linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/iommu.h>
  11#include <linux/interconnect.h>
  12#include <linux/module.h>
  13#include <linux/of_device.h>
  14#include <linux/pm_domain.h>
  15#include <linux/pm_opp.h>
  16#include <linux/pm_runtime.h>
  17#include <linux/reset.h>
  18
  19#include <soc/tegra/common.h>
  20#include <soc/tegra/pmc.h>
  21
  22#include <drm/drm_atomic.h>
  23#include <drm/drm_atomic_helper.h>
  24#include <drm/drm_debugfs.h>
  25#include <drm/drm_fourcc.h>
  26#include <drm/drm_plane_helper.h>
  27#include <drm/drm_vblank.h>
  28
  29#include "dc.h"
  30#include "drm.h"
  31#include "gem.h"
  32#include "hub.h"
  33#include "plane.h"
  34
  35static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  36                                            struct drm_crtc_state *state);
  37
  38static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  39{
  40        stats->frames = 0;
  41        stats->vblank = 0;
  42        stats->underflow = 0;
  43        stats->overflow = 0;
  44}
  45
  46/* Reads the active copy of a register. */
  47static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  48{
  49        u32 value;
  50
  51        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  52        value = tegra_dc_readl(dc, offset);
  53        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  54
  55        return value;
  56}
  57
  58static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  59                                              unsigned int offset)
  60{
  61        if (offset >= 0x500 && offset <= 0x638) {
  62                offset = 0x000 + (offset - 0x500);
  63                return plane->offset + offset;
  64        }
  65
  66        if (offset >= 0x700 && offset <= 0x719) {
  67                offset = 0x180 + (offset - 0x700);
  68                return plane->offset + offset;
  69        }
  70
  71        if (offset >= 0x800 && offset <= 0x839) {
  72                offset = 0x1c0 + (offset - 0x800);
  73                return plane->offset + offset;
  74        }
  75
  76        dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  77
  78        return plane->offset + offset;
  79}
  80
  81static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  82                                    unsigned int offset)
  83{
  84        return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  85}
  86
  87static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  88                                      unsigned int offset)
  89{
  90        tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  91}
  92
  93bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  94{
  95        struct device_node *np = dc->dev->of_node;
  96        struct of_phandle_iterator it;
  97        int err;
  98
  99        of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
 100                if (it.node == dev->of_node)
 101                        return true;
 102
 103        return false;
 104}
 105
 106/*
 107 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 108 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 109 * Latching happens mmediately if the display controller is in STOP mode or
 110 * on the next frame boundary otherwise.
 111 *
 112 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 113 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 114 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 115 * into the ACTIVE copy, either immediately if the display controller is in
 116 * STOP mode, or at the next frame boundary otherwise.
 117 */
 118void tegra_dc_commit(struct tegra_dc *dc)
 119{
 120        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 121        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 122}
 123
 124static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 125                                  unsigned int bpp)
 126{
 127        fixed20_12 outf = dfixed_init(out);
 128        fixed20_12 inf = dfixed_init(in);
 129        u32 dda_inc;
 130        int max;
 131
 132        if (v)
 133                max = 15;
 134        else {
 135                switch (bpp) {
 136                case 2:
 137                        max = 8;
 138                        break;
 139
 140                default:
 141                        WARN_ON_ONCE(1);
 142                        fallthrough;
 143                case 4:
 144                        max = 4;
 145                        break;
 146                }
 147        }
 148
 149        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 150        inf.full -= dfixed_const(1);
 151
 152        dda_inc = dfixed_div(inf, outf);
 153        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 154
 155        return dda_inc;
 156}
 157
 158static inline u32 compute_initial_dda(unsigned int in)
 159{
 160        fixed20_12 inf = dfixed_init(in);
 161        return dfixed_frac(inf);
 162}
 163
 164static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 165{
 166        u32 background[3] = {
 167                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 168                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 169                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 170        };
 171        u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 172                         BLEND_COLOR_KEY_NONE;
 173        u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 174        struct tegra_plane_state *state;
 175        u32 blending[2];
 176        unsigned int i;
 177
 178        /* disable blending for non-overlapping case */
 179        tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 180        tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 181
 182        state = to_tegra_plane_state(plane->base.state);
 183
 184        if (state->opaque) {
 185                /*
 186                 * Since custom fix-weight blending isn't utilized and weight
 187                 * of top window is set to max, we can enforce dependent
 188                 * blending which in this case results in transparent bottom
 189                 * window if top window is opaque and if top window enables
 190                 * alpha blending, then bottom window is getting alpha value
 191                 * of 1 minus the sum of alpha components of the overlapping
 192                 * plane.
 193                 */
 194                background[0] |= BLEND_CONTROL_DEPENDENT;
 195                background[1] |= BLEND_CONTROL_DEPENDENT;
 196
 197                /*
 198                 * The region where three windows overlap is the intersection
 199                 * of the two regions where two windows overlap. It contributes
 200                 * to the area if all of the windows on top of it have an alpha
 201                 * component.
 202                 */
 203                switch (state->base.normalized_zpos) {
 204                case 0:
 205                        if (state->blending[0].alpha &&
 206                            state->blending[1].alpha)
 207                                background[2] |= BLEND_CONTROL_DEPENDENT;
 208                        break;
 209
 210                case 1:
 211                        background[2] |= BLEND_CONTROL_DEPENDENT;
 212                        break;
 213                }
 214        } else {
 215                /*
 216                 * Enable alpha blending if pixel format has an alpha
 217                 * component.
 218                 */
 219                foreground |= BLEND_CONTROL_ALPHA;
 220
 221                /*
 222                 * If any of the windows on top of this window is opaque, it
 223                 * will completely conceal this window within that area. If
 224                 * top window has an alpha component, it is blended over the
 225                 * bottom window.
 226                 */
 227                for (i = 0; i < 2; i++) {
 228                        if (state->blending[i].alpha &&
 229                            state->blending[i].top)
 230                                background[i] |= BLEND_CONTROL_DEPENDENT;
 231                }
 232
 233                switch (state->base.normalized_zpos) {
 234                case 0:
 235                        if (state->blending[0].alpha &&
 236                            state->blending[1].alpha)
 237                                background[2] |= BLEND_CONTROL_DEPENDENT;
 238                        break;
 239
 240                case 1:
 241                        /*
 242                         * When both middle and topmost windows have an alpha,
 243                         * these windows a mixed together and then the result
 244                         * is blended over the bottom window.
 245                         */
 246                        if (state->blending[0].alpha &&
 247                            state->blending[0].top)
 248                                background[2] |= BLEND_CONTROL_ALPHA;
 249
 250                        if (state->blending[1].alpha &&
 251                            state->blending[1].top)
 252                                background[2] |= BLEND_CONTROL_ALPHA;
 253                        break;
 254                }
 255        }
 256
 257        switch (state->base.normalized_zpos) {
 258        case 0:
 259                tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 260                tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 261                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 262                break;
 263
 264        case 1:
 265                /*
 266                 * If window B / C is topmost, then X / Y registers are
 267                 * matching the order of blending[...] state indices,
 268                 * otherwise a swap is required.
 269                 */
 270                if (!state->blending[0].top && state->blending[1].top) {
 271                        blending[0] = foreground;
 272                        blending[1] = background[1];
 273                } else {
 274                        blending[0] = background[0];
 275                        blending[1] = foreground;
 276                }
 277
 278                tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 279                tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 280                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 281                break;
 282
 283        case 2:
 284                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 285                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 286                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 287                break;
 288        }
 289}
 290
 291static void tegra_plane_setup_blending(struct tegra_plane *plane,
 292                                       const struct tegra_dc_window *window)
 293{
 294        u32 value;
 295
 296        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 297                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 298                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 299        tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 300
 301        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 302                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 303                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 304        tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 305
 306        value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 307        tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 308}
 309
 310static bool
 311tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 312                                     const struct tegra_dc_window *window)
 313{
 314        struct tegra_dc *dc = plane->dc;
 315
 316        if (window->src.w == window->dst.w)
 317                return false;
 318
 319        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 320                return false;
 321
 322        return true;
 323}
 324
 325static bool
 326tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 327                                   const struct tegra_dc_window *window)
 328{
 329        struct tegra_dc *dc = plane->dc;
 330
 331        if (window->src.h == window->dst.h)
 332                return false;
 333
 334        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 335                return false;
 336
 337        if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 338                return false;
 339
 340        return true;
 341}
 342
 343static void tegra_dc_setup_window(struct tegra_plane *plane,
 344                                  const struct tegra_dc_window *window)
 345{
 346        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 347        struct tegra_dc *dc = plane->dc;
 348        unsigned int planes;
 349        u32 value;
 350        bool yuv;
 351
 352        /*
 353         * For YUV planar modes, the number of bytes per pixel takes into
 354         * account only the luma component and therefore is 1.
 355         */
 356        yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
 357        if (!yuv)
 358                bpp = window->bits_per_pixel / 8;
 359        else
 360                bpp = (planes > 1) ? 1 : 2;
 361
 362        tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 363        tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 364
 365        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 366        tegra_plane_writel(plane, value, DC_WIN_POSITION);
 367
 368        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 369        tegra_plane_writel(plane, value, DC_WIN_SIZE);
 370
 371        h_offset = window->src.x * bpp;
 372        v_offset = window->src.y;
 373        h_size = window->src.w * bpp;
 374        v_size = window->src.h;
 375
 376        if (window->reflect_x)
 377                h_offset += (window->src.w - 1) * bpp;
 378
 379        if (window->reflect_y)
 380                v_offset += window->src.h - 1;
 381
 382        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 383        tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 384
 385        /*
 386         * For DDA computations the number of bytes per pixel for YUV planar
 387         * modes needs to take into account all Y, U and V components.
 388         */
 389        if (yuv && planes > 1)
 390                bpp = 2;
 391
 392        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 393        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 394
 395        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 396        tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 397
 398        h_dda = compute_initial_dda(window->src.x);
 399        v_dda = compute_initial_dda(window->src.y);
 400
 401        tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 402        tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 403
 404        tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 405        tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 406
 407        tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 408
 409        if (yuv && planes > 1) {
 410                tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 411
 412                if (planes > 2)
 413                        tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 414
 415                value = window->stride[1] << 16 | window->stride[0];
 416                tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 417        } else {
 418                tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 419        }
 420
 421        tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 422        tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 423
 424        if (dc->soc->supports_block_linear) {
 425                unsigned long height = window->tiling.value;
 426
 427                switch (window->tiling.mode) {
 428                case TEGRA_BO_TILING_MODE_PITCH:
 429                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 430                        break;
 431
 432                case TEGRA_BO_TILING_MODE_TILED:
 433                        value = DC_WINBUF_SURFACE_KIND_TILED;
 434                        break;
 435
 436                case TEGRA_BO_TILING_MODE_BLOCK:
 437                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 438                                DC_WINBUF_SURFACE_KIND_BLOCK;
 439                        break;
 440                }
 441
 442                tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 443        } else {
 444                switch (window->tiling.mode) {
 445                case TEGRA_BO_TILING_MODE_PITCH:
 446                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 447                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 448                        break;
 449
 450                case TEGRA_BO_TILING_MODE_TILED:
 451                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 452                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 453                        break;
 454
 455                case TEGRA_BO_TILING_MODE_BLOCK:
 456                        /*
 457                         * No need to handle this here because ->atomic_check
 458                         * will already have filtered it out.
