345
2346        {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2347                F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2348
2349        {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2350                F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2351
2352        {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2353                F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2354
2355        {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2356                F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2357
2358        {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2359                F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2360
2361        {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2362                D_BDW_PLUS, 0, 8, NULL},
2363
2364        {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2365                NULL},
2366
2367        {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2368                D_BDW_PLUS, 0, 8, NULL},
2369
2370        {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2371                D_BDW_PLUS, 0, 8, NULL},
2372
2373        {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2374                8, NULL},
2375
2376        {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2377                R_RCS, D_BDW_PLUS, 0, 8, NULL},
2378
2379        {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2380                8, NULL},
2381
2382        {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2383                NULL},
2384
2385        {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2386                NULL},
2387
2388        {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2389                NULL},
2390
2391        {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2392                D_BDW_PLUS, 0, 8, NULL},
2393
2394        {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2395                R_RCS, D_ALL, 0, 8, NULL},
2396
2397        {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2398                D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2399
2400        {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2401                R_RCS, D_ALL, 0, 1, NULL},
2402
2403        {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2404
2405        {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2406                R_RCS, D_ALL, 0, 8, NULL},
2407
2408        {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2409                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410
2411        {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413        {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415        {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416
2417        {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2418                D_BDW_PLUS, 0, 8, NULL},
2419
2420        {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2421                D_BDW_PLUS, 0, 8, NULL},
2422
2423        {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2424                D_ALL, 0, 8, NULL},
2425
2426        {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2427                D_BDW_PLUS, 0, 8, NULL},
2428
2429        {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2430                D_BDW_PLUS, 0, 8, NULL},
2431
2432        {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433
2434        {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436        {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437
2438        {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2439                D_ALL, 0, 8, NULL},
2440
2441        {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442
2443        {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444
2445        {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2446                R_RCS, D_ALL, 0, 8, NULL},
2447
2448        {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2449                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2450
2451        {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2452                0, 8, NULL},
2453
2454        {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2455                D_ALL, ADDR_FIX_1(2), 8, NULL},
2456
2457        {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2458                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2459
2460        {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2461                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2462
2463        {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2464                D_ALL, 0, 8, NULL},
2465
2466        {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2467                D_ALL, 0, 8, NULL},
2468
2469        {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2470                D_ALL, 0, 8, NULL},
2471
2472        {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2473                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2474
2475        {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2476                D_BDW_PLUS, 0, 8, NULL},
2477
2478        {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2479                D_ALL, ADDR_FIX_1(2), 8, NULL},
2480
2481        {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2482                R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2483
2484        {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2485                R_RCS, D_ALL, 0, 8, NULL},
2486
2487        {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2488                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2489
2490        {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2491                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2492
