linux/drivers/hid/hid-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <asm/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
  43
  44int hid_debug = 0;
  45module_param_named(debug, hid_debug, int, 0600);
  46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  47EXPORT_SYMBOL_GPL(hid_debug);
  48
  49static int hid_ignore_special_drivers = 0;
  50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  52
  53/*
  54 * Register a new report for a device.
  55 */
  56
  57struct hid_report *hid_register_report(struct hid_device *device,
  58                                       unsigned int type, unsigned int id,
  59                                       unsigned int application)
  60{
  61        struct hid_report_enum *report_enum = device->report_enum + type;
  62        struct hid_report *report;
  63
  64        if (id >= HID_MAX_IDS)
  65                return NULL;
  66        if (report_enum->report_id_hash[id])
  67                return report_enum->report_id_hash[id];
  68
  69        report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  70        if (!report)
  71                return NULL;
  72
  73        if (id != 0)
  74                report_enum->numbered = 1;
  75
  76        report->id = id;
  77        report->type = type;
  78        report->size = 0;
  79        report->device = device;
  80        report->application = application;
  81        report_enum->report_id_hash[id] = report;
  82
  83        list_add_tail(&report->list, &report_enum->report_list);
  84        INIT_LIST_HEAD(&report->field_entry_list);
  85
  86        return report;
  87}
  88EXPORT_SYMBOL_GPL(hid_register_report);
  89
  90/*
  91 * Register a new field for this report.
  92 */
  93
  94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
  95{
  96        struct hid_field *field;
  97
  98        if (report->maxfield == HID_MAX_FIELDS) {
  99                hid_err(report->device, "too many fields in report\n");
 100                return NULL;
 101        }
 102
 103        field = kzalloc((sizeof(struct hid_field) +
 104                         usages * sizeof(struct hid_usage) +
 105                         3 * usages * sizeof(unsigned int)), GFP_KERNEL);
 106        if (!field)
 107                return NULL;
 108
 109        field->index = report->maxfield++;
 110        report->field[field->index] = field;
 111        field->usage = (struct hid_usage *)(field + 1);
 112        field->value = (s32 *)(field->usage + usages);
 113        field->new_value = (s32 *)(field->value + usages);
 114        field->usages_priorities = (s32 *)(field->new_value + usages);
 115        field->report = report;
 116
 117        return field;
 118}
 119
 120/*
 121 * Open a collection. The type/usage is pushed on the stack.
 122 */
 123
 124static int open_collection(struct hid_parser *parser, unsigned type)
 125{
 126        struct hid_collection *collection;
 127        unsigned usage;
 128        int collection_index;
 129
 130        usage = parser->local.usage[0];
 131
 132        if (parser->collection_stack_ptr == parser->collection_stack_size) {
 133                unsigned int *collection_stack;
 134                unsigned int new_size = parser->collection_stack_size +
 135                                        HID_COLLECTION_STACK_SIZE;
 136
 137                collection_stack = krealloc(parser->collection_stack,
 138                                            new_size * sizeof(unsigned int),
 139                                            GFP_KERNEL);
 140                if (!collection_stack)
 141                        return -ENOMEM;
 142
 143                parser->collection_stack = collection_stack;
 144                parser->collection_stack_size = new_size;
 145        }
 146
 147        if (parser->device->maxcollection == parser->device->collection_size) {
 148                collection = kmalloc(
 149                                array3_size(sizeof(struct hid_collection),
 150                                            parser->device->collection_size,
 151                                            2),
 152                                GFP_KERNEL);
 153                if (collection == NULL) {
 154                        hid_err(parser->device, "failed to reallocate collection array\n");
 155                        return -ENOMEM;
 156                }
 157                memcpy(collection, parser->device->collection,
 158                        sizeof(struct hid_collection) *
 159                        parser->device->collection_size);
 160                memset(collection + parser->device->collection_size, 0,
 161                        sizeof(struct hid_collection) *
 162                        parser->device->collection_size);
 163                kfree(parser->device->collection);
 164                parser->device->collection = collection;
 165                parser->device->collection_size *= 2;
 166        }
 167
 168        parser->collection_stack[parser->collection_stack_ptr++] =
 169                parser->device->maxcollection;
 170
 171        collection_index = parser->device->maxcollection++;
 172        collection = parser->device->collection + collection_index;
 173        collection->type = type;
 174        collection->usage = usage;
 175        collection->level = parser->collection_stack_ptr - 1;
 176        collection->parent_idx = (collection->level == 0) ? -1 :
 177                parser->collection_stack[collection->level - 1];
 178
 179        if (type == HID_COLLECTION_APPLICATION)
 180                parser->device->maxapplication++;
 181
 182        return 0;
 183}
 184
 185/*
 186 * Close a collection.
 187 */
 188
 189static int close_collection(struct hid_parser *parser)
 190{
 191        if (!parser->collection_stack_ptr) {
 192                hid_err(parser->device, "collection stack underflow\n");
 193                return -EINVAL;
 194        }
 195        parser->collection_stack_ptr--;
 196        return 0;
 197}
 198
 199/*
 200 * Climb up the stack, search for the specified collection type
 201 * and return the usage.
 202 */
 203
 204static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 205{
 206        struct hid_collection *collection = parser->device->collection;
 207        int n;
 208
 209        for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 210                unsigned index = parser->collection_stack[n];
 211                if (collection[index].type == type)
 212                        return collection[index].usage;
 213        }
 214        return 0; /* we know nothing about this usage type */
 215}
 216
 217/*
 218 * Concatenate usage which defines 16 bits or less with the
 219 * currently defined usage page to form a 32 bit usage
 220 */
 221
 222static void complete_usage(struct hid_parser *parser, unsigned int index)
 223{
 224        parser->local.usage[index] &= 0xFFFF;
 225        parser->local.usage[index] |=
 226                (parser->global.usage_page & 0xFFFF) << 16;
 227}
 228
 229/*
 230 * Add a usage to the temporary parser table.
 231 */
 232
 233static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 234{
 235        if (parser->local.usage_index >= HID_MAX_USAGES) {
 236                hid_err(parser->device, "usage index exceeded\n");
 237                return -1;
 238        }
 239        parser->local.usage[parser->local.usage_index] = usage;
 240
 241        /*
 242         * If Usage item only includes usage id, concatenate it with
 243         * currently defined usage page
 244         */
 245        if (size <= 2)
 246                complete_usage(parser, parser->local.usage_index);
 247
 248        parser->local.usage_size[parser->local.usage_index] = size;
 249        parser->local.collection_index[parser->local.usage_index] =
 250                parser->collection_stack_ptr ?
 251                parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 252        parser->local.usage_index++;
 253        return 0;
 254}
 255
 256/*
 257 * Register a new field for this report.
 258 */
 259
 260static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 261{
 262        struct hid_report *report;
 263        struct hid_field *field;
 264        unsigned int usages;
 265        unsigned int offset;
 266        unsigned int i;
 267        unsigned int application;
 268
 269        application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 270
 271        report = hid_register_report(parser->device, report_type,
 272                                     parser->global.report_id, application);
 273        if (!report) {
 274                hid_err(parser->device, "hid_register_report failed\n");
 275                return -1;
 276        }
 277
 278        /* Handle both signed and unsigned cases properly */
 279        if ((parser->global.logical_minimum < 0 &&
 280                parser->global.logical_maximum <
 281                parser->global.logical_minimum) ||
 282                (parser->global.logical_minimum >= 0 &&
 283                (__u32)parser->global.logical_maximum <
 284                (__u32)parser->global.logical_minimum)) {
 285                dbg_hid("logical range invalid 0x%x 0x%x\n",
 286                        parser->global.logical_minimum,
 287                        parser->global.logical_maximum);
 288                return -1;
 289        }
 290
 291        offset = report->size;
 292        report->size += parser->global.report_size * parser->global.report_count;
 293
 294        /* Total size check: Allow for possible report index byte */
 295        if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
 296                hid_err(parser->device, "report is too long\n");
 297                return -1;
 298        }
 299
 300        if (!parser->local.usage_index) /* Ignore padding fields */
 301                return 0;
 302
 303        usages = max_t(unsigned, parser->local.usage_index,
 304                                 parser->global.report_count);
 305
 306        field = hid_register_field(report, usages);
 307        if (!field)
 308                return 0;
 309
 310        field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 311        field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 312        field->application = application;
 313
 314        for (i = 0; i < usages; i++) {
 315                unsigned j = i;
 316                /* Duplicate the last usage we parsed if we have excess values */
 317                if (i >= parser->local.usage_index)
 318                        j = parser->local.usage_index - 1;
 319                field->usage[i].hid = parser->local.usage[j];
 320                field->usage[i].collection_index =
 321                        parser->local.collection_index[j];
 322                field->usage[i].usage_index = i;
 323                field->usage[i].resolution_multiplier = 1;
 324        }
 325
 326        field->maxusage = usages;
 327        field->flags = flags;
 328        field->report_offset = offset;
 329        field->report_type = report_type;
 330        field->report_size = parser->global.report_size;
 331        field->report_count = parser->global.report_count;
 332        field->logical_minimum = parser->global.logical_minimum;
 333        field->logical_maximum = parser->global.logical_maximum;
 334        field->physical_minimum = parser->global.physical_minimum;
 335        field->physical_maximum = parser->global.physical_maximum;
 336        field->unit_exponent = parser->global.unit_exponent;
 337        field->unit = parser->global.unit;
 338
 339        return 0;
 340}
 341
 342/*
 343 * Read data value from item.
 344 */
 345
 346static u32 item_udata(struct hid_item *item)
 347{
 348        switch (item->size) {
 349        case 1: return item->data.u8;
 350        case 2: return item->data.u16;
 351        case 4: return item->data.u32;
 352        }
 353        return 0;
 354}
 355
 356static s32 item_sdata(struct hid_item *item)
 357{
 358        switch (item->size) {
 359        case 1: return item->data.s8;
 360        case 2: return item->data.s16;
 361        case 4: return item->data.s32;
 362        }
 363        return 0;
 364}
 365
 366/*
 367 * Process a global item.