 459                         */
 460                        break;
 461                }
 462
 463                tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 464        }
 465
 466        value = WIN_ENABLE;
 467
 468        if (yuv) {
 469                /* setup default colorspace conversion coefficients */
 470                tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 471                tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 472                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 473                tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 474                tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 475                tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 476                tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 477                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 478
 479                value |= CSC_ENABLE;
 480        } else if (window->bits_per_pixel < 24) {
 481                value |= COLOR_EXPAND;
 482        }
 483
 484        if (window->reflect_x)
 485                value |= H_DIRECTION;
 486
 487        if (window->reflect_y)
 488                value |= V_DIRECTION;
 489
 490        if (tegra_plane_use_horizontal_filtering(plane, window)) {
 491                /*
 492                 * Enable horizontal 6-tap filter and set filtering
 493                 * coefficients to the default values defined in TRM.
 494                 */
 495                tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 496                tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 497                tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 498                tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 499                tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 500                tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 501                tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 502                tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 503                tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 504                tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 505                tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 506                tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 507                tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 508                tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 509                tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 510                tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 511
 512                value |= H_FILTER;
 513        }
 514
 515        if (tegra_plane_use_vertical_filtering(plane, window)) {
 516                unsigned int i, k;
 517
 518                /*
 519                 * Enable vertical 2-tap filter and set filtering
 520                 * coefficients to the default values defined in TRM.
 521                 */
 522                for (i = 0, k = 128; i < 16; i++, k -= 8)
 523                        tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 524
 525                value |= V_FILTER;
 526        }
 527
 528        tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 529
 530        if (dc->soc->has_legacy_blending)
 531                tegra_plane_setup_blending_legacy(plane);
 532        else
 533                tegra_plane_setup_blending(plane, window);
 534}
 535
 536static const u32 tegra20_primary_formats[] = {
 537        DRM_FORMAT_ARGB4444,
 538        DRM_FORMAT_ARGB1555,
 539        DRM_FORMAT_RGB565,
 540        DRM_FORMAT_RGBA5551,
 541        DRM_FORMAT_ABGR8888,
 542        DRM_FORMAT_ARGB8888,
 543        /* non-native formats */
 544        DRM_FORMAT_XRGB1555,
 545        DRM_FORMAT_RGBX5551,
 546        DRM_FORMAT_XBGR8888,
 547        DRM_FORMAT_XRGB8888,
 548};
 549
 550static const u64 tegra20_modifiers[] = {
 551        DRM_FORMAT_MOD_LINEAR,
 552        DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 553        DRM_FORMAT_MOD_INVALID
 554};
 555
 556static const u32 tegra114_primary_formats[] = {
 557        DRM_FORMAT_ARGB4444,
 558        DRM_FORMAT_ARGB1555,
 559        DRM_FORMAT_RGB565,
 560        DRM_FORMAT_RGBA5551,
 561        DRM_FORMAT_ABGR8888,
 562        DRM_FORMAT_ARGB8888,
 563        /* new on Tegra114 */
 564        DRM_FORMAT_ABGR4444,
 565        DRM_FORMAT_ABGR1555,
 566        DRM_FORMAT_BGRA5551,
 567        DRM_FORMAT_XRGB1555,
 568        DRM_FORMAT_RGBX5551,
 569        DRM_FORMAT_XBGR1555,
 570        DRM_FORMAT_BGRX5551,
 571        DRM_FORMAT_BGR565,
 572        DRM_FORMAT_BGRA8888,
 573        DRM_FORMAT_RGBA8888,
 574        DRM_FORMAT_XRGB8888,
 575        DRM_FORMAT_XBGR8888,
 576};
 577
 578static const u32 tegra124_primary_formats[] = {
 579        DRM_FORMAT_ARGB4444,
 580        DRM_FORMAT_ARGB1555,
 581        DRM_FORMAT_RGB565,
 582        DRM_FORMAT_RGBA5551,
 583        DRM_FORMAT_ABGR8888,
 584        DRM_FORMAT_ARGB8888,
 585        /* new on Tegra114 */
 586        DRM_FORMAT_ABGR4444,
 587        DRM_FORMAT_ABGR1555,
 588        DRM_FORMAT_BGRA5551,
 589        DRM_FORMAT_XRGB1555,
 590        DRM_FORMAT_RGBX5551,
 591        DRM_FORMAT_XBGR1555,
 592        DRM_FORMAT_BGRX5551,
 593        DRM_FORMAT_BGR565,
 594        DRM_FORMAT_BGRA8888,
 595        DRM_FORMAT_RGBA8888,
 596        DRM_FORMAT_XRGB8888,
 597        DRM_FORMAT_XBGR8888,
 598        /* new on Tegra124 */
 599        DRM_FORMAT_RGBX8888,
 600        DRM_FORMAT_BGRX8888,
 601};
 602
 603static const u64 tegra124_modifiers[] = {
 604        DRM_FORMAT_MOD_LINEAR,
 605        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 606        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 607        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 608        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 609        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 610        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 611        DRM_FORMAT_MOD_INVALID
 612};
 613
 614static int tegra_plane_atomic_check(struct drm_plane *plane,
 615                                    struct drm_atomic_state *state)
 616{
 617        struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 618                                                                                 plane);
 619        struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 620        unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
 621                                          DRM_MODE_REFLECT_X |
 622                                          DRM_MODE_REFLECT_Y;
 623        unsigned int rotation = new_plane_state->rotation;
 624        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 625        struct tegra_plane *tegra = to_tegra_plane(plane);
 626        struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
 627        int err;
 628
 629        plane_state->peak_memory_bandwidth = 0;
 630        plane_state->avg_memory_bandwidth = 0;
 631
 632        /* no need for further checks if the plane is being disabled */
 633        if (!new_plane_state->crtc) {
 634                plane_state->total_peak_memory_bandwidth = 0;
 635                return 0;
 636        }
 637
 638        err = tegra_plane_format(new_plane_state->fb->format->format,
 639                                 &plane_state->format,
 640                                 &plane_state->swap);
 641        if (err < 0)
 642                return err;
 643
 644        /*
 645         * Tegra20 and Tegra30 are special cases here because they support
 646         * only variants of specific formats with an alpha component, but not
 647         * the corresponding opaque formats. However, the opaque formats can
 648         * be emulated by disabling alpha blending for the plane.
 649         */
 650        if (dc->soc->has_legacy_blending) {
 651                err = tegra_plane_setup_legacy_state(tegra, plane_state);
 652                if (err < 0)
 653                        return err;
 654        }
 655
 656        err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
 657        if (err < 0)
 658                return err;
 659
 660        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 661            !dc->soc->supports_block_linear) {
 662                DRM_ERROR("hardware doesn't support block linear mode\n");
 663                return -EINVAL;
 664        }
 665
 666        /*
 667         * Older userspace used custom BO flag in order to specify the Y
 668         * reflection, while modern userspace uses the generic DRM rotation
 669         * property in order to achieve the same result.  The legacy BO flag
 670         * duplicates the DRM rotation property when both are set.
 671         */
 672        if (tegra_fb_is_bottom_up(new_plane_state->fb))
 673                rotation |= DRM_MODE_REFLECT_Y;
 674
 675        rotation = drm_rotation_simplify(rotation, supported_rotation);
 676
 677        if (rotation & DRM_MODE_REFLECT_X)
 678                plane_state->reflect_x = true;
 679        else
 680                plane_state->reflect_x = false;
 681
 682        if (rotation & DRM_MODE_REFLECT_Y)
 683                plane_state->reflect_y = true;
 684        else
 685                plane_state->reflect_y = false;
 686
 687        /*
 688         * Tegra doesn't support different strides for U and V planes so we
 689         * error out if the user tries to display a framebuffer with such a
 690         * configuration.
 691         */
 692        if (new_plane_state->fb->format->num_planes > 2) {
 693                if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
 694                        DRM_ERROR("unsupported UV-plane configuration\n");
 695                        return -EINVAL;
 696                }
 697        }
 698
 699        err = tegra_plane_state_add(tegra, new_plane_state);
 700        if (err < 0)
 701                return err;
 702
 703        return 0;
 704}
 705
 706static void tegra_plane_atomic_disable(struct drm_plane *plane,
 707                                       struct drm_atomic_state *state)
 708{
 709        struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
 710                                                                           plane);
 711        struct tegra_plane *p = to_tegra_plane(plane);
 712        u32 value;
 713
 714        /* rien ne va plus */
 715        if (!old_state || !old_state->crtc)
 716                return;
 717
 718        value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 719        value &= ~WIN_ENABLE;
 720        tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 721}
 722
 723static void tegra_plane_atomic_update(struct drm_plane *plane,
 724                                      struct drm_atomic_state *state)
 725{
 726        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
 727                                                                           plane);
 728        struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 729        struct drm_framebuffer *fb = new_state->fb;
 730        struct tegra_plane *p = to_tegra_plane(plane);
 731        struct tegra_dc_window window;
 732        unsigned int i;
 733
 734        /* rien ne va plus */
 735        if (!new_state->crtc || !new_state->fb)
 736                return;
 737
 738        if (!new_state->visible)
 739                return tegra_plane_atomic_disable(plane, state);
 740
 741        memset(&window, 0, sizeof(window));
 742        window.src.x = new_state->src.x1 >> 16;
 743        window.src.y = new_state->src.y1 >> 16;
 744        window.src.w = drm_rect_width(&new_state->src) >> 16;
 745        window.src.h = drm_rect_height(&new_state->src) >> 16;
 746        window.dst.x = new_state->dst.x1;
 747        window.dst.y = new_state->dst.y1;
 748        window.dst.w = drm_rect_width(&new_state->dst);
 749        window.dst.h = drm_rect_height(&new_state->dst);
 750        window.bits_per_pixel = fb->format->cpp[0] * 8;
 751        window.reflect_x = tegra_plane_state->reflect_x;
 752        window.reflect_y = tegra_plane_state->reflect_y;
 753
 754        /* copy from state */
 755        window.zpos = new_state->normalized_zpos;
 756        window.tiling = tegra_plane_state->tiling;
 757        window.format = tegra_plane_state->format;
 758        window.swap = tegra_plane_state->swap;
 759
 760        for (i = 0; i < fb->format->num_planes; i++) {
 761                window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
 762
 763                /*
 764                 * Tegra uses a shared stride for UV planes. Framebuffers are
 765                 * already checked for this in the tegra_plane_atomic_check()
 766                 * function, so it's safe to ignore the V-plane pitch here.
 767                 */
 768                if (i < 2)
 769                        window.stride[i] = fb->pitches[i];
 770        }
 771
 772        tegra_dc_setup_window(p, &window);
 773}
 774
 775static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 776        .prepare_fb = tegra_plane_prepare_fb,
 777        .cleanup_fb = tegra_plane_cleanup_fb,
 778        .atomic_check = tegra_plane_atomic_check,
 779        .atomic_disable = tegra_plane_atomic_disable,
 780        .atomic_update = tegra_plane_atomic_update,
 781};
 782
 783static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 784{
 785        /*
 786         * Ideally this would use drm_crtc_mask(), but that would require the
 787         * CRTC to already be in the mode_config's list of CRTCs. However, it
 788         * will only be added to that list in the drm_crtc_init_with_planes()
 789         * (in tegra_dc_init()), which in turn requires registration of these
 790         * planes. So we have ourselves a nice little chicken and egg problem
 791         * here.
 792         *
 793         * We work around this by manually creating the mask from the number
 794         * of CRTCs that have been registered, and should therefore always be
 795         * the same as drm_crtc_index() after registration.