2493        {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2494                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2495
2496        {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2497                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2498
2499        {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2500                F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2501
2502        {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2503                R_RCS, D_ALL, 0, 8, NULL},
2504
2505        {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2506                D_ALL, 0, 9, NULL},
2507
2508        {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2509                ADDR_FIX_2(2, 4), 8, NULL},
2510
2511        {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2512                OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2513                F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2514
2515        {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2516                F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2517
2518        {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2519                OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2520                F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2521
2522        {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2523                D_BDW_PLUS, 0, 8, NULL},
2524
2525        {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2526                ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2527
2528        {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2529
2530        {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2531                1, NULL},
2532
2533        {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2534                ADDR_FIX_1(1), 8, NULL},
2535
2536        {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2537
2538        {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2539                ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2540
2541        {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2542                ADDR_FIX_1(1), 8, NULL},
2543
2544        {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2545                F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2546
2547        {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2548
2549        {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2550
2551        {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2552                0, 8, NULL},
2553
2554        {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2555                D_SKL_PLUS, 0, 8, NULL},
2556
2557        {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2558                F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2559
2560        {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2561                0, 16, NULL},
2562
2563        {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2564                0, 16, NULL},
2565
2566        {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2567                0, 16, NULL},
2568
2569        {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2570
2571        {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2572                0, 16, NULL},
2573
2574        {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2575                0, 16, NULL},
2576
2577        {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2578                0, 16, NULL},
2579
2580        {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2581                0, 8, NULL},
2582
2583        {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2584                NULL},
2585
2586        {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2587                F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2588
2589        {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2590                R_VCS, D_ALL, 0, 12, NULL},
2591
2592        {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2593                R_VCS, D_ALL, 0, 12, NULL},
2594
2595        {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2596                R_VCS, D_BDW_PLUS, 0, 12, NULL},
2597
2598        {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2599                F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2600
2601        {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2602                F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2603
2604        {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2605
2606        {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2607                R_VCS, D_ALL, 0, 12, NULL},
2608
2609        {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2610                R_VCS, D_ALL, 0, 12, NULL},
2611
2612        {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2613                R_VCS, D_ALL, 0, 12, NULL},
2614
2615        {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2616                R_VCS, D_ALL, 0, 12, NULL},
2617
2618        {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2619                R_VCS, D_ALL, 0, 12, NULL},
2620
2621        {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2622                R_VCS, D_ALL, 0, 12, NULL},
2623
2624        {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2625                R_VCS, D_ALL, 0, 6, NULL},
2626
2627        {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2628                R_VCS, D_ALL, 0, 12, NULL},
2629
2630        {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2631                R_VCS, D_ALL, 0, 12, NULL},
2632
2633        {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2634                R_VCS, D_ALL, 0, 12, NULL},