 368 */
 369
 370static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 371{
 372        __s32 raw_value;
 373        switch (item->tag) {
 374        case HID_GLOBAL_ITEM_TAG_PUSH:
 375
 376                if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 377                        hid_err(parser->device, "global environment stack overflow\n");
 378                        return -1;
 379                }
 380
 381                memcpy(parser->global_stack + parser->global_stack_ptr++,
 382                        &parser->global, sizeof(struct hid_global));
 383                return 0;
 384
 385        case HID_GLOBAL_ITEM_TAG_POP:
 386
 387                if (!parser->global_stack_ptr) {
 388                        hid_err(parser->device, "global environment stack underflow\n");
 389                        return -1;
 390                }
 391
 392                memcpy(&parser->global, parser->global_stack +
 393                        --parser->global_stack_ptr, sizeof(struct hid_global));
 394                return 0;
 395
 396        case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 397                parser->global.usage_page = item_udata(item);
 398                return 0;
 399
 400        case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 401                parser->global.logical_minimum = item_sdata(item);
 402                return 0;
 403
 404        case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 405                if (parser->global.logical_minimum < 0)
 406                        parser->global.logical_maximum = item_sdata(item);
 407                else
 408                        parser->global.logical_maximum = item_udata(item);
 409                return 0;
 410
 411        case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 412                parser->global.physical_minimum = item_sdata(item);
 413                return 0;
 414
 415        case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 416                if (parser->global.physical_minimum < 0)
 417                        parser->global.physical_maximum = item_sdata(item);
 418                else
 419                        parser->global.physical_maximum = item_udata(item);
 420                return 0;
 421
 422        case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 423                /* Many devices provide unit exponent as a two's complement
 424                 * nibble due to the common misunderstanding of HID
 425                 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 426                 * both this and the standard encoding. */
 427                raw_value = item_sdata(item);
 428                if (!(raw_value & 0xfffffff0))
 429                        parser->global.unit_exponent = hid_snto32(raw_value, 4);
 430                else
 431                        parser->global.unit_exponent = raw_value;
 432                return 0;
 433
 434        case HID_GLOBAL_ITEM_TAG_UNIT:
 435                parser->global.unit = item_udata(item);
 436                return 0;
 437
 438        case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 439                parser->global.report_size = item_udata(item);
 440                if (parser->global.report_size > 256) {
 441                        hid_err(parser->device, "invalid report_size %d\n",
 442                                        parser->global.report_size);
 443                        return -1;
 444                }
 445                return 0;
 446
 447        case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 448                parser->global.report_count = item_udata(item);
 449                if (parser->global.report_count > HID_MAX_USAGES) {
 450                        hid_err(parser->device, "invalid report_count %d\n",
 451                                        parser->global.report_count);
 452                        return -1;
 453                }
 454                return 0;
 455
 456        case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 457                parser->global.report_id = item_udata(item);
 458                if (parser->global.report_id == 0 ||
 459                    parser->global.report_id >= HID_MAX_IDS) {
 460                        hid_err(parser->device, "report_id %u is invalid\n",
 461                                parser->global.report_id);
 462                        return -1;
 463                }
 464                return 0;
 465
 466        default:
 467                hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 468                return -1;
 469        }
 470}
 471
 472/*
 473 * Process a local item.
 474 */
 475
 476static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 477{
 478        __u32 data;
 479        unsigned n;
 480        __u32 count;
 481
 482        data = item_udata(item);
 483
 484        switch (item->tag) {
 485        case HID_LOCAL_ITEM_TAG_DELIMITER:
 486
 487                if (data) {
 488                        /*
 489                         * We treat items before the first delimiter
 490                         * as global to all usage sets (branch 0).
 491                         * In the moment we process only these global
 492                         * items and the first delimiter set.
 493                         */
 494                        if (parser->local.delimiter_depth != 0) {
 495                                hid_err(parser->device, "nested delimiters\n");
 496                                return -1;
 497                        }
 498                        parser->local.delimiter_depth++;
 499                        parser->local.delimiter_branch++;
 500                } else {
 501                        if (parser->local.delimiter_depth < 1) {
 502                                hid_err(parser->device, "bogus close delimiter\n");
 503                                return -1;
 504                        }
 505                        parser->local.delimiter_depth--;
 506                }
 507                return 0;
 508
 509        case HID_LOCAL_ITEM_TAG_USAGE:
 510
 511                if (parser->local.delimiter_branch > 1) {
 512                        dbg_hid("alternative usage ignored\n");
 513                        return 0;
 514                }
 515
 516                return hid_add_usage(parser, data, item->size);
 517
 518        case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 519
 520                if (parser->local.delimiter_branch > 1) {
 521                        dbg_hid("alternative usage ignored\n");
 522                        return 0;
 523                }
 524
 525                parser->local.usage_minimum = data;
 526                return 0;
 527
 528        case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 529
 530                if (parser->local.delimiter_branch > 1) {
 531                        dbg_hid("alternative usage ignored\n");
 532                        return 0;
 533                }
 534
 535                count = data - parser->local.usage_minimum;
 536                if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 537                        /*
 538                         * We do not warn if the name is not set, we are
 539                         * actually pre-scanning the device.
 540                         */
 541                        if (dev_name(&parser->device->dev))
 542                                hid_warn(parser->device,
 543                                         "ignoring exceeding usage max\n");
 544                        data = HID_MAX_USAGES - parser->local.usage_index +
 545                                parser->local.usage_minimum - 1;
 546                        if (data <= 0) {
 547                                hid_err(parser->device,
 548                                        "no more usage index available\n");
 549                                return -1;
 550                        }
 551                }
 552
 553                for (n = parser->local.usage_minimum; n <= data; n++)
 554                        if (hid_add_usage(parser, n, item->size)) {
 555                                dbg_hid("hid_add_usage failed\n");
 556                                return -1;
 557                        }
 558                return 0;
 559
 560        default:
 561
 562                dbg_hid("unknown local item tag 0x%x\n", item->tag);
 563                return 0;
 564        }
 565        return 0;
 566}
 567
 568/*
 569 * Concatenate Usage Pages into Usages where relevant:
 570 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 571 * concatenates the last declared Usage Page with a Usage to form a complete
 572 * usage value."
 573 */
 574
 575static void hid_concatenate_last_usage_page(struct hid_parser *parser)
 576{
 577        int i;
 578        unsigned int usage_page;
 579        unsigned int current_page;
 580
 581        if (!parser->local.usage_index)
 582                return;
 583
 584        usage_page = parser->global.usage_page;
 585
 586        /*
 587         * Concatenate usage page again only if last declared Usage Page
 588         * has not been already used in previous usages concatenation
 589         */
 590        for (i = parser->local.usage_index - 1; i >= 0; i--) {
 591                if (parser->local.usage_size[i] > 2)
 592                        /* Ignore extended usages */
 593                        continue;
 594
 595                current_page = parser->local.usage[i] >> 16;
 596                if (current_page == usage_page)
 597                        break;
 598
 599                complete_usage(parser, i);
 600        }
 601}
 602
 603/*
 604 * Process a main item.
 605 */
 606
 607static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 608{
 609        __u32 data;
 610        int ret;
 611
 612        hid_concatenate_last_usage_page(parser);
 613
 614        data = item_udata(item);
 615
 616        switch (item->tag) {
 617        case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 618                ret = open_collection(parser, data & 0xff);
 619                break;
 620        case HID_MAIN_ITEM_TAG_END_COLLECTION:
 621                ret = close_collection(parser);
 622                break;
 623        case HID_MAIN_ITEM_TAG_INPUT:
 624                ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 625                break;
 626        case HID_MAIN_ITEM_TAG_OUTPUT:
 627                ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 628                break;
 629        case HID_MAIN_ITEM_TAG_FEATURE:
 630                ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 631                break;
 632        default:
 633                hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 634                ret = 0;
 635        }
 636
 637        memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
 638
 639        return ret;
 640}
 641
 642/*
 643 * Process a reserved item.
 644 */
 645
 646static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 647{
 648        dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 649        return 0;
 650}
 651
 652/*
 653 * Free a report and all registered fields. The field->usage and
 654 * field->value table's are allocated behind the field, so we need
 655 * only to free(field) itself.
 656 */
 657
 658static void hid_free_report(struct hid_report *report)
 659{
 660        unsigned n;
 661
 662        kfree(report->field_entries);
 663
 664        for (n = 0; n < report->maxfield; n++)
 665                kfree(report->field[n]);
 666        kfree(report);
 667}
 668
 669/*
 670 * Close report. This function returns the device
 671 * state to the point prior to hid_open_report().
 672 */
 673static void hid_close_report(struct hid_device *device)
 674{
 675        unsigned i, j;
 676
 677        for (i = 0; i < HID_REPORT_TYPES; i++) {
 678                struct hid_report_enum *report_enum = device->report_enum + i;
 679
 680                for (j = 0; j < HID_MAX_IDS; j++) {
 681                        struct hid_report *report = report_enum->report_id_hash[j];
 682                        if (report)
 683                                hid_free_report(report);
 684                }
 685                memset(report_enum, 0, sizeof(*report_enum));
 686                INIT_LIST_HEAD(&report_enum->report_list);
 687        }
 688
 689        kfree(device->rdesc);
 690        device->rdesc = NULL;
 691        device->rsize = 0;
 692
 693        kfree(device->collection);
 694        device->collection = NULL;
 695        device->collection_size = 0;
 696        device->maxcollection = 0;
 697        device->maxapplication = 0;
 698
 699        device->status &= ~HID_STAT_PARSED;
 700}
 701
 702/*
 703 * Free a device structure, all reports, and all fields.
 704 */
 705
 706static void hid_device_release(struct device *dev)
 707{
 708        struct hid_device *hid = to_hid_device(dev);
 709
 710        hid_close_report(hid);
 711        kfree(hid->dev_rdesc);
 712        kfree(hid);
 713}
 714
 715/*
 716 * Fetch a report description item from the data stream. We support long
 717 * items, though they are not used yet.