 796         */
 797        return 1 << drm->mode_config.num_crtc;
 798}
 799
 800static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 801                                                    struct tegra_dc *dc)
 802{
 803        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 804        enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 805        struct tegra_plane *plane;
 806        unsigned int num_formats;
 807        const u64 *modifiers;
 808        const u32 *formats;
 809        int err;
 810
 811        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 812        if (!plane)
 813                return ERR_PTR(-ENOMEM);
 814
 815        /* Always use window A as primary window */
 816        plane->offset = 0xa00;
 817        plane->index = 0;
 818        plane->dc = dc;
 819
 820        num_formats = dc->soc->num_primary_formats;
 821        formats = dc->soc->primary_formats;
 822        modifiers = dc->soc->modifiers;
 823
 824        err = tegra_plane_interconnect_init(plane);
 825        if (err) {
 826                kfree(plane);
 827                return ERR_PTR(err);
 828        }
 829
 830        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 831                                       &tegra_plane_funcs, formats,
 832                                       num_formats, modifiers, type, NULL);
 833        if (err < 0) {
 834                kfree(plane);
 835                return ERR_PTR(err);
 836        }
 837
 838        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 839        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 840
 841        err = drm_plane_create_rotation_property(&plane->base,
 842                                                 DRM_MODE_ROTATE_0,
 843                                                 DRM_MODE_ROTATE_0 |
 844                                                 DRM_MODE_ROTATE_180 |
 845                                                 DRM_MODE_REFLECT_X |
 846                                                 DRM_MODE_REFLECT_Y);
 847        if (err < 0)
 848                dev_err(dc->dev, "failed to create rotation property: %d\n",
 849                        err);
 850
 851        return &plane->base;
 852}
 853
 854static const u32 tegra_legacy_cursor_plane_formats[] = {
 855        DRM_FORMAT_RGBA8888,
 856};
 857
 858static const u32 tegra_cursor_plane_formats[] = {
 859        DRM_FORMAT_ARGB8888,
 860};
 861
 862static int tegra_cursor_atomic_check(struct drm_plane *plane,
 863                                     struct drm_atomic_state *state)
 864{
 865        struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 866                                                                                 plane);
 867        struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 868        struct tegra_plane *tegra = to_tegra_plane(plane);
 869        int err;
 870
 871        plane_state->peak_memory_bandwidth = 0;
 872        plane_state->avg_memory_bandwidth = 0;
 873
 874        /* no need for further checks if the plane is being disabled */
 875        if (!new_plane_state->crtc) {
 876                plane_state->total_peak_memory_bandwidth = 0;
 877                return 0;
 878        }
 879
 880        /* scaling not supported for cursor */
 881        if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
 882            (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
 883                return -EINVAL;
 884
 885        /* only square cursors supported */
 886        if (new_plane_state->src_w != new_plane_state->src_h)
 887                return -EINVAL;
 888
 889        if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
 890            new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
 891                return -EINVAL;
 892
 893        err = tegra_plane_state_add(tegra, new_plane_state);
 894        if (err < 0)
 895                return err;
 896
 897        return 0;
 898}
 899
 900static void __tegra_cursor_atomic_update(struct drm_plane *plane,
 901                                         struct drm_plane_state *new_state)
 902{
 903        struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 904        struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
 905        struct tegra_drm *tegra = plane->dev->dev_private;
 906#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 907        u64 dma_mask = *dc->dev->dma_mask;
 908#endif
 909        unsigned int x, y;
 910        u32 value = 0;
 911
 912        /* rien ne va plus */
 913        if (!new_state->crtc || !new_state->fb)
 914                return;
 915
 916        /*
 917         * Legacy display supports hardware clipping of the cursor, but
 918         * nvdisplay relies on software to clip the cursor to the screen.
 919         */
 920        if (!dc->soc->has_nvdisplay)
 921                value |= CURSOR_CLIP_DISPLAY;
 922
 923        switch (new_state->crtc_w) {
 924        case 32:
 925                value |= CURSOR_SIZE_32x32;
 926                break;
 927
 928        case 64:
 929                value |= CURSOR_SIZE_64x64;
 930                break;
 931
 932        case 128:
 933                value |= CURSOR_SIZE_128x128;
 934                break;
 935
 936        case 256:
 937                value |= CURSOR_SIZE_256x256;
 938                break;
 939
 940        default:
 941                WARN(1, "cursor size %ux%u not supported\n",
 942                     new_state->crtc_w, new_state->crtc_h);
 943                return;
 944        }
 945
 946        value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
 947        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 948
 949#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 950        value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
 951        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 952#endif
 953
 954        /* enable cursor and set blend mode */
 955        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 956        value |= CURSOR_ENABLE;
 957        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 958
 959        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 960        value &= ~CURSOR_DST_BLEND_MASK;
 961        value &= ~CURSOR_SRC_BLEND_MASK;
 962
 963        if (dc->soc->has_nvdisplay)
 964                value &= ~CURSOR_COMPOSITION_MODE_XOR;
 965        else
 966                value |= CURSOR_MODE_NORMAL;
 967
 968        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 969        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 970        value |= CURSOR_ALPHA;
 971        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 972
 973        /* nvdisplay relies on software for clipping */
 974        if (dc->soc->has_nvdisplay) {
 975                struct drm_rect src;
 976
 977                x = new_state->dst.x1;
 978                y = new_state->dst.y1;
 979
 980                drm_rect_fp_to_int(&src, &new_state->src);
 981
 982                value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
 983                tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
 984
 985                value = (drm_rect_height(&src) & tegra->vmask) << 16 |
 986                        (drm_rect_width(&src) & tegra->hmask);
 987                tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
 988        } else {
 989                x = new_state->crtc_x;
 990                y = new_state->crtc_y;
 991        }
 992
 993        /* position the cursor */
 994        value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
 995        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 996}
 997
 998static void tegra_cursor_atomic_update(struct drm_plane *plane,
 999                                       struct drm_atomic_state *state)
1000{
1001        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1002
1003        __tegra_cursor_atomic_update(plane, new_state);
1004}
1005
1006static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1007                                        struct drm_atomic_state *state)
1008{
1009        struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1010                                                                           plane);
1011        struct tegra_dc *dc;
1012        u32 value;
1013
1014        /* rien ne va plus */
1015        if (!old_state || !old_state->crtc)
1016                return;
1017
1018        dc = to_tegra_dc(old_state->crtc);
1019
1020        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1021        value &= ~CURSOR_ENABLE;
1022        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1023}
1024
1025static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1026{
1027        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1028        struct drm_crtc_state *crtc_state;
1029        int min_scale, max_scale;
1030        int err;
1031
1032        crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1033        if (WARN_ON(!crtc_state))
1034                return -EINVAL;
1035
1036        if (!crtc_state->active)
1037                return -EINVAL;
1038
1039        if (plane->state->crtc != new_state->crtc ||
1040            plane->state->src_w != new_state->src_w ||
1041            plane->state->src_h != new_state->src_h ||
1042            plane->state->crtc_w != new_state->crtc_w ||
1043            plane->state->crtc_h != new_state->crtc_h ||
1044            plane->state->fb != new_state->fb ||
1045            plane->state->fb == NULL)
1046                return -EINVAL;
1047
1048        min_scale = (1 << 16) / 8;
1049        max_scale = (8 << 16) / 1;
1050
1051        err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1052                                                  true, true);
1053        if (err < 0)
1054                return err;
1055
1056        if (new_state->visible != plane->state->visible)
1057                return -EINVAL;
1058
1059        return 0;
1060}
1061
1062static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1063                                             struct drm_atomic_state *state)
1064{
1065        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1066        struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1067
1068        plane->state->src_x = new_state->src_x;
1069        plane->state->src_y = new_state->src_y;
1070        plane->state->crtc_x = new_state->crtc_x;
1071        plane->state->crtc_y = new_state->crtc_y;
1072
1073        if (new_state->visible) {
1074                struct tegra_plane *p = to_tegra_plane(plane);
1075                u32 value;
1076
1077                __tegra_cursor_atomic_update(plane, new_state);
1078
1079                value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1080                tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1081                (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1082
1083                value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1084                tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1085                (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1086        }
1087}
1088
1089static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1090        .prepare_fb = tegra_plane_prepare_fb,
1091        .cleanup_fb = tegra_plane_cleanup_fb,
1092        .atomic_check = tegra_cursor_atomic_check,
1093        .atomic_update = tegra_cursor_atomic_update,
1094        .atomic_disable = tegra_cursor_atomic_disable,
1095        .atomic_async_check = tegra_cursor_atomic_async_check,
1096        .atomic_async_update = tegra_cursor_atomic_async_update,
1097};
1098
1099static const uint64_t linear_modifiers[] = {
1100        DRM_FORMAT_MOD_LINEAR,
1101        DRM_FORMAT_MOD_INVALID
1102};
1103
1104static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1105                                                      struct tegra_dc *dc)
1106{
1107        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1108        struct tegra_plane *plane;
1109        unsigned int num_formats;
1110        const u32 *formats;
1111        int err;
1112
1113        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1114        if (!plane)
1115                return ERR_PTR(-ENOMEM);
1116
1117        /*
1118         * This index is kind of fake. The cursor isn't a regular plane, but
1119         * its update and activation request bits in DC_CMD_STATE_CONTROL do
1120         * use the same programming. Setting this fake index here allows the
1121         * code in tegra_add_plane_state() to do the right thing without the
1122         * need to special-casing the cursor plane.
