1
2
3
4
5
6
7
8
9
10
11#include <linux/acpi_iort.h>
12#include <linux/atomic.h>
13#include <linux/crash_dump.h>
14#include <linux/device.h>
15#include <linux/dma-direct.h>
16#include <linux/dma-iommu.h>
17#include <linux/dma-map-ops.h>
18#include <linux/gfp.h>
19#include <linux/huge_mm.h>
20#include <linux/iommu.h>
21#include <linux/iova.h>
22#include <linux/irq.h>
23#include <linux/list_sort.h>
24#include <linux/mm.h>
25#include <linux/mutex.h>
26#include <linux/pci.h>
27#include <linux/scatterlist.h>
28#include <linux/spinlock.h>
29#include <linux/swiotlb.h>
30#include <linux/vmalloc.h>
31
32struct iommu_dma_msi_page {
33 struct list_head list;
34 dma_addr_t iova;
35 phys_addr_t phys;
36};
37
38enum iommu_dma_cookie_type {
39 IOMMU_DMA_IOVA_COOKIE,
40 IOMMU_DMA_MSI_COOKIE,
41};
42
43struct iommu_dma_cookie {
44 enum iommu_dma_cookie_type type;
45 union {
46
47 struct {
48 struct iova_domain iovad;
49
50 struct iova_fq __percpu *fq;
51
52 atomic64_t fq_flush_start_cnt;
53
54 atomic64_t fq_flush_finish_cnt;
55
56 struct timer_list fq_timer;
57
58 atomic_t fq_timer_on;
59 };
60
61 dma_addr_t msi_iova;
62 };
63 struct list_head msi_page_list;
64
65
66 struct iommu_domain *fq_domain;
67};
68
69static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
70bool iommu_dma_forcedac __read_mostly;
71
72static int __init iommu_dma_forcedac_setup(char *str)
73{
74 int ret = kstrtobool(str, &iommu_dma_forcedac);
75
76 if (!ret && iommu_dma_forcedac)
77 pr_info("Forcing DAC for PCI devices\n");
78 return ret;
79}
80early_param("iommu.forcedac", iommu_dma_forcedac_setup);
81
82
83#define IOVA_FQ_SIZE 256
84
85
86#define IOVA_FQ_TIMEOUT 10
87
88
89struct iova_fq_entry {
90 unsigned long iova_pfn;
91 unsigned long pages;
92 struct list_head freelist;
93 u64 counter;
94};
95
96
97struct iova_fq {
98 struct iova_fq_entry entries[IOVA_FQ_SIZE];
99 unsigned int head, tail;
100 spinlock_t lock;
101};
102
103#define fq_ring_for_each(i, fq) \
104 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
105
106static inline bool fq_full(struct iova_fq *fq)
107{
108 assert_spin_locked(&fq->lock);
109 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
110}
111
112static inline unsigned int fq_ring_add(struct iova_fq *fq)
113{
114 unsigned int idx = fq->tail;
115
116 assert_spin_locked(&fq->lock);
117
118 fq->tail = (idx + 1) % IOVA_FQ_SIZE;
119
120 return idx;
121}
122
123static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
124{
125 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
126 unsigned int idx;
127
128 assert_spin_locked(&fq->lock);
129
130 fq_ring_for_each(idx, fq) {
131
132 if (fq->entries[idx].counter >= counter)
133 break;
134
135 put_pages_list(&fq->entries[idx].freelist);
136 free_iova_fast(&cookie->iovad,
137 fq->entries[idx].iova_pfn,
138 fq->entries[idx].pages);
139
140 fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
141 }
142}
143
144static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
145{
146 atomic64_inc(&cookie->fq_flush_start_cnt);
147 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
148 atomic64_inc(&cookie->fq_flush_finish_cnt);
149}
150
151static void fq_flush_timeout(struct timer_list *t)
152{
153 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
154 int cpu;
155
156 atomic_set(&cookie->fq_timer_on, 0);
157 fq_flush_iotlb(cookie);
158
159 for_each_possible_cpu(cpu) {
160 unsigned long flags;
161 struct iova_fq *fq;
162
163 fq = per_cpu_ptr(cookie->fq, cpu);
164 spin_lock_irqsave(&fq->lock, flags);
165 fq_ring_free(cookie, fq);
166 spin_unlock_irqrestore(&fq->lock, flags);
167 }
168}
169
170static void queue_iova(struct iommu_dma_cookie *cookie,
171 unsigned long pfn, unsigned long pages,
172 struct list_head *freelist)
173{
174 struct iova_fq *fq;
175 unsigned long flags;
176 unsigned int idx;
177
178
179
180
181
182
183
184
185 smp_mb();
186
187 fq = raw_cpu_ptr(cookie->fq);
188 spin_lock_irqsave(&fq->lock, flags);
189
190
191
192
193
194
195 fq_ring_free(cookie, fq);
196
197 if (fq_full(fq)) {
198 fq_flush_iotlb(cookie);
199 fq_ring_free(cookie, fq);
200 }
201
202 idx = fq_ring_add(fq);
203
204 fq->entries[idx].iova_pfn = pfn;
205 fq->entries[idx].pages = pages;
206 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
207 list_splice(freelist, &fq->entries[idx].freelist);
208
209 spin_unlock_irqrestore(&fq->lock, flags);
210
211
212 if (!atomic_read(&cookie->fq_timer_on) &&
213 !atomic_xchg(&cookie->fq_timer_on, 1))
214 mod_timer(&cookie->fq_timer,
215 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
216}
217
218static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
219{
220 int cpu, idx;
221
222 if (!cookie->fq)
223 return;
224
225 del_timer_sync(&cookie->fq_timer);
226
227 for_each_possible_cpu(cpu) {
228 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
229
230 fq_ring_for_each(idx, fq)
231 put_pages_list(&fq->entries[idx].freelist);
232 }
233
234 free_percpu(cookie->fq);
235}
236
237
238int iommu_dma_init_fq(struct iommu_domain *domain)