 718 */
 719
 720static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 721{
 722        u8 b;
 723
 724        if ((end - start) <= 0)
 725                return NULL;
 726
 727        b = *start++;
 728
 729        item->type = (b >> 2) & 3;
 730        item->tag  = (b >> 4) & 15;
 731
 732        if (item->tag == HID_ITEM_TAG_LONG) {
 733
 734                item->format = HID_ITEM_FORMAT_LONG;
 735
 736                if ((end - start) < 2)
 737                        return NULL;
 738
 739                item->size = *start++;
 740                item->tag  = *start++;
 741
 742                if ((end - start) < item->size)
 743                        return NULL;
 744
 745                item->data.longdata = start;
 746                start += item->size;
 747                return start;
 748        }
 749
 750        item->format = HID_ITEM_FORMAT_SHORT;
 751        item->size = b & 3;
 752
 753        switch (item->size) {
 754        case 0:
 755                return start;
 756
 757        case 1:
 758                if ((end - start) < 1)
 759                        return NULL;
 760                item->data.u8 = *start++;
 761                return start;
 762
 763        case 2:
 764                if ((end - start) < 2)
 765                        return NULL;
 766                item->data.u16 = get_unaligned_le16(start);
 767                start = (__u8 *)((__le16 *)start + 1);
 768                return start;
 769
 770        case 3:
 771                item->size++;
 772                if ((end - start) < 4)
 773                        return NULL;
 774                item->data.u32 = get_unaligned_le32(start);
 775                start = (__u8 *)((__le32 *)start + 1);
 776                return start;
 777        }
 778
 779        return NULL;
 780}
 781
 782static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 783{
 784        struct hid_device *hid = parser->device;
 785
 786        if (usage == HID_DG_CONTACTID)
 787                hid->group = HID_GROUP_MULTITOUCH;
 788}
 789
 790static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 791{
 792        if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 793            parser->global.report_size == 8)
 794                parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 795
 796        if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
 797            parser->global.report_size == 8)
 798                parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 799}
 800
 801static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 802{
 803        struct hid_device *hid = parser->device;
 804        int i;
 805
 806        if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 807            type == HID_COLLECTION_PHYSICAL)
 808                hid->group = HID_GROUP_SENSOR_HUB;
 809
 810        if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 811            hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 812            hid->group == HID_GROUP_MULTITOUCH)
 813                hid->group = HID_GROUP_GENERIC;
 814
 815        if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 816                for (i = 0; i < parser->local.usage_index; i++)
 817                        if (parser->local.usage[i] == HID_GD_POINTER)
 818                                parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 819
 820        if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 821                parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 822
 823        if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
 824                for (i = 0; i < parser->local.usage_index; i++)
 825                        if (parser->local.usage[i] ==
 826                                        (HID_UP_GOOGLEVENDOR | 0x0001))
 827                                parser->device->group =
 828                                        HID_GROUP_VIVALDI;
 829}
 830
 831static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 832{
 833        __u32 data;
 834        int i;
 835
 836        hid_concatenate_last_usage_page(parser);
 837
 838        data = item_udata(item);
 839
 840        switch (item->tag) {
 841        case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 842                hid_scan_collection(parser, data & 0xff);
 843                break;
 844        case HID_MAIN_ITEM_TAG_END_COLLECTION:
 845                break;
 846        case HID_MAIN_ITEM_TAG_INPUT:
 847                /* ignore constant inputs, they will be ignored by hid-input */
 848                if (data & HID_MAIN_ITEM_CONSTANT)
 849                        break;
 850                for (i = 0; i < parser->local.usage_index; i++)
 851                        hid_scan_input_usage(parser, parser->local.usage[i]);
 852                break;
 853        case HID_MAIN_ITEM_TAG_OUTPUT:
 854                break;
 855        case HID_MAIN_ITEM_TAG_FEATURE:
 856                for (i = 0; i < parser->local.usage_index; i++)
 857                        hid_scan_feature_usage(parser, parser->local.usage[i]);
 858                break;
 859        }
 860
 861        /* Reset the local parser environment */
 862        memset(&parser->local, 0, sizeof(parser->local));
 863
 864        return 0;
 865}
 866
 867/*
 868 * Scan a report descriptor before the device is added to the bus.
 869 * Sets device groups and other properties that determine what driver
 870 * to load.
 871 */
 872static int hid_scan_report(struct hid_device *hid)
 873{
 874        struct hid_parser *parser;
 875        struct hid_item item;
 876        __u8 *start = hid->dev_rdesc;
 877        __u8 *end = start + hid->dev_rsize;
 878        static int (*dispatch_type[])(struct hid_parser *parser,
 879                                      struct hid_item *item) = {
 880                hid_scan_main,
 881                hid_parser_global,
 882                hid_parser_local,
 883                hid_parser_reserved
 884        };
 885
 886        parser = vzalloc(sizeof(struct hid_parser));
 887        if (!parser)
 888                return -ENOMEM;
 889
 890        parser->device = hid;
 891        hid->group = HID_GROUP_GENERIC;
 892
 893        /*
 894         * The parsing is simpler than the one in hid_open_report() as we should
 895         * be robust against hid errors. Those errors will be raised by
 896         * hid_open_report() anyway.
 897         */
 898        while ((start = fetch_item(start, end, &item)) != NULL)
 899                dispatch_type[item.type](parser, &item);
 900
 901        /*
 902         * Handle special flags set during scanning.
 903         */
 904        if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 905            (hid->group == HID_GROUP_MULTITOUCH))
 906                hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 907
 908        /*
 909         * Vendor specific handlings
 910         */
 911        switch (hid->vendor) {
 912        case USB_VENDOR_ID_WACOM:
 913                hid->group = HID_GROUP_WACOM;
 914                break;
 915        case USB_VENDOR_ID_SYNAPTICS:
 916                if (hid->group == HID_GROUP_GENERIC)
 917                        if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 918                            && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 919                                /*
 920                                 * hid-rmi should take care of them,
 921                                 * not hid-generic
 922                                 */
 923                                hid->group = HID_GROUP_RMI;
 924                break;
 925        }
 926
 927        kfree(parser->collection_stack);
 928        vfree(parser);
 929        return 0;
 930}
 931
 932/**
 933 * hid_parse_report - parse device report
 934 *
 935 * @hid: hid device
 936 * @start: report start
 937 * @size: report size
 938 *
 939 * Allocate the device report as read by the bus driver. This function should
 940 * only be called from parse() in ll drivers.
 941 */
 942int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 943{
 944        hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 945        if (!hid->dev_rdesc)
 946                return -ENOMEM;
 947        hid->dev_rsize = size;
 948        return 0;
 949}
 950EXPORT_SYMBOL_GPL(hid_parse_report);
 951
 952static const char * const hid_report_names[] = {
 953        "HID_INPUT_REPORT",
 954        "HID_OUTPUT_REPORT",
 955        "HID_FEATURE_REPORT",
 956};
 957/**
 958 * hid_validate_values - validate existing device report's value indexes
 959 *
 960 * @hid: hid device
 961 * @type: which report type to examine
 962 * @id: which report ID to examine (0 for first)
 963 * @field_index: which report field to examine
 964 * @report_counts: expected number of values
 965 *
 966 * Validate the number of values in a given field of a given report, after
 967 * parsing.
 968 */
 969struct hid_report *hid_validate_values(struct hid_device *hid,
 970                                       unsigned int type, unsigned int id,
 971                                       unsigned int field_index,
 972                                       unsigned int report_counts)
 973{
 974        struct hid_report *report;
 975
 976        if (type > HID_FEATURE_REPORT) {
 977                hid_err(hid, "invalid HID report type %u\n", type);
 978                return NULL;
 979        }
 980
 981        if (id >= HID_MAX_IDS) {
 982                hid_err(hid, "invalid HID report id %u\n", id);
 983                return NULL;
 984        }
 985
 986        /*
 987         * Explicitly not using hid_get_report() here since it depends on
 988         * ->numbered being checked, which may not always be the case when
 989         * drivers go to access report values.
 990         */
 991        if (id == 0) {
 992                /*
 993                 * Validating on id 0 means we should examine the first
 994                 * report in the list.
 995                 */
 996                report = list_entry(
 997                                hid->report_enum[type].report_list.next,
 998                                struct hid_report, list);
 999        } else {
1000                report = hid->report_enum[type].report_id_hash[id];
1001        }
1002        if (!report) {
1003                hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004                return NULL;
1005        }
1006        if (report->maxfield <= field_index) {
1007                hid_err(hid, "not enough fields in %s %u\n",
1008                        hid_report_names[type], id);
1009                return NULL;
1010        }
1011        if (report->field[field_index]->report_count < report_counts) {
1012                hid_err(hid, "not enough values in %s %u field %u\n",
1013                        hid_report_names[type], id, field_index);
1014                return NULL;
1015        }
1016        return report;
1017}
1018EXPORT_SYMBOL_GPL(hid_validate_values);
1019
1020static int hid_calculate_multiplier(struct hid_device *hid,
1021                                     struct hid_field *multiplier)
1022{
1023        int m;
1024        __s32 v = *multiplier->value;
1025        __s32 lmin = multiplier->logical_minimum;
1026        __s32 lmax = multiplier->logical_maximum;
1027        __s32 pmin = multiplier->physical_minimum;
1028        __s32 pmax = multiplier->physical_maximum;
1029
1030        /*
1031         * "Because OS implementations will generally divide the control's
1032         * reported count by the Effective Resolution Multiplier, designers
1033         * should take care not to establish a potential Effective
1034         * Resolution Multiplier of zero."
1035         * HID Usage Table, v1.12, Section 4.3.1, p31
1036         */
1037        if (lmax - lmin == 0)
1038                return 1;
1039        /*
1040         * Handling the unit exponent is left as an exercise to whoever
1041         * finds a device where that exponent is not 0.
1042         */
1043        m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044        if (unlikely(multiplier->unit_exponent != 0)) {
1045                hid_warn(hid,
1046                         "unsupported Resolution Multiplier unit exponent %d\n",
1047                         multiplier->unit_exponent);
1048        }
1049
1050        /* There are no devices with an effective multiplier > 255 */
1051        if (unlikely(m == 0 || m > 255 || m < -255)) {
1052                hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053                m = 1;
1054        }
1055
1056        return m;
1057}
1058
1059static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060                                          struct hid_field *field,
1061                                          struct hid_collection *multiplier_collection,
1062                                          int effective_multiplier)
1063{
1064        struct hid_collection *collection;
1065        struct hid_usage *usage;
1066        int i;
1067
1068        /*
1069         * If multiplier_collection is NULL, the multiplier applies
1070         * to all fields in the report.
1071         * Otherwise, it is the Logical Collection the multiplier applies to
1072         * but our field may be in a subcollection of that collection.
1073         */
1074        for (i = 0; i < field->maxusage; i++) {
1075                usage = &field->usage[i];
1076
1077                collection = &hid->collection[usage->collection_index];
1078                while (collection->parent_idx != -1 &&
1079                       collection != multiplier_collection)
1080                        collection = &hid->collection[collection->parent_idx];
1081
1082                if (collection->parent_idx != -1 ||
1083                    multiplier_collection == NULL)
1084                        usage->resolution_multiplier = effective_multiplier;
1085
1086        }
1087}
1088
1089static void hid_apply_multiplier(struct hid_device *hid,
1090                                 struct hid_field *multiplier)
1091{
1092        struct hid_report_enum *rep_enum;
1093        struct hid_report *rep;
1094        struct hid_field *field;
1095        struct hid_collection *multiplier_collection;
1096        int effective_multiplier;
1097        int i;
1098
1099        /*
1100         * "The Resolution Multiplier control must be contained in the same
1101         * Logical Collection as the control(s) to which it is to be applied.
1102         * If no Resolution Multiplier is defined, then the Resolution
1103         * Multiplier defaults to 1.  If more than one control exists in a
1104         * Logical Collection, the Resolution Multiplier is associated with
1105         * all controls in the collection. If no Logical Collection is
1106         * defined, the Resolution Multiplier is associated with all
1107         * controls in the report."
1108         * HID Usage Table, v1.12, Section 4.3.1, p30
1109         *
1110         * Thus, search from the current collection upwards until we find a
1111         * logical collection. Then search all fields for that same parent
1112         * collection. Those are the fields the multiplier applies to.
1113         *
1114         * If we have more than one multiplier, it will overwrite the
1115         * applicable fields later.
1116         */
1117        multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118        while (multiplier_collection->parent_idx != -1 &&
1119               multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120                multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121
1122        effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123
1124        rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125        list_for_each_entry(rep, &rep_enum->report_list, list) {
1126                for (i = 0; i < rep->maxfield; i++) {
1127                        field = rep->field[i];
1128                        hid_apply_multiplier_to_field(hid, field,
1129                                                      multiplier_collection,
1130                                                      effective_multiplier);
1131                }
1132        }
1133}
1134
1135/*
1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 *
1138 * @device: hid device
1139 *
1140 * Search for all Resolution Multiplier Feature Reports and apply their
1141 * value to all matching Input items. This only updates the internal struct
1142 * fields.