1123         */
1124        plane->index = 6;
1125        plane->dc = dc;
1126
1127        if (!dc->soc->has_nvdisplay) {
1128                num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1129                formats = tegra_legacy_cursor_plane_formats;
1130
1131                err = tegra_plane_interconnect_init(plane);
1132                if (err) {
1133                        kfree(plane);
1134                        return ERR_PTR(err);
1135                }
1136        } else {
1137                num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1138                formats = tegra_cursor_plane_formats;
1139        }
1140
1141        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1142                                       &tegra_plane_funcs, formats,
1143                                       num_formats, linear_modifiers,
1144                                       DRM_PLANE_TYPE_CURSOR, NULL);
1145        if (err < 0) {
1146                kfree(plane);
1147                return ERR_PTR(err);
1148        }
1149
1150        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1151        drm_plane_create_zpos_immutable_property(&plane->base, 255);
1152
1153        return &plane->base;
1154}
1155
1156static const u32 tegra20_overlay_formats[] = {
1157        DRM_FORMAT_ARGB4444,
1158        DRM_FORMAT_ARGB1555,
1159        DRM_FORMAT_RGB565,
1160        DRM_FORMAT_RGBA5551,
1161        DRM_FORMAT_ABGR8888,
1162        DRM_FORMAT_ARGB8888,
1163        /* non-native formats */
1164        DRM_FORMAT_XRGB1555,
1165        DRM_FORMAT_RGBX5551,
1166        DRM_FORMAT_XBGR8888,
1167        DRM_FORMAT_XRGB8888,
1168        /* planar formats */
1169        DRM_FORMAT_UYVY,
1170        DRM_FORMAT_YUYV,
1171        DRM_FORMAT_YUV420,
1172        DRM_FORMAT_YUV422,
1173};
1174
1175static const u32 tegra114_overlay_formats[] = {
1176        DRM_FORMAT_ARGB4444,
1177        DRM_FORMAT_ARGB1555,
1178        DRM_FORMAT_RGB565,
1179        DRM_FORMAT_RGBA5551,
1180        DRM_FORMAT_ABGR8888,
1181        DRM_FORMAT_ARGB8888,
1182        /* new on Tegra114 */
1183        DRM_FORMAT_ABGR4444,
1184        DRM_FORMAT_ABGR1555,
1185        DRM_FORMAT_BGRA5551,
1186        DRM_FORMAT_XRGB1555,
1187        DRM_FORMAT_RGBX5551,
1188        DRM_FORMAT_XBGR1555,
1189        DRM_FORMAT_BGRX5551,
1190        DRM_FORMAT_BGR565,
1191        DRM_FORMAT_BGRA8888,
1192        DRM_FORMAT_RGBA8888,
1193        DRM_FORMAT_XRGB8888,
1194        DRM_FORMAT_XBGR8888,
1195        /* planar formats */
1196        DRM_FORMAT_UYVY,
1197        DRM_FORMAT_YUYV,
1198        DRM_FORMAT_YUV420,
1199        DRM_FORMAT_YUV422,
1200        /* semi-planar formats */
1201        DRM_FORMAT_NV12,
1202        DRM_FORMAT_NV21,
1203        DRM_FORMAT_NV16,
1204        DRM_FORMAT_NV61,
1205        DRM_FORMAT_NV24,
1206        DRM_FORMAT_NV42,
1207};
1208
1209static const u32 tegra124_overlay_formats[] = {
1210        DRM_FORMAT_ARGB4444,
1211        DRM_FORMAT_ARGB1555,
1212        DRM_FORMAT_RGB565,
1213        DRM_FORMAT_RGBA5551,
1214        DRM_FORMAT_ABGR8888,
1215        DRM_FORMAT_ARGB8888,
1216        /* new on Tegra114 */
1217        DRM_FORMAT_ABGR4444,
1218        DRM_FORMAT_ABGR1555,
1219        DRM_FORMAT_BGRA5551,
1220        DRM_FORMAT_XRGB1555,
1221        DRM_FORMAT_RGBX5551,
1222        DRM_FORMAT_XBGR1555,
1223        DRM_FORMAT_BGRX5551,
1224        DRM_FORMAT_BGR565,
1225        DRM_FORMAT_BGRA8888,
1226        DRM_FORMAT_RGBA8888,
1227        DRM_FORMAT_XRGB8888,
1228        DRM_FORMAT_XBGR8888,
1229        /* new on Tegra124 */
1230        DRM_FORMAT_RGBX8888,
1231        DRM_FORMAT_BGRX8888,
1232        /* planar formats */
1233        DRM_FORMAT_UYVY,
1234        DRM_FORMAT_YUYV,
1235        DRM_FORMAT_YVYU,
1236        DRM_FORMAT_VYUY,
1237        DRM_FORMAT_YUV420, /* YU12 */
1238        DRM_FORMAT_YUV422, /* YU16 */
1239        DRM_FORMAT_YUV444, /* YU24 */
1240        /* semi-planar formats */
1241        DRM_FORMAT_NV12,
1242        DRM_FORMAT_NV21,
1243        DRM_FORMAT_NV16,
1244        DRM_FORMAT_NV61,
1245        DRM_FORMAT_NV24,
1246        DRM_FORMAT_NV42,
1247};
1248
1249static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1250                                                       struct tegra_dc *dc,
1251                                                       unsigned int index,
1252                                                       bool cursor)
1253{
1254        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1255        struct tegra_plane *plane;
1256        unsigned int num_formats;
1257        enum drm_plane_type type;
1258        const u32 *formats;
1259        int err;
1260
1261        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1262        if (!plane)
1263                return ERR_PTR(-ENOMEM);
1264
1265        plane->offset = 0xa00 + 0x200 * index;
1266        plane->index = index;
1267        plane->dc = dc;
1268
1269        num_formats = dc->soc->num_overlay_formats;
1270        formats = dc->soc->overlay_formats;
1271
1272        err = tegra_plane_interconnect_init(plane);
1273        if (err) {
1274                kfree(plane);
1275                return ERR_PTR(err);
1276        }
1277
1278        if (!cursor)
1279                type = DRM_PLANE_TYPE_OVERLAY;
1280        else
1281                type = DRM_PLANE_TYPE_CURSOR;
1282
1283        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1284                                       &tegra_plane_funcs, formats,
1285                                       num_formats, linear_modifiers,
1286                                       type, NULL);
1287        if (err < 0) {
1288                kfree(plane);
1289                return ERR_PTR(err);
1290        }
1291
1292        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1293        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1294
1295        err = drm_plane_create_rotation_property(&plane->base,
1296                                                 DRM_MODE_ROTATE_0,
1297                                                 DRM_MODE_ROTATE_0 |
1298                                                 DRM_MODE_ROTATE_180 |
1299                                                 DRM_MODE_REFLECT_X |
1300                                                 DRM_MODE_REFLECT_Y);
1301        if (err < 0)
1302                dev_err(dc->dev, "failed to create rotation property: %d\n",
1303                        err);
1304
1305        return &plane->base;
1306}
1307
1308static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1309                                                    struct tegra_dc *dc)
1310{
1311        struct drm_plane *plane, *primary = NULL;
1312        unsigned int i, j;
1313
1314        for (i = 0; i < dc->soc->num_wgrps; i++) {
1315                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1316
1317                if (wgrp->dc == dc->pipe) {
1318                        for (j = 0; j < wgrp->num_windows; j++) {
1319                                unsigned int index = wgrp->windows[j];
1320
1321                                plane = tegra_shared_plane_create(drm, dc,
1322                                                                  wgrp->index,
1323                                                                  index);
1324                                if (IS_ERR(plane))
1325                                        return plane;
1326
1327                                /*
1328                                 * Choose the first shared plane owned by this
1329                                 * head as the primary plane.
1330                                 */
1331                                if (!primary) {
1332                                        plane->type = DRM_PLANE_TYPE_PRIMARY;
1333                                        primary = plane;
1334                                }
1335                        }
1336                }
1337        }
1338
1339        return primary;
1340}
1341
1342static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1343                                             struct tegra_dc *dc)
1344{
1345        struct drm_plane *planes[2], *primary;
1346        unsigned int planes_num;
1347        unsigned int i;
1348        int err;
1349
1350        primary = tegra_primary_plane_create(drm, dc);
1351        if (IS_ERR(primary))
1352                return primary;
1353
1354        if (dc->soc->supports_cursor)
1355                planes_num = 2;
1356        else
1357                planes_num = 1;
1358
1359        for (i = 0; i < planes_num; i++) {
1360                planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1361                                                          false);
1362                if (IS_ERR(planes[i])) {
1363                        err = PTR_ERR(planes[i]);
1364
1365                        while (i--)
1366                                planes[i]->funcs->destroy(planes[i]);
1367
1368                        primary->funcs->destroy(primary);
1369                        return ERR_PTR(err);
1370                }
1371        }
1372
1373        return primary;
1374}
1375
1376static void tegra_dc_destroy(struct drm_crtc *crtc)
1377{
1378        drm_crtc_cleanup(crtc);
1379}
1380
1381static void tegra_crtc_reset(struct drm_crtc *crtc)
1382{
1383        struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1384
1385        if (crtc->state)
1386                tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1387
1388        __drm_atomic_helper_crtc_reset(crtc, &state->base);
1389}
1390
1391static struct drm_crtc_state *
1392tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1393{
1394        struct tegra_dc_state *state = to_dc_state(crtc->state);
1395        struct tegra_dc_state *copy;
1396
1397        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1398        if (!copy)
1399                return NULL;
1400
1401        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1402        copy->clk = state->clk;
1403        copy->pclk = state->pclk;
1404        copy->div = state->div;
1405        copy->planes = state->planes;
1406
1407        return &copy->base;
1408}
1409
1410static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1411                                            struct drm_crtc_state *state)
1412{
1413        __drm_atomic_helper_crtc_destroy_state(state);
1414        kfree(state);
1415}
1416
1417#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1418
1419static const struct debugfs_reg32 tegra_dc_regs[] = {
1420        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1421        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1422        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1423        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1424        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1425        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1426        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1427        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1428        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1429        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1430        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1431        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1432        DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1433        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1434        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1435        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1436        DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1437        DEBUGFS_REG32(DC_CMD_INT_STATUS),
1438        DEBUGFS_REG32(DC_CMD_INT_MASK),
1439        DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1440        DEBUGFS_REG32(DC_CMD_INT_TYPE),
1441        DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1442        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1443        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1444        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1445        DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1446        DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1447        DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1448        DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1449        DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1450        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1451        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1452        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1453        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1454        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1455        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1456        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1457        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1458        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1459        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1460        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1461        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1462        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1463        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1464        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1465        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1466        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1467        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1468        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1469        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1470        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1471        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1472        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1473        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1474        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1475        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1476        DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1477        DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1478        DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1479        DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1480        DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1481        DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1482        DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1483        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1484        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1485        DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1486        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1487        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1488        DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1489        DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1490        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1491        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1492        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1493        DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1494        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1495        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1496        DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1497        DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1498        DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1499        DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1500        DEBUGFS_REG32(DC_DISP_ACTIVE),
1501        DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1502        DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1503        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1504        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1505        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1506        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1507        DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1508        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1509        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1510        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1511        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1512        DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1513        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1514        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1515        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1516        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1517        DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1518        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1519        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1520        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1521        DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1522        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1523        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1524        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1525        DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1526        DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1527        DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1528        DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1529        DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1530        DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1531        DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1532        DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1533        DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1534        DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1535        DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1536        DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1537        DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1538        DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1539        DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1540        DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1541        DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1542        DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1543        DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1544        DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1545        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1546        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1547        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1548        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1549        DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1550        DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1551        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1552        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1553        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1554        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1555        DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1556        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1557        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1558        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1559        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1560        DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1561        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1562        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1563        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1564        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1565        DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1566        DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1567        DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1568        DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1569        DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1570        DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1571        DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1572        DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1573        DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1574        DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1575        DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1576        DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1577        DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1578        DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1579        DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1580        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1581        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1582        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1583        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1584        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1585        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1586        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1587        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1588        DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1589        DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1590        DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1591        DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1592        DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1593        DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1594        DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1595        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1596        DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1597        DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1598        DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1599        DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1600        DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1601        DEBUGFS_REG32(DC_WIN_POSITION),