2635
2636        {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2637                R_VCS, D_ALL, 0, 12, NULL},
2638
2639        {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2640                R_VCS, D_ALL, 0, 12, NULL},
2641
2642        {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2643                R_VCS, D_ALL, 0, 12, NULL},
2644
2645        {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2646                R_VCS, D_ALL, 0, 12, NULL},
2647        {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2648                R_VCS, D_ALL, 0, 12, NULL},
2649
2650        {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2651                R_VCS, D_ALL, 0, 12, NULL},
2652
2653        {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2654                R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2655
2656        {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2657                R_VCS, D_ALL, 0, 12, NULL},
2658
2659        {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2660                R_VCS, D_ALL, 0, 12, NULL},
2661
2662        {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2663                R_VCS, D_ALL, 0, 12, NULL},
2664
2665        {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2666                R_VCS, D_ALL, 0, 12, NULL},
2667
2668        {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2669                R_VCS, D_ALL, 0, 12, NULL},
2670
2671        {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2672                R_VCS, D_ALL, 0, 12, NULL},
2673
2674        {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2675                R_VCS, D_ALL, 0, 12, NULL},
2676
2677        {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2678                R_VCS, D_ALL, 0, 12, NULL},
2679
2680        {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2681                R_VCS, D_ALL, 0, 12, NULL},
2682
2683        {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2684                R_VCS, D_ALL, 0, 12, NULL},
2685
2686        {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2687                R_VCS, D_ALL, 0, 12, NULL},
2688
2689        {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2690                0, 16, NULL},
2691
2692        {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2693
2694        {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2695
2696        {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2697                R_VCS, D_ALL, 0, 12, NULL},
2698
2699        {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2700                R_VCS, D_ALL, 0, 12, NULL},
2701
2702        {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2703                R_VCS, D_ALL, 0, 12, NULL},
2704
2705        {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2706
2707        {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2708                0, 12, NULL},
2709
2710        {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2711                0, 12, NULL},
2712};
2713
2714static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2715{
2716        hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2717}
2718
2719/* call the cmd handler, and advance ip */
2720static int cmd_parser_exec(struct parser_exec_state *s)
2721{
2722        struct intel_vgpu *vgpu = s->vgpu;
2723        const struct cmd_info *info;
2724        u32 cmd;
2725        int ret = 0;
2726
2727        cmd = cmd_val(s, 0);
2728
2729        /* fastpath for MI_NOOP */
2730        if (cmd == MI_NOOP)
2731                info = &cmd_info[mi_noop_index];
2732        else
2733                info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2734
2735        if (info == NULL) {
2736                gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2737                             cmd, get_opcode(cmd, s->engine),
2738                             repr_addr_type(s->buf_addr_type),
2739                             s->engine->name, s->workload);
2740                return -EBADRQC;
2741        }
2742
2743        s->info = info;
2744
2745        trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2746                          cmd_length(s), s->buf_type, s->buf_addr_type,
2747                          s->workload, info->name);
2748
2749        if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2750                ret = gvt_check_valid_cmd_length(cmd_length(s),
2751                                                 info->valid_len);
2752                if (ret)
2753                        return ret;
2754        }
2755
2756        if (info->handler) {
2757                ret = info->handler(s);
2758                if (ret < 0) {
2759                        gvt_vgpu_err("%s handler error\n", info->name);
2760                        return ret;
2761                }
2762        }
2763
2764        if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2765                ret = cmd_advance_default(s);
2766                if (ret) {
2767                        gvt_vgpu_err("%s IP advance error\n", info->name);
2768                        return ret;
2769                }
2770        }
2771        return 0;
2772}
2773
2774static inline bool gma_out_of_range(unsigned long gma,
2775                unsigned long gma_head, unsigned int gma_tail)
2776{
2777        if (gma_tail >= gma_head)
2778                return (gma < gma_head) || (gma > gma_tail);
2779        else
2780                return (gma > gma_tail) && (gma < gma_head);
2781}
2782
2783/* Keep the consistent return type, e.g EBADRQC for unknown
2784 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2785 * works as the input of VM healthy status.
2786 */
2787static int command_scan(struct parser_exec_state *s,