1143 *
1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 * is anything other than 1, the hardware will send pre-multiplied events
1146 * so that the same physical interaction generates an accumulated
1147 *      accumulated_value = value * * multiplier
1148 * This may be achieved by sending
1149 * - "value * multiplier" for each event, or
1150 * - "value" but "multiplier" times as frequently, or
1151 * - a combination of the above
1152 * The only guarantee is that the same physical interaction always generates
1153 * an accumulated 'value * multiplier'.
1154 *
1155 * This function must be called before any event processing and after
1156 * any SetRequest to the Resolution Multiplier.
1157 */
1158void hid_setup_resolution_multiplier(struct hid_device *hid)
1159{
1160        struct hid_report_enum *rep_enum;
1161        struct hid_report *rep;
1162        struct hid_usage *usage;
1163        int i, j;
1164
1165        rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166        list_for_each_entry(rep, &rep_enum->report_list, list) {
1167                for (i = 0; i < rep->maxfield; i++) {
1168                        /* Ignore if report count is out of bounds. */
1169                        if (rep->field[i]->report_count < 1)
1170                                continue;
1171
1172                        for (j = 0; j < rep->field[i]->maxusage; j++) {
1173                                usage = &rep->field[i]->usage[j];
1174                                if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175                                        hid_apply_multiplier(hid,
1176                                                             rep->field[i]);
1177                        }
1178                }
1179        }
1180}
1181EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182
1183/**
1184 * hid_open_report - open a driver-specific device report
1185 *
1186 * @device: hid device
1187 *
1188 * Parse a report description into a hid_device structure. Reports are
1189 * enumerated, fields are attached to these reports.
1190 * 0 returned on success, otherwise nonzero error value.
1191 *
1192 * This function (or the equivalent hid_parse() macro) should only be
1193 * called from probe() in drivers, before starting the device.
1194 */
1195int hid_open_report(struct hid_device *device)
1196{
1197        struct hid_parser *parser;
1198        struct hid_item item;
1199        unsigned int size;
1200        __u8 *start;
1201        __u8 *buf;
1202        __u8 *end;
1203        __u8 *next;
1204        int ret;
1205        static int (*dispatch_type[])(struct hid_parser *parser,
1206                                      struct hid_item *item) = {
1207                hid_parser_main,
1208                hid_parser_global,
1209                hid_parser_local,
1210                hid_parser_reserved
1211        };
1212
1213        if (WARN_ON(device->status & HID_STAT_PARSED))
1214                return -EBUSY;
1215
1216        start = device->dev_rdesc;
1217        if (WARN_ON(!start))
1218                return -ENODEV;
1219        size = device->dev_rsize;
1220
1221        buf = kmemdup(start, size, GFP_KERNEL);
1222        if (buf == NULL)
1223                return -ENOMEM;
1224
1225        if (device->driver->report_fixup)
1226                start = device->driver->report_fixup(device, buf, &size);
1227        else
1228                start = buf;
1229
1230        start = kmemdup(start, size, GFP_KERNEL);
1231        kfree(buf);
1232        if (start == NULL)
1233                return -ENOMEM;
1234
1235        device->rdesc = start;
1236        device->rsize = size;
1237
1238        parser = vzalloc(sizeof(struct hid_parser));
1239        if (!parser) {
1240                ret = -ENOMEM;
1241                goto alloc_err;
1242        }
1243
1244        parser->device = device;
1245
1246        end = start + size;
1247
1248        device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1249                                     sizeof(struct hid_collection), GFP_KERNEL);
1250        if (!device->collection) {
1251                ret = -ENOMEM;
1252                goto err;
1253        }
1254        device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1255
1256        ret = -EINVAL;
1257        while ((next = fetch_item(start, end, &item)) != NULL) {
1258                start = next;
1259
1260                if (item.format != HID_ITEM_FORMAT_SHORT) {
1261                        hid_err(device, "unexpected long global item\n");
1262                        goto err;
1263                }
1264
1265                if (dispatch_type[item.type](parser, &item)) {
1266                        hid_err(device, "item %u %u %u %u parsing failed\n",
1267                                item.format, (unsigned)item.size,
1268                                (unsigned)item.type, (unsigned)item.tag);
1269                        goto err;
1270                }
1271
1272                if (start == end) {
1273                        if (parser->collection_stack_ptr) {
1274                                hid_err(device, "unbalanced collection at end of report description\n");
1275                                goto err;
1276                        }
1277                        if (parser->local.delimiter_depth) {
1278                                hid_err(device, "unbalanced delimiter at end of report description\n");
1279                                goto err;
1280                        }
1281
1282                        /*
1283                         * fetch initial values in case the device's
1284                         * default multiplier isn't the recommended 1
1285                         */
1286                        hid_setup_resolution_multiplier(device);
1287
1288                        kfree(parser->collection_stack);
1289                        vfree(parser);
1290                        device->status |= HID_STAT_PARSED;
1291
1292                        return 0;
1293                }
1294        }
1295
1296        hid_err(device, "item fetching failed at offset %u/%u\n",
1297                size - (unsigned int)(end - start), size);
1298err:
1299        kfree(parser->collection_stack);
1300alloc_err:
1301        vfree(parser);
1302        hid_close_report(device);
1303        return ret;
1304}
1305EXPORT_SYMBOL_GPL(hid_open_report);
1306
1307/*
1308 * Convert a signed n-bit integer to signed 32-bit integer. Common
1309 * cases are done through the compiler, the screwed things has to be
1310 * done by hand.
1311 */
1312
1313static s32 snto32(__u32 value, unsigned n)
1314{
1315        if (!value || !n)
1316                return 0;
1317
1318        switch (n) {
1319        case 8:  return ((__s8)value);
1320        case 16: return ((__s16)value);
1321        case 32: return ((__s32)value);
1322        }
1323        return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1324}
1325
1326s32 hid_snto32(__u32 value, unsigned n)
1327{
1328        return snto32(value, n);
1329}
1330EXPORT_SYMBOL_GPL(hid_snto32);
1331
1332/*
1333 * Convert a signed 32-bit integer to a signed n-bit integer.
1334 */
1335
1336static u32 s32ton(__s32 value, unsigned n)
1337{
1338        s32 a = value >> (n - 1);
1339        if (a && a != -1)
1340                return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1341        return value & ((1 << n) - 1);
1342}
1343
1344/*
1345 * Extract/implement a data field from/to a little endian report (bit array).
1346 *
1347 * Code sort-of follows HID spec:
1348 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1349 *
1350 * While the USB HID spec allows unlimited length bit fields in "report
1351 * descriptors", most devices never use more than 16 bits.
1352 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1353 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1354 */
1355
1356static u32 __extract(u8 *report, unsigned offset, int n)
1357{
1358        unsigned int idx = offset / 8;
1359        unsigned int bit_nr = 0;
1360        unsigned int bit_shift = offset % 8;
1361        int bits_to_copy = 8 - bit_shift;
1362        u32 value = 0;
1363        u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1364
1365        while (n > 0) {
1366                value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1367                n -= bits_to_copy;
1368                bit_nr += bits_to_copy;
1369                bits_to_copy = 8;
1370                bit_shift = 0;
1371                idx++;
1372        }
1373
1374        return value & mask;
1375}
1376
1377u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1378                        unsigned offset, unsigned n)
1379{
1380        if (n > 32) {
1381                hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1382                              __func__, n, current->comm);
1383                n = 32;
1384        }
1385
1386        return __extract(report, offset, n);
1387}
1388EXPORT_SYMBOL_GPL(hid_field_extract);
1389
1390/*
1391 * "implement" : set bits in a little endian bit stream.
1392 * Same concepts as "extract" (see comments above).
1393 * The data mangled in the bit stream remains in little endian
1394 * order the whole time. It make more sense to talk about
1395 * endianness of register values by considering a register
1396 * a "cached" copy of the little endian bit stream.
1397 */
1398
1399static void __implement(u8 *report, unsigned offset, int n, u32 value)
1400{
1401        unsigned int idx = offset / 8;
1402        unsigned int bit_shift = offset % 8;
1403        int bits_to_set = 8 - bit_shift;
1404
1405        while (n - bits_to_set >= 0) {
1406                report[idx] &= ~(0xff << bit_shift);
1407                report[idx] |= value << bit_shift;
1408                value >>= bits_to_set;
1409                n -= bits_to_set;
1410                bits_to_set = 8;
1411                bit_shift = 0;
1412                idx++;
1413        }
1414
1415        /* last nibble */
1416        if (n) {
1417                u8 bit_mask = ((1U << n) - 1);
1418                report[idx] &= ~(bit_mask << bit_shift);
1419                report[idx] |= value << bit_shift;
1420        }
1421}
1422
1423static void implement(const struct hid_device *hid, u8 *report,
1424                      unsigned offset, unsigned n, u32 value)
1425{
1426        if (unlikely(n > 32)) {
1427                hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1428                         __func__, n, current->comm);
1429                n = 32;
1430        } else if (n < 32) {
1431                u32 m = (1U << n) - 1;
1432
1433                if (unlikely(value > m)) {
1434                        hid_warn(hid,
1435                                 "%s() called with too large value %d (n: %d)! (%s)\n",
1436                                 __func__, value, n, current->comm);
1437                        WARN_ON(1);
1438                        value &= m;
1439                }
1440        }
1441
1442        __implement(report, offset, n, value);
1443}
1444
1445/*
1446 * Search an array for a value.