1602        DEBUGFS_REG32(DC_WIN_SIZE),
1603        DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1604        DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1605        DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1606        DEBUGFS_REG32(DC_WIN_DDA_INC),
1607        DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1608        DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1609        DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1610        DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1611        DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1612        DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1613        DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1614        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1615        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1616        DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1617        DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1618        DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1619        DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1620        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1621        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1622        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1623        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1624        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1625        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1626        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1627        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1628        DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1629        DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1630        DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1631        DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1632};
1633
1634static int tegra_dc_show_regs(struct seq_file *s, void *data)
1635{
1636        struct drm_info_node *node = s->private;
1637        struct tegra_dc *dc = node->info_ent->data;
1638        unsigned int i;
1639        int err = 0;
1640
1641        drm_modeset_lock(&dc->base.mutex, NULL);
1642
1643        if (!dc->base.state->active) {
1644                err = -EBUSY;
1645                goto unlock;
1646        }
1647
1648        for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1649                unsigned int offset = tegra_dc_regs[i].offset;
1650
1651                seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1652                           offset, tegra_dc_readl(dc, offset));
1653        }
1654
1655unlock:
1656        drm_modeset_unlock(&dc->base.mutex);
1657        return err;
1658}
1659
1660static int tegra_dc_show_crc(struct seq_file *s, void *data)
1661{
1662        struct drm_info_node *node = s->private;
1663        struct tegra_dc *dc = node->info_ent->data;
1664        int err = 0;
1665        u32 value;
1666
1667        drm_modeset_lock(&dc->base.mutex, NULL);
1668
1669        if (!dc->base.state->active) {
1670                err = -EBUSY;
1671                goto unlock;
1672        }
1673
1674        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1675        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1676        tegra_dc_commit(dc);
1677
1678        drm_crtc_wait_one_vblank(&dc->base);
1679        drm_crtc_wait_one_vblank(&dc->base);
1680
1681        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1682        seq_printf(s, "%08x\n", value);
1683
1684        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1685
1686unlock:
1687        drm_modeset_unlock(&dc->base.mutex);
1688        return err;
1689}
1690
1691static int tegra_dc_show_stats(struct seq_file *s, void *data)
1692{
1693        struct drm_info_node *node = s->private;
1694        struct tegra_dc *dc = node->info_ent->data;
1695
1696        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1697        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1698        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1699        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1700
1701        seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1702        seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1703        seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1704        seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1705
1706        return 0;
1707}
1708
1709static struct drm_info_list debugfs_files[] = {
1710        { "regs", tegra_dc_show_regs, 0, NULL },
1711        { "crc", tegra_dc_show_crc, 0, NULL },
1712        { "stats", tegra_dc_show_stats, 0, NULL },
1713};
1714
1715static int tegra_dc_late_register(struct drm_crtc *crtc)
1716{
1717        unsigned int i, count = ARRAY_SIZE(debugfs_files);
1718        struct drm_minor *minor = crtc->dev->primary;
1719        struct dentry *root;
1720        struct tegra_dc *dc = to_tegra_dc(crtc);
1721
1722#ifdef CONFIG_DEBUG_FS
1723        root = crtc->debugfs_entry;
1724#else
1725        root = NULL;
1726#endif
1727
1728        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1729                                    GFP_KERNEL);
1730        if (!dc->debugfs_files)
1731                return -ENOMEM;
1732
1733        for (i = 0; i < count; i++)
1734                dc->debugfs_files[i].data = dc;
1735
1736        drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1737
1738        return 0;
1739}
1740
1741static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1742{
1743        unsigned int count = ARRAY_SIZE(debugfs_files);
1744        struct drm_minor *minor = crtc->dev->primary;
1745        struct tegra_dc *dc = to_tegra_dc(crtc);
1746
1747        drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1748        kfree(dc->debugfs_files);
1749        dc->debugfs_files = NULL;
1750}
1751
1752static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1753{
1754        struct tegra_dc *dc = to_tegra_dc(crtc);
1755
1756        /* XXX vblank syncpoints don't work with nvdisplay yet */
1757        if (dc->syncpt && !dc->soc->has_nvdisplay)
1758                return host1x_syncpt_read(dc->syncpt);
1759
1760        /* fallback to software emulated VBLANK counter */
1761        return (u32)drm_crtc_vblank_count(&dc->base);
1762}
1763
1764static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1765{
1766        struct tegra_dc *dc = to_tegra_dc(crtc);
1767        u32 value;
1768
1769        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1770        value |= VBLANK_INT;
1771        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1772
1773        return 0;
1774}
1775
1776static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1777{
1778        struct tegra_dc *dc = to_tegra_dc(crtc);
1779        u32 value;
1780
1781        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1782        value &= ~VBLANK_INT;
1783        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1784}
1785
1786static const struct drm_crtc_funcs tegra_crtc_funcs = {
1787        .page_flip = drm_atomic_helper_page_flip,
1788        .set_config = drm_atomic_helper_set_config,
1789        .destroy = tegra_dc_destroy,
1790        .reset = tegra_crtc_reset,
1791        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1792        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1793        .late_register = tegra_dc_late_register,
1794        .early_unregister = tegra_dc_early_unregister,
1795        .get_vblank_counter = tegra_dc_get_vblank_counter,
1796        .enable_vblank = tegra_dc_enable_vblank,
1797        .disable_vblank = tegra_dc_disable_vblank,
1798};
1799
1800static int tegra_dc_set_timings(struct tegra_dc *dc,
1801                                struct drm_display_mode *mode)
1802{
1803        unsigned int h_ref_to_sync = 1;
1804        unsigned int v_ref_to_sync = 1;
1805        unsigned long value;
1806
1807        if (!dc->soc->has_nvdisplay) {
1808                tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1809
1810                value = (v_ref_to_sync << 16) | h_ref_to_sync;
1811                tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1812        }
1813
1814        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1815                ((mode->hsync_end - mode->hsync_start) <<  0);
1816        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1817
1818        value = ((mode->vtotal - mode->vsync_end) << 16) |
1819                ((mode->htotal - mode->hsync_end) <<  0);
1820        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1821
1822        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1823                ((mode->hsync_start - mode->hdisplay) <<  0);
1824        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1825
1826        value = (mode->vdisplay << 16) | mode->hdisplay;
1827        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1828
1829        return 0;
1830}
1831
1832/**
1833 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1834 *     state
1835 * @dc: display controller
1836 * @crtc_state: CRTC atomic state
1837 * @clk: parent clock for display controller
1838 * @pclk: pixel clock
1839 * @div: shift clock divider
1840 *
1841 * Returns:
1842 * 0 on success or a negative error-code on failure.
1843 */
1844int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1845                               struct drm_crtc_state *crtc_state,
1846                               struct clk *clk, unsigned long pclk,
1847                               unsigned int div)
1848{
1849        struct tegra_dc_state *state = to_dc_state(crtc_state);
1850
1851        if (!clk_has_parent(dc->clk, clk))
1852                return -EINVAL;
1853
1854        state->clk = clk;
1855        state->pclk = pclk;
1856        state->div = div;
1857
1858        return 0;
1859}
1860
1861static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1862                                          struct tegra_dc_state *state)
1863{
1864        unsigned long rate, pstate;
1865        struct dev_pm_opp *opp;
1866        int err;
1867
1868        if (!dc->has_opp_table)
1869                return;
1870
1871        /* calculate actual pixel clock rate which depends on internal divider */
1872        rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1873
1874        /* find suitable OPP for the rate */
1875        opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1876
1877        /*
1878         * Very high resolution modes may results in a clock rate that is
1879         * above the characterized maximum. In this case it's okay to fall
1880         * back to the characterized maximum.
1881         */
1882        if (opp == ERR_PTR(-ERANGE))
1883                opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1884
1885        if (IS_ERR(opp)) {
1886                dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1887                        rate, opp);
1888                return;
1889        }
1890
1891        pstate = dev_pm_opp_get_required_pstate(opp, 0);
1892        dev_pm_opp_put(opp);
1893
1894        /*
1895         * The minimum core voltage depends on the pixel clock rate (which
1896         * depends on internal clock divider of the CRTC) and not on the
1897         * rate of the display controller clock. This is why we're not using
1898         * dev_pm_opp_set_rate() API and instead controlling the power domain
1899         * directly.
1900         */
1901        err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1902        if (err)
1903                dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1904                        pstate, err);
1905}
1906
1907static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1908                                    struct tegra_dc_state *state)
1909{
1910        int err;
1911
1912        err = clk_set_parent(dc->clk, state->clk);
1913        if (err < 0)
1914                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1915
1916        /*
1917         * Outputs may not want to change the parent clock rate. This is only
1918         * relevant to Tegra20 where only a single display PLL is available.
1919         * Since that PLL would typically be used for HDMI, an internal LVDS
1920         * panel would need to be driven by some other clock such as PLL_P
1921         * which is shared with other peripherals. Changing the clock rate
1922         * should therefore be avoided.
1923         */
1924        if (state->pclk > 0) {
1925                err = clk_set_rate(state->clk, state->pclk);
1926                if (err < 0)
1927                        dev_err(dc->dev,
1928                                "failed to set clock rate to %lu Hz\n",
1929                                state->pclk);
1930
1931                err = clk_set_rate(dc->clk, state->pclk);
1932                if (err < 0)
1933                        dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1934                                dc->clk, state->pclk, err);
1935        }
1936
1937        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1938                      state->div);
1939        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1940
1941        tegra_dc_update_voltage_state(dc, state);
1942}
1943
1944static void tegra_dc_stop(struct tegra_dc *dc)
1945{
1946        u32 value;
1947
1948        /* stop the display controller */
1949        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1950        value &= ~DISP_CTRL_MODE_MASK;
1951        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1952
1953        tegra_dc_commit(dc);
1954}
1955
1956static bool tegra_dc_idle(struct tegra_dc *dc)
1957{
1958        u32 value;
1959
1960        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1961
1962        return (value & DISP_CTRL_MODE_MASK) == 0;
1963}
1964
1965static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1966{
1967        timeout = jiffies + msecs_to_jiffies(timeout);
1968
1969        while (time_before(jiffies, timeout)) {
1970                if (tegra_dc_idle(dc))
1971                        return 0;
1972
1973                usleep_range(1000, 2000);
1974        }
1975
1976        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1977        return -ETIMEDOUT;
1978}
1979
1980static void
1981tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1982                                   struct drm_atomic_state *state,
1983                                   bool prepare_bandwidth_transition)
1984{
1985        const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1986        u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1987        const struct drm_plane_state *old_plane_state;
1988        const struct drm_crtc_state *old_crtc_state;
1989        struct tegra_dc_window window, old_window;
1990        struct tegra_dc *dc = to_tegra_dc(crtc);
1991        struct tegra_plane *tegra;
1992        struct drm_plane *plane;
1993
1994        if (dc->soc->has_nvdisplay)
1995                return;
1996
1997        old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1998
1999        if (!crtc->state->active) {
2000                if (!old_crtc_state->active)
2001                        return;
2002
2003                /*
2004                 * When CRTC is disabled on DPMS, the state of attached planes
2005                 * is kept unchanged. Hence we need to enforce removal of the
2006                 * bandwidths from the ICC paths.
2007                 */
2008                drm_atomic_crtc_for_each_plane(plane, crtc) {
2009                        tegra = to_tegra_plane(plane);
2010
2011                        icc_set_bw(tegra->icc_mem, 0, 0);
2012                        icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2013                }
2014
2015                return;
2016        }
2017
2018        for_each_old_plane_in_state(old_crtc_state->state, plane,
2019                                    old_plane_state, i) {
2020                old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2021                new_tegra_state = to_const_tegra_plane_state(plane->state);
2022                tegra = to_tegra_plane(plane);
2023
2024                /*
2025                 * We're iterating over the global atomic state and it contains
2026                 * planes from another CRTC, hence we need to filter out the
2027                 * planes unrelated to this CRTC.
2028                 */
2029                if (tegra->dc != dc)
2030                        continue;
2031
2032                new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2033                old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2034
2035                new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2036                old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2037
2038                /*
2039                 * See the comment related to !crtc->state->active above,
2040                 * which explains why bandwidths need to be updated when
2041                 * CRTC is turning ON.
2042                 */
2043                if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2044                    old_crtc_state->active)
2045                        continue;
2046
2047                window.src.h = drm_rect_height(&plane->state->src) >> 16;
2048                window.dst.h = drm_rect_height(&plane->state->dst);
2049
2050                old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2051                old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2052
2053                /*
2054                 * During the preparation phase (atomic_begin), the memory
2055                 * freq should go high before the DC changes are committed
2056                 * if bandwidth requirement goes up, otherwise memory freq
2057                 * should to stay high if BW requirement goes down.  The
2058                 * opposite applies to the completion phase (post_commit).
2059                 */
2060                if (prepare_bandwidth_transition) {
2061                        new_avg_bw = max(old_avg_bw, new_avg_bw);
2062                        new_peak_bw = max(old_peak_bw, new_peak_bw);
2063
2064                        if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2065                                window = old_window;
2066                }
2067
2068                icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2069
2070                if (tegra_plane_use_vertical_filtering(tegra, &window))
2071                        icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2072                else
2073                        icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2074        }
2075}
2076
2077static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2078                                      struct drm_atomic_state *state)
2079{
2080        struct tegra_dc *dc = to_tegra_dc(crtc);
2081        u32 value;
2082        int err;
2083
2084        if (!tegra_dc_idle(dc)) {
2085                tegra_dc_stop(dc);
2086
2087                /*
2088                 * Ignore the return value, there isn't anything useful to do
2089                 * in case this fails.
2090                 */
2091                tegra_dc_wait_idle(dc, 100);
2092        }
2093
2094        /*
2095         * This should really be part of the RGB encoder driver, but clearing
2096         * these bits has the side-effect of stopping the display controller.
2097         * When that happens no VBLANK interrupts will be raised. At the same
2098         * time the encoder is disabled before the display controller, so the
2099         * above code is always going to timeout waiting for the controller
2100         * to go idle.