2788                unsigned long rb_head, unsigned long rb_tail,
2789                unsigned long rb_start, unsigned long rb_len)
2790{
2791
2792        unsigned long gma_head, gma_tail, gma_bottom;
2793        int ret = 0;
2794        struct intel_vgpu *vgpu = s->vgpu;
2795
2796        gma_head = rb_start + rb_head;
2797        gma_tail = rb_start + rb_tail;
2798        gma_bottom = rb_start +  rb_len;
2799
2800        while (s->ip_gma != gma_tail) {
2801                if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2802                                s->buf_type == RING_BUFFER_CTX) {
2803                        if (!(s->ip_gma >= rb_start) ||
2804                                !(s->ip_gma < gma_bottom)) {
2805                                gvt_vgpu_err("ip_gma %lx out of ring scope."
2806                                        "(base:0x%lx, bottom: 0x%lx)\n",
2807                                        s->ip_gma, rb_start,
2808                                        gma_bottom);
2809                                parser_exec_state_dump(s);
2810                                return -EFAULT;
2811                        }
2812                        if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2813                                gvt_vgpu_err("ip_gma %lx out of range."
2814                                        "base 0x%lx head 0x%lx tail 0x%lx\n",
2815                                        s->ip_gma, rb_start,
2816                                        rb_head, rb_tail);
2817                                parser_exec_state_dump(s);
2818                                break;
2819                        }
2820                }
2821                ret = cmd_parser_exec(s);
2822                if (ret) {
2823                        gvt_vgpu_err("cmd parser error\n");
2824                        parser_exec_state_dump(s);
2825                        break;
2826                }
2827        }
2828
2829        return ret;
2830}
2831
2832static int scan_workload(struct intel_vgpu_workload *workload)
2833{
2834        unsigned long gma_head, gma_tail, gma_bottom;
2835        struct parser_exec_state s;
2836        int ret = 0;
2837
2838        /* ring base is page aligned */
2839        if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2840                return -EINVAL;
2841
2842        gma_head = workload->rb_start + workload->rb_head;
2843        gma_tail = workload->rb_start + workload->rb_tail;
2844        gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2845
2846        s.buf_type = RING_BUFFER_INSTRUCTION;
2847        s.buf_addr_type = GTT_BUFFER;
2848        s.vgpu = workload->vgpu;
2849        s.engine = workload->engine;
2850        s.ring_start = workload->rb_start;
2851        s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2852        s.ring_head = gma_head;
2853        s.ring_tail = gma_tail;
2854        s.rb_va = workload->shadow_ring_buffer_va;
2855        s.workload = workload;
2856        s.is_ctx_wa = false;
2857
2858        if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2859                return 0;
2860
2861        ret = ip_gma_set(&s, gma_head);
2862        if (ret)
2863                goto out;
2864
2865        ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2866                workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2867
2868out:
2869        return ret;
2870}
2871
2872static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2873{
2874
2875        unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2876        struct parser_exec_state s;
2877        int ret = 0;
2878        struct intel_vgpu_workload *workload = container_of(wa_ctx,
2879                                struct intel_vgpu_workload,
2880                                wa_ctx);
2881
2882        /* ring base is page aligned */
2883        if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2884                                        I915_GTT_PAGE_SIZE)))
2885                return -EINVAL;
2886
2887        ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2888        ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2889                        PAGE_SIZE);
2890        gma_head = wa_ctx->indirect_ctx.guest_gma;
2891        gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2892        gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2893
2894        s.buf_type = RING_BUFFER_INSTRUCTION;
2895        s.buf_addr_type = GTT_BUFFER;
2896        s.vgpu = workload->vgpu;
2897        s.engine = workload->engine;
2898        s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2899        s.ring_size = ring_size;
2900        s.ring_head = gma_head;
2901        s.ring_tail = gma_tail;
2902        s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2903        s.workload = workload;
2904        s.is_ctx_wa = true;
2905
2906        ret = ip_gma_set(&s, gma_head);
2907        if (ret)
2908                goto out;
2909
2910        ret = command_scan(&s, 0, ring_tail,
2911                wa_ctx->indirect_ctx.guest_gma, ring_size);
2912out:
2913        return ret;
2914}
2915
2916static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2917{
2918        struct intel_vgpu *vgpu = workload->vgpu;
2919        struct intel_vgpu_submission *s = &vgpu->submission;
2920        unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2921        void *shadow_ring_buffer_va;
2922        int ret;
2923
2924        guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2925
2926        /* calculate workload ring buffer size */
2927        workload->rb_len = (workload->rb_tail + guest_rb_size -
2928                        workload->rb_head) % guest_rb_size;
2929
2930        gma_head = workload->rb_start + workload->rb_head;
2931        gma_tail = workload->rb_start + workload->rb_tail;
2932        gma_top = workload->rb_start + guest_rb_size;