239{
240 struct iommu_dma_cookie *cookie = domain->iova_cookie;
241 struct iova_fq __percpu *queue;
242 int i, cpu;
243
244 if (cookie->fq_domain)
245 return 0;
246
247 atomic64_set(&cookie->fq_flush_start_cnt, 0);
248 atomic64_set(&cookie->fq_flush_finish_cnt, 0);
249
250 queue = alloc_percpu(struct iova_fq);
251 if (!queue) {
252 pr_warn("iova flush queue initialization failed\n");
253 return -ENOMEM;
254 }
255
256 for_each_possible_cpu(cpu) {
257 struct iova_fq *fq = per_cpu_ptr(queue, cpu);
258
259 fq->head = 0;
260 fq->tail = 0;
261
262 spin_lock_init(&fq->lock);
263
264 for (i = 0; i < IOVA_FQ_SIZE; i++)
265 INIT_LIST_HEAD(&fq->entries[i].freelist);
266 }
267
268 cookie->fq = queue;
269
270 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
271 atomic_set(&cookie->fq_timer_on, 0);
272
273
274
275
276 smp_wmb();
277 WRITE_ONCE(cookie->fq_domain, domain);
278 return 0;
279}
280
281static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
282{
283 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
284 return cookie->iovad.granule;
285 return PAGE_SIZE;
286}
287
288static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
289{
290 struct iommu_dma_cookie *cookie;
291
292 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
293 if (cookie) {
294 INIT_LIST_HEAD(&cookie->msi_page_list);
295 cookie->type = type;
296 }
297 return cookie;
298}
299
300
301
302
303
304int iommu_get_dma_cookie(struct iommu_domain *domain)
305{
306 if (domain->iova_cookie)
307 return -EEXIST;
308
309 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
310 if (!domain->iova_cookie)
311 return -ENOMEM;
312
313 return 0;
314}
315
316
317
318
319
320
321
322
323
324
325
326
327
328int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
329{
330 struct iommu_dma_cookie *cookie;
331
332 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
333 return -EINVAL;
334
335 if (domain->iova_cookie)
336 return -EEXIST;
337
338 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
339 if (!cookie)
340 return -ENOMEM;
341
342 cookie->msi_iova = base;
343 domain->iova_cookie = cookie;
344 return 0;
345}
346EXPORT_SYMBOL(iommu_get_msi_cookie);
347
348
349
350
351
352
353void iommu_put_dma_cookie(struct iommu_domain *domain)
354{
355 struct iommu_dma_cookie *cookie = domain->iova_cookie;
356 struct iommu_dma_msi_page *msi, *tmp;
357
358 if (!cookie)
359 return;
360
361 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
362 iommu_dma_free_fq(cookie);
363 put_iova_domain(&cookie->iovad);
364 }
365
366 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
367 list_del(&msi->list);
368 kfree(msi);
369 }
370 kfree(cookie);
371 domain->iova_cookie = NULL;
372}
373
374
375
376
377
378
379
380
381
382
383
384void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
385{
386
387 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
388 iort_iommu_msi_get_resv_regions(dev, list);
389
390}
391EXPORT_SYMBOL(iommu_dma_get_resv_regions);
392
393static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
394 phys_addr_t start, phys_addr_t end)
395{
396 struct iova_domain *iovad = &cookie->iovad;
397 struct iommu_dma_msi_page *msi_page;
398 int i, num_pages;
399
400 start -= iova_offset(iovad, start);
401 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
402
403 for (i = 0; i < num_pages; i++) {
404 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
405 if (!msi_page)
406 return -ENOMEM;
407
408 msi_page->phys = start;
409 msi_page->iova = start;
410 INIT_LIST_HEAD(&msi_page->list);
411 list_add(&msi_page->list, &cookie->msi_page_list);
412 start += iovad->granule;
413 }
414
415 return 0;
416}
417
418static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
419 const struct list_head *b)
420{
421 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
422 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
423
424 return res_a->res->start > res_b->res->start;
425}
426
427static int iova_reserve_pci_windows(struct pci_dev *dev,
428 struct iova_domain *iovad)
429{
430 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
431 struct resource_entry *window;
432 unsigned long lo, hi;
433 phys_addr_t start = 0, end;
434
435 resource_list_for_each_entry(window, &bridge->windows) {
436 if (resource_type(window->res) != IORESOURCE_MEM)
437 continue;
438
439 lo = iova_pfn(iovad, window->res->start - window->offset);
440 hi = iova_pfn(iovad, window->res->end - window->offset);
441 reserve_iova(iovad, lo, hi);
442 }
443
444
445 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
446 resource_list_for_each_entry(window, &bridge->dma_ranges) {
447 end = window->res->start - window->offset;
448resv_iova:
449 if (end > start) {
450 lo = iova_pfn(iovad, start);
451 hi = iova_pfn(iovad, end);
452 reserve_iova(iovad, lo, hi);
453 } else if (end < start) {
454
455 dev_err(&dev->dev,
456 "Failed to reserve IOVA [%pa-%pa]\n",
457 &start, &end);
458 return -EINVAL;
459 }
460
461 start = window->res->end - window->offset + 1;