2101         *
2102         * Given the close coupling between the RGB encoder and the display
2103         * controller doing it here is still kind of okay. None of the other
2104         * encoder drivers require these bits to be cleared.
2105         *
2106         * XXX: Perhaps given that the display controller is switched off at
2107         * this point anyway maybe clearing these bits isn't even useful for
2108         * the RGB encoder?
2109         */
2110        if (dc->rgb) {
2111                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2112                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2113                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2114                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2115        }
2116
2117        tegra_dc_stats_reset(&dc->stats);
2118        drm_crtc_vblank_off(crtc);
2119
2120        spin_lock_irq(&crtc->dev->event_lock);
2121
2122        if (crtc->state->event) {
2123                drm_crtc_send_vblank_event(crtc, crtc->state->event);
2124                crtc->state->event = NULL;
2125        }
2126
2127        spin_unlock_irq(&crtc->dev->event_lock);
2128
2129        err = host1x_client_suspend(&dc->client);
2130        if (err < 0)
2131                dev_err(dc->dev, "failed to suspend: %d\n", err);
2132
2133        if (dc->has_opp_table) {
2134                err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2135                if (err)
2136                        dev_err(dc->dev,
2137                                "failed to clear power domain state: %d\n", err);
2138        }
2139}
2140
2141static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2142                                     struct drm_atomic_state *state)
2143{
2144        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2145        struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2146        struct tegra_dc *dc = to_tegra_dc(crtc);
2147        u32 value;
2148        int err;
2149
2150        /* apply PLL changes */
2151        tegra_dc_set_clock_rate(dc, crtc_state);
2152
2153        err = host1x_client_resume(&dc->client);
2154        if (err < 0) {
2155                dev_err(dc->dev, "failed to resume: %d\n", err);
2156                return;
2157        }
2158
2159        /* initialize display controller */
2160        if (dc->syncpt) {
2161                u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2162
2163                if (dc->soc->has_nvdisplay)
2164                        enable = 1 << 31;
2165                else
2166                        enable = 1 << 8;
2167
2168                value = SYNCPT_CNTRL_NO_STALL;
2169                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2170
2171                value = enable | syncpt;
2172                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2173        }
2174
2175        if (dc->soc->has_nvdisplay) {
2176                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2177                        DSC_OBUF_UF_INT;
2178                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2179
2180                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2181                        DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2182                        HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2183                        REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2184                        VBLANK_INT | FRAME_END_INT;
2185                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2186
2187                value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2188                        FRAME_END_INT;
2189                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2190
2191                value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2192                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2193
2194                tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2195        } else {
2196                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2197                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2198                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2199
2200                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2201                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2202                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2203
2204                /* initialize timer */
2205                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2206                        WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2207                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2208
2209                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2210                        WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2211                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2212
2213                value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2214                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2215                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2216
2217                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2218                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2219                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2220        }
2221
2222        if (dc->soc->supports_background_color)
2223                tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2224        else
2225                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2226
2227        /* apply pixel clock changes */
2228        if (!dc->soc->has_nvdisplay) {
2229                value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2230                tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2231        }
2232
2233        /* program display mode */
2234        tegra_dc_set_timings(dc, mode);
2235
2236        /* interlacing isn't supported yet, so disable it */
2237        if (dc->soc->supports_interlacing) {
2238                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2239                value &= ~INTERLACE_ENABLE;
2240                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2241        }
2242
2243        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2244        value &= ~DISP_CTRL_MODE_MASK;
2245        value |= DISP_CTRL_MODE_C_DISPLAY;
2246        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2247
2248        if (!dc->soc->has_nvdisplay) {
2249                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2250                value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2251                         PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2252                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2253        }
2254
2255        /* enable underflow reporting and display red for missing pixels */
2256        if (dc->soc->has_nvdisplay) {
2257                value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2258                tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2259        }
2260
2261        if (dc->rgb) {
2262                /* XXX: parameterize? */
2263                value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2264                tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2265        }
2266
2267        tegra_dc_commit(dc);
2268
2269        drm_crtc_vblank_on(crtc);
2270}
2271
2272static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2273                                    struct drm_atomic_state *state)
2274{
2275        unsigned long flags;
2276
2277        tegra_crtc_update_memory_bandwidth(crtc, state, true);
2278
2279        if (crtc->state->event) {
2280                spin_lock_irqsave(&crtc->dev->event_lock, flags);
2281
2282                if (drm_crtc_vblank_get(crtc) != 0)
2283                        drm_crtc_send_vblank_event(crtc, crtc->state->event);
2284                else
2285                        drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2286
2287                spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2288
2289                crtc->state->event = NULL;
2290        }
2291}
2292
2293static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2294                                    struct drm_atomic_state *state)
2295{
2296        struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2297                                                                          crtc);
2298        struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2299        struct tegra_dc *dc = to_tegra_dc(crtc);
2300        u32 value;
2301
2302        value = dc_state->planes << 8 | GENERAL_UPDATE;
2303        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2304        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2305
2306        value = dc_state->planes | GENERAL_ACT_REQ;
2307        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2308        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2309}
2310
2311static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2312{
2313        const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2314        const struct drm_format_info *fmt = state->fb->format;
2315        unsigned int src_w = drm_rect_width(&state->src) >> 16;
2316        unsigned int dst_w = drm_rect_width(&state->dst);
2317
2318        if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2319                return false;
2320
2321        if (soc->supports_cursor)
2322                return true;
2323
2324        if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2325                return false;
2326
2327        return true;
2328}
2329
2330static unsigned long
2331tegra_plane_overlap_mask(struct drm_crtc_state *state,
2332                         const struct drm_plane_state *plane_state)
2333{
2334        const struct drm_plane_state *other_state;
2335        const struct tegra_plane *tegra;
2336        unsigned long overlap_mask = 0;
2337        struct drm_plane *plane;
2338        struct drm_rect rect;
2339
2340        if (!plane_state->visible || !plane_state->fb)
2341                return 0;
2342
2343        /*
2344         * Data-prefetch FIFO will easily help to overcome temporal memory
2345         * pressure if other plane overlaps with the cursor plane.
2346         */
2347        if (tegra_plane_is_cursor(plane_state))
2348                return 0;
2349
2350        drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2351                rect = plane_state->dst;
2352
2353                tegra = to_tegra_plane(other_state->plane);
2354
2355                if (!other_state->visible || !other_state->fb)
2356                        continue;
2357
2358                /*
2359                 * Ignore cursor plane overlaps because it's not practical to
2360                 * assume that it contributes to the bandwidth in overlapping
2361                 * area if window width is small.
2362                 */
2363                if (tegra_plane_is_cursor(other_state))
2364                        continue;
2365
2366                if (drm_rect_intersect(&rect, &other_state->dst))
2367                        overlap_mask |= BIT(tegra->index);
2368        }
2369
2370        return overlap_mask;
2371}
2372
2373static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2374                                                 struct drm_atomic_state *state)
2375{
2376        ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2377        u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2378        bool all_planes_overlap_simultaneously = true;
2379        const struct tegra_plane_state *tegra_state;
2380        const struct drm_plane_state *plane_state;
2381        struct tegra_dc *dc = to_tegra_dc(crtc);
2382        const struct drm_crtc_state *old_state;
2383        struct drm_crtc_state *new_state;
2384        struct tegra_plane *tegra;
2385        struct drm_plane *plane;
2386
2387        /*
2388         * The nv-display uses shared planes.  The algorithm below assumes
2389         * maximum 3 planes per-CRTC, this assumption isn't applicable to
2390         * the nv-display.  Note that T124 support has additional windows,
2391         * but currently they aren't supported by the driver.
2392         */
2393        if (dc->soc->has_nvdisplay)
2394                return 0;
2395
2396        new_state = drm_atomic_get_new_crtc_state(state, crtc);
2397        old_state = drm_atomic_get_old_crtc_state(state, crtc);
2398
2399        /*
2400         * For overlapping planes pixel's data is fetched for each plane at
2401         * the same time, hence bandwidths are accumulated in this case.
2402         * This needs to be taken into account for calculating total bandwidth
2403         * consumed by all planes.
2404         *
2405         * Here we get the overlapping state of each plane, which is a
2406         * bitmask of plane indices telling with what planes there is an
2407         * overlap. Note that bitmask[plane] includes BIT(plane) in order
2408         * to make further code nicer and simpler.
2409         */
2410        drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2411                tegra_state = to_const_tegra_plane_state(plane_state);
2412                tegra = to_tegra_plane(plane);
2413
2414                if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2415                        return -EINVAL;
2416
2417                plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2418                mask = tegra_plane_overlap_mask(new_state, plane_state);
2419                overlap_mask[tegra->index] = mask;
2420
2421                if (hweight_long(mask) != 3)
2422                        all_planes_overlap_simultaneously = false;
2423        }
2424
2425        /*
2426         * Then we calculate maximum bandwidth of each plane state.
2427         * The bandwidth includes the plane BW + BW of the "simultaneously"
2428         * overlapping planes, where "simultaneously" means areas where DC
2429         * fetches from the planes simultaneously during of scan-out process.
2430         *
2431         * For example, if plane A overlaps with planes B and C, but B and C
2432         * don't overlap, then the peak bandwidth will be either in area where
2433         * A-and-B or A-and-C planes overlap.
2434         *
2435         * The plane_peak_bw[] contains peak memory bandwidth values of
2436         * each plane, this information is needed by interconnect provider
2437         * in order to set up latency allowance based on the peak BW, see
2438         * tegra_crtc_update_memory_bandwidth().
2439         */
2440        drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2441                u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2442
2443                /*
2444                 * Note that plane's atomic check doesn't touch the
2445                 * total_peak_memory_bandwidth of enabled plane, hence the
2446                 * current state contains the old bandwidth state from the
2447                 * previous CRTC commit.
2448                 */
2449                tegra_state = to_const_tegra_plane_state(plane_state);
2450                tegra = to_tegra_plane(plane);
2451
2452                for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2453                        if (i == tegra->index)
2454                                continue;
2455
2456                        if (all_planes_overlap_simultaneously)
2457                                overlap_bw += plane_peak_bw[i];
2458                        else
2459                                overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2460                }
2461
2462                new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2463                old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2464
2465                /*
2466                 * If plane's peak bandwidth changed (for example plane isn't
2467                 * overlapped anymore) and plane isn't in the atomic state,
2468                 * then add plane to the state in order to have the bandwidth
2469                 * updated.
2470                 */
2471                if (old_peak_bw != new_peak_bw) {
2472                        struct tegra_plane_state *new_tegra_state;
2473                        struct drm_plane_state *new_plane_state;
2474
2475                        new_plane_state = drm_atomic_get_plane_state(state, plane);
2476                        if (IS_ERR(new_plane_state))
2477                                return PTR_ERR(new_plane_state);
2478
2479                        new_tegra_state = to_tegra_plane_state(new_plane_state);
2480                        new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2481                }
2482        }
2483
2484        return 0;
2485}
2486
2487static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2488                                   struct drm_atomic_state *state)
2489{
2490        int err;
2491
2492        err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2493        if (err)
2494                return err;
2495
2496        return 0;
2497}
2498
2499void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2500                                   struct drm_atomic_state *state)
2501{
2502        /*
2503         * Display bandwidth is allowed to go down only once hardware state
2504         * is known to be armed, i.e. state was committed and VBLANK event
2505         * received.