1447 */
1448
1449static int search(__s32 *array, __s32 value, unsigned n)
1450{
1451        while (n--) {
1452                if (*array++ == value)
1453                        return 0;
1454        }
1455        return -1;
1456}
1457
1458/**
1459 * hid_match_report - check if driver's raw_event should be called
1460 *
1461 * @hid: hid device
1462 * @report: hid report to match against
1463 *
1464 * compare hid->driver->report_table->report_type to report->type
1465 */
1466static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1467{
1468        const struct hid_report_id *id = hid->driver->report_table;
1469
1470        if (!id) /* NULL means all */
1471                return 1;
1472
1473        for (; id->report_type != HID_TERMINATOR; id++)
1474                if (id->report_type == HID_ANY_ID ||
1475                                id->report_type == report->type)
1476                        return 1;
1477        return 0;
1478}
1479
1480/**
1481 * hid_match_usage - check if driver's event should be called
1482 *
1483 * @hid: hid device
1484 * @usage: usage to match against
1485 *
1486 * compare hid->driver->usage_table->usage_{type,code} to
1487 * usage->usage_{type,code}
1488 */
1489static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1490{
1491        const struct hid_usage_id *id = hid->driver->usage_table;
1492
1493        if (!id) /* NULL means all */
1494                return 1;
1495
1496        for (; id->usage_type != HID_ANY_ID - 1; id++)
1497                if ((id->usage_hid == HID_ANY_ID ||
1498                                id->usage_hid == usage->hid) &&
1499                                (id->usage_type == HID_ANY_ID ||
1500                                id->usage_type == usage->type) &&
1501                                (id->usage_code == HID_ANY_ID ||
1502                                 id->usage_code == usage->code))
1503                        return 1;
1504        return 0;
1505}
1506
1507static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1508                struct hid_usage *usage, __s32 value, int interrupt)
1509{
1510        struct hid_driver *hdrv = hid->driver;
1511        int ret;
1512
1513        if (!list_empty(&hid->debug_list))
1514                hid_dump_input(hid, usage, value);
1515
1516        if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1517                ret = hdrv->event(hid, field, usage, value);
1518                if (ret != 0) {
1519                        if (ret < 0)
1520                                hid_err(hid, "%s's event failed with %d\n",
1521                                                hdrv->name, ret);
1522                        return;
1523                }
1524        }
1525
1526        if (hid->claimed & HID_CLAIMED_INPUT)
1527                hidinput_hid_event(hid, field, usage, value);
1528        if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1529                hid->hiddev_hid_event(hid, field, usage, value);
1530}
1531
1532/*
1533 * Checks if the given value is valid within this field
1534 */
1535static inline int hid_array_value_is_valid(struct hid_field *field,
1536                                           __s32 value)
1537{
1538        __s32 min = field->logical_minimum;
1539
1540        /*
1541         * Value needs to be between logical min and max, and
1542         * (value - min) is used as an index in the usage array.
1543         * This array is of size field->maxusage
1544         */
1545        return value >= min &&
1546               value <= field->logical_maximum &&
1547               value - min < field->maxusage;
1548}
1549
1550/*
1551 * Fetch the field from the data. The field content is stored for next
1552 * report processing (we do differential reporting to the layer).
1553 */
1554static void hid_input_fetch_field(struct hid_device *hid,
1555                                  struct hid_field *field,
1556                                  __u8 *data)
1557{
1558        unsigned n;
1559        unsigned count = field->report_count;
1560        unsigned offset = field->report_offset;
1561        unsigned size = field->report_size;
1562        __s32 min = field->logical_minimum;
1563        __s32 *value;
1564
1565        value = field->new_value;
1566        memset(value, 0, count * sizeof(__s32));
1567        field->ignored = false;
1568
1569        for (n = 0; n < count; n++) {
1570
1571                value[n] = min < 0 ?
1572                        snto32(hid_field_extract(hid, data, offset + n * size,
1573                               size), size) :
1574                        hid_field_extract(hid, data, offset + n * size, size);
1575
1576                /* Ignore report if ErrorRollOver */
1577                if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1578                    hid_array_value_is_valid(field, value[n]) &&
1579                    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1580                        field->ignored = true;
1581                        return;
1582                }
1583        }
1584}
1585
1586/*
1587 * Process a received variable field.
1588 */
1589
1590static void hid_input_var_field(struct hid_device *hid,
1591                                struct hid_field *field,
1592                                int interrupt)
1593{
1594        unsigned int count = field->report_count;
1595        __s32 *value = field->new_value;
1596        unsigned int n;
1597
1598        for (n = 0; n < count; n++)
1599                hid_process_event(hid,
1600                                  field,
1601                                  &field->usage[n],
1602                                  value[n],
1603                                  interrupt);
1604
1605        memcpy(field->value, value, count * sizeof(__s32));
1606}
1607
1608/*
1609 * Process a received array field. The field content is stored for
1610 * next report processing (we do differential reporting to the layer).
1611 */
1612
1613static void hid_input_array_field(struct hid_device *hid,
1614                                  struct hid_field *field,
1615                                  int interrupt)
1616{
1617        unsigned int n;
1618        unsigned int count = field->report_count;
1619        __s32 min = field->logical_minimum;
1620        __s32 *value;
1621
1622        value = field->new_value;
1623
1624        /* ErrorRollOver */
1625        if (field->ignored)
1626                return;
1627
1628        for (n = 0; n < count; n++) {
1629                if (hid_array_value_is_valid(field, field->value[n]) &&
1630                    search(value, field->value[n], count))
1631                        hid_process_event(hid,
1632                                          field,
1633                                          &field->usage[field->value[n] - min],
1634                                          0,
1635                                          interrupt);
1636
1637                if (hid_array_value_is_valid(field, value[n]) &&
1638                    search(field->value, value[n], count))
1639                        hid_process_event(hid,
1640                                          field,
1641                                          &field->usage[value[n] - min],
1642                                          1,
1643                                          interrupt);
1644        }
1645
1646        memcpy(field->value, value, count * sizeof(__s32));
1647}
1648
1649/*
1650 * Analyse a received report, and fetch the data from it. The field
1651 * content is stored for next report processing (we do differential
1652 * reporting to the layer).
1653 */
1654static void hid_process_report(struct hid_device *hid,
1655                               struct hid_report *report,
1656                               __u8 *data,
1657                               int interrupt)
1658{
1659        unsigned int a;
1660        struct hid_field_entry *entry;
1661        struct hid_field *field;
1662
1663        /* first retrieve all incoming values in data */
1664        for (a = 0; a < report->maxfield; a++)
1665                hid_input_fetch_field(hid, field = report->field[a], data);
1666
1667        if (!list_empty(&report->field_entry_list)) {
1668                /* INPUT_REPORT, we have a priority list of fields */
1669                list_for_each_entry(entry,
1670                                    &report->field_entry_list,
1671                                    list) {
1672                        field = entry->field;
1673
1674                        if (field->flags & HID_MAIN_ITEM_VARIABLE)
1675                                hid_process_event(hid,
1676                                                  field,
1677                                                  &field->usage[entry->index],
1678                                                  field->new_value[entry->index],
1679                                                  interrupt);
1680                        else
1681                                hid_input_array_field(hid, field, interrupt);
1682                }
1683
1684                /* we need to do the memcpy at the end for var items */
1685                for (a = 0; a < report->maxfield; a++) {
1686                        field = report->field[a];
1687
1688                        if (field->flags & HID_MAIN_ITEM_VARIABLE)
1689                                memcpy(field->value, field->new_value,
1690                                       field->report_count * sizeof(__s32));
1691                }
1692        } else {
1693                /* FEATURE_REPORT, regular processing */
1694                for (a = 0; a < report->maxfield; a++) {
1695                        field = report->field[a];
1696
1697                        if (field->flags & HID_MAIN_ITEM_VARIABLE)
1698                                hid_input_var_field(hid, field, interrupt);
1699                        else
1700                                hid_input_array_field(hid, field, interrupt);
1701                }
1702        }
1703}
1704
1705/*
1706 * Insert a given usage_index in a field in the list
1707 * of processed usages in the report.
1708 *
1709 * The elements of lower priority score are processed
1710 * first.
1711 */
1712static void __hid_insert_field_entry(struct hid_device *hid,
1713                                     struct hid_report *report,
1714                                     struct hid_field_entry *entry,
1715                                     struct hid_field *field,
1716                                     unsigned int usage_index)
1717{
1718        struct hid_field_entry *next;
1719
1720        entry->field = field;
1721        entry->index = usage_index;
1722        entry->priority = field->usages_priorities[usage_index];
1723
1724        /* insert the element at the correct position */
1725        list_for_each_entry(next,
1726                            &report->field_entry_list,
1727                            list) {
1728                /*
1729                 * the priority of our element is strictly higher
1730                 * than the next one, insert it before
1731                 */
1732                if (entry->priority > next->priority) {
1733                        list_add_tail(&entry->list, &next->list);
1734                        return;
1735                }
1736        }
1737
1738        /* lowest priority score: insert at the end */
1739        list_add_tail(&entry->list, &report->field_entry_list);
1740}
1741
1742static void hid_report_process_ordering(struct hid_device *hid,
1743                                        struct hid_report *report)
1744{
1745        struct hid_field *field;
1746        struct hid_field_entry *entries;
1747        unsigned int a, u, usages;
1748        unsigned int count = 0;
1749
1750        /* count the number of individual fields in the report */
1751        for (a = 0; a < report->maxfield; a++) {
1752                field = report->field[a];
1753
1754                if (field->flags & HID_MAIN_ITEM_VARIABLE)
1755                        count += field->report_count;
1756                else
1757                        count++;
1758        }
1759
1760        /* allocate the memory to process the fields */
1761        entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1762        if (!entries)
1763                return;
1764
1765        report->field_entries = entries;
1766
1767        /*
1768         * walk through all fields in the report and
1769         * store them by priority order in report->field_entry_list
1770         *
1771         * - Var elements are individualized (field + usage_index)
1772         * - Arrays are taken as one, we can not chose an order for them
1773         */
1774        usages = 0;
1775        for (a = 0; a < report->maxfield; a++) {
1776                field = report->field[a];
1777
1778                if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1779                        for (u = 0; u < field->report_count; u++) {
1780                                __hid_insert_field_entry(hid, report,
1781                                                         &entries[usages],
1782                                                         field, u);
1783                                usages++;
1784                        }
1785                } else {
1786                        __hid_insert_field_entry(hid, report, &entries[usages],
1787                                                 field, 0);
1788                        usages++;
1789                }
1790        }
1791}
1792
1793static void hid_process_ordering(struct hid_device *hid)
1794{
1795        struct hid_report *report;
1796        struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1797
1798        list_for_each_entry(report, &report_enum->report_list, list)
1799                hid_report_process_ordering(hid, report);
1800}
1801
1802/*
1803 * Output the field into the report.
1804 */
1805
1806static void hid_output_field(const struct hid_device *hid,
1807                             struct hid_field *field, __u8 *data)
1808{
1809        unsigned count = field->report_count;
1810        unsigned offset = field->report_offset;
1811        unsigned size = field->report_size;
1812        unsigned n;
1813
1814        for (n = 0; n < count; n++) {
1815                if (field->logical_minimum < 0) /* signed values */
1816                        implement(hid, data, offset + n * size, size,
1817                                  s32ton(field->value[n], size));
1818                else                            /* unsigned values */
1819                        implement(hid, data, offset + n * size, size,
1820                                  field->value[n]);
1821        }
1822}
1823
1824/*
1825 * Compute the size of a report.
1826 */
1827static size_t hid_compute_report_size(struct hid_report *report)
1828{
1829        if (report->size)
1830                return ((report->size - 1) >> 3) + 1;
1831
1832        return 0;
1833}
1834
1835/*
1836 * Create a report. 'data' has to be allocated using
1837 * hid_alloc_report_buf() so that it has proper size.