462
463 if (window->node.next == &bridge->dma_ranges &&
464 end != ~(phys_addr_t)0) {
465 end = ~(phys_addr_t)0;
466 goto resv_iova;
467 }
468 }
469
470 return 0;
471}
472
473static int iova_reserve_iommu_regions(struct device *dev,
474 struct iommu_domain *domain)
475{
476 struct iommu_dma_cookie *cookie = domain->iova_cookie;
477 struct iova_domain *iovad = &cookie->iovad;
478 struct iommu_resv_region *region;
479 LIST_HEAD(resv_regions);
480 int ret = 0;
481
482 if (dev_is_pci(dev)) {
483 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
484 if (ret)
485 return ret;
486 }
487
488 iommu_get_resv_regions(dev, &resv_regions);
489 list_for_each_entry(region, &resv_regions, list) {
490 unsigned long lo, hi;
491
492
493 if (region->type == IOMMU_RESV_SW_MSI)
494 continue;
495
496 lo = iova_pfn(iovad, region->start);
497 hi = iova_pfn(iovad, region->start + region->length - 1);
498 reserve_iova(iovad, lo, hi);
499
500 if (region->type == IOMMU_RESV_MSI)
501 ret = cookie_init_hw_msi_region(cookie, region->start,
502 region->start + region->length);
503 if (ret)
504 break;
505 }
506 iommu_put_resv_regions(dev, &resv_regions);
507
508 return ret;
509}
510
511static bool dev_is_untrusted(struct device *dev)
512{
513 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
514}
515
516static bool dev_use_swiotlb(struct device *dev)
517{
518 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
519}
520
521
522
523
524
525
526
527
528
529
530
531
532
533static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
534 dma_addr_t limit, struct device *dev)
535{
536 struct iommu_dma_cookie *cookie = domain->iova_cookie;
537 unsigned long order, base_pfn;
538 struct iova_domain *iovad;
539 int ret;
540
541 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
542 return -EINVAL;
543
544 iovad = &cookie->iovad;
545
546
547 order = __ffs(domain->pgsize_bitmap);
548 base_pfn = max_t(unsigned long, 1, base >> order);
549
550
551 if (domain->geometry.force_aperture) {
552 if (base > domain->geometry.aperture_end ||
553 limit < domain->geometry.aperture_start) {
554 pr_warn("specified DMA range outside IOMMU capability\n");
555 return -EFAULT;
556 }
557
558 base_pfn = max_t(unsigned long, base_pfn,
559 domain->geometry.aperture_start >> order);
560 }
561
562
563 if (iovad->start_pfn) {
564 if (1UL << order != iovad->granule ||
565 base_pfn != iovad->start_pfn) {
566 pr_warn("Incompatible range for DMA domain\n");
567 return -EFAULT;
568 }
569
570 return 0;
571 }
572
573 init_iova_domain(iovad, 1UL << order, base_pfn);
574 ret = iova_domain_init_rcaches(iovad);
575 if (ret)
576 return ret;
577
578
579 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
580 domain->type = IOMMU_DOMAIN_DMA;
581
582 return iova_reserve_iommu_regions(dev, domain);
583}
584
585
586
587
588
589
590
591
592
593
594static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
595 unsigned long attrs)
596{
597 int prot = coherent ? IOMMU_CACHE : 0;
598
599 if (attrs & DMA_ATTR_PRIVILEGED)
600 prot |= IOMMU_PRIV;
601
602 switch (dir) {
603 case DMA_BIDIRECTIONAL:
604 return prot | IOMMU_READ | IOMMU_WRITE;
605 case DMA_TO_DEVICE:
606 return prot | IOMMU_READ;
607 case DMA_FROM_DEVICE:
608 return prot | IOMMU_WRITE;
609 default:
610 return 0;
611 }
612}
613
614static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
615 size_t size, u64 dma_limit, struct device *dev)
616{
617 struct iommu_dma_cookie *cookie = domain->iova_cookie;
618 struct iova_domain *iovad = &cookie->iovad;
619 unsigned long shift, iova_len, iova = 0;
620
621 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
622 cookie->msi_iova += size;
623 return cookie->msi_iova - size;
624 }
625
626 shift = iova_shift(iovad);
627 iova_len = size >> shift;
628
629 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
630
631 if (domain->geometry.force_aperture)
632 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
633
634
635 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
636 iova = alloc_iova_fast(iovad, iova_len,
637 DMA_BIT_MASK(32) >> shift, false);
638
639 if (!iova)
640 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
641 true);
642
643 return (dma_addr_t)iova << shift;
644}
645
646static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
647 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
648{
649 struct iova_domain *iovad = &cookie->iovad;
650
651
652 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
653 cookie->msi_iova -= size;
654 else if (gather && gather->queued)
655 queue_iova(cookie, iova_pfn(iovad, iova),
656 size >> iova_shift(iovad),
657 &gather->freelist);
658 else
659 free_iova_fast(iovad, iova_pfn(iovad, iova),
660 size >> iova_shift(iovad));
661}
662
663static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
664 size_t size)
665{
666 struct iommu_domain *domain = iommu_get_dma_domain(dev);
667 struct iommu_dma_cookie *cookie = domain->iova_cookie;
668 struct iova_domain *iovad = &cookie->iovad;