2506         */
2507        tegra_crtc_update_memory_bandwidth(crtc, state, false);
2508}
2509
2510static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2511        .atomic_check = tegra_crtc_atomic_check,
2512        .atomic_begin = tegra_crtc_atomic_begin,
2513        .atomic_flush = tegra_crtc_atomic_flush,
2514        .atomic_enable = tegra_crtc_atomic_enable,
2515        .atomic_disable = tegra_crtc_atomic_disable,
2516};
2517
2518static irqreturn_t tegra_dc_irq(int irq, void *data)
2519{
2520        struct tegra_dc *dc = data;
2521        unsigned long status;
2522
2523        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2524        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2525
2526        if (status & FRAME_END_INT) {
2527                /*
2528                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2529                */
2530                dc->stats.frames_total++;
2531                dc->stats.frames++;
2532        }
2533
2534        if (status & VBLANK_INT) {
2535                /*
2536                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2537                */
2538                drm_crtc_handle_vblank(&dc->base);
2539                dc->stats.vblank_total++;
2540                dc->stats.vblank++;
2541        }
2542
2543        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2544                /*
2545                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2546                */
2547                dc->stats.underflow_total++;
2548                dc->stats.underflow++;
2549        }
2550
2551        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2552                /*
2553                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2554                */
2555                dc->stats.overflow_total++;
2556                dc->stats.overflow++;
2557        }
2558
2559        if (status & HEAD_UF_INT) {
2560                dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2561                dc->stats.underflow_total++;
2562                dc->stats.underflow++;
2563        }
2564
2565        return IRQ_HANDLED;
2566}
2567
2568static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2569{
2570        unsigned int i;
2571
2572        if (!dc->soc->wgrps)
2573                return true;
2574
2575        for (i = 0; i < dc->soc->num_wgrps; i++) {
2576                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2577
2578                if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2579                        return true;
2580        }
2581
2582        return false;
2583}
2584
2585static int tegra_dc_early_init(struct host1x_client *client)
2586{
2587        struct drm_device *drm = dev_get_drvdata(client->host);
2588        struct tegra_drm *tegra = drm->dev_private;
2589
2590        tegra->num_crtcs++;
2591
2592        return 0;
2593}
2594
2595static int tegra_dc_init(struct host1x_client *client)
2596{
2597        struct drm_device *drm = dev_get_drvdata(client->host);
2598        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2599        struct tegra_dc *dc = host1x_client_to_dc(client);
2600        struct tegra_drm *tegra = drm->dev_private;
2601        struct drm_plane *primary = NULL;
2602        struct drm_plane *cursor = NULL;
2603        int err;
2604
2605        /*
2606         * DC has been reset by now, so VBLANK syncpoint can be released
2607         * for general use.
2608         */
2609        host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2610
2611        /*
2612         * XXX do not register DCs with no window groups because we cannot
2613         * assign a primary plane to them, which in turn will cause KMS to
2614         * crash.
2615         */
2616        if (!tegra_dc_has_window_groups(dc))
2617                return 0;
2618
2619        /*
2620         * Set the display hub as the host1x client parent for the display
2621         * controller. This is needed for the runtime reference counting that
2622         * ensures the display hub is always powered when any of the display
2623         * controllers are.
2624         */
2625        if (dc->soc->has_nvdisplay)
2626                client->parent = &tegra->hub->client;
2627
2628        dc->syncpt = host1x_syncpt_request(client, flags);
2629        if (!dc->syncpt)
2630                dev_warn(dc->dev, "failed to allocate syncpoint\n");
2631
2632        err = host1x_client_iommu_attach(client);
2633        if (err < 0 && err != -ENODEV) {
2634                dev_err(client->dev, "failed to attach to domain: %d\n", err);
2635                return err;
2636        }
2637
2638        if (dc->soc->wgrps)
2639                primary = tegra_dc_add_shared_planes(drm, dc);
2640        else
2641                primary = tegra_dc_add_planes(drm, dc);
2642
2643        if (IS_ERR(primary)) {
2644                err = PTR_ERR(primary);
2645                goto cleanup;
2646        }
2647
2648        if (dc->soc->supports_cursor) {
2649                cursor = tegra_dc_cursor_plane_create(drm, dc);
2650                if (IS_ERR(cursor)) {
2651                        err = PTR_ERR(cursor);
2652                        goto cleanup;
2653                }
2654        } else {
2655                /* dedicate one overlay to mouse cursor */
2656                cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2657                if (IS_ERR(cursor)) {
2658                        err = PTR_ERR(cursor);
2659                        goto cleanup;
2660                }
2661        }
2662
2663        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2664                                        &tegra_crtc_funcs, NULL);
2665        if (err < 0)
2666                goto cleanup;
2667
2668        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2669
2670        /*
2671         * Keep track of the minimum pitch alignment across all display
2672         * controllers.
2673         */
2674        if (dc->soc->pitch_align > tegra->pitch_align)
2675                tegra->pitch_align = dc->soc->pitch_align;
2676
2677        /* track maximum resolution */
2678        if (dc->soc->has_nvdisplay)
2679                drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2680        else
2681                drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2682
2683        err = tegra_dc_rgb_init(drm, dc);
2684        if (err < 0 && err != -ENODEV) {
2685                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2686                goto cleanup;
2687        }
2688
2689        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2690                               dev_name(dc->dev), dc);
2691        if (err < 0) {
2692                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2693                        err);
2694                goto cleanup;
2695        }
2696
2697        /*
2698         * Inherit the DMA parameters (such as maximum segment size) from the
2699         * parent host1x device.
2700         */
2701        client->dev->dma_parms = client->host->dma_parms;
2702
2703        return 0;
2704
2705cleanup:
2706        if (!IS_ERR_OR_NULL(cursor))
2707                drm_plane_cleanup(cursor);
2708
2709        if (!IS_ERR(primary))
2710                drm_plane_cleanup(primary);
2711
2712        host1x_client_iommu_detach(client);
2713        host1x_syncpt_put(dc->syncpt);
2714
2715        return err;
2716}
2717
2718static int tegra_dc_exit(struct host1x_client *client)
2719{
2720        struct tegra_dc *dc = host1x_client_to_dc(client);
2721        int err;
2722
2723        if (!tegra_dc_has_window_groups(dc))
2724                return 0;
2725
2726        /* avoid a dangling pointer just in case this disappears */
2727        client->dev->dma_parms = NULL;
2728
2729        devm_free_irq(dc->dev, dc->irq, dc);
2730
2731        err = tegra_dc_rgb_exit(dc);
2732        if (err) {
2733                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2734                return err;
2735        }
2736
2737        host1x_client_iommu_detach(client);
2738        host1x_syncpt_put(dc->syncpt);
2739
2740        return 0;
2741}
2742
2743static int tegra_dc_late_exit(struct host1x_client *client)
2744{
2745        struct drm_device *drm = dev_get_drvdata(client->host);
2746        struct tegra_drm *tegra = drm->dev_private;
2747
2748        tegra->num_crtcs--;
2749
2750        return 0;
2751}
2752
2753static int tegra_dc_runtime_suspend(struct host1x_client *client)
2754{
2755        struct tegra_dc *dc = host1x_client_to_dc(client);
2756        struct device *dev = client->dev;
2757        int err;
2758
2759        err = reset_control_assert(dc->rst);
2760        if (err < 0) {
2761                dev_err(dev, "failed to assert reset: %d\n", err);
2762                return err;
2763        }
2764
2765        if (dc->soc->has_powergate)
2766                tegra_powergate_power_off(dc->powergate);
2767
2768        clk_disable_unprepare(dc->clk);
2769        pm_runtime_put_sync(dev);
2770
2771        return 0;
2772}
2773
2774static int tegra_dc_runtime_resume(struct host1x_client *client)
2775{
2776        struct tegra_dc *dc = host1x_client_to_dc(client);
2777        struct device *dev = client->dev;
2778        int err;
2779
2780        err = pm_runtime_resume_and_get(dev);
2781        if (err < 0) {
2782                dev_err(dev, "failed to get runtime PM: %d\n", err);
2783                return err;
2784        }
2785
2786        if (dc->soc->has_powergate) {
2787                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2788                                                        dc->rst);
2789                if (err < 0) {
2790                        dev_err(dev, "failed to power partition: %d\n", err);
2791                        goto put_rpm;
2792                }
2793        } else {
2794                err = clk_prepare_enable(dc->clk);
2795                if (err < 0) {
2796                        dev_err(dev, "failed to enable clock: %d\n", err);
2797                        goto put_rpm;
2798                }
2799
2800                err = reset_control_deassert(dc->rst);
2801                if (err < 0) {
2802                        dev_err(dev, "failed to deassert reset: %d\n", err);
2803                        goto disable_clk;
2804                }
2805        }
2806
2807        return 0;
2808
2809disable_clk:
2810        clk_disable_unprepare(dc->clk);
2811put_rpm:
2812        pm_runtime_put_sync(dev);
2813        return err;
2814}
2815
2816static const struct host1x_client_ops dc_client_ops = {
2817        .early_init = tegra_dc_early_init,
2818        .init = tegra_dc_init,
2819        .exit = tegra_dc_exit,
2820        .late_exit = tegra_dc_late_exit,
2821        .suspend = tegra_dc_runtime_suspend,
2822        .resume = tegra_dc_runtime_resume,
2823};
2824
2825static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2826        .supports_background_color = false,
2827        .supports_interlacing = false,
2828        .supports_cursor = false,
2829        .supports_block_linear = false,
2830        .supports_sector_layout = false,
2831        .has_legacy_blending = true,
2832        .pitch_align = 8,
2833        .has_powergate = false,
2834        .coupled_pm = true,
2835        .has_nvdisplay = false,
2836        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2837        .primary_formats = tegra20_primary_formats,
2838        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2839        .overlay_formats = tegra20_overlay_formats,
2840        .modifiers = tegra20_modifiers,
2841        .has_win_a_without_filters = true,
2842        .has_win_b_vfilter_mem_client = true,
2843        .has_win_c_without_vert_filter = true,
2844        .plane_tiled_memory_bandwidth_x2 = false,
2845        .has_pll_d2_out0 = false,
2846};
2847
2848static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2849        .supports_background_color = false,
2850        .supports_interlacing = false,
2851        .supports_cursor = false,
2852        .supports_block_linear = false,
2853        .supports_sector_layout = false,
2854        .has_legacy_blending = true,
2855        .pitch_align = 8,
2856        .has_powergate = false,
2857        .coupled_pm = false,
2858        .has_nvdisplay = false,
2859        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2860        .primary_formats = tegra20_primary_formats,
2861        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2862        .overlay_formats = tegra20_overlay_formats,
2863        .modifiers = tegra20_modifiers,
2864        .has_win_a_without_filters = false,
2865        .has_win_b_vfilter_mem_client = true,
2866        .has_win_c_without_vert_filter = false,
2867        .plane_tiled_memory_bandwidth_x2 = true,
2868        .has_pll_d2_out0 = true,
2869};
2870
2871static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2872        .supports_background_color = false,
2873        .supports_interlacing = false,
2874        .supports_cursor = false,
2875        .supports_block_linear = false,
2876        .supports_sector_layout = false,
2877        .has_legacy_blending = true,
2878        .pitch_align = 64,
2879        .has_powergate = true,
2880        .coupled_pm = false,
2881        .has_nvdisplay = false,
2882        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2883        .primary_formats = tegra114_primary_formats,
2884        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2885        .overlay_formats = tegra114_overlay_formats,
2886        .modifiers = tegra20_modifiers,
2887        .has_win_a_without_filters = false,
2888        .has_win_b_vfilter_mem_client = false,
2889        .has_win_c_without_vert_filter = false,
2890        .plane_tiled_memory_bandwidth_x2 = true,
2891        .has_pll_d2_out0 = true,
2892};
2893
2894static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2895        .supports_background_color = true,