1838 */
1839
1840void hid_output_report(struct hid_report *report, __u8 *data)
1841{
1842        unsigned n;
1843
1844        if (report->id > 0)
1845                *data++ = report->id;
1846
1847        memset(data, 0, hid_compute_report_size(report));
1848        for (n = 0; n < report->maxfield; n++)
1849                hid_output_field(report->device, report->field[n], data);
1850}
1851EXPORT_SYMBOL_GPL(hid_output_report);
1852
1853/*
1854 * Allocator for buffer that is going to be passed to hid_output_report()
1855 */
1856u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1857{
1858        /*
1859         * 7 extra bytes are necessary to achieve proper functionality
1860         * of implement() working on 8 byte chunks
1861         */
1862
1863        u32 len = hid_report_len(report) + 7;
1864
1865        return kmalloc(len, flags);
1866}
1867EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1868
1869/*
1870 * Set a field value. The report this field belongs to has to be
1871 * created and transferred to the device, to set this value in the
1872 * device.
1873 */
1874
1875int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1876{
1877        unsigned size;
1878
1879        if (!field)
1880                return -1;
1881
1882        size = field->report_size;
1883
1884        hid_dump_input(field->report->device, field->usage + offset, value);
1885
1886        if (offset >= field->report_count) {
1887                hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1888                                offset, field->report_count);
1889                return -1;
1890        }
1891        if (field->logical_minimum < 0) {
1892                if (value != snto32(s32ton(value, size), size)) {
1893                        hid_err(field->report->device, "value %d is out of range\n", value);
1894                        return -1;
1895                }
1896        }
1897        field->value[offset] = value;
1898        return 0;
1899}
1900EXPORT_SYMBOL_GPL(hid_set_field);
1901
1902static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1903                const u8 *data)
1904{
1905        struct hid_report *report;
1906        unsigned int n = 0;     /* Normally report number is 0 */
1907
1908        /* Device uses numbered reports, data[0] is report number */
1909        if (report_enum->numbered)
1910                n = *data;
1911
1912        report = report_enum->report_id_hash[n];
1913        if (report == NULL)
1914                dbg_hid("undefined report_id %u received\n", n);
1915
1916        return report;
1917}
1918
1919/*
1920 * Implement a generic .request() callback, using .raw_request()
1921 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1922 */
1923int __hid_request(struct hid_device *hid, struct hid_report *report,
1924                int reqtype)
1925{
1926        char *buf;
1927        int ret;
1928        u32 len;
1929
1930        buf = hid_alloc_report_buf(report, GFP_KERNEL);
1931        if (!buf)
1932                return -ENOMEM;
1933
1934        len = hid_report_len(report);
1935
1936        if (reqtype == HID_REQ_SET_REPORT)
1937                hid_output_report(report, buf);
1938
1939        ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1940                                          report->type, reqtype);
1941        if (ret < 0) {
1942                dbg_hid("unable to complete request: %d\n", ret);
1943                goto out;
1944        }
1945
1946        if (reqtype == HID_REQ_GET_REPORT)
1947                hid_input_report(hid, report->type, buf, ret, 0);
1948
1949        ret = 0;
1950
1951out:
1952        kfree(buf);
1953        return ret;
1954}
1955EXPORT_SYMBOL_GPL(__hid_request);
1956
1957int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1958                int interrupt)
1959{
1960        struct hid_report_enum *report_enum = hid->report_enum + type;
1961        struct hid_report *report;
1962        struct hid_driver *hdrv;
1963        u32 rsize, csize = size;
1964        u8 *cdata = data;
1965        int ret = 0;
1966
1967        report = hid_get_report(report_enum, data);
1968        if (!report)
1969                goto out;
1970
1971        if (report_enum->numbered) {
1972                cdata++;
1973                csize--;
1974        }
1975
1976        rsize = hid_compute_report_size(report);
1977
1978        if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1979                rsize = HID_MAX_BUFFER_SIZE - 1;
1980        else if (rsize > HID_MAX_BUFFER_SIZE)
1981                rsize = HID_MAX_BUFFER_SIZE;
1982
1983        if (csize < rsize) {
1984                dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1985                                csize, rsize);
1986                memset(cdata + csize, 0, rsize - csize);
1987        }
1988
1989        if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1990                hid->hiddev_report_event(hid, report);
1991        if (hid->claimed & HID_CLAIMED_HIDRAW) {
1992                ret = hidraw_report_event(hid, data, size);
1993                if (ret)
1994                        goto out;
1995        }
1996
1997        if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1998                hid_process_report(hid, report, cdata, interrupt);
1999                hdrv = hid->driver;
2000                if (hdrv && hdrv->report)
2001                        hdrv->report(hid, report);
2002        }
2003
2004        if (hid->claimed & HID_CLAIMED_INPUT)
2005                hidinput_report_event(hid, report);
2006out:
2007        return ret;
2008}
2009EXPORT_SYMBOL_GPL(hid_report_raw_event);
2010
2011/**
2012 * hid_input_report - report data from lower layer (usb, bt...)
2013 *
2014 * @hid: hid device
2015 * @type: HID report type (HID_*_REPORT)
2016 * @data: report contents
2017 * @size: size of data parameter
2018 * @interrupt: distinguish between interrupt and control transfers
2019 *
2020 * This is data entry for lower layers.
2021 */
2022int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
2023{
2024        struct hid_report_enum *report_enum;
2025        struct hid_driver *hdrv;
2026        struct hid_report *report;
2027        int ret = 0;
2028
2029        if (!hid)
2030                return -ENODEV;
2031
2032        if (down_trylock(&hid->driver_input_lock))
2033                return -EBUSY;
2034
2035        if (!hid->driver) {
2036                ret = -ENODEV;
2037                goto unlock;
2038        }
2039        report_enum = hid->report_enum + type;
2040        hdrv = hid->driver;
2041
2042        if (!size) {
2043                dbg_hid("empty report\n");
2044                ret = -1;
2045                goto unlock;
2046        }
2047
2048        /* Avoid unnecessary overhead if debugfs is disabled */
2049        if (!list_empty(&hid->debug_list))
2050                hid_dump_report(hid, type, data, size);
2051
2052        report = hid_get_report(report_enum, data);
2053
2054        if (!report) {
2055                ret = -1;
2056                goto unlock;
2057        }
2058
2059        if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2060                ret = hdrv->raw_event(hid, report, data, size);
2061                if (ret < 0)
2062                        goto unlock;
2063        }
2064
2065        ret = hid_report_raw_event(hid, type, data, size, interrupt);
2066
2067unlock:
2068        up(&hid->driver_input_lock);
2069        return ret;
2070}
2071EXPORT_SYMBOL_GPL(hid_input_report);
2072
2073bool hid_match_one_id(const struct hid_device *hdev,
2074                      const struct hid_device_id *id)
2075{
2076        return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2077                (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2078                (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2079                (id->product == HID_ANY_ID || id->product == hdev->product);
2080}
2081
2082const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2083                const struct hid_device_id *id)
2084{
2085        for (; id->bus; id++)
2086                if (hid_match_one_id(hdev, id))
2087                        return id;
2088
2089        return NULL;
2090}
2091
2092static const struct hid_device_id hid_hiddev_list[] = {
2093        { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2094        { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2095        { }
2096};
2097
2098static bool hid_hiddev(struct hid_device *hdev)
2099{
2100        return !!hid_match_id(hdev, hid_hiddev_list);
2101}
2102
2103
2104static ssize_t
2105read_report_descriptor(struct file *filp, struct kobject *kobj,
2106                struct bin_attribute *attr,
2107                char *buf, loff_t off, size_t count)
2108{
2109        struct device *dev = kobj_to_dev(kobj);
2110        struct hid_device *hdev = to_hid_device(dev);
2111
2112        if (off >= hdev->rsize)
2113                return 0;
2114
2115        if (off + count > hdev->rsize)
2116                count = hdev->rsize - off;
2117
2118        memcpy(buf, hdev->rdesc + off, count);
2119
2120        return count;
2121}
2122
2123static ssize_t
2124show_country(struct device *dev, struct device_attribute *attr,
2125                char *buf)
2126{
2127        struct hid_device *hdev = to_hid_device(dev);
2128
2129        return sprintf(buf, "%02x\n", hdev->country & 0xff);
2130}
2131
2132static struct bin_attribute dev_bin_attr_report_desc = {
2133        .attr = { .name = "report_descriptor", .mode = 0444 },
2134        .read = read_report_descriptor,
2135        .size = HID_MAX_DESCRIPTOR_SIZE,
2136};
2137
2138static const struct device_attribute dev_attr_country = {
2139        .attr = { .name = "country", .mode = 0444 },
2140        .show = show_country,
2141};
2142
2143int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2144{
2145        static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2146                "Joystick", "Gamepad", "Keyboard", "Keypad",
2147                "Multi-Axis Controller"
2148        };
2149        const char *type, *bus;
2150        char buf[64] = "";
2151        unsigned int i;
2152        int len;
2153        int ret;
2154
2155        if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2156                connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2157        if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2158                connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2159        if (hdev->bus != BUS_USB)
2160                connect_mask &= ~HID_CONNECT_HIDDEV;
2161        if (hid_hiddev(hdev))
2162                connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2163
2164        if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2165                                connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2166                hdev->claimed |= HID_CLAIMED_INPUT;
2167
2168        if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2169                        !hdev->hiddev_connect(hdev,
2170                                connect_mask & HID_CONNECT_HIDDEV_FORCE))
2171                hdev->claimed |= HID_CLAIMED_HIDDEV;
2172        if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2173                hdev->claimed |= HID_CLAIMED_HIDRAW;
2174
2175        if (connect_mask & HID_CONNECT_DRIVER)
2176                hdev->claimed |= HID_CLAIMED_DRIVER;
2177
2178        /* Drivers with the ->raw_event callback set are not required to connect
2179         * to any other listener. */
2180        if (!hdev->claimed && !hdev->driver->raw_event) {
2181                hid_err(hdev, "device has no listeners, quitting\n");
2182                return -ENODEV;
2183        }
2184
2185        hid_process_ordering(hdev);
2186
2187        if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2188                        (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2189                hdev->ff_init(hdev);
2190
2191        len = 0;
2192        if (hdev->claimed & HID_CLAIMED_INPUT)
2193                len += sprintf(buf + len, "input");
2194        if (hdev->claimed & HID_CLAIMED_HIDDEV)
2195                len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2196                                ((struct hiddev *)hdev->hiddev)->minor);
2197        if (hdev->claimed & HID_CLAIMED_HIDRAW)
2198                len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2199                                ((struct hidraw *)hdev->hidraw)->minor);
2200
2201        type = "Device";
2202        for (i = 0; i < hdev->maxcollection; i++) {
2203                struct hid_collection *col = &hdev->collection[i];
2204                if (col->type == HID_COLLECTION_APPLICATION &&
2205                   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2206                   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2207                        type = types[col->usage & 0xffff];
2208                        break;
2209                }
2210        }
2211
2212        switch (hdev->bus) {
2213        case BUS_USB:
2214                bus = "USB";
2215                break;
2216        case BUS_BLUETOOTH:
2217                bus = "BLUETOOTH";
2218                break;
2219        case BUS_I2C:
2220                bus = "I2C";
2221                break;
2222        case BUS_VIRTUAL:
2223                bus = "VIRTUAL";
2224                break;
2225        case BUS_INTEL_ISHTP:
2226        case BUS_AMD_SFH:
2227                bus = "SENSOR HUB";
2228                break;
2229        default:
2230                bus = "<UNKNOWN>";
2231        }
2232
2233        ret = device_create_file(&hdev->dev, &dev_attr_country);
2234        if (ret)
2235                hid_warn(hdev,
2236                         "can't create sysfs country code attribute err: %d\n", ret);
2237
2238        hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2239                 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2240                 type, hdev->name, hdev->phys);
2241
2242        return 0;
2243}
2244EXPORT_SYMBOL_GPL(hid_connect);
2245
2246void hid_disconnect(struct hid_device *hdev)
2247{
2248        device_remove_file(&hdev->dev, &dev_attr_country);
2249        if (hdev->claimed & HID_CLAIMED_INPUT)
2250                hidinput_disconnect(hdev);
2251        if (hdev->claimed & HID_CLAIMED_HIDDEV)
2252                hdev->hiddev_disconnect(hdev);
2253        if (hdev->claimed & HID_CLAIMED_HIDRAW)
2254                hidraw_disconnect(hdev);
2255        hdev->claimed = 0;
2256}
2257EXPORT_SYMBOL_GPL(hid_disconnect);
2258
2259/**
2260 * hid_hw_start - start underlying HW
2261 * @hdev: hid device
2262 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2263 *
2264 * Call this in probe function *after* hid_parse. This will setup HW
2265 * buffers and start the device (if not defeirred to device open).