669 size_t iova_off = iova_offset(iovad, dma_addr);
670 struct iommu_iotlb_gather iotlb_gather;
671 size_t unmapped;
672
673 dma_addr -= iova_off;
674 size = iova_align(iovad, size + iova_off);
675 iommu_iotlb_gather_init(&iotlb_gather);
676 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
677
678 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
679 WARN_ON(unmapped != size);
680
681 if (!iotlb_gather.queued)
682 iommu_iotlb_sync(domain, &iotlb_gather);
683 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
684}
685
686static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
687 size_t size, int prot, u64 dma_mask)
688{
689 struct iommu_domain *domain = iommu_get_dma_domain(dev);
690 struct iommu_dma_cookie *cookie = domain->iova_cookie;
691 struct iova_domain *iovad = &cookie->iovad;
692 size_t iova_off = iova_offset(iovad, phys);
693 dma_addr_t iova;
694
695 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
696 iommu_deferred_attach(dev, domain))
697 return DMA_MAPPING_ERROR;
698
699 size = iova_align(iovad, size + iova_off);
700
701 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
702 if (!iova)
703 return DMA_MAPPING_ERROR;
704
705 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
706 iommu_dma_free_iova(cookie, iova, size, NULL);
707 return DMA_MAPPING_ERROR;
708 }
709 return iova + iova_off;
710}
711
712static void __iommu_dma_free_pages(struct page **pages, int count)
713{
714 while (count--)
715 __free_page(pages[count]);
716 kvfree(pages);
717}
718
719static struct page **__iommu_dma_alloc_pages(struct device *dev,
720 unsigned int count, unsigned long order_mask, gfp_t gfp)
721{
722 struct page **pages;
723 unsigned int i = 0, nid = dev_to_node(dev);
724
725 order_mask &= (2U << MAX_ORDER) - 1;
726 if (!order_mask)
727 return NULL;
728
729 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
730 if (!pages)
731 return NULL;
732
733
734 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
735
736
737 gfp &= ~__GFP_COMP;
738
739 while (count) {
740 struct page *page = NULL;
741 unsigned int order_size;
742
743
744
745
746
747
748 for (order_mask &= (2U << __fls(count)) - 1;
749 order_mask; order_mask &= ~order_size) {
750 unsigned int order = __fls(order_mask);
751 gfp_t alloc_flags = gfp;
752
753 order_size = 1U << order;
754 if (order_mask > order_size)
755 alloc_flags |= __GFP_NORETRY;
756 page = alloc_pages_node(nid, alloc_flags, order);
757 if (!page)
758 continue;
759 if (order)
760 split_page(page, order);
761 break;
762 }
763 if (!page) {
764 __iommu_dma_free_pages(pages, i);
765 return NULL;
766 }
767 count -= order_size;
768 while (order_size--)
769 pages[i++] = page++;
770 }
771 return pages;
772}
773
774
775
776
777
778static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
779 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
780 unsigned long attrs)
781{
782 struct iommu_domain *domain = iommu_get_dma_domain(dev);
783 struct iommu_dma_cookie *cookie = domain->iova_cookie;
784 struct iova_domain *iovad = &cookie->iovad;
785 bool coherent = dev_is_dma_coherent(dev);
786 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
787 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
788 struct page **pages;
789 dma_addr_t iova;
790 ssize_t ret;
791
792 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
793 iommu_deferred_attach(dev, domain))
794 return NULL;
795
796 min_size = alloc_sizes & -alloc_sizes;
797 if (min_size < PAGE_SIZE) {
798 min_size = PAGE_SIZE;
799 alloc_sizes |= PAGE_SIZE;
800 } else {
801 size = ALIGN(size, min_size);
802 }
803 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
804 alloc_sizes = min_size;
805
806 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
807 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
808 gfp);
809 if (!pages)
810 return NULL;
811
812 size = iova_align(iovad, size);
813 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
814 if (!iova)
815 goto out_free_pages;
816
817 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
818 goto out_free_iova;
819
820 if (!(ioprot & IOMMU_CACHE)) {
821 struct scatterlist *sg;
822 int i;
823
824 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
825 arch_dma_prep_coherent(sg_page(sg), sg->length);
826 }
827
828 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
829 if (ret < 0 || ret < size)
830 goto out_free_sg;
831
832 sgt->sgl->dma_address = iova;
833 sgt->sgl->dma_length = size;
834 return pages;
835
836out_free_sg:
837 sg_free_table(sgt);
838out_free_iova:
839 iommu_dma_free_iova(cookie, iova, size, NULL);
840out_free_pages:
841 __iommu_dma_free_pages(pages, count);
842 return NULL;
843}
844
845static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
846 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
847 unsigned long attrs)
848{
849 struct page **pages;
850 struct sg_table sgt;
851 void *vaddr;
852
853 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
854 attrs);
855 if (!pages)
856 return NULL;
857 *dma_handle = sgt.sgl->dma_address;