2896        .supports_interlacing = true,
2897        .supports_cursor = true,
2898        .supports_block_linear = true,
2899        .supports_sector_layout = false,
2900        .has_legacy_blending = false,
2901        .pitch_align = 64,
2902        .has_powergate = true,
2903        .coupled_pm = false,
2904        .has_nvdisplay = false,
2905        .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2906        .primary_formats = tegra124_primary_formats,
2907        .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2908        .overlay_formats = tegra124_overlay_formats,
2909        .modifiers = tegra124_modifiers,
2910        .has_win_a_without_filters = false,
2911        .has_win_b_vfilter_mem_client = false,
2912        .has_win_c_without_vert_filter = false,
2913        .plane_tiled_memory_bandwidth_x2 = false,
2914        .has_pll_d2_out0 = true,
2915};
2916
2917static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2918        .supports_background_color = true,
2919        .supports_interlacing = true,
2920        .supports_cursor = true,
2921        .supports_block_linear = true,
2922        .supports_sector_layout = false,
2923        .has_legacy_blending = false,
2924        .pitch_align = 64,
2925        .has_powergate = true,
2926        .coupled_pm = false,
2927        .has_nvdisplay = false,
2928        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2929        .primary_formats = tegra114_primary_formats,
2930        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2931        .overlay_formats = tegra114_overlay_formats,
2932        .modifiers = tegra124_modifiers,
2933        .has_win_a_without_filters = false,
2934        .has_win_b_vfilter_mem_client = false,
2935        .has_win_c_without_vert_filter = false,
2936        .plane_tiled_memory_bandwidth_x2 = false,
2937        .has_pll_d2_out0 = true,
2938};
2939
2940static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2941        {
2942                .index = 0,
2943                .dc = 0,
2944                .windows = (const unsigned int[]) { 0 },
2945                .num_windows = 1,
2946        }, {
2947                .index = 1,
2948                .dc = 1,
2949                .windows = (const unsigned int[]) { 1 },
2950                .num_windows = 1,
2951        }, {
2952                .index = 2,
2953                .dc = 1,
2954                .windows = (const unsigned int[]) { 2 },
2955                .num_windows = 1,
2956        }, {
2957                .index = 3,
2958                .dc = 2,
2959                .windows = (const unsigned int[]) { 3 },
2960                .num_windows = 1,
2961        }, {
2962                .index = 4,
2963                .dc = 2,
2964                .windows = (const unsigned int[]) { 4 },
2965                .num_windows = 1,
2966        }, {
2967                .index = 5,
2968                .dc = 2,
2969                .windows = (const unsigned int[]) { 5 },
2970                .num_windows = 1,
2971        },
2972};
2973
2974static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2975        .supports_background_color = true,
2976        .supports_interlacing = true,
2977        .supports_cursor = true,
2978        .supports_block_linear = true,
2979        .supports_sector_layout = false,
2980        .has_legacy_blending = false,
2981        .pitch_align = 64,
2982        .has_powergate = false,
2983        .coupled_pm = false,
2984        .has_nvdisplay = true,
2985        .wgrps = tegra186_dc_wgrps,
2986        .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2987        .plane_tiled_memory_bandwidth_x2 = false,
2988        .has_pll_d2_out0 = false,
2989};
2990
2991static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2992        {
2993                .index = 0,
2994                .dc = 0,
2995                .windows = (const unsigned int[]) { 0 },
2996                .num_windows = 1,
2997        }, {
2998                .index = 1,
2999                .dc = 1,
3000                .windows = (const unsigned int[]) { 1 },
3001                .num_windows = 1,
3002        }, {
3003                .index = 2,
3004                .dc = 1,
3005                .windows = (const unsigned int[]) { 2 },
3006                .num_windows = 1,
3007        }, {
3008                .index = 3,
3009                .dc = 2,
3010                .windows = (const unsigned int[]) { 3 },
3011                .num_windows = 1,
3012        }, {
3013                .index = 4,
3014                .dc = 2,
3015                .windows = (const unsigned int[]) { 4 },
3016                .num_windows = 1,
3017        }, {
3018                .index = 5,
3019                .dc = 2,
3020                .windows = (const unsigned int[]) { 5 },
3021                .num_windows = 1,
3022        },
3023};
3024
3025static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3026        .supports_background_color = true,
3027        .supports_interlacing = true,
3028        .supports_cursor = true,
3029        .supports_block_linear = true,
3030        .supports_sector_layout = true,
3031        .has_legacy_blending = false,
3032        .pitch_align = 64,
3033        .has_powergate = false,
3034        .coupled_pm = false,
3035        .has_nvdisplay = true,
3036        .wgrps = tegra194_dc_wgrps,
3037        .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3038        .plane_tiled_memory_bandwidth_x2 = false,
3039        .has_pll_d2_out0 = false,
3040};
3041
3042static const struct of_device_id tegra_dc_of_match[] = {
3043        {
3044                .compatible = "nvidia,tegra194-dc",
3045                .data = &tegra194_dc_soc_info,
3046        }, {
3047                .compatible = "nvidia,tegra186-dc",
3048                .data = &tegra186_dc_soc_info,
3049        }, {
3050                .compatible = "nvidia,tegra210-dc",
3051                .data = &tegra210_dc_soc_info,
3052        }, {
3053                .compatible = "nvidia,tegra124-dc",
3054                .data = &tegra124_dc_soc_info,
3055        }, {
3056                .compatible = "nvidia,tegra114-dc",
3057                .data = &tegra114_dc_soc_info,
3058        }, {
3059                .compatible = "nvidia,tegra30-dc",
3060                .data = &tegra30_dc_soc_info,
3061        }, {
3062                .compatible = "nvidia,tegra20-dc",
3063                .data = &tegra20_dc_soc_info,
3064        }, {
3065                /* sentinel */
3066        }
3067};
3068MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3069
3070static int tegra_dc_parse_dt(struct tegra_dc *dc)
3071{
3072        struct device_node *np;
3073        u32 value = 0;
3074        int err;
3075
3076        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3077        if (err < 0) {
3078                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3079
3080                /*
3081                 * If the nvidia,head property isn't present, try to find the
3082                 * correct head number by looking up the position of this
3083                 * display controller's node within the device tree. Assuming
3084                 * that the nodes are ordered properly in the DTS file and
3085                 * that the translation into a flattened device tree blob
3086                 * preserves that ordering this will actually yield the right
3087                 * head number.
3088                 *
3089                 * If those assumptions don't hold, this will still work for
3090                 * cases where only a single display controller is used.
3091                 */
3092                for_each_matching_node(np, tegra_dc_of_match) {
3093                        if (np == dc->dev->of_node) {
3094                                of_node_put(np);
3095                                break;
3096                        }
3097
3098                        value++;
3099                }
3100        }
3101
3102        dc->pipe = value;
3103
3104        return 0;
3105}
3106
3107static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3108{
3109        struct tegra_dc *dc = dev_get_drvdata(dev);
3110        unsigned int pipe = (unsigned long)(void *)data;
3111
3112        return dc->pipe == pipe;
3113}
3114
3115static int tegra_dc_couple(struct tegra_dc *dc)
3116{
3117        /*
3118         * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3119         * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3120         * POWER_CONTROL registers during CRTC enabling.
3121         */
3122        if (dc->soc->coupled_pm && dc->pipe == 1) {
3123                struct device *companion;
3124                struct tegra_dc *parent;
3125
3126                companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3127                                               tegra_dc_match_by_pipe);
3128                if (!companion)
3129                        return -EPROBE_DEFER;
3130
3131                parent = dev_get_drvdata(companion);
3132                dc->client.parent = &parent->client;
3133
3134                dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3135        }
3136
3137        return 0;
3138}
3139
3140static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3141{
3142        struct tegra_core_opp_params opp_params = {};
3143        int err;
3144
3145        err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3146        if (err && err != -ENODEV)
3147                return err;
3148
3149        if (err)
3150                dc->has_opp_table = false;
3151        else
3152                dc->has_opp_table = true;
3153
3154        return 0;
3155}
3156
3157static int tegra_dc_probe(struct platform_device *pdev)
3158{
3159        u64 dma_mask = dma_get_mask(pdev->dev.parent);
3160        struct tegra_dc *dc;
3161        int err;
3162
3163        err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3164        if (err < 0) {
3165                dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3166                return err;
3167        }
3168
3169        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3170        if (!dc)
3171                return -ENOMEM;
3172
3173        dc->soc = of_device_get_match_data(&pdev->dev);
3174
3175        INIT_LIST_HEAD(&dc->list);
3176        dc->dev = &pdev->dev;
3177
3178        err = tegra_dc_parse_dt(dc);
3179        if (err < 0)
3180                return err;
3181
3182        err = tegra_dc_couple(dc);
3183        if (err < 0)
3184                return err;
3185
3186        dc->clk = devm_clk_get(&pdev->dev, NULL);
3187        if (IS_ERR(dc->clk)) {
3188                dev_err(&pdev->dev, "failed to get clock\n");
3189                return PTR_ERR(dc->clk);
3190        }
3191
3192        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3193        if (IS_ERR(dc->rst)) {
3194                dev_err(&pdev->dev, "failed to get reset\n");
3195                return PTR_ERR(dc->rst);
3196        }
3197
3198        /* assert reset and disable clock */
3199        err = clk_prepare_enable(dc->clk);
3200        if (err < 0)
3201                return err;
3202
3203        usleep_range(2000, 4000);
3204
3205        err = reset_control_assert(dc->rst);
3206        if (err < 0)
3207                return err;
3208
3209        usleep_range(2000, 4000);
3210
3211        clk_disable_unprepare(dc->clk);
3212
3213        if (dc->soc->has_powergate) {
3214                if (dc->pipe == 0)
3215                        dc->powergate = TEGRA_POWERGATE_DIS;
3216                else
3217                        dc->powergate = TEGRA_POWERGATE_DISB;
3218
3219                tegra_powergate_power_off(dc->powergate);
3220        }
3221
3222        err = tegra_dc_init_opp_table(dc);
3223        if (err < 0)
3224                return err;
3225
3226        dc->regs = devm_platform_ioremap_resource(pdev, 0);
3227        if (IS_ERR(dc->regs))
3228                return PTR_ERR(dc->regs);
3229
3230        dc->irq = platform_get_irq(pdev, 0);
3231        if (dc->irq < 0)
3232                return -ENXIO;
3233
3234        err = tegra_dc_rgb_probe(dc);
3235        if (err < 0 && err != -ENODEV)
3236                return dev_err_probe(&pdev->dev, err,
3237                                     "failed to probe RGB output\n");
3238
3239        platform_set_drvdata(pdev, dc);
3240        pm_runtime_enable(&pdev->dev);
3241
3242        INIT_LIST_HEAD(&dc->client.list);
3243        dc->client.ops = &dc_client_ops;
3244        dc->client.dev = &pdev->dev;
3245
3246        err = host1x_client_register(&dc->client);
3247        if (err < 0) {
3248                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3249                        err);
3250                goto disable_pm;
3251        }
3252
3253        return 0;
3254
3255disable_pm:
3256        pm_runtime_disable(&pdev->dev);
3257        tegra_dc_rgb_remove(dc);
3258
3259        return err;
3260}
3261
3262static int tegra_dc_remove(struct platform_device *pdev)
3263{
3264        struct tegra_dc *dc = platform_get_drvdata(pdev);
3265        int err;
3266
3267        err = host1x_client_unregister(&dc->client);
3268        if (err < 0) {
3269                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3270                        err);
3271                return err;
3272        }
3273
3274        err = tegra_dc_rgb_remove(dc);
3275        if (err < 0) {
3276                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3277                return err;
3278        }
3279
3280        pm_runtime_disable(&pdev->dev);
3281
3282        return 0;
3283}
3284
3285struct platform_driver tegra_dc_driver = {
3286        .driver = {
3287                .name = "tegra-dc",
3288                .of_match_table = tegra_dc_of_match,
3289        },
3290        .probe = tegra_dc_probe,
3291        .remove = tegra_dc_remove,
3292};
3293