2933
2934        if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2935                void *p;
2936
2937                /* realloc the new ring buffer if needed */
2938                p = krealloc(s->ring_scan_buffer[workload->engine->id],
2939                             workload->rb_len, GFP_KERNEL);
2940                if (!p) {
2941                        gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2942                        return -ENOMEM;
2943                }
2944                s->ring_scan_buffer[workload->engine->id] = p;
2945                s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2946        }
2947
2948        shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2949
2950        /* get shadow ring buffer va */
2951        workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2952
2953        /* head > tail --> copy head <-> top */
2954        if (gma_head > gma_tail) {
2955                ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2956                                      gma_head, gma_top, shadow_ring_buffer_va);
2957                if (ret < 0) {
2958                        gvt_vgpu_err("fail to copy guest ring buffer\n");
2959                        return ret;
2960                }
2961                shadow_ring_buffer_va += ret;
2962                gma_head = workload->rb_start;
2963        }
2964
2965        /* copy head or start <-> tail */
2966        ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2967                                shadow_ring_buffer_va);
2968        if (ret < 0) {
2969                gvt_vgpu_err("fail to copy guest ring buffer\n");
2970                return ret;
2971        }
2972        return 0;
2973}
2974
2975int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2976{
2977        int ret;
2978        struct intel_vgpu *vgpu = workload->vgpu;
2979
2980        ret = shadow_workload_ring_buffer(workload);
2981        if (ret) {
2982                gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2983                return ret;
2984        }
2985
2986        ret = scan_workload(workload);
2987        if (ret) {
2988                gvt_vgpu_err("scan workload error\n");
2989                return ret;
2990        }
2991        return 0;
2992}
2993
2994static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2995{
2996        int ctx_size = wa_ctx->indirect_ctx.size;
2997        unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2998        struct intel_vgpu_workload *workload = container_of(wa_ctx,
2999                                        struct intel_vgpu_workload,
3000                                        wa_ctx);
3001        struct intel_vgpu *vgpu = workload->vgpu;
3002        struct drm_i915_gem_object *obj;
3003        int ret = 0;
3004        void *map;
3005
3006        obj = i915_gem_object_create_shmem(workload->engine->i915,
3007                                           roundup(ctx_size + CACHELINE_BYTES,
3008                                                   PAGE_SIZE));
3009        if (IS_ERR(obj))
3010                return PTR_ERR(obj);
3011
3012        /* get the va of the shadow batch buffer */
3013        map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3014        if (IS_ERR(map)) {
3015                gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3016                ret = PTR_ERR(map);
3017                goto put_obj;
3018        }
3019
3020        i915_gem_object_lock(obj, NULL);
3021        ret = i915_gem_object_set_to_cpu_domain(obj, false);
3022        i915_gem_object_unlock(obj);
3023        if (ret) {
3024                gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3025                goto unmap_src;
3026        }
3027
3028        ret = copy_gma_to_hva(workload->vgpu,
3029                                workload->vgpu->gtt.ggtt_mm,
3030                                guest_gma, guest_gma + ctx_size,
3031                                map);
3032        if (ret < 0) {
3033                gvt_vgpu_err("fail to copy guest indirect ctx\n");
3034                goto unmap_src;
3035        }
3036
3037        wa_ctx->indirect_ctx.obj = obj;
3038        wa_ctx->indirect_ctx.shadow_va = map;
3039        return 0;
3040
3041unmap_src:
3042        i915_gem_object_unpin_map(obj);
3043put_obj:
3044        i915_gem_object_put(obj);
3045        return ret;
3046}
3047
3048static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3049{
3050        u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3051        unsigned char *bb_start_sva;
3052
3053        if (!wa_ctx->per_ctx.valid)
3054                return 0;
3055
3056        per_ctx_start[0] = 0x18800001;
3057        per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3058
3059        bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3060                                wa_ctx->indirect_ctx.size;
3061
3062        memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3063
3064        return 0;
3065}
3066
3067int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3068{
3069        int ret;
3070        struct intel_vgpu_workload *workload = container_of(wa_ctx,
3071                                        struct intel_vgpu_workload,
3072                                        wa_ctx);
3073        struct intel_vgpu *vgpu = workload->vgpu;
3074
3075        if (wa_ctx->indirect_ctx.size == 0)
3076                return 0;
3077
3078        ret = shadow_indirect_ctx(wa_ctx);
3079        if (ret) {
3080                gvt_vgpu_err("fail to shadow indirect ctx\n");
3081                return ret;
3082        }
3083
3084        combine_wa_ctx(wa_ctx);
3085
3086        ret = scan_wa_ctx(wa_ctx);
3087        if (ret) {
3088                gvt_vgpu_err("scan wa ctx error\n");
3089                return ret;
3090        }
3091
3092        return 0;