858 sg_free_table(&sgt);
859 vaddr = dma_common_pages_remap(pages, size, prot,
860 __builtin_return_address(0));
861 if (!vaddr)
862 goto out_unmap;
863 return vaddr;
864
865out_unmap:
866 __iommu_dma_unmap(dev, *dma_handle, size);
867 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
868 return NULL;
869}
870
871static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
872 size_t size, enum dma_data_direction dir, gfp_t gfp,
873 unsigned long attrs)
874{
875 struct dma_sgt_handle *sh;
876
877 sh = kmalloc(sizeof(*sh), gfp);
878 if (!sh)
879 return NULL;
880
881 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
882 PAGE_KERNEL, attrs);
883 if (!sh->pages) {
884 kfree(sh);
885 return NULL;
886 }
887 return &sh->sgt;
888}
889
890static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
891 struct sg_table *sgt, enum dma_data_direction dir)
892{
893 struct dma_sgt_handle *sh = sgt_handle(sgt);
894
895 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
896 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
897 sg_free_table(&sh->sgt);
898 kfree(sh);
899}
900
901static void iommu_dma_sync_single_for_cpu(struct device *dev,
902 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
903{
904 phys_addr_t phys;
905
906 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
907 return;
908
909 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
910 if (!dev_is_dma_coherent(dev))
911 arch_sync_dma_for_cpu(phys, size, dir);
912
913 if (is_swiotlb_buffer(dev, phys))
914 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
915}
916
917static void iommu_dma_sync_single_for_device(struct device *dev,
918 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
919{
920 phys_addr_t phys;
921
922 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
923 return;
924
925 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
926 if (is_swiotlb_buffer(dev, phys))
927 swiotlb_sync_single_for_device(dev, phys, size, dir);
928
929 if (!dev_is_dma_coherent(dev))
930 arch_sync_dma_for_device(phys, size, dir);
931}
932
933static void iommu_dma_sync_sg_for_cpu(struct device *dev,
934 struct scatterlist *sgl, int nelems,
935 enum dma_data_direction dir)
936{
937 struct scatterlist *sg;
938 int i;
939
940 if (dev_use_swiotlb(dev))
941 for_each_sg(sgl, sg, nelems, i)
942 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
943 sg->length, dir);
944 else if (!dev_is_dma_coherent(dev))
945 for_each_sg(sgl, sg, nelems, i)
946 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
947}
948
949static void iommu_dma_sync_sg_for_device(struct device *dev,
950 struct scatterlist *sgl, int nelems,
951 enum dma_data_direction dir)
952{
953 struct scatterlist *sg;
954 int i;
955
956 if (dev_use_swiotlb(dev))
957 for_each_sg(sgl, sg, nelems, i)
958 iommu_dma_sync_single_for_device(dev,
959 sg_dma_address(sg),
960 sg->length, dir);
961 else if (!dev_is_dma_coherent(dev))
962 for_each_sg(sgl, sg, nelems, i)
963 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
964}
965
966static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
967 unsigned long offset, size_t size, enum dma_data_direction dir,
968 unsigned long attrs)
969{
970 phys_addr_t phys = page_to_phys(page) + offset;
971 bool coherent = dev_is_dma_coherent(dev);
972 int prot = dma_info_to_prot(dir, coherent, attrs);
973 struct iommu_domain *domain = iommu_get_dma_domain(dev);
974 struct iommu_dma_cookie *cookie = domain->iova_cookie;
975 struct iova_domain *iovad = &cookie->iovad;
976 dma_addr_t iova, dma_mask = dma_get_mask(dev);
977
978
979
980
981
982 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
983 void *padding_start;
984 size_t padding_size, aligned_size;
985
986 if (!is_swiotlb_active(dev)) {
987 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
988 return DMA_MAPPING_ERROR;
989 }
990
991 aligned_size = iova_align(iovad, size);
992 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
993 iova_mask(iovad), dir, attrs);
994
995 if (phys == DMA_MAPPING_ERROR)
996 return DMA_MAPPING_ERROR;
997
998
999 padding_start = phys_to_virt(phys);
1000 padding_size = aligned_size;
1001
1002 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1003 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1004 padding_start += size;
1005 padding_size -= size;
1006 }
1007
1008 memset(padding_start, 0, padding_size);
1009 }
1010
1011 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1012 arch_sync_dma_for_device(phys, size, dir);
1013
1014 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1015 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1016 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1017 return iova;
1018}
1019
1020static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1021 size_t size, enum dma_data_direction dir, unsigned long attrs)
1022{
1023 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1024 phys_addr_t phys;
1025
1026 phys = iommu_iova_to_phys(domain, dma_handle);
1027 if (WARN_ON(!phys))