2266 * hid_hw_stop must be called if this was successful.
2267 */
2268int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2269{
2270        int error;
2271
2272        error = hdev->ll_driver->start(hdev);
2273        if (error)
2274                return error;
2275
2276        if (connect_mask) {
2277                error = hid_connect(hdev, connect_mask);
2278                if (error) {
2279                        hdev->ll_driver->stop(hdev);
2280                        return error;
2281                }
2282        }
2283
2284        return 0;
2285}
2286EXPORT_SYMBOL_GPL(hid_hw_start);
2287
2288/**
2289 * hid_hw_stop - stop underlying HW
2290 * @hdev: hid device
2291 *
2292 * This is usually called from remove function or from probe when something
2293 * failed and hid_hw_start was called already.
2294 */
2295void hid_hw_stop(struct hid_device *hdev)
2296{
2297        hid_disconnect(hdev);
2298        hdev->ll_driver->stop(hdev);
2299}
2300EXPORT_SYMBOL_GPL(hid_hw_stop);
2301
2302/**
2303 * hid_hw_open - signal underlying HW to start delivering events
2304 * @hdev: hid device
2305 *
2306 * Tell underlying HW to start delivering events from the device.
2307 * This function should be called sometime after successful call
2308 * to hid_hw_start().
2309 */
2310int hid_hw_open(struct hid_device *hdev)
2311{
2312        int ret;
2313
2314        ret = mutex_lock_killable(&hdev->ll_open_lock);
2315        if (ret)
2316                return ret;
2317
2318        if (!hdev->ll_open_count++) {
2319                ret = hdev->ll_driver->open(hdev);
2320                if (ret)
2321                        hdev->ll_open_count--;
2322        }
2323
2324        mutex_unlock(&hdev->ll_open_lock);
2325        return ret;
2326}
2327EXPORT_SYMBOL_GPL(hid_hw_open);
2328
2329/**
2330 * hid_hw_close - signal underlaying HW to stop delivering events
2331 *
2332 * @hdev: hid device
2333 *
2334 * This function indicates that we are not interested in the events
2335 * from this device anymore. Delivery of events may or may not stop,
2336 * depending on the number of users still outstanding.
2337 */
2338void hid_hw_close(struct hid_device *hdev)
2339{
2340        mutex_lock(&hdev->ll_open_lock);
2341        if (!--hdev->ll_open_count)
2342                hdev->ll_driver->close(hdev);
2343        mutex_unlock(&hdev->ll_open_lock);
2344}
2345EXPORT_SYMBOL_GPL(hid_hw_close);
2346
2347/**
2348 * hid_hw_request - send report request to device
2349 *
2350 * @hdev: hid device
2351 * @report: report to send
2352 * @reqtype: hid request type
2353 */
2354void hid_hw_request(struct hid_device *hdev,
2355                    struct hid_report *report, int reqtype)
2356{
2357        if (hdev->ll_driver->request)
2358                return hdev->ll_driver->request(hdev, report, reqtype);
2359
2360        __hid_request(hdev, report, reqtype);
2361}
2362EXPORT_SYMBOL_GPL(hid_hw_request);
2363
2364/**
2365 * hid_hw_raw_request - send report request to device
2366 *
2367 * @hdev: hid device
2368 * @reportnum: report ID
2369 * @buf: in/out data to transfer
2370 * @len: length of buf
2371 * @rtype: HID report type
2372 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2373 *
2374 * Return: count of data transferred, negative if error
2375 *
2376 * Same behavior as hid_hw_request, but with raw buffers instead.
2377 */
2378int hid_hw_raw_request(struct hid_device *hdev,
2379                       unsigned char reportnum, __u8 *buf,
2380                       size_t len, unsigned char rtype, int reqtype)
2381{
2382        if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2383                return -EINVAL;
2384
2385        return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2386                                            rtype, reqtype);
2387}
2388EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2389
2390/**
2391 * hid_hw_output_report - send output report to device
2392 *
2393 * @hdev: hid device
2394 * @buf: raw data to transfer
2395 * @len: length of buf
2396 *
2397 * Return: count of data transferred, negative if error
2398 */
2399int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2400{
2401        if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2402                return -EINVAL;
2403
2404        if (hdev->ll_driver->output_report)
2405                return hdev->ll_driver->output_report(hdev, buf, len);
2406
2407        return -ENOSYS;
2408}
2409EXPORT_SYMBOL_GPL(hid_hw_output_report);
2410
2411#ifdef CONFIG_PM
2412int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2413{
2414        if (hdev->driver && hdev->driver->suspend)
2415                return hdev->driver->suspend(hdev, state);
2416
2417        return 0;
2418}
2419EXPORT_SYMBOL_GPL(hid_driver_suspend);
2420
2421int hid_driver_reset_resume(struct hid_device *hdev)
2422{
2423        if (hdev->driver && hdev->driver->reset_resume)
2424                return hdev->driver->reset_resume(hdev);
2425
2426        return 0;
2427}
2428EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2429
2430int hid_driver_resume(struct hid_device *hdev)
2431{
2432        if (hdev->driver && hdev->driver->resume)
2433                return hdev->driver->resume(hdev);
2434
2435        return 0;
2436}
2437EXPORT_SYMBOL_GPL(hid_driver_resume);
2438#endif /* CONFIG_PM */
2439
2440struct hid_dynid {
2441        struct list_head list;
2442        struct hid_device_id id;
2443};
2444
2445/**
2446 * new_id_store - add a new HID device ID to this driver and re-probe devices
2447 * @drv: target device driver
2448 * @buf: buffer for scanning device ID data
2449 * @count: input size
2450 *
2451 * Adds a new dynamic hid device ID to this driver,
2452 * and causes the driver to probe for all devices again.
2453 */
2454static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2455                size_t count)
2456{
2457        struct hid_driver *hdrv = to_hid_driver(drv);
2458        struct hid_dynid *dynid;
2459        __u32 bus, vendor, product;
2460        unsigned long driver_data = 0;
2461        int ret;
2462
2463        ret = sscanf(buf, "%x %x %x %lx",
2464                        &bus, &vendor, &product, &driver_data);
2465        if (ret < 3)
2466                return -EINVAL;
2467
2468        dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2469        if (!dynid)
2470                return -ENOMEM;
2471
2472        dynid->id.bus = bus;
2473        dynid->id.group = HID_GROUP_ANY;
2474        dynid->id.vendor = vendor;
2475        dynid->id.product = product;
2476        dynid->id.driver_data = driver_data;
2477
2478        spin_lock(&hdrv->dyn_lock);
2479        list_add_tail(&dynid->list, &hdrv->dyn_list);
2480        spin_unlock(&hdrv->dyn_lock);
2481
2482        ret = driver_attach(&hdrv->driver);
2483
2484        return ret ? : count;
2485}
2486static DRIVER_ATTR_WO(new_id);
2487
2488static struct attribute *hid_drv_attrs[] = {
2489        &driver_attr_new_id.attr,
2490        NULL,
2491};
2492ATTRIBUTE_GROUPS(hid_drv);
2493
2494static void hid_free_dynids(struct hid_driver *hdrv)
2495{
2496        struct hid_dynid *dynid, *n;
2497
2498        spin_lock(&hdrv->dyn_lock);
2499        list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2500                list_del(&dynid->list);
2501                kfree(dynid);
2502        }
2503        spin_unlock(&hdrv->dyn_lock);
2504}
2505
2506const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2507                                             struct hid_driver *hdrv)
2508{
2509        struct hid_dynid *dynid;
2510
2511        spin_lock(&hdrv->dyn_lock);
2512        list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2513                if (hid_match_one_id(hdev, &dynid->id)) {
2514                        spin_unlock(&hdrv->dyn_lock);
2515                        return &dynid->id;
2516                }
2517        }
2518        spin_unlock(&hdrv->dyn_lock);
2519
2520        return hid_match_id(hdev, hdrv->id_table);
2521}
2522EXPORT_SYMBOL_GPL(hid_match_device);
2523
2524static int hid_bus_match(struct device *dev, struct device_driver *drv)
2525{
2526        struct hid_driver *hdrv = to_hid_driver(drv);
2527        struct hid_device *hdev = to_hid_device(dev);
2528
2529        return hid_match_device(hdev, hdrv) != NULL;
2530}
2531
2532/**
2533 * hid_compare_device_paths - check if both devices share the same path
2534 * @hdev_a: hid device
2535 * @hdev_b: hid device
2536 * @separator: char to use as separator
2537 *
2538 * Check if two devices share the same path up to the last occurrence of
2539 * the separator char. Both paths must exist (i.e., zero-length paths
2540 * don't match).
2541 */
2542bool hid_compare_device_paths(struct hid_device *hdev_a,
2543                              struct hid_device *hdev_b, char separator)
2544{
2545        int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2546        int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2547
2548        if (n1 != n2 || n1 <= 0 || n2 <= 0)
2549                return false;
2550
2551        return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2552}
2553EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2554
2555static int hid_device_probe(struct device *dev)
2556{
2557        struct hid_driver *hdrv = to_hid_driver(dev->driver);
2558        struct hid_device *hdev = to_hid_device(dev);
2559        const struct hid_device_id *id;
2560        int ret = 0;
2561
2562        if (down_interruptible(&hdev->driver_input_lock)) {
2563                ret = -EINTR;
2564                goto end;
2565        }
2566        hdev->io_started = false;
2567
2568        clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2569
2570        if (!hdev->driver) {
2571                id = hid_match_device(hdev, hdrv);
2572                if (id == NULL) {
2573                        ret = -ENODEV;
2574                        goto unlock;
2575                }
2576
2577                if (hdrv->match) {
2578                        if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2579                                ret = -ENODEV;
2580                                goto unlock;
2581                        }
2582                } else {
2583                        /*
2584                         * hid-generic implements .match(), so if
2585                         * hid_ignore_special_drivers is set, we can safely
2586                         * return.