3093}
3094
3095/* generate dummy contexts by sending empty requests to HW, and let
3096 * the HW to fill Engine Contexts. This dummy contexts are used for
3097 * initialization purpose (update reg whitelist), so referred to as
3098 * init context here
3099 */
3100void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3101{
3102        const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3103        struct intel_gvt *gvt = vgpu->gvt;
3104        struct intel_engine_cs *engine;
3105        enum intel_engine_id id;
3106
3107        if (gvt->is_reg_whitelist_updated)
3108                return;
3109
3110        /* scan init ctx to update cmd accessible list */
3111        for_each_engine(engine, gvt->gt, id) {
3112                struct parser_exec_state s;
3113                void *vaddr;
3114                int ret;
3115
3116                if (!engine->default_state)
3117                        continue;
3118
3119                vaddr = shmem_pin_map(engine->default_state);
3120                if (!vaddr) {
3121                        gvt_err("failed to map %s->default state\n",
3122                                engine->name);
3123                        return;
3124                }
3125
3126                s.buf_type = RING_BUFFER_CTX;
3127                s.buf_addr_type = GTT_BUFFER;
3128                s.vgpu = vgpu;
3129                s.engine = engine;
3130                s.ring_start = 0;
3131                s.ring_size = engine->context_size - start;
3132                s.ring_head = 0;
3133                s.ring_tail = s.ring_size;
3134                s.rb_va = vaddr + start;
3135                s.workload = NULL;
3136                s.is_ctx_wa = false;
3137                s.is_init_ctx = true;
3138
3139                /* skipping the first RING_CTX_SIZE(0x50) dwords */
3140                ret = ip_gma_set(&s, RING_CTX_SIZE);
3141                if (ret == 0) {
3142                        ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3143                        if (ret)
3144                                gvt_err("Scan init ctx error\n");
3145                }
3146
3147                shmem_unpin_map(engine->default_state, vaddr);
3148                if (ret)
3149                        return;
3150        }
3151
3152        gvt->is_reg_whitelist_updated = true;
3153}
3154
3155int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3156{
3157        struct intel_vgpu *vgpu = workload->vgpu;
3158        unsigned long gma_head, gma_tail, gma_start, ctx_size;
3159        struct parser_exec_state s;
3160        int ring_id = workload->engine->id;
3161        struct intel_context *ce = vgpu->submission.shadow[ring_id];
3162        int ret;
3163
3164        GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3165
3166        ctx_size = workload->engine->context_size - PAGE_SIZE;
3167
3168        /* Only ring contxt is loaded to HW for inhibit context, no need to
3169         * scan engine context
3170         */
3171        if (is_inhibit_context(ce))
3172                return 0;
3173
3174        gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3175        gma_head = 0;
3176        gma_tail = ctx_size;
3177
3178        s.buf_type = RING_BUFFER_CTX;
3179        s.buf_addr_type = GTT_BUFFER;
3180        s.vgpu = workload->vgpu;
3181        s.engine = workload->engine;
3182        s.ring_start = gma_start;
3183        s.ring_size = ctx_size;
3184        s.ring_head = gma_start + gma_head;
3185        s.ring_tail = gma_start + gma_tail;
3186        s.rb_va = ce->lrc_reg_state;
3187        s.workload = workload;
3188        s.is_ctx_wa = false;
3189        s.is_init_ctx = false;
3190
3191        /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3192         * context
3193         */
3194        ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3195        if (ret)
3196                goto out;
3197
3198        ret = command_scan(&s, gma_head, gma_tail,
3199                gma_start, ctx_size);
3200out:
3201        if (ret)
3202                gvt_vgpu_err("scan shadow ctx error\n");
3203
3204        return ret;
3205}
3206
3207static int init_cmd_table(struct intel_gvt *gvt)
3208{
3209        unsigned int gen_type = intel_gvt_get_device_type(gvt);
3210        int i;
3211
3212        for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3213                struct cmd_entry *e;
3214
3215                if (!(cmd_info[i].devices & gen_type))
3216                        continue;
3217
3218                e = kzalloc(sizeof(*e), GFP_KERNEL);
3219                if (!e)
3220                        return -ENOMEM;
3221
3222                e->info = &cmd_info[i];
3223                if (cmd_info[i].opcode == OP_MI_NOOP)
3224                        mi_noop_index = i;
3225
3226                INIT_HLIST_NODE(&e->hlist);
3227                add_cmd_entry(gvt, e);
3228                gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3229                            e->info->name, e->info->opcode, e->info->flag,
3230                            e->info->devices, e->info->rings);
3231        }
3232
3233        return 0;
3234}
3235
3236static void clean_cmd_table(struct intel_gvt *gvt)
3237{
3238        struct hlist_node *tmp;
3239        struct cmd_entry *e;
3240        int i;
3241
3242        hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3243                kfree(e);
3244
3245        hash_init(gvt->cmd_table);
3246}
3247
3248void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3249{
3250        clean_cmd_table(gvt);
3251}
3252
3253int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3254{
3255        int ret;
3256
3257        ret = init_cmd_table(gvt);
3258        if (ret) {
3259                intel_gvt_clean_cmd_parser(gvt);
3260                return ret;
3261        }
3262        return 0;
3263}
3264