1028 return;
1029
1030 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1031 arch_sync_dma_for_cpu(phys, size, dir);
1032
1033 __iommu_dma_unmap(dev, dma_handle, size);
1034
1035 if (unlikely(is_swiotlb_buffer(dev, phys)))
1036 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1037}
1038
1039
1040
1041
1042
1043
1044
1045
1046static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1047 dma_addr_t dma_addr)
1048{
1049 struct scatterlist *s, *cur = sg;
1050 unsigned long seg_mask = dma_get_seg_boundary(dev);
1051 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1052 int i, count = 0;
1053
1054 for_each_sg(sg, s, nents, i) {
1055
1056 unsigned int s_iova_off = sg_dma_address(s);
1057 unsigned int s_length = sg_dma_len(s);
1058 unsigned int s_iova_len = s->length;
1059
1060 s->offset += s_iova_off;
1061 s->length = s_length;
1062 sg_dma_address(s) = DMA_MAPPING_ERROR;
1063 sg_dma_len(s) = 0;
1064
1065
1066
1067
1068
1069
1070
1071
1072 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1073 (max_len - cur_len >= s_length)) {
1074
1075 cur_len += s_length;
1076 } else {
1077
1078 if (i > 0)
1079 cur = sg_next(cur);
1080 cur_len = s_length;
1081 count++;
1082
1083 sg_dma_address(cur) = dma_addr + s_iova_off;
1084 }
1085
1086 sg_dma_len(cur) = cur_len;
1087 dma_addr += s_iova_len;
1088
1089 if (s_length + s_iova_off < s_iova_len)
1090 cur_len = 0;
1091 }
1092 return count;
1093}
1094
1095
1096
1097
1098
1099static void __invalidate_sg(struct scatterlist *sg, int nents)
1100{
1101 struct scatterlist *s;
1102 int i;
1103
1104 for_each_sg(sg, s, nents, i) {
1105 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1106 s->offset += sg_dma_address(s);
1107 if (sg_dma_len(s))
1108 s->length = sg_dma_len(s);
1109 sg_dma_address(s) = DMA_MAPPING_ERROR;
1110 sg_dma_len(s) = 0;
1111 }
1112}
1113
1114static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1115 int nents, enum dma_data_direction dir, unsigned long attrs)
1116{
1117 struct scatterlist *s;
1118 int i;
1119
1120 for_each_sg(sg, s, nents, i)
1121 iommu_dma_unmap_page(dev, sg_dma_address(s),
1122 sg_dma_len(s), dir, attrs);
1123}
1124
1125static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1126 int nents, enum dma_data_direction dir, unsigned long attrs)
1127{
1128 struct scatterlist *s;
1129 int i;
1130
1131 for_each_sg(sg, s, nents, i) {
1132 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1133 s->offset, s->length, dir, attrs);
1134 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1135 goto out_unmap;
1136 sg_dma_len(s) = s->length;
1137 }
1138
1139 return nents;
1140
1141out_unmap:
1142 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1143 return -EIO;
1144}
1145
1146
1147
1148
1149
1150
1151
1152
1153static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1154 int nents, enum dma_data_direction dir, unsigned long attrs)
1155{
1156 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1157 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1158 struct iova_domain *iovad = &cookie->iovad;
1159 struct scatterlist *s, *prev = NULL;
1160 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1161 dma_addr_t iova;
1162 size_t iova_len = 0;
1163 unsigned long mask = dma_get_seg_boundary(dev);
1164 ssize_t ret;
1165 int i;
1166
1167 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1168 ret = iommu_deferred_attach(dev, domain);
1169 if (ret)
1170 goto out;
1171 }
1172
1173 if (dev_use_swiotlb(dev))
1174 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1175
1176 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1177 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1178
1179
1180
1181
1182
1183
1184
1185 for_each_sg(sg, s, nents, i) {
1186 size_t s_iova_off = iova_offset(iovad, s->offset);
1187 size_t s_length = s->length;
1188 size_t pad_len = (mask - iova_len + 1) & mask;
1189
1190 sg_dma_address(s) = s_iova_off;
1191 sg_dma_len(s) = s_length;
1192 s->offset -= s_iova_off;
1193 s_length = iova_align(iovad, s_length + s_iova_off);
1194 s->length = s_length;
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209 if (pad_len && pad_len < s_length - 1) {
1210 prev->length += pad_len;
1211 iova_len += pad_len;
1212 }
1213
1214 iova_len += s_length;
1215 prev = s;
1216 }
1217
1218 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1219 if (!iova) {
1220 ret = -ENOMEM;
1221 goto out_restore_sg;
1222 }
1223
1224
1225
1226
1227
1228 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1229 if (ret < 0 || ret < iova_len)
1230 goto out_free_iova;
1231
1232 return __finalise_sg(dev, sg, nents, iova);
1233
1234out_free_iova:
1235 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1236out_restore_sg:
1237 __invalidate_sg(sg, nents);
1238out:
1239 if (ret != -ENOMEM)
1240 return -EINVAL;
1241 return ret;
1242}
1243
1244static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1245 int nents, enum dma_data_direction dir, unsigned long attrs)
1246{
1247 dma_addr_t start, end;
1248 struct scatterlist *tmp;