2587                         */
2588                        if (hid_ignore_special_drivers) {
2589                                ret = -ENODEV;
2590                                goto unlock;
2591                        }
2592                }
2593
2594                /* reset the quirks that has been previously set */
2595                hdev->quirks = hid_lookup_quirk(hdev);
2596                hdev->driver = hdrv;
2597                if (hdrv->probe) {
2598                        ret = hdrv->probe(hdev, id);
2599                } else { /* default probe */
2600                        ret = hid_open_report(hdev);
2601                        if (!ret)
2602                                ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2603                }
2604                if (ret) {
2605                        hid_close_report(hdev);
2606                        hdev->driver = NULL;
2607                }
2608        }
2609unlock:
2610        if (!hdev->io_started)
2611                up(&hdev->driver_input_lock);
2612end:
2613        return ret;
2614}
2615
2616static void hid_device_remove(struct device *dev)
2617{
2618        struct hid_device *hdev = to_hid_device(dev);
2619        struct hid_driver *hdrv;
2620
2621        down(&hdev->driver_input_lock);
2622        hdev->io_started = false;
2623
2624        hdrv = hdev->driver;
2625        if (hdrv) {
2626                if (hdrv->remove)
2627                        hdrv->remove(hdev);
2628                else /* default remove */
2629                        hid_hw_stop(hdev);
2630                hid_close_report(hdev);
2631                hdev->driver = NULL;
2632        }
2633
2634        if (!hdev->io_started)
2635                up(&hdev->driver_input_lock);
2636}
2637
2638static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2639                             char *buf)
2640{
2641        struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2642
2643        return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2644                         hdev->bus, hdev->group, hdev->vendor, hdev->product);
2645}
2646static DEVICE_ATTR_RO(modalias);
2647
2648static struct attribute *hid_dev_attrs[] = {
2649        &dev_attr_modalias.attr,
2650        NULL,
2651};
2652static struct bin_attribute *hid_dev_bin_attrs[] = {
2653        &dev_bin_attr_report_desc,
2654        NULL
2655};
2656static const struct attribute_group hid_dev_group = {
2657        .attrs = hid_dev_attrs,
2658        .bin_attrs = hid_dev_bin_attrs,
2659};
2660__ATTRIBUTE_GROUPS(hid_dev);
2661
2662static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2663{
2664        struct hid_device *hdev = to_hid_device(dev);
2665
2666        if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2667                        hdev->bus, hdev->vendor, hdev->product))
2668                return -ENOMEM;
2669
2670        if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2671                return -ENOMEM;
2672
2673        if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2674                return -ENOMEM;
2675
2676        if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2677                return -ENOMEM;
2678
2679        if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2680                           hdev->bus, hdev->group, hdev->vendor, hdev->product))
2681                return -ENOMEM;
2682
2683        return 0;
2684}
2685
2686struct bus_type hid_bus_type = {
2687        .name           = "hid",
2688        .dev_groups     = hid_dev_groups,
2689        .drv_groups     = hid_drv_groups,
2690        .match          = hid_bus_match,
2691        .probe          = hid_device_probe,
2692        .remove         = hid_device_remove,
2693        .uevent         = hid_uevent,
2694};
2695EXPORT_SYMBOL(hid_bus_type);
2696
2697int hid_add_device(struct hid_device *hdev)
2698{
2699        static atomic_t id = ATOMIC_INIT(0);
2700        int ret;
2701
2702        if (WARN_ON(hdev->status & HID_STAT_ADDED))
2703                return -EBUSY;
2704
2705        hdev->quirks = hid_lookup_quirk(hdev);
2706
2707        /* we need to kill them here, otherwise they will stay allocated to
2708         * wait for coming driver */
2709        if (hid_ignore(hdev))
2710                return -ENODEV;
2711
2712        /*
2713         * Check for the mandatory transport channel.
2714         */
2715         if (!hdev->ll_driver->raw_request) {
2716                hid_err(hdev, "transport driver missing .raw_request()\n");
2717                return -EINVAL;
2718         }
2719
2720        /*
2721         * Read the device report descriptor once and use as template
2722         * for the driver-specific modifications.
2723         */
2724        ret = hdev->ll_driver->parse(hdev);
2725        if (ret)
2726                return ret;
2727        if (!hdev->dev_rdesc)
2728                return -ENODEV;
2729
2730        /*
2731         * Scan generic devices for group information
2732         */
2733        if (hid_ignore_special_drivers) {
2734                hdev->group = HID_GROUP_GENERIC;
2735        } else if (!hdev->group &&
2736                   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2737                ret = hid_scan_report(hdev);
2738                if (ret)
2739                        hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2740        }
2741
2742        /* XXX hack, any other cleaner solution after the driver core
2743         * is converted to allow more than 20 bytes as the device name? */
2744        dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2745                     hdev->vendor, hdev->product, atomic_inc_return(&id));
2746
2747        hid_debug_register(hdev, dev_name(&hdev->dev));
2748        ret = device_add(&hdev->dev);
2749        if (!ret)
2750                hdev->status |= HID_STAT_ADDED;
2751        else
2752                hid_debug_unregister(hdev);
2753
2754        return ret;
2755}
2756EXPORT_SYMBOL_GPL(hid_add_device);
2757
2758/**
2759 * hid_allocate_device - allocate new hid device descriptor
2760 *
2761 * Allocate and initialize hid device, so that hid_destroy_device might be
2762 * used to free it.
2763 *
2764 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2765 * error value.
2766 */
2767struct hid_device *hid_allocate_device(void)
2768{
2769        struct hid_device *hdev;
2770        int ret = -ENOMEM;
2771
2772        hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2773        if (hdev == NULL)
2774                return ERR_PTR(ret);
2775
2776        device_initialize(&hdev->dev);
2777        hdev->dev.release = hid_device_release;
2778        hdev->dev.bus = &hid_bus_type;
2779        device_enable_async_suspend(&hdev->dev);
2780
2781        hid_close_report(hdev);
2782
2783        init_waitqueue_head(&hdev->debug_wait);
2784        INIT_LIST_HEAD(&hdev->debug_list);
2785        spin_lock_init(&hdev->debug_list_lock);
2786        sema_init(&hdev->driver_input_lock, 1);
2787        mutex_init(&hdev->ll_open_lock);
2788
2789        return hdev;
2790}
2791EXPORT_SYMBOL_GPL(hid_allocate_device);
2792
2793static void hid_remove_device(struct hid_device *hdev)
2794{
2795        if (hdev->status & HID_STAT_ADDED) {
2796                device_del(&hdev->dev);
2797                hid_debug_unregister(hdev);
2798                hdev->status &= ~HID_STAT_ADDED;
2799        }
2800        kfree(hdev->dev_rdesc);
2801        hdev->dev_rdesc = NULL;
2802        hdev->dev_rsize = 0;
2803}
2804
2805/**
2806 * hid_destroy_device - free previously allocated device
2807 *
2808 * @hdev: hid device
2809 *
2810 * If you allocate hid_device through hid_allocate_device, you should ever
2811 * free by this function.
2812 */
2813void hid_destroy_device(struct hid_device *hdev)
2814{
2815        hid_remove_device(hdev);
2816        put_device(&hdev->dev);
2817}
2818EXPORT_SYMBOL_GPL(hid_destroy_device);
2819
2820
2821static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2822{
2823        struct hid_driver *hdrv = data;
2824        struct hid_device *hdev = to_hid_device(dev);
2825
2826        if (hdev->driver == hdrv &&
2827            !hdrv->match(hdev, hid_ignore_special_drivers) &&
2828            !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2829                return device_reprobe(dev);
2830
2831        return 0;
2832}
2833
2834static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2835{
2836        struct hid_driver *hdrv = to_hid_driver(drv);
2837
2838        if (hdrv->match) {
2839                bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2840                                 __hid_bus_reprobe_drivers);
2841        }
2842
2843        return 0;
2844}
2845
2846static int __bus_removed_driver(struct device_driver *drv, void *data)
2847{
2848        return bus_rescan_devices(&hid_bus_type);
2849}
2850
2851int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2852                const char *mod_name)
2853{
2854        int ret;
2855
2856        hdrv->driver.name = hdrv->name;
2857        hdrv->driver.bus = &hid_bus_type;
2858        hdrv->driver.owner = owner;
2859        hdrv->driver.mod_name = mod_name;
2860
2861        INIT_LIST_HEAD(&hdrv->dyn_list);
2862        spin_lock_init(&hdrv->dyn_lock);
2863
2864        ret = driver_register(&hdrv->driver);
2865
2866        if (ret == 0)
2867                bus_for_each_drv(&hid_bus_type, NULL, NULL,
2868                                 __hid_bus_driver_added);
2869
2870        return ret;
2871}
2872EXPORT_SYMBOL_GPL(__hid_register_driver);
2873
2874void hid_unregister_driver(struct hid_driver *hdrv)
2875{
2876        driver_unregister(&hdrv->driver);
2877        hid_free_dynids(hdrv);
2878
2879        bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2880}
2881EXPORT_SYMBOL_GPL(hid_unregister_driver);
2882
2883int hid_check_keys_pressed(struct hid_device *hid)
2884{
2885        struct hid_input *hidinput;
2886        int i;
2887
2888        if (!(hid->claimed & HID_CLAIMED_INPUT))
2889                return 0;
2890
2891        list_for_each_entry(hidinput, &hid->inputs, list) {
2892                for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2893                        if (hidinput->input->key[i])
2894                                return 1;
2895        }
2896
2897        return 0;
2898}
2899EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2900
2901static int __init hid_init(void)
2902{
2903        int ret;
2904
2905        if (hid_debug)
2906                pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2907                        "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2908
2909        ret = bus_register(&hid_bus_type);
2910        if (ret) {
2911                pr_err("can't register hid bus\n");
2912                goto err;
2913        }
2914
2915        ret = hidraw_init();
2916        if (ret)
2917                goto err_bus;
2918
2919        hid_debug_init();
2920
2921        return 0;
2922err_bus:
2923        bus_unregister(&hid_bus_type);
2924err:
2925        return ret;
2926}
2927
2928static void __exit hid_exit(void)
2929{
2930        hid_debug_exit();
2931        hidraw_exit();
2932        bus_unregister(&hid_bus_type);
2933        hid_quirks_exit(HID_BUS_ANY);
2934}
2935
2936module_init(hid_init);
2937module_exit(hid_exit);
2938
2939MODULE_AUTHOR("Andreas Gal");
2940MODULE_AUTHOR("Vojtech Pavlik");
2941MODULE_AUTHOR("Jiri Kosina");
2942MODULE_LICENSE("GPL");
2943