1249 int i;
1250
1251 if (dev_use_swiotlb(dev)) {
1252 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1253 return;
1254 }
1255
1256 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1257 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1258
1259
1260
1261
1262
1263 start = sg_dma_address(sg);
1264 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1265 if (sg_dma_len(tmp) == 0)
1266 break;
1267 sg = tmp;
1268 }
1269 end = sg_dma_address(sg) + sg_dma_len(sg);
1270 __iommu_dma_unmap(dev, start, end - start);
1271}
1272
1273static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1274 size_t size, enum dma_data_direction dir, unsigned long attrs)
1275{
1276 return __iommu_dma_map(dev, phys, size,
1277 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1278 dma_get_mask(dev));
1279}
1280
1281static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1282 size_t size, enum dma_data_direction dir, unsigned long attrs)
1283{
1284 __iommu_dma_unmap(dev, handle, size);
1285}
1286
1287static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1288{
1289 size_t alloc_size = PAGE_ALIGN(size);
1290 int count = alloc_size >> PAGE_SHIFT;
1291 struct page *page = NULL, **pages = NULL;
1292
1293
1294 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1295 dma_free_from_pool(dev, cpu_addr, alloc_size))
1296 return;
1297
1298 if (is_vmalloc_addr(cpu_addr)) {
1299
1300
1301
1302
1303 pages = dma_common_find_pages(cpu_addr);
1304 if (!pages)
1305 page = vmalloc_to_page(cpu_addr);
1306 dma_common_free_remap(cpu_addr, alloc_size);
1307 } else {
1308
1309 page = virt_to_page(cpu_addr);
1310 }
1311
1312 if (pages)
1313 __iommu_dma_free_pages(pages, count);
1314 if (page)
1315 dma_free_contiguous(dev, page, alloc_size);
1316}
1317
1318static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1319 dma_addr_t handle, unsigned long attrs)
1320{
1321 __iommu_dma_unmap(dev, handle, size);
1322 __iommu_dma_free(dev, size, cpu_addr);
1323}
1324
1325static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1326 struct page **pagep, gfp_t gfp, unsigned long attrs)
1327{
1328 bool coherent = dev_is_dma_coherent(dev);
1329 size_t alloc_size = PAGE_ALIGN(size);
1330 int node = dev_to_node(dev);
1331 struct page *page = NULL;
1332 void *cpu_addr;
1333
1334 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1335 if (!page)
1336 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1337 if (!page)
1338 return NULL;
1339
1340 if (!coherent || PageHighMem(page)) {
1341 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1342
1343 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1344 prot, __builtin_return_address(0));
1345 if (!cpu_addr)
1346 goto out_free_pages;
1347
1348 if (!coherent)
1349 arch_dma_prep_coherent(page, size);
1350 } else {
1351 cpu_addr = page_address(page);
1352 }
1353
1354 *pagep = page;
1355 memset(cpu_addr, 0, alloc_size);
1356 return cpu_addr;
1357out_free_pages:
1358 dma_free_contiguous(dev, page, alloc_size);
1359 return NULL;
1360}
1361
1362static void *iommu_dma_alloc(struct device *dev, size_t size,
1363 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1364{
1365 bool coherent = dev_is_dma_coherent(dev);
1366 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1367 struct page *page = NULL;
1368 void *cpu_addr;
1369
1370 gfp |= __GFP_ZERO;
1371
1372 if (gfpflags_allow_blocking(gfp) &&
1373 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1374 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1375 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1376 }
1377
1378 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1379 !gfpflags_allow_blocking(gfp) && !coherent)
1380 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1381 gfp, NULL);
1382 else
1383 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1384 if (!cpu_addr)
1385 return NULL;
1386
1387 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1388 dev->coherent_dma_mask);
1389 if (*handle == DMA_MAPPING_ERROR) {
1390 __iommu_dma_free(dev, size, cpu_addr);
1391 return NULL;
1392 }
1393
1394 return cpu_addr;
1395}
1396
1397static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1398 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1399 unsigned long attrs)
1400{
1401 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1402 unsigned long pfn, off = vma->vm_pgoff;
1403 int ret;
1404
1405 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1406
1407 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1408 return ret;
1409
1410 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1411 return -ENXIO;
1412
1413 if (is_vmalloc_addr(cpu_addr)) {
1414 struct page **pages = dma_common_find_pages(cpu_addr);
1415
1416 if (pages)
1417 return vm_map_pages(vma, pages, nr_pages);
1418 pfn = vmalloc_to_pfn(cpu_addr);
1419 } else {
1420 pfn = page_to_pfn(virt_to_page(cpu_addr));
1421 }
1422
1423 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1424 vma->vm_end - vma->vm_start,
1425 vma->vm_page_prot);
1426}
1427
1428static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1429 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1430 unsigned long attrs)
1431{
1432 struct page *page;
1433 int ret;
1434
1435 if (is_vmalloc_addr(cpu_addr)) {
1436 struct page **pages = dma_common_find_pages(cpu_addr);
1437
1438 if (pages) {
1439 return sg_alloc_table_from_pages(sgt, pages,
1440 PAGE_ALIGN(size) >> PAGE_SHIFT,
1441 0, size, GFP_KERNEL);
1442 }
1443
1444 page = vmalloc_to_page(cpu_addr);
1445 } else {
1446 page = virt_to_page(cpu_addr);
1447 }
1448
1449 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1450 if (!ret)
1451 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1452 return ret;
1453}
1454
1455static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1456{
1457 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1458
1459 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1460}
1461
1462static const struct dma_map_ops iommu_dma_ops = {
1463 .alloc = iommu_dma_alloc,
1464 .free = iommu_dma_free,
1465 .alloc_pages = dma_common_alloc_pages,
1466 .free_pages = dma_common_free_pages,
1467 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1468 .free_noncontiguous = iommu_dma_free_noncontiguous,
1469 .mmap = iommu_dma_mmap,
1470 .get_sgtable = iommu_dma_get_sgtable,
1471 .map_page = iommu_dma_map_page,
1472 .unmap_page = iommu_dma_unmap_page,
1473 .map_sg = iommu_dma_map_sg,
1474 .unmap_sg = iommu_dma_unmap_sg,
1475 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1476 .sync_single_for_device = iommu_dma_sync_single_for_device,
1477 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1478 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1479 .map_resource = iommu_dma_map_resource,
1480 .unmap_resource = iommu_dma_unmap_resource,
1481 .get_merge_boundary = iommu_dma_get_merge_boundary,
1482};
1483
1484
1485
1486
1487
1488void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1489{
1490 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1491
1492 if (!domain)
1493 goto out_err;
1494
1495
1496
1497
1498
1499 if (iommu_is_dma_domain(domain)) {
1500 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1501 goto out_err;
1502 dev->dma_ops = &iommu_dma_ops;
1503 }
1504
1505 return;
1506out_err:
1507 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1508 dev_name(dev));
1509}
1510EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1511
1512static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1513 phys_addr_t msi_addr, struct iommu_domain *domain)
1514{
1515 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1516 struct iommu_dma_msi_page *msi_page;
1517 dma_addr_t iova;
1518 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1519 size_t size = cookie_msi_granule(cookie);
1520
1521 msi_addr &= ~(phys_addr_t)(size - 1);
1522 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1523 if (msi_page->phys == msi_addr)
1524 return msi_page;
1525
1526 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1527 if (!msi_page)
1528 return NULL;
1529
1530 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1531 if (!iova)
1532 goto out_free_page;
1533
1534 if (iommu_map(domain, iova, msi_addr, size, prot))
1535 goto out_free_iova;
1536
1537 INIT_LIST_HEAD(&msi_page->list);
1538 msi_page->phys = msi_addr;
1539 msi_page->iova = iova;
1540 list_add(&msi_page->list, &cookie->msi_page_list);
1541 return msi_page;
1542
1543out_free_iova:
1544 iommu_dma_free_iova(cookie, iova, size, NULL);
1545out_free_page:
1546 kfree(msi_page);
1547 return NULL;
1548}
1549
1550int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1551{
1552 struct device *dev = msi_desc_to_dev(desc);
1553 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1554 struct iommu_dma_msi_page *msi_page;
1555 static DEFINE_MUTEX(msi_prepare_lock);
1556
1557 if (!domain || !domain->iova_cookie) {
1558 desc->iommu_cookie = NULL;
1559 return 0;
1560 }
1561
1562
1563
1564
1565
1566
1567 mutex_lock(&msi_prepare_lock);
1568 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1569 mutex_unlock(&msi_prepare_lock);
1570
1571 msi_desc_set_iommu_cookie(desc, msi_page);
1572
1573 if (!msi_page)
1574 return -ENOMEM;
1575 return 0;
1576}
1577
1578void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1579 struct msi_msg *msg)
1580{
1581 struct device *dev = msi_desc_to_dev(desc);
1582 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1583 const struct iommu_dma_msi_page *msi_page;
1584
1585 msi_page = msi_desc_get_iommu_cookie(desc);
1586
1587 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1588 return;
1589
1590 msg->address_hi = upper_32_bits(msi_page->iova);
1591 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1592 msg->address_lo += lower_32_bits(msi_page->iova);
1593}
1594
1595static int iommu_dma_init(void)
1596{
1597 if (is_kdump_kernel())
1598 static_branch_enable(&iommu_deferred_attach_enabled);
1599
1600 return iova_cache_get();
1601}
1602arch_initcall(iommu_dma_init);